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A PROCEDURE FOR COMPUTING THE LOG CANONICAL

THRESHOLD OF A BINOMIAL IDEAL

R. BLANCO AND S. ENCINAS

Abstract. We present a procedure for computing the log-canonical threshold of an
arbitrary ideal generated by binomials and monomials.

The computation of the log canonical threshold is reduced to the problem of com-
puting the minimum of a function, which is defined in terms of the generators of the
ideal. The minimum of this function is attained at some ray of a fan which only
depends on the exponents of the monomials appearing in the generators of the ideal.

Introduction

The multiplier ideal of an ideal a can be defined from the analytic or algebraic point of
view, see for example [BL04] or [Laz10]. In this paper we use the algebraic approach
which involves resolution of singularities.
Fix a log-resolution Π : Y → X of an ideal a ⊆ OX over a field of characteristic zero, the
multiplier ideal of a is J (a) = Π∗OY (KY/X − F ) where KY/X is the relative canonical
divisor, and the divisor F defines the total transform of the ideal, a · OY = OY (−F ).
This definition can be extended for any real number t ≥ 0, then we can attach to
the ideal a a collection of multiplier ideals J (t · a) = J (at). These ideals and the
invariants arising from them have been widely studied. See [BL04] for an introduction
and [ELSV04] for some applications.
One of the main invariants defined in terms of multiplier ideals is the log canonical
threshold. The log canonical threshold of the ideal a is the smallest number t > 0 making
the ideal J (at) non trivial, and it is a measure of the singularities of the functions f ∈ a.
Computing multiplier ideals and log canonical thresholds from their definition is difficult
in general. In the case of monomial ideals, Howald [How01] proved that it is possible
to compute the multiplier ideal and the log canonical threshold using the Newton poly-
hedron associated to the ideal. For binomial ideals, some cases are known. Shibuta
and Takagi [ST09] gave a procedure based in linear programming to compute the log
canonical threshold of complete intersection binomial ideals and the defining ideals of
monomial curves in 3-dimensional space. See also [Tho14] where a formula for multiplier
ideals of monomial curves in 3-dimensional space is presented.

We say that an ideal a is a m-binomial ideal if a may be generated by monomials and
binomials (2.12). We prove in Theorem 5.7 that a log-resolution of a is non necessary to
compute the log canonical threshold of a. It is enough to achieve what we have called
a pseudo-resolution (3.5), where the total transforms of the generators of the ideal are
products of monomials and binomial hyperbolic equations. The key point is that, after
a pseudo-resolution, computation of the log canonical threshold reduces to two simple
cases addressed in Proposition 4.19. Weak pseudo resolutions (3.3) are close to the toric
desingularization morphisms defined in [GPT02], see also [Tei04, Section 6].

The authors were partially supported by MTM2012-35849 and MTM2015-68524-P.
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2 R. BLANCO AND S. ENCINAS

Our main results are Theorems 5.10 and 5.11. Theorem 5.10 shows that computation of
the log canonical threshold of a m-binomial ideal is reduced to the problem of computing
the minimum of a function LCT(M+,M−, u) : Rn

≥0 → R (5.3), defined in terms of the
generators of the ideal. Let a ⊂ k[x1, . . . , xn] be a m-binomial ideal (2.12) generated by
binomias and monomials f1, . . . , fr. The entries of the vector u ∈ kn are the coefficients
involved in f1, . . . , fr and the rows of M+ and M− encode the monomials appearing in
the generators.

Theorem 5.10. The lct of the ideal a is the minimum of the function LCT(M+,M−, u):

lct(W, a) = min
{
LCT(M+,M−, u)(v) | v ∈ Rn

≥0

}
.

The function LCT(M+,M−, u) is defined for every v ∈ Rn
≥0 and it is not continuous

in general, however Proposition 5.9 shows that there exist a rational polyhedral fan Γ
with support Rn

≥0 and such that the function LCT(M+,M−, u) is continuous in the
relative interior of every cone of Γ. The minimum of LCT(M+,M−, u), and hence the
log canonical threshold of a, is attained at some ray of the fan Γ.

Theorem 5.11. The log-canonical threshold lct(W, a) is the minimum of the values
LCT(M+,M−, u, c)(v) where v is a ray of the fan Γ.

See complete version of Theorems 5.10 and 5.11 in section 5 for all technical details.

Our results generalize the procedure presented in [ST09] and allow us to calculate the log
canonical threshold for arbitrary binomial ideals, including the non complete intersection
case. The procedure of Shibuta and Takagi relies on a linear programming problem
formulated only in terms of the exponents of the monomials appearing in the generators
of the ideal. We illustrate in Example 6.6 that the log canonical threshold also depends
on the coefficients of the binomials generating the ideal.

We also show, see Corollary 3.17, a constructive procedure to obtain a pseudo-resolution
of a m-binomial ideal. This procedure is based on Zeillinger’s idea [Zei06] for solving
Hironaka’s polyhedra game. Using this idea, all blowing-up centers are of codimension
two. We use the same invariants as in [Gow05] where the author obtains a log-resolution
for monomial ideals.

We include in section 6 several examples to illustrate our method. All computations
were made with Singular [DGPS12].
The authors want to thank to the editors and the anonymous reviewers/referees for
valuable suggestions and comments.

1. Log-resolution

In what follows k is a field of characteristic zero. We denote W to be a smooth alge-
braic variety over k and we recall definitions of log-resolution, multiplier ideal and log
canonical threshold.

Definition 1.1. Let a ⊂ OW be a non zero sheaf of ideals on W . A log-resolution of a
is a proper birational morphism Π : W ′ →W such that

• W ′ is smooth over k,
• the total transform of the ideal aOW ′ = OW ′(−F ) is an invertible sheaf associ-
ated to a normal crossing divisor F in W ′,
• and Exc(Π) ∪ Supp(F ) is a simple normal crossing divisor, where Exc(Π) is the
exceptional locus of Π.
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It is well known that if the field k has characteristic zero, then log-resolution of ideals
exists. In fact there are procedures to obtain the morphism Π as a constructive sequence
of blowing ups

(W,E) = (W (0), E(0))← (W (1), E(1))← · · · ← (W (N), E(N)).

See [EV00], [BEV05] for details or [Hau03] for an extended review.

Definition 1.2. Let t ≥ 0 be a real number. The multiplier ideal of a ⊂ OW with
exponent t is:

J (W, at) = Π∗OW ′(KW ′/W − ⌊tF ⌋),

where Π : W ′ → W is a log-resolution of a and aOW ′ = OW ′(−F ).

If ∆ is an effective Cartier divisor in W , we also define the multiplier ideal associated
to the ideal and the divisor:

J (W,∆, at) = Π∗OW ′(KW ′/W − Π∗∆− ⌊tF ⌋),

where here Π : W ′ → W is a log-resolution of a with the additional condition that the
divisor F +Π∗∆ has normal crossings.

The definition of the multiplier ideal J (W,∆, at) is independent of the choice of the
log-resolution and it can be generalized when ∆ is a Q-divisor and even to the case W
non-smooth, see [Laz04].
Note that the set of multiplier ideals {J (W,∆, at) | t ≥ 0} is a filtration, J (W,∆, at1) ⊇
J (W,∆, at2) for t1 ≤ t2. The first real number where the multiplier ideal is non trivial
is called the log canonical threshold.

Definition 1.3. The log canonical threshold of an ideal a ⊂ OW is

lct(W, a) = inf{t | J (W, at) 6= OW}.

If ∆ is a Cartier divisor in W then

lct(W,∆, a) = inf{t | J (W,∆, at) 6= OW}.

The definition may be local at a point ξ ∈ W ,

lct(W,∆, a)ξ = inf{t | J (W,∆, at) 6= OW,ξ}.

The log canonical threshold is a rational number, see [Laz04].

Proposition 1.4. Let Π : W ′ → W be a proper birational morphism where W ′ and W
are smooth varieties over k. Let U ′

1 ∪ · · · ∪ U ′
r = W ′ be an open cover in W ′. Let ∆ be

a Cartier divisor in W . If ∆′ = Π∗∆−KW ′/W then

lct(W,∆, a) = min{lct(U ′
i ,∆

′, a∗) | i = 1, . . . , r}.

Proof. It follows from Definition 1.3 and the fact that J (W,∆, a) = Π∗J (W ′,∆′, a∗).
�

Note that the morphism Π in Proposition 1.4 need not to be a log-resolution of a. We
will apply this result for Π a pseudo resolution (3.5) of a m-binomial ideal.
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2. Toric varieties

We remind here some basic notions about toric varieties, for more details see [CLS11]
[Ful93] or [Oda88]. See also [GPT14] for generalization to non necessarily normal toric
varieties.

Fix N ∼= Zn a n-dimensional lattice and letM = Hom(N,Z) be its dual lattice. Denote
by NR the real vector space spanned by N .

Definition 2.1. A cone σ in NR is a strongly convex rational polyhedral cone, that is
a set of non negative linear combinations of some vectors v1, . . . , vr ∈ N such that it
contains no nonzero R-subspace of NR.

A face of a cone σ is a subset τ ⊂ σ such that there exists w ∈M with

τ = σ ∩ w⊥ = {u ∈ σ | 〈w, u〉 = 0}.

One dimensional faces are called the rays of σ and we denote σ(1) the set of all rays of
σ. Note that if ρ ∈ σ(1) then there exist a unique primitive vector vρ ∈ N generating
the semi-group ρ ∩N .
A fan Σ in N is a set of strongly convex rational polyhedral cones σ in NR such that
every face of a cone σ ∈ Σ is also a cone in Σ and the intersection of two cones in Σ is
a face of each one of them.

Given a fan Σ in N , the support of Σ, |Σ|, is the union of all the cones in Σ, that is, the
set |Σ| = ∪σ∈Σ σ ⊂ NR. We denote Σ(1) the set of all rays in Σ. By abuse of notation
we will also denote σ(1), resp. Σ(1), the set of primitive vectors vρ with ρ ∈ σ(1), resp.
ρ ∈ Σ(1).

If σ is a cone in N , the dual cone σ∨ ⊂ MR is the set of vectors in MR that are
nonnegative on σ, that is

σ∨ = {w ∈MR|〈w, u〉 ≥ 0 ∀u ∈ σ}.

2.2. The semi-group σ∨ ∩ M = {w ∈ M|〈w, u〉 ≥ 0 ∀u ∈ σ} is finitely generated.
Hence the algebra of the semi-group k[σ∨ ∩M] is a finitely generated k-algebra that
defines an affine toric variety Uσ = Spec(k[σ∨ ∩M]). In fact every affine normal toric
variety is of this form.

Given a fan Σ in N we associate a (normal) toric variety WΣ obtained by gluing the
affine toric varieties {Wσ | σ ∈ Σ}, see [CLS11] for details.

Remark 2.3. We say that a cone σ is regular if the primitive vectors σ(1) are part of
a Z-basis of the lattice N . A fan Σ is regular if every cone σ ∈ Σ is regular. It is known
that the toric variety WΣ is regular if and only if the associated fan Σ is regular.
If σ is a regular cone, there exist a Z-basis of N , say v1, . . . , vn such that σ(1) =
{v1, . . . , vr} for some r ≤ n. Let w1, . . . , wn be the dual basis inM, then the dual cone
σ∨ is generated by w1, . . . , wr,±wr+1, . . . ,±wn. The associated affine toric variety is
Uσ = Spec(k[x1, . . . , xr, x

±
r+1, . . . , x

±
n ]).

Remark 2.4. Let Σ be a fan and Σ(1) = {v1, . . . , vm′} ⊂ N be the set of primitive
vectors generating the rays of Σ.
Set N ′ = 〈Σ(1)〉 ∩ N . Recall that the toric variety WΣ has a torus factor if and only
if N ′

R 6= NR ([CLS11, 3.3.9]). The quotient N/N ′ is torsion-free and there exists a
complement N ′′ ⊂ N such that N = N ′ ⊕N ′′.
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Note that every cone σ ∈ Σ is generated by a subset of Σ(1) = {v1, . . . , vm′}, σ(1) =
{vi1 , . . . , vir} for some indexes i1, . . . , ir.
We associate to a fan Σ, and indeed to the toric variety WΣ, a set of vertices Ξ ⊂ N .

Ξ = {v1, . . . , vm′ , vm′+1, . . . , vm},

where {vm′+1, . . . , vm} is a Z-basis of the complement N ′′.

2.5. Note that for every cone σ ∈ Σ there are vertices vi1 , . . . , vin ∈ Ξ such that:

• vi1 , . . . , vin is a Z-basis of N ,
• σ(1) = {vi1 , . . . , vir} for some r ≤ n.

Note that Ξ is not unique since there are many choices for the vertices vm′+1, . . . , vm as
possible Z-basis of N ′′. These additional vertices are needed in order to define globally
monomials and binomials in a smooth toric variety, see Definition 2.11.

Remark 2.6. Recall that the ring k[v1, . . . , vm] is the total coordinate ring of WΣ. This
ring has a grading given by the divisor class group Cl(WΣ). Two monomials va and
vb have the same degree if a − b satisfies the same linear dependencies as the v’s: If∑m

i=1 λivi = 0 then
∑m

i=1 λi(ai − bi) = 0. See [CLS11, §5.2].

Definition 2.7. [CLS11, Def. 3.3.13] Let Σ be a fan in N . A fan Σ′ is a subdivision of
the fan Σ if both fans have the same support and if every cone σ′ ∈ Σ′ is contained in
a cone σ ∈ Σ.
Let σ be a regular cone generated by v1, . . . , vr and set Σ the minimum fan containing
σ. The cones in Σ are σ and all the faces of σ. Fix a face τ of σ, and assume that τ
is generated by v1, ..., vs, s ≤ r. The star subdivision of Σ with center a face τ ∈ Σ
is the fan Σ′ containing the cones σ1, . . . , σs and all their faces, where each cone σi,
i = 1, . . . , s is generated by

(2.7.1) v1, . . . , vi−1, v1 + · · ·+ vs, vi+1, . . . , vs, vs+1, . . . , vr.

If Σ is a fan and τ ∈ Σ is a cone, then the star subdivision of Σ with center τ is the fan
Σ′ such that:

• If σ ∈ Σ and τ is not a face of σ then σ ∈ Σ′.
• If σ ∈ Σ and τ is a face of σ then σi ∈ Σ′ for i = 1, ..s, where σ1, . . . , σs are
cones as in (2.7.1).

2.8. Recall that any subdivision Σ′ of a fan Σ defines a proper birational morphism
WΣ′ →WΣ.

If Σ is a regular fan (i.e. WΣ is a regular toric variety) and Σ′ is a star subdivision of
Σ, then Σ′ is also a regular fan.

Let Σ′ be the star subdivision of Σ with center τ . If Ξ = {v1, . . . , vm} is a set of vertices
for Σ then a set of vertices Ξ′ for Σ′ is obtained by adding one element.
If τ is generated by the vertices vi1 , . . . , vir of Ξ then Ξ′ = Ξ ∪ {vi1 + · · ·+ vir}.

Definition 2.9. Let W = WΣ be a regular toric variety, defined by a regular fan Σ. A
combinatorial blowing up with center a cone τ ∈ Σ is the morphism

W ′ = WΣ′ →W = WΣ

defined by the star subdivision Σ′ of Σ with center τ (2.7).
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Remark 2.10. Combinatorial blowing ups correspond to usual blowing ups with center
defined by some variables.

Let Π : WΣ′ →WΣ be the combinatorial blow-up with center τ ∈ Σ.
Fix a cone σ ∈ Σ such that τ is a face of σ. Set v1, . . . , vr ∈ N be generators of σ such
that v1, . . . , vs, s ≤ r are generators of τ . The open set Uσ ⊂ WΣ is, by Remark 2.3,

Uσ
∼= Spec(k[x1, . . . , xr, x

±
r+1, . . . , x

±
n ]).

The cone σ is replaced in Σ′ by the s cones σ1, . . . , σs, notation as in Definition 2.7.
The restriction of the combinatorial blow-up Π to the open set Uσ,

Uσ1 ∪ · · · ∪ Uσs
→ Uσ,

is the (usual) blowing-up of Uσ with center (x1, . . . , xs).
Extend the generators of σ to v1, . . . , vn a Z-basis of N and denote w1, . . . , wn the dual
basis. The cone σ∨ is generated by w1, . . . , wr,±wr+1, . . . ,±wn. It is easy to check that
for i = 1, . . . , s the cone σ∨

i is generated by

w1 − wi, . . . , wi−1 − wi, wi, wi+1 − wi, . . . , ws − wi, ws+1, . . . , wr,±wr+1, . . . ,±wn

and

Uσi
∼= Spec

(
k

[
x1

xi
, . . . ,

xi−1

xi
, xi,

xi+1

xi
, . . . ,

xs

xi
, xs+1, . . . , xr, x

±
r+1, . . . , x

±
n

])
.

Definition 2.11. Let W = WΣ be a smooth toric variety. Let Ξ = {v1, . . . , vm} be a
set of vertices for Σ.
A monomial in W will be a monomial in the total coordinate ring (2.4). We will denote
by va = va11 · · · v

am
m where a = (a1, . . . , am) ∈ Zm

≥0.
If σ ∈ Σ is the cone generated by vi1 , . . . , vir , recall that the corresponding open set in
W is

Uσ
∼= Spec(k[x1, . . . , xr, x

±
r+1, . . . , x

±
n ])

where vi1 , . . . , vir , vir+1, . . . , vin is a Z-basis of N (2.5). The monomial va induces in the

open set Uσ the monomial x
ai1
1 · · ·x

ain
n .

It follows that the monomial va defines a sheaf of ideals in OW which is locally monomial.
A binomial in W will be a homogeneous binomial in the total coordinate ring (2.6). We
will denote va − uvb, where u ∈ k∗, a, b ∈ Zm, such that

• va and vb are monomials, i.e. for every cone σ, with σ(1) = {vi1 , . . . , vir} ⊂ Ξ
then

aij ≥ 0 and bij ≥ 0 for j = 1, . . . , r.

• And if
m∑

i=1

λivi = 0 =⇒
m∑

i=1

λi(ai − bi) = 0.

An irreducible binomial is a binomial as above of the form vβ
+
− uvβ

−

, where β ∈ Zm

and for i = 1, . . . , m

β+
i =

{
βi if βi > 0
0 if βi ≤ 0

, β−
i =

{
−βi if βi < 0
0 if βi ≥ 0

.

See [CLS11, §5.3] for more details for sheaves on toric varieties. A binomial defines a
hypersurface in WΣ such that at every affine open set Uσ ⊂WΣ it is defined by a usual
binomial.
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Definition 2.12. A monomial ideal in W = WΣ is the ideal sheaf in OW generated by
a finite set of monomials va1 , . . . , vaℓ . At every open subset Uσ, σ ∈ Σ corresponds to
an ideal generated by monomials in a polynomial ring.
A binomial ideal in WΣ is the ideal sheaf generated by a finite set of binomials.
A m-binomial ideal in WΣ is the ideal sheaf generated by a finite set of monomials and
binomials.

Proposition 2.13. Every binomial va − uvb may be expressed as a product of a mono-
mial and an irreducible binomial

va − uvb = vα(vβ
+

− uvβ
−

).

Proof. Set αi = min{ai, bi}, for i = 1, . . . , m, and β = a− b. We factor out as much as
possible in vα, then some components of β will be positive and some will be negative,
getting an irreducible binomial vβ

+
− uvβ

−

like in Definition 2.11, note that a − b =
β+ − β−.

�

3. Pseudo-resolution

Combinatorial blowing up are enough to obtain a log-resolution of monomial ideals, but
it is not possible to obtain log-resolution of binomial ideals only with this transforma-
tions. However we will prove that these combinatorial transformations are enough to
obtain pseudo-resolutions which allow to compute the log canonical threshold.

In what follows Σ is always a regular fan and Ξ = {v1, . . . , vm} is a set of vertices of Σ.

Proposition 3.1. Let Σ′ be the star subdivision of Σ with center σ ∈ Σ, let Ξ =
{v1, . . . , vm} be a set of vertices of Σ and let Ξ′ = {v1, . . . , vm, vm+1} be a set of vertices
of Σ′. Assume σ(1) = {vi1 , . . . , vir} are the vertices of σ.
If va = va11 · · · v

am
m is a monomial in WΣ, then the total transform of va is the monomial

in WΣ′

va11 · · · v
am
m v

am+1

m+1 , am+1 = ai1 + · · ·+ air .

If f = vβ
+
− uvβ

−

, with β = (β1, . . . , βm) ∈ Zm, is an irreducible binomial in WΣ, then

the strict transform of f in WΣ′ is f ′ = vβ
′+

− uvβ
′−

where

β ′ = (β1, . . . , βm, βm+1), βm+1 = βi1 + · · ·+ βir

Proof. It follows from Remark 2.10 and Proposition 2.13. �

Note that if a is a monomial (resp. m-binomial) ideal then after a combinatorial blowing
up W ′ → W the total transform of a is again a monomial (resp. m-binomial) ideal. In
fact this is also true for any regular subdivision Σ′ of Σ, even if Σ′ is not obtained by a
sequence of star subdivisions.

If a = (a1, . . . , am) ∈ Zm and σ ∈ Σ is a cone with σ(1) = {vi1 , . . . , vir} then we denote
aσ = (ai1 , . . . , air) ∈ Zr.

Definition 3.2. We say that an irreducible binomial f = vβ
+
− uvβ

−

, with β ∈ Zm, is
a hyperbolic equation if for every cone σ ∈ Σ then either β+

σ = 0 or β−
σ = 0.

A binomial f = va−uvb in WΣ is said to be weakly resolved if f may be expressed as the
product of a monomial and a hyperbolic equation. Using the notation of Proposition
2.13 this means that if β = a− b then for every cone σ ∈ Σ either β+

σ = 0 or β−
σ = 0.

We will say that every monomial va is weakly resolved.
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Let Σ′ be a subdivision of Σ obtained by a sequence of star subdivisions, and let f be
a binomial in WΣ. Note that the morphism WΣ′ → WΣ is a log-resolution of the ideal
generated by f , if and only if the total transform of f is weakly resolved.
For an ideal generated by more that one binomial the above result is not true, in this case
one can obtain an embedded desingularization of the variety defined by the binomials,
see [Tei04, Section 6].

Definition 3.3. Let a ⊂ OW be a m-binomial ideal generated by binomials and mono-
mials f1, . . . , fr.
A weak-pseudo-resolution of a with respect to the generators f1, . . . , fr is a sequence
of combinatorial blowing-ups W ′

Σ′ → WΣ such that the total transforms of generators
f ∗
1 , . . . , f

∗
r are weakly-resolved as in (3.2).

The above definition depends on the generators of the ideal. Note also that every
monomial ideal is already weak-pseudo-resolved.

Definition 3.4. We denote the partial ordering� in Zm, defined as follows: If α, β ∈ Zm

then α � β if and only if αi ≤ βi for all i = 1, . . . , m. Where α = (α1, . . . , αm) and
β = (β1, . . . , βm).
It is the usual partial ordering given by division of monomials.

Note that if a binomial va− uvb in WΣ is weakly resolved then for every σ ∈ Σ we have
that either aσ � bσ or bσ � aσ.
Using the above partial ordering we can refine a weak-pseudo-resolution to a pseudo-
resolution.

Definition 3.5. Let a ⊂ OW be a m-binomial ideal generated by binomials and mono-
mials f1, . . . , fr.
A pseudo-resolution of a with respect to generators f1, . . . , fr is a weak-pseudo-resolution
W ′ →W such that if f ∗

1 , . . . , f
∗
r are the total transforms and for i = 1, . . . , r

f ∗
i = vαi(vβ

+
i − uiv

β−

i ) if fi is a binomial, or

f ∗
i = vαi if fi is a monomial,

then for every cone σ ∈ Σ′ the vectors (α1)σ, . . . , (αr)σ are totally ordered with respect
to the ordering �.

Note that in order to prove if a weak-pseudo-resolution is a pseudo-resolution it is
enough to check the condition of totally ordered only for maximal cones of Σ′.

Proposition 3.6. Let a be a m-binomial ideal generated by f1, . . . , fr. There exists a
pseudo-resolution of the ideal a and it can be obtained by a sequence of star subdivisions
of Σ.

Proof. First one may produce log-resolutions of every generator fi to obtain a weak-
pseudo-resolution W ′ → W of the ideal a. The total transforms f ∗

1 , . . . , f
∗
r can be

expressed as

f ∗
i = vαi(vβ

+
i − uiv

β−

i ), or f ∗
i = vαi ,

where each vβ
+
i − uiv

β−

i , i = 1, . . . , r is a hyperbolic equation.
Now consider the monomial ideals generated by the pairs of monomials

{vαi, vαj}, ∀i < j,
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and construct a simultaneous log-resolution for all these monomial ideals, sayW ′′ →W ′.
For every σ ∈ Σ′′ we have that either (αi)σ � (αj)σ or (αj)σ � (αi)σ, which means that
the set {(α1)σ, . . . , (αr)σ} is totally ordered with respect to the ordering �. We conclude
that W ′′ → W is a pseudo-resolution of the ideal generated by f1, . . . , fr. �

Remark 3.7. Suppose W ′ → W is a pseudo resolution of a = 〈f1, . . . , fr〉 (3.5). Let
σ ∈ Σ′ be a cone with σ(1) = {vi1 , . . . , vis}, so that the affine open set Uσ ⊂W ′ is

Uσ = Spec
(
k[x1 . . . , xs, x

±
s+1, . . . , x

±
n ]
)

The total transform of each fi in Uσ is,

• (f ∗
i ) |Uσ

= w̃ix
α̃i(1− ũix

β̃i), if fi is a binomial or
• (f ∗

i ) |Uσ
= xα̃i , if fi is a monomial.

where α̃i = (αi)σ and

• β̃i = (β−
i , ũi = ui, w̃i = 1, if (β+

i )σ = 0 or

• β̃i = (β+
i , ũi = u−1

i , w̃i = ui, if (β
−
i )σ = 0.

Since we have a pseudo-resolution the vectors α̃1, . . . , α̃r are totally ordered with respect
to �, so that there exists a permutation ε such that

α̃ε(1) � α̃ε(2) � · · · α̃ε(r)

If all fi are binomials then the total trasform of a in Uσ is the ideal

(3.7.1)
〈
xα̃ε(1)(1− ũε(1)x

β̃ε(1)), . . . xα̃ε(r)(1− ũε(r)x
β̃ε(r))

〉

If some fi is a monomial, set r′ to be the minimum index such that fε(r′) is a monomial
and the total trasform of a in Uσ is the ideal

(3.7.2)
〈
xα̃ε(1)(1− ũε(1)x

β̃ε(1)), . . . xα̃ε(r′−1)(1− ũε(r′−1)x
β̃ε(r′−1)), xα̃ε(r′)

〉

Pseudo resolution will reduce the computation of the log-canonical threshold of a bino-
mial ideal to the cases (3.7.1) and (3.7.2), see Proposition 4.19.

The proof of Proposition 3.6 is based on the existence of log-resolution of monomial
ideals. Now we define some invariants that will produce a constructive pseudo-resolution
where every step is a combinatorial blowing up with a two codimensional center.

Definition 3.8. Fix a regular fan Σ in N and Ξ = {v1, . . . , vm} a set of vertices of Σ.
We define the function L = LΣ : Zm → Z≥0, for β = (β1, . . . , βm) ∈ Zm set

L(β) = max{|βi − βj |, βiβj < 0, and {vi, vj} generate a 2-dimensional cone in Σ}.

If σ ∈ Σ is a cone then we set

L(β, σ) = max{|βi − βj|, βiβj < 0, and {vi, vj} generate a 2-dimensional face of σ}.

If f = vβ
+
− uvβ

−

is an irreducible binomial in WΣ then set L(f) = L(β).
In general, if va and vb are two monomials in WΣ then we set L({va, vb}) = L(a− b).

Note that L(β) = max{L(β, σ) | σ ∈ Σ} and

L(β) = max{|βi|+ |βj|, βiβj < 0, and {vi, vj} generate a 2-dimensional cone in Σ}.

Example 3.9. Consider W = Spec(k[x1, x2, x3, x4, x5]), let f = x3
1x2x3 − x3

4x
5
5 be

a binomial. The fan Σ has vertices v1, v2, v3, v4, v5 and the irreducible binomial f is
represented by β = (3, 1, 1,−3,−5).
We have that L(β) = 8, and this value is given by the pair {v1, v5}.
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Function L(f) was introduced in [Zei06] in order to give a solution to Hironaka’s polyhe-
dra game. See also [Gow05] where the same invariant appears. The two-codimensional
centers that will be allowed in our procedure will be those pairs appearing in the defi-
nition of the function LΣ.

Definition 3.10. A 2-dimensional face {vi, vj} of Σ is permissible for an irreducible

binomial f = vβ
+
− uvβ

−

iff βiβj < 0.
In general if va and vb are two monomials then we say that {vi, vj} is permissible for
the pair of monomials {va, vb} if (ai − bi)(aj − bj) < 0.

Proposition 3.11. Let f be an irreducible binomial in WΣ and let {vi, vj} be a per-
missible 2-dimensional face of Σ for f . If Σ′ is the star subdivision of Σ with center
{vi, vj} and f ′ is the strict transform of f , then LΣ′(f ′) ≤ LΣ(f).

Proof. Note that Ξ′ = Ξ ∪ {vi + vj}. If σ ∈ Σ is a cone such that {vi, vj} 6⊂ σ(1) then
σ ∈ Σ′ and L(f ′, σ) = L(f, σ).
If {vi, vj} ⊂ σ(1) then σ is replaced in Σ′ by two cones, say σ1 and σ2, where {vi, vi +
vj} ⊂ σ1(1) and {vj, vi + vj} ⊂ σ2(1). Since βiβj < 0 then |βi + βj | < max{|βi|, |βj|}
and it follows that

max{L(f ′, σ1), L(f
′, σ2)} ≤ L(f, σ).

�

Example 3.12. In the Example 3.9, the pair {v1, v5} is permissible. Let Σ′ be the star
subdivision with center {v1, v5}. The fan Σ′ has vertices v1, v2, v3, v4, v5, v6 and two max-
imal cones σ′

1 and σ′
2 generated, respectively by {v1, v2, v3, v4, v6} and {v2, v3, v4, v5, v6}.

The corresponding affine open sets are

Uσ1 = Spec (k[y1, y2, y3, y4, y6]) , Uσ2 = Spec (k[z2, z3, z4, z5, z6]) ,

where x1 = y1y6 = z6, x2 = y2 = z2, x3 = y3 = z3, x4 = y4 = z4, x5 = y6 = z5z6.
Following Proposition 3.1, set β ′ = (3, 1, 1,−3,−5,−2) and the strict transform of f is
f ′ = v31v2v3 − v34v

5
5v

2
6. At every chart the binomial f ′ is

f ′
σ1

= y31y2y3 − y34y
2
6, f ′

σ2
= z2z3 − z34z

5
5z

2
6 .

Now L(β ′) = 6 < L(β) = 8. The value L(β ′) = 6 is given by the pairs {v1, v4}, {v2, v5}
and {v3, v5}.
Let Σ′′ be the star subdivision with center {v2, v5}. The fan Σ′′ has vertices v1, v2, v3, v4,
v5, v6, v7 and three maximal cones. The strict transform of f ′ is f ′′ = v31v2v3− v34v

5
5v

2
6v

4
7

and β ′′ = (3, 1, 1,−3,−5,−2,−4).
At this step L(β ′′) = 6 = L(β ′). But note that the value 6 is given by pairs {v1, v4} and
{v3, v5}.

This last observation is a general fact, the number of pairs giving a fixed value of
the function L, decreases after a star subdivision with center in a permissible two-
dimensional face.

Definition 3.13. If f is an irreducible binomial we define the pair of positive integers
(L(f), Lp(f)), where Lp(f) is the number of pairs i < j such that L(f) = |βi − βj |.

Proposition 3.14. In the situation of Proposition 3.11, if the pair {vi, vj} is such that
L(f) = |βi − βj | then

(L(f ′), Lp(f ′)) < (L(f), Lp(f))

for the lexicographic ordering.
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Proof. It follows from the proof of Proposition 3.11. �

Theorem 3.15. Given an irreducible binomial f = vβ
+
− uvβ

−

, the log-resolution of
the ideal generated by f may be obtained by 2-codimensional blowups.

Proof. It follows from Proposition 3.14. �

Proposition 3.16. If {va, vb} is a monomial ideal generated by two monomials, then
the value (L(a− b), Lp(a− b)) may also be used to obtain a log-resolution of the ideal.

Corollary 3.17. For a m-binomial ideal, we may obtain a pseudo resolution given by
a sequence of two-codimensional blowing ups constructed with function (L, Lp).

4. Formula of lct within a pseudo-resolution

Definition 4.1. Let α1, . . . , αm points in Rn
≥0. The Newton polyhedron of α1, . . . , αm

is the convex hull in Rn
≥0 of the set

m⋃

i=1

(
αi + Rn

≥0

)
.

Remark 4.2. Note that a point β is in the Newton polyhedron of α1, . . . , αm if and
only if there exist real numbers t1, . . . , tm such that

• 0 ≤ ti ≤ 1, for i = 1, . . . , m,
• t1 + · · ·+ tm = 1 and
• β ∈ (

∑m
i=1 tiαi) + Rn

≥0

The Newton polyhedron may be also expressed in terms of hyperplanes inequalities as
follows: A point β ∈ Rn

≥0 is in the Newton polyhedron of α1, . . . , αm if and only if

β · v ≥ min{α1 · v, . . . , αm · v} ∀ v ∈ Rn
≥0.

Lemma 4.3. [How01] Let U be a smooth affine variety of dimension n. Let z1, . . . , zn
be global sections in OU such that they are uniformizing parameters of U , which means
that d z1, . . . , d zn is a basis of ΩU/k.
Let a ⊂ OU be a monomial ideal in U w.r.t z’s. The ideal a is generated by monomials

zγi , i = 1, . . . , r.

Let ∆ be a divisor defined by a monomial zc, 〈zc〉 = OU(−∆). We assume that if zj is
a unit at every point in U then the previous monomials do not depend on zj.
Then the multiplier ideal of a is

J (U,∆, at) = 〈zλ | λ+ c+ 1 ∈ Interior(tP )〉

where P is the Newton polyhedron (4.1) of γi’s in Nn and 1 = (1, . . . , 1).

In particular the lct is
1

m
where m is the minimum number such that m(c + 1) ∈ P .

Proof. It is an easy generalization of Howald’s formula [How01], see [Bli04] for more
precise statement. �

As a direct consequence of Remark 4.2 and Lemma 4.3 we have the following result.

Lemma 4.4. In the situation of Lemma 4.3, the lct of the monomial ideal a is

lct(U,∆, a) = min

{
(c+ 1) · v

min{γ1 · v, . . . , γr · v}
| v ∈ Rn

≥0

}
.
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The minimum in Lemma 4.4 may be computed using linear programming, see [ST09,
Prop. 1.3].
Hyperbolic equations will play a key role when computing the log-canonical-threshold
of binomial ideals. These ideals have been characterized in [ES96, Th. 2.1]. We want
to describe the behavior of such ideals when adding a new generator.

Lemma 4.5. Let β1, . . . , βr ⊂ Zn
≥0. Consider the hyperbolic binomials

1− u1x
β1 , . . . , 1− urx

βr ∈ k[x1, . . . , xn],

where ui ∈ k∗, i = 1, . . . , r.
Let ar be the ideal generated by 1− u1x

β1, . . . , 1− urx
βr in k[x1, . . . , xn].

Set yi = 1−uix
βi, for i = 1, . . . , r, and let U = Spec(k[x1, . . . , xn]h) where h = xβ1+···+βr .

Assume that β1, . . . , βr are Q-linearly independent and set

ϕ : 〈β1, . . . , βr〉Z → k∗

to be the homomorphism from the lattice generated by β1, . . . , βr to the multiplicative
group k∗ defined by ϕ(βi) = ui, i = 1, . . . , r.

(1) y1, . . . , yr is part of a set of uniformizing parameters in U ,
(2) Let γ ∈ Zn

≥0 be a vector with non negative entries and w ∈ k∗. The hyperbolic
binomial 1− wxγ is in the ideal ar if and only if

γ ∈ 〈β1, . . . , βr〉Z and ϕ(γ) = w.

Proof. (1) and (2) are proved in [ES96, Th. 2.1], nevertheless for (1) one can check it
directly. The log-jacobian matrix of y1, . . . , yr is

(
xj

∂yi
∂xj

)

i,j

=




β1,1u1x
β1 · · · β1,nu1x

β1

...
...

βr,1urx
βr · · · βr,nurx

βr


 ,

and this matrix has rank r in k[x1, . . . , xn]h if and only if β1, . . . , βr are linearly inde-
pendent. �

Note that in the proof of Lemma 4.5, only (1) needs that the field k has to be of
characteristic zero. The result is also true for k of characteristic p > 0, if we assume
that β̄1, . . . , β̄r are Fp-linear independent.

We want to study the description of the ideal ar in Lemma 4.5 when adding a new
hyperbolic binomial 1−ur+1x

βr+1. In general we will not have a global description, but
we are able to find open sets of U with explicit description of the resulting ideal. The
following lemma generalizes this setting by adding monomials xαi to the generators.

Lemma 4.6. Let β1, . . . , βr ∈ Zn
≥0 be Q-linearly independent as in Lemma 4.5. Let

βr+1 ∈ Zn
≥0 be a vector, u1, . . . , ur, ur+1 ∈ k∗ be units in k and α1, . . . , αr, αr+1 ∈ Zn

≥0 be
vectors such that βr+1 is Q-linearly dependent on β1, . . . , βr and

α1 � α2 � · · · � αr � αr+1

Set h = xβ1+···+βr and consider the sheaves of ideals in U = Spec(k[x1, . . . , xn]h) defined
globally in U by:

ar =
〈
xα1(1− u1x

β1), . . . , xαr(1− urx
βr)

〉

ar+1 =
〈
xα1(1− u1x

β1), . . . , xαr(1− urx
βr), xαr+1(1− ur+1x

βr+1)
〉
.

There are two open sets U1 and U2 in U such that
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(1) U1 ∪ U2 = U ,
(2) ar+1OU1 = arOU1 and
(3) ar+1OU2 = (ar + 〈xαr+1〉)OU2.

Proof. Let ϕ : 〈β1, . . . , βr〉Z → k∗ be the homomorphism defined as in Lemma 4.5. By
assumption, there exist a positive integer q and integers λ1, . . . , λr such that

qβr+1 = λ1β1 + · · ·+ λrβr.

If uq
r+1 6= ϕ(qβr+1) then by Lemma 4.5 we have

xαr+1(1− uq
r+1x

qβr+1) ∈ ar+1 and xαr+1(1− ϕ(qβr+1)x
qβr+1) ∈ ar

and we have that xαr+1 ∈ ar+1OU . In this case we may set U2 = U , U1 = ∅.
If uq

r+1 = ϕ(qβr+1), by Lemma 4.5 we have that xαr+1(1− uq
r+1x

qβr+1) ∈ ar. Set

g =
1− uq

r+1x
qβr+1

1− ur+1xβr+1
∈ k[x1, . . . , xn] and note that 〈g, 1− ur+1x

βr+1〉 = 1.

Set U1 and U2 the open sets of U given by localization at g and 1−ur+1x
βr+1 respectively

and we obtain the result. �

Note that if the number q in the proof is q = 1 then U1 = U .

The ideals obtained after performing a pseudo-resolution W ′ →W will be, in each affine
open set, either as in (3.7.1) or as in (3.7.2).
Using Lemma 4.6 we are able to refine the usual affine open covering of W ′ such that at
every open set the ideal is monomial with respect to a set of uniformizing parameters.

Definition 4.7. Let β1, . . . , βr ∈ Zn be vectors and u1, . . . , ur ∈ k∗ be units.
We say that β1, . . . , βr and u1, . . . , ur are compatible if there is an homomorphism

ϕ : 〈β1, . . . , βr〉Z → k∗

such that ϕ(βi) = ui for all i = 1, . . . , r.

Note that the homomorphism ϕ, if it exists, it is unique. Note also that we do not
require β1, . . . , βr to be linearly independent.

Remark 4.8. Assume that β1, . . . , βr−1 and u1, . . . , ur−1 are compatible as above and
let ϕ the corresponding homomorphism, ϕ : 〈β1, . . . , βr−1〉Z → k∗.
If βr is Q-linearly independent of β1, . . . , βr−1 then β1, . . . , βr and u1, . . . , ur are com-
patible.
Assume βr is Q-linearly dependent of β1, . . . , βr−1, as in the proof of Lemma 4.6, there
are integers q > 0 and λ1, . . . , λr−1 such that

qβr = λ1β1 + · · ·+ λr−1βr−1

In this case β1, . . . , βr and u1, . . . , ur are compatible if and only if ϕ(qβr) = uq
r.

4.9. We recall that after a pseudo resolution the total transform of our ideal will be as in
(3.7.1) or as in (3.7.2). This means that we will obtain an ordered sequence of exponents
β1, . . . , βr together with a sequence in k∗, say u1, . . . , ur. In the proof Lemma 4.11 we
will use Lemma 4.6 in order to see that the corresponding ideal is locally monomial at
every open set of an open covering constructed in terms of β’s and u’s. So that we need
to check the condition to be compatible in Definition 4.7 of β1, . . . , βi and u1, . . . , ui

for every i = 1, . . . , r. In the next remark we will define N (β, u) which will allow to
construct explicitly the open covering.
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Remark 4.10. Let β1, . . . , βr ∈ Zn be vectors and u1, . . . , ur ∈ k∗ be units. We
associate to the ordered sequences (β1, . . . , βr) and (u1, . . . , ur) a sequence of integers
N (β, u)

N (β, u) = {1 = n1 < n2 < · · · < ns ≤ r̄ ≤ r}

which is characterized by the following properties:

• βn1 , . . . , βns
are Q-linearly independent.

• If j is such that ni < j < ni+1 for some i < s, then βj is Q-linearly independent
of βn1 , . . . , βni

.
• If j is such that ns < j ≤ r̄ then βj is Q-linearly independent of βn1 , . . . , βns

.
• β1, β2, . . . , βr̄ and u1, u2, . . . , ur̄ are compatible (4.7) and r̄ is the maximum index
with this property.

The sequence n1 < · · · < ns ≤ r̄ may be constructed inductively. Assume that for some
ℓ < r we have contructed the sequence

N (β1, . . . , βℓ; u1, . . . , uℓ) = {1 = n1 < n2 < · · · < ns′ ≤ r̄′ ≤ ℓ}

If r̄′ < ℓ then we have done and

N (β1, . . . , βr; u1, . . . , ur) = N (β1, . . . , βℓ; u1, . . . , uℓ)

Assume that r̄′ = ℓ. If βℓ+1 is Q-linearly independent of βn1 , . . . , βns′
then set ns′′ = ℓ+1,

r̄′′ = ℓ+ 1 and

N (β1, . . . , βℓ, βℓ+1; u1, . . . , uℓ, uℓ+1) = {1 = n1 < n2 < · · · < ns′ < ns′′ = r̄′′ = ℓ+ 1}

If βℓ+1 is Q-linearly dependent of βn1 , . . . , βns′
, there are two cases:

• If β1, β2, . . . , βℓ, βℓ+1 and u1, u2, . . . , uℓ, uℓ+1 are compatible then set r̄′′ = ℓ + 1
and

N (β1, . . . , βℓ, βℓ+1; u1, . . . , uℓ, uℓ+1) = {1 = n1 < n2 < · · · < ns′ < r̄′′ = ℓ+ 1}

• If β1, β2, . . . , βℓ, βℓ+1 and u1, u2, . . . , uℓ, uℓ+1 are not compatible then

N (β1, . . . , βr; u1, . . . , ur) = N (β1, . . . , βℓ; u1, . . . , uℓ)

and we have done.

Note that the sequence n1 < · · · < ns ≤ r̄ depends on the ordering of the β ′s and u′s.
The sequence n1 < · · · < ns will allow to describe generators of a binomial ideal such
that it will be a monomial ideal at each open set of a suitable open cover.

The next lemma proves that every ideal as in (3.7.1) or as in (3.7.2) is locally a monomial
ideal.

Lemma 4.11. Let β1, . . . , βr ∈ Zn
≥0 be vectors and u1, . . . , ur ∈ k∗ be units.

Let α1, . . . , αr, αr+1 ∈ Zn
≥0 be vectors such that

α1 � α2 � · · · � αr � αr+1

Set the ideals in k[x1, . . . , xn]:

a =
〈
xα1(1− u1x

β1), . . . , xαr(1− urx
βr)

〉

b =
〈
xα1(1− u1x

β1), . . . xαr(1− urx
βr), xαr+1

〉

Let N (β, u) be the sequence defined in Remark 4.10

N (β, u) = {1 = n1 < n2 < · · · < ns ≤ r̄ ≤ r}.

There exist an open covering of An = U1 ∪ U2 ∪ · · · ∪ Ur̄ ∪ Ur̄+1 such that:



A PROCEDURE FOR COMPUTING THE LCT OF A BINOMIAL IDEAL 15

(1) For j = 1, . . . , r̄

aOUj
= bOUj

=
〈
xαn1 (1− un1x

βn1 ), xαn2 (1− un2x
βn2 ), . . . , x

αni(j) (1− uni(j)
x
βni(j) ), xαj

〉
,

where i(j) is the maximum index with ni(j) < j.
(2) If r̄ < r then

aOUr̄+1 = bOUr̄+1 =〈
xαn1 (1− un1x

βn1 ), xαn2 (1− un2x
βn2 ), . . . , xαns (1− uns

xβns ), xαr̄+1
〉
.

(3) If r̄ = r then

aOUr̄+1 =
〈
xαn1 (1− un1x

βn1 ), xαn2 (1− un2x
βn2 ), . . . , xαns (1− uns

xβns )
〉
,

bOUr̄+1 =
〈
xαn1 (1− un1x

βn1 ), xαn2 (1− un2x
βn2 ), . . . , xαns (1− uns

xβns ), xαr+1
〉
.

(4) At every open set Uj, j = 1, . . . , r̄, r̄+1 there is a set of uniformizing parameters
such that the ideals aOUj

and bOUj
are monomial ideals with respect to the

uniformizing parameters and moreover

Uj ⊂ {(1− ujx
βj) 6= 0, xβ1+···+βj−1 6= 0}, j = 1, . . . , r̄

Ur̄+1 ⊂ {x
β1+···+βr̄ 6= 0}

Proof. Set yi = 1 − uix
βi for i = 1, . . . , r. Let U1 be the open set {y1 6= 0} and V1 be

the open set {xβ1 6= 0} Note that An = U1 ∪ V1 and

aOU1 = bOU1 = 〈x
αn1 〉

The nex step is to cover V1 by open sets U2 and V2. If n2 > 2 then by Lemma 4.6 there
is an open covering of V1, U2 ∪ V2, where U2 = {y2 6= 0} ∩ V1 and

aOU2 = bOU2 = 〈x
αn1yn1, x

α2〉

aOV2 = 〈x
αn1yn1 , x

α3y3, . . . , x
αryr〉

bOV2 = 〈x
αn1yn1, x

α3y3, . . . , x
αryr, x

αr+1〉

If n2 = 2 then set U2 = {y2 6= 0, xβ1 6= 0} and V2 = {xβ1+β2 6= 0}

aOU2 = bOU2 = 〈x
αn1y1, x

α2〉

aOV2 = 〈x
αn1yn1, x

αn2yn2, x
α3y3, . . . , x

αryr〉

bOV2 = 〈x
αn1yn1, x

αn2yn2, x
α3y3, . . . , x

αryr, x
αr+1〉

In both cases U2 ⊂ {y2 6= 0, xβ1 6= 0} and V2 ⊂ {x
β1+β2 6= 0}. We have that y1 is part

of a set of uniformizing parameters in U2.

Note that for every ℓ either

• ni(ℓ) < ℓ ≤ ni(ℓ)+1 or
• i(ℓ) = s. In this case ns < ℓ ≤ r̄.

We proceed by induction on ℓ. Assume that for some ℓ < r̄ we have an open covering
of An, say U1 ∪ U2 ∪ · · · ∪ Uℓ ∪ Vℓ, such that

(1) For j = 1, . . . , ℓ

aOUj
= bOUj

=
〈
xαn1yn1 , x

αn2yn2, . . . , x
αni(j)yni(j)

, xαj

〉
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(2) If ℓ < ni(ℓ)+1 (or i(ℓ) = s) then

aOVℓ
=

〈
xαn1yn1, . . . , x

αni(ℓ)yni(ℓ)
, xαℓ+1yℓ+1, . . . , x

αryr

〉

bOVℓ
=

〈
xαn1yn1, . . . , x

αni(ℓ)yni(ℓ)
, xαℓ+1yℓ+1, . . . , x

αryr, x
αr+1

〉

(3) If ℓ = ni(ℓ)+1 then

aOVℓ
=

〈
xαn1yn1, . . . , x

αni(ℓ)yni(ℓ)
, x

αni(ℓ)+1yni(ℓ)+1
, xαℓ+1yℓ+1, . . . , x

αryr

〉

bOVℓ
=

〈
xαn1yn1, . . . , x

αni(ℓ)yni(ℓ)
, x

αni(ℓ)+1yni(ℓ)+1
, xαℓ+1yℓ+1, . . . , x

αryr, x
αr+1

〉

(4) We have Vℓ ⊂ {xβ1+···+βℓ 6= 0} and Uj ⊂ {yj 6= 0, xβ1+···+βj−1 6= 0} for j =
1, . . . , ℓ.

Now we cover Vℓ with two open sets Uℓ+1 and Vℓ+1.
If ℓ+1 < ni(ℓ+1)+1 (or i(ℓ+1) = s) then βℓ+1 is Q-linearly dependent of βn1 , . . . , βni(ℓ+1)

and by Lemma 4.6 there are two open sets Uℓ+1 and Vℓ+1 such that

aOUℓ+1
= bOUℓ+1

=
〈
xαn1yn1, . . . , x

αni(ℓ+1)yni(ℓ+1)
, xαℓ+1

〉

aOVℓ+1
=

〈
xαn1yn1, . . . , x

αni(ℓ+1)yni(ℓ+1)
, xαℓ+2yℓ+2, . . . , x

αryr

〉

bOVℓ+1
=

〈
xαn1yn1, . . . , x

αni(ℓ+1)yni(ℓ+1)
, xαℓ+2yℓ+2, . . . , x

αryr, x
αr+1

〉

Note that Uℓ+1 ⊂ {yℓ+1 6= 0} and since βℓ+1 is Q-linearly dependent of β1, . . . , βℓ then
{xβ1+···+βℓ 6= 0} = {xβ1+···+βℓ+βℓ+1 6= 0} and Vℓ+1 ⊂ {xβ1+···+βℓ+βℓ+1 6= 0}.
If ℓ + 1 = ni(ℓ+1)+1 then βℓ+1 is Q-linearly independent of βn1 , . . . , βni(ℓ+1)

. In this case

we set Uℓ+1 = {yℓ+1 6= 0} ∩ Vℓ, Vℓ+1 = {xβℓ+1 6= 0} ∩ Vℓ and we have

aOUℓ+1
= bOUℓ+1

=
〈
xαn1yn1, . . . , x

αni(ℓ+1)yni(ℓ+1)
, xαℓ+1

〉

aOVℓ+1
=

〈
xαn1yn1, . . . , x

αni(ℓ+1)yni(ℓ+1)
, x

αni(ℓ+1)+1yni(ℓ+1)+1
,

xαℓ+2yℓ+2, . . . , x
αryr

〉

bOVℓ+1
=

〈
xαn1yn1, . . . , x

αni(ℓ+1)yni(ℓ+1)
, x

αni(ℓ+1)+1yni(ℓ+1)+1
,

xαℓ+2yℓ+2, . . . , x
αryr, x

αr+1

〉

For the index ℓ = r̄ we have constructed an open covering of An = U1∪U2∪· · ·∪Ur̄∪Vr̄

satisfying properties (1) to (4) above.
Set Ur̄+1 = Vr̄. If r̄ = r then we have done.
If r̄ < r then this means that β1, . . . , βr̄, βr̄+1 and u1, . . . , ur̄, ur̄+1 are not compatible.
By Lemma 4.6 we have that xαr̄+1 ∈ aOUr̄+1 and xαr̄+1 ∈ bOUr̄+1 which implies

aOUr̄+1 = bOUr̄+1 = 〈x
αn1yn1 , x

αn2yn2, . . . , x
αnsyns

, xαr̄+1〉

as required.
Finally note that open sets U1, . . . , Ur̄, Ur̄+1 are such that

Uj ⊂ {yj 6= 0, xβ1+···+βj−1 6= 0}, j = 1, . . . , r̄

Ur̄+1 ⊂ {x
β1+···+βr̄ 6= 0}
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For j = 1, . . . , r̄, yn1, . . . , yni(j)
are part of a set of uniformizing parameters of Uj by

Lemma 4.5. We can complete yn1, . . . , yni(j)
it to a set of uniformizing parameters by

adding some xℓ’s, in such a way that aOUj
= bOUj

are monomial ideals.
Finally for j = r̄ + 1 and, again by Lemma 4.5, yn1, . . . , yns

are part of a set of uni-
formizing parameters of Ur̄+1 and both aOUr̄+1 and bOUr̄+1 are monomial ideals. �

Remark 4.12. Note that for j = 1, . . . , r̄, r̄ + 1 the open set Uj ⊂ {xβ1+···+βj−1 6= 0}
and β1, . . . , βj−1 ∈ Zn

≥0.
The construction of the open set Uj following Lemma 4.11 is such that a variable xℓ is
not a unit at some point of Uj if and only if

β1,ℓ = · · · = βj−1,ℓ = 0.

Lemma 4.13. Let s, n be positive integers with s ≤ n and let α1, . . . , αs ∈ Zn−s
≥0 be such

that
α1 � α2 � · · · � αs.

Consider Rn with coordinates (x1, . . . , xn−s, y1, . . . , ys) and the points

P1 = (α1, 1, 0, . . . , 0) = (α1,1, . . . , α1,n−s, 1, 0, . . . , 0),
P2 = (α2, 0, 1, . . . , 0) = (α2,1, . . . , α2,n−s, 0, 1, . . . , 0),

...
Ps = (αs, 0, 0, . . . , 1) = (αs,1, . . . , αs,n−s, 0, 0, . . . , 1).

Then the Newton polyhedron of P1, . . . , Ps, say Ps, is defined in Rn
≥0 by the inequalities

(4.13.1)

xi ≥ α1,i

xi + (α2,i − α1,i)y1 ≥ α2,i

xi + (α3,i − α1,i)y1 + (α3,i − α2,i)y2 ≥ α3,i

· · · · · ·

xi + (αj,i − α1,i)y1 + · · ·+ (αj,i − αj−1,i)yj−1 ≥ αj,i

· · · · · ·

xi + (αs,i − α1,i)y1 + · · ·+ (αs,i − αs−1,i)ys−1 ≥ αs,i





i = 1, . . . , n− s,

and y1 + y2 + · · ·+ ys ≥ 1

Proof. We want to proof that a point (x1, . . . , xn−s, y1, . . . , ys) ∈ Rn
≥0 is in Ps if and only

if (x, y) satisfies inequalities (4.13.1).
By Remark 4.2 it is equivalent to show that (x, y) ∈ Rn

≥0 satisfies inequalities (4.13.1)
if and only if there are real numbers t1, . . . , ts, with 0 ≤ ti ≤ 1 for i = 1, . . . , s,
t1 + t2 + · · ·+ ts = 1 and such that

(4.13.2)




α1,1 α2,1 · · · αs,1
...

...
...

α1,n−s α2,n−s · · · αs,n−s

1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1







t1
t2
...
ts


 �




x1
...

xn−s

y1
...
ys




Assume that there exist t1, . . . , ts satisfying (4.13.2). For i = 1, . . . , n− s we have

xi ≥ α1,it1 + α2,it2 + · · ·+ αs,its ≥ α1,i(t1 + · · ·+ ts) = α1,i



18 R. BLANCO AND S. ENCINAS

and we obtain the first inequality in (4.13.1).
Note that from (4.13.2) we have yi ≥ ti for i = 1, . . . , s. If 1 < j ≤ s we have

xi ≥ α1,it1 + α2,it2 + · · ·+ αs,its ≥ α1,it1 + · · ·αj−1,itj−1 + αj,i(tj + · · ·+ ts) =

α1,it1 + · · ·+ αj−1,itj−1 + αj,i(1− t1 − · · · − tj−1) =

(α1,i − αj,i)t1 + · · ·+ (αj−1,i − αj,i)tj−1 + αj,i

xi + (αj,i − α1,i)t1 + · · ·+ (αj,i − αj−1,i)tj−1 ≥ αj,i

then

xi + (αj,i − α1,i)y1 + · · ·+ (αj,i − αj−1,i)yj−1 ≥

xi + (αj,i − α1,i)t1 + · · ·+ (αj,i − αj−1,i)tj−1 ≥ αj,i

and it follows the j-th inequality in (4.13.1).
The last inequality in (4.13.1) follows from the fact yi ≥ ti:

y1 + · · ·+ ys ≥ t1 + · · ·+ ts = 1

Reciprocally, assume (x, y) satisfies (4.13.1). If y1 ≥ 1 then set t1 = 1, t2 = · · · = ts = 0
and we have (4.13.2) since xi ≥ α1,i for all i = 1, . . . , n− s by hypothesis.
If y1 < 1. Note that y1 + · · ·+ ys ≥ 1 by hypothesis. Let j ≥ 1 be the minimum index
such that y1 + y2 + · · ·+ yj ≥ 1. Note that y1 + y2 + · · ·+ yj−1 < 1. Set

t1 = y1, t2 = y2, · · · , tj−1 = yj−1, tj = 1− (t1 + t2 + · · ·+ tj−1)

tj+1 = · · · = ts = 0.

Note that yi ≥ ti for i = 1, . . . , s. We only have to check the first n− s rows in (4.13.2).
From the j-th inequality of (4.13.1)

xi ≥ αj,i + (α1,i − αj,i)y1 + · · ·+ (αj−1,i − αj,i)yj−1 =

αj,i + (α1,i − αj,i)t1 + · · ·+ (αj−1,i − αj,i)tj−1 =

α1,it1 + · · ·+ αj−1,itj−1 + αj,i(1− (t1 + · · ·+ tj−1)) = α1,it1 + · · ·+ αj−1,itj−1 + αj,itj

for i = 1, . . . , n− s and we obtain the required inequalities of (4.13.2). �

Lemma 4.14. Let s, n be positive integers with s ≤ n and let α1, . . . , αs, αs+1 ∈ Zn−s
≥0

be such that

α1 � α2 � · · · � αs � αs+1.

Consider Rn with coordinates (x1, . . . , xn−s, y1, . . . , ys) and the points

P1 = (α1, 1, 0, . . . , 0) = (α1,1, . . . , α1,n−s, 1, 0, . . . , 0),
P2 = (α2, 0, 1, . . . , 0) = (α2,1, . . . , α2,n−s, 0, 1, . . . , 0),

...
Ps = (αs, 0, 0, . . . , 1) = (αs,1, . . . , αs,n−s, 0, 0, . . . , 1),

Ps+1 = (αs+1, 0, 0, . . . , 0) = (αs+1,1, . . . , αs+1,n−s, 0, 0, . . . , 0),
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Then the Newton polyhedron of P1, P2, . . . , Ps, Ps+1, say P ′
s, is defined in Rn

≥0 by the
inequalities

(4.14.1)

xi ≥ α1,i

xi + (α2,i − α1,i)y1 ≥ α2,i

xi + (α3,i − α1,i)y1 + (α3,i − α2,i)y2 ≥ α3,i

· · · · · ·

xi + (αj,i − α1,i)y1 + · · ·+ (αj,i − αj−1,i)yj−1 ≥ αj,i

· · · · · ·

xi + (αs,i − α1,i)y1 + · · ·+ (αs,i − αs−1,i)ys−1 ≥ αs,i

xi + (αs+1,i − α1,i)y1 + · · ·+ (αs+1,i − αs,i)ys ≥ αs+1,i





i = 1, . . . , n− s.

Proof. As in the proof of Lemma 4.13, it is enough to show that a point

(x1, . . . , xn−s, y1, . . . , ys) ∈ Rn
≥0

satisfies inequalities (4.14.1) if and only if there are real numbers t1, . . . , ts, ts+1, with
0 ≤ ti ≤ 1 for i = 1, . . . , s, s+ 1, t1 + t2 + · · ·+ ts + ts+1 = 1 and such that

(4.14.2)




α1,1 α2,1 · · · αs,1 αs+1,1
...

...
...

...
α1,n−s α2,n−s · · · αs,n−s αs+1,n−s

1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0







t1
t2
...
ts
ts+1



�




x1
...

xn−s

y1
...
ys




For i = 1, . . . , n− s we have

xi ≥ α1,it1 + α2,it2 + · · ·+ αs,its + αs+1,its+1 ≥ α1,i(t1 + · · ·+ ts + ts+1) = α1,i

and we obtain the first inequality in (4.14.1).
Note that from (4.14.2) we have yi ≥ ti for i = 1, . . . , s. If 1 < j ≤ s+ 1 we have

xi ≥ α1,it1 + α2,it2 + · · ·+ αs,its + αs+1,its+1 ≥

α1,it1 + · · ·αj−1,itj−1 + αj,i(tj + · · ·+ ts + ts+1) =

α1,it1 + · · ·+ αj−1,itj−1 + αj,i(1− t1 − · · · − tj−1) =

(α1,i − αj,i)t1 + · · ·+ (αj−1,i − αj,i)tj−1 + αj,i

xi + (αj,i − α1,i)t1 + · · ·+ (αj,i − αj−1,i)tj−1 ≥ αj,i

then

xi + (αj,i − α1,i)y1 + · · ·+ (αj,i − αj−1,i)yj−1 ≥

xi + (αj,i − α1,i)t1 + · · ·+ (αj,i − αj−1,i)tj−1 ≥ αj,i

and it follows the j-th inequality in (4.14.1).
Reciprocally, assume (x, y) satisfies (4.14.1). If y1 ≥ 1 then set t1 = 1, t2 = · · · = ts =
ts+1 = 0 and we have (4.14.2) since xi ≥ α1,i for all i = 1, . . . , n− s by hypothesis.
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If y1 < 1. Let j ≥ 1 be the maximum index such that y1 + y2 + · · · + yj−1 < 1. Note
that if y1 + · · ·+ ys < 1 then j = s+ 1. Now set

t1 = y1, t2 = y2, · · · , tj−1 = yj−1, tj = 1− (t1 + t2 + · · ·+ tj−1)

tj+1 = · · · = ts = ts+1 = 0.

For i = 1, . . . , s we have yi ≥ ti. We only have to check the first n− s rows in (4.14.2).
From the j-th inequality of (4.14.1)

xi ≥ αj,i + (α1,i − αj,i)y1 + · · ·+ (αj−1,i − αj,i)yj−1 =

αj,i + (α1,i − αj,i)t1 + · · ·+ (αj−1,i − αj,i)tj−1 =

α1,it1 + · · ·+ αj−1,itj−1 + αj,i(1− (t1 + · · ·+ tj−1)) =

α1,it1 + · · ·+ αj−1,itj−1 + αj,itj

for i = 1, . . . , n− s and we obtain all inequalities in (4.13.2). �

Definition 4.15. Let c, α1, . . . , αs ∈ Zm
≥0 be vectors such that

α1 � α2 � · · · � αs

For every ℓ = 1, . . . , m we set

Ψℓ(c, α1, . . . , αs) =
cℓ + 1 + (αs,ℓ − α1,ℓ) + (αs,ℓ − α2,ℓ) + · · ·+ (αs,ℓ − αs−1,ℓ)

αs,ℓ

Ψ̃ℓ(c, α1, . . . , αs) = min {Ψℓ(c, α1, . . . , αi) | i = 1, . . . , s}

where we set Ψℓ(c, α1, . . . , αs) =∞ if αs,ℓ = 0.

Lemma 4.16. Let c, α1, . . . , αs, δ, δ
′ ∈ Zm

≥0 be vectors such that

α1 � α2 � · · · � αs � δ � δ′

Then for every ℓ = 1, . . . , m we have

Ψ̃ℓ(c, α1, . . . , αs, δ) ≥ Ψ̃ℓ(c, α1, . . . , αs, δ
′)

Proof. Note that

Ψ̃ℓ(c, α1, . . . , αs, δ) = min
{
Ψ̃ℓ(c, α1, . . . , αs),Ψℓ(c, α1, . . . , αs, δ)

}
,

Ψ̃ℓ(c, α1, . . . , αs, δ
′) = min

{
Ψ̃ℓ(c, α1, . . . , αs),Ψℓ(c, α1, . . . , αs, δ

′)
}
,

and it is enough to prove that

min
{
Ψ̃ℓ(c, α1, . . . , αs),Ψℓ(c, α1, . . . , αs, δ

′)
}
=

min
{
Ψ̃ℓ(c, α1, . . . , αs),Ψℓ(c, α1, . . . , αs, δ),Ψℓ(c, α1, . . . , αs, δ

′)
}

Note that

Ψℓ(c, α1, . . . , αs, δ) =
cℓ + 1 + (αs,ℓ − α1,ℓ) + · · ·+ (αs,ℓ − αs−1,ℓ) + s(δℓ − αs,ℓ)

αs,ℓ + (δℓ − αs,ℓ)

If Ψℓ(c, α1, . . . , αs) ≤ s then

Ψℓ(c, α1, . . . , αs) ≤ Ψℓ(c, α1, . . . , αs, δ),

Ψℓ(c, α1, . . . , αs) ≤ Ψℓ(c, α1, . . . , αs, δ
′),
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and

min
{
Ψ̃ℓ(c, α1, . . . , αs),Ψℓ(c, α1, . . . , αs, δ

′)
}
=

min
{
Ψ̃ℓ(c, α1, . . . , αs),Ψℓ(c, α1, . . . , αs, δ),Ψℓ(c, α1, . . . , αs, δ

′)
}
=

Ψ̃ℓ(c, α1, . . . , αs)

If Ψℓ(c, α1, . . . , αs) > s then

Ψℓ(c, α1, . . . , αs) > Ψℓ(c, α1, . . . , αs, δ) > Ψℓ(c, α1, . . . , αs, δ
′)

and

min
{
Ψ̃ℓ(c, α1, . . . , αs),Ψℓ(c, α1, . . . , αs, δ

′)
}
=

min
{
Ψ̃ℓ(c, α1, . . . , αs),Ψℓ(c, α1, . . . , αs, δ),Ψℓ(c, α1, . . . , αs, δ

′)
}
=

min
{
Ψ̃ℓ(c, α1, . . . , αs−1),Ψℓ(c, α1, . . . , αs, δ

′)
}

�

Lemma 4.17. Let α1, . . . , αs ∈ Zn−s
≥0 be such that

α1 � α2 � · · · � αs.

Let U be a smooth affine variety of dimension n and let x1, . . . , xn−s, y1, . . . , ys be a set
of uniformizing parameters. Consider the monomial ideal in U

a = 〈xα1y1, x
α2y2, . . . , x

αsys〉

Let ∆ be the divisor in U defined by the monomial xc where c ∈ Zn−s
≥0 . We are asuming

that all variables appearing in the previous expressions are not units in OU , which means
that if some αi,ℓ 6= 0 then xℓ is not a unit in OU(U).
The log-canonical threshold lct(U,∆, a) is

lct(U,∆, a) = min
{
s, Ψ̃ℓ(c, α1, . . . , αs) | ℓ = 1, . . . , n− s

}

Proof. Note first that the Newton polyhedron P of the ideal a is the one of Lemma 4.13.
Set (c, 0) = (c1, . . . , cn−s, 0, . . . , 0) ∈ Zn

≥0, by Lemma 4.3 the log-canonical threshold

lct(U,∆, a) = λ where λ is the maximum value such that
1

λ
((c, 0) + 1) ∈ P. Using the
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inequalities of Lemma 4.13 for the point
1

λ
((c, 0) + 1) we have

cℓ + 1

λ
≥ α1,ℓ

cℓ + 1

λ
+ (α2,i − α1,i)

1

λ
≥ α2,ℓ

cℓ + 1

λ
+ (α3,i − α1,i)

1

λ
+ (α3,i − α2,i)

1

λ
≥ α3,ℓ

· · · · · ·

cℓ + 1

λ
+ (αj,i − α1,i)

1

λ
+ · · ·+ (αj,i − αj−1,i)

1

λ
≥ αj,ℓ

· · · · · ·

cℓ + 1

λ
+ (αs,i − α1,i)

1

λ
+ · · ·+ (αs,i − αs−1,i)

1

λ
≥ αs,ℓ





ℓ = 1, . . . , n− s,

and
s

λ
≥ 1,

and we obtain the result. �

Lemma 4.18. Let α1, . . . , αs, αs+1 ∈ Zn−s
≥0 be such that

α1 � α2 � · · · � αs � αs+1.

Let U be a smooth affine variety of dimension n and let x1, . . . , xn−s, y1, . . . , ys be a set
of uniformizing parameters. Consider the monomial ideal in U

a = 〈xα1y1, x
α2y2, . . . , x

αsys, x
αs+1〉

Let ∆ be the divisor in U defined by the monomial xc where c ∈ Zn−s
≥0 . The log-canonical

threshold lct(U,∆, a) is

lct(U,∆, a) = min
{
Ψ̃ℓ(c, α1, . . . , αs, αs+1) | ℓ = 1, . . . , n− s

}

Proof. It is analogous to the proof of Lemma 4.17, using Lemma 4.14. �

Recall that after a pseudo-resolution we will find an ideal as in (3.7.1) or (3.7.2), see also
Lemma 4.11. Then by Proposition 1.4 it will be enough to compute the log-canonical
threshold for the ideals in the following proposition.

Proposition 4.19. Let U be a smooth toric affine variety of dimension n. We known
that U ∼= Spec(k[x1, . . . , xn]h), where h is a product of some variables xi. Let β1, . . . , βr ∈
Zn
≥0 be vectors and u1, . . . , ur ∈ k∗ be units.

Let α1, . . . , αr, αr+1 ∈ Zn
≥0 be vectors such that

α1 � α2 � · · · � αr � αr+1

Set the ideals in OU :

a =
〈
xα1(1− u1x

β1), . . . , xαr(1− urx
βr)

〉
,

b =
〈
xα1(1− u1x

β1), . . . xαr(1− urx
βr), xαr+1

〉
.

We assume that monomials xαi do not depend on variables xj appearing in h, since
these xj are units in U . This means that αi,j = 0 for i = 1, . . . , r + 1 if xj divides h.
Let N (β, u) be the sequence defined in Remark 4.10

N (β, u) = {1 = n1 < n2 < · · · < ns ≤ r̄ ≤ r}.
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Let ∆ be the divisor defined by the monomial xc, c ∈ Zn
≥0. The log-canonical thresholds

of ideals b and a can be computed as follows:

(1) If r̄ < r then lct(U,∆, a) = lct(U,∆, b) and

lct(U,∆, a) = lct(U,∆, b) =

min
{{

Ψ̃ℓ(c, αn1, . . . , αni
) | i = 1, . . . , s, ℓ such that βj,ℓ = 0 ∀j < ni

}
∪

∪
{
Ψ̃ℓ(c, αn1, . . . , αns

, αr̄+1) | ℓ such that βj,ℓ = 0 ∀j ≤ r̄
}}

.

(2) If r̄ = r then

lct(U,∆, a) = min
{
s, Ψ̃ℓ(c, αn1, . . . , αni

) | i = 1, . . . , s, ℓ such that βj,ℓ = 0 ∀j < ni

}
,

lct(U,∆, b) =

min
{{

Ψ̃ℓ(c, αn1, . . . , αni
) | i = 1, . . . , s, ℓ such that βj,ℓ = 0 ∀j < ni

}
∪

∪
{
Ψ̃ℓ(c, αn1, . . . , αns

, αr+1) | ℓ such that βj,ℓ = 0 ∀j ≤ r
}}

.

Proof. Let U1 ∪ · · · ∪ Ur̄ ∪ Ur̄+1 be the open covering constructed in Lemma 4.11. Note
that

lct(U,∆, a) = min {lct(Uj,∆, a) | j = 1, . . . , r̄, r̄ + 1} ,

lct(U,∆, b) = min {lct(Uj,∆, b) | j = 1, . . . , r̄, r̄ + 1} .

Set yi = (1− uix
βi) for i = 1, . . . , r.

Let j = 1, . . . , r̄. By Lemma 4.11 we have Uj ⊂ {yj 6= 0, xβ1+···+βj−1 6= 0} and

aOUj
= bOUj

=
〈
xαn1yn1 , x

αn2yn2, . . . , x
αni(j)yni(j)

, xαj

〉

Lemma 4.11 also says that yn1, yn2, . . . , yni(j)
are part of a set of uniformizing parameters,

which may be completed to a set of uniformizing parameters with suitable xℓ. Now we
use formula in Lemma 4.18 for Uj , where we forget indexes ℓ such that xℓ is a unit in
OUj

, by Remark 4.12 we have

lct(Uj ,∆, a) = lct(Uj ,∆, b) =

min
{
Ψ̃ℓ(c, αn1 , . . . , αni(j)

, αj) | ℓ such that β1,ℓ = · · · = βj−1,ℓ = 0
}
.

For some i = 1, . . . , s − 1, consider the union of the open sets Uj with ni < j ≤ ni+1,
we claim that

lct(Uni+1 ∪ · · · ∪ Uni+1
,∆, a) = lct(Uni+1 ∪ · · · ∪ Uni+1

,∆, b) =

lct(Uni+1
,∆, a) = lct(Uni+1

,∆, b) =

min
{
Ψ̃ℓ(c, αn1, . . . , αni

, αni+1
) | ℓ such that β1,ℓ = · · · = βni+1−1,ℓ = 0

}
.

Note that this is consistent with the fact that for ni < j < ni+1 some of the open sets
Uj may be empty, but we always have Uni

6= ∅ for i = 1, . . . , s.
Our claim is a direct consequence of Lemma 4.16 and the fact that βni+1, . . . , βni+1−1

are Q-linearly dependent of βn1 , βn2, . . . , βni
.
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If follows from the claim that

(4.19.1) lct(U1 ∪ · · · ∪ Ur̄,∆, a) = lct(U1 ∪ · · · ∪ Ur̄,∆, b) =

min
{
Ψ̃ℓ(c, αn1, . . . , αni

) | i = 1, . . . , s; ℓ such that β1,ℓ = · · · = βni−1,ℓ = 0
}
.

Now we consider the open set Ur̄. If r̄ < r then by Lemma 4.11

aOUr̄+1 = bOUr̄+1 = 〈x
αn1yn1 , x

αn2yn2, . . . , x
αnsyns

, xαr̄+1〉

and as above, it follows from formula in Lemma 4.18 and Remark 4.12 that

(4.19.2) lct(Ur̄+1,∆, a) = lct(Ur̄+1,∆, b) =

min
{
Ψ̃ℓ(c, αn1, . . . , αns

, αr̄+1) | ℓ such that β1,ℓ = · · · = βr̄,ℓ = 0
}
.

If r̄ = r then by Lemma 4.11

aOUr̄+1 = 〈x
αn1yn1 , x

αn2yn2, . . . , x
αnsyns

〉 ,

bOUr̄+1 = 〈x
αn1yn1, x

αn2yn2, . . . , x
αnsyns

, xαr+1〉 .

Using, respectively, formulas in Lemmas 4.17 and 4.18 together with Remark 4.12 we
have

(4.19.3) lct(Ur̄+1,∆, a) =

min
{
s, Ψ̃ℓ(c, αn1, . . . , αns

) | ℓ such that β1,ℓ = · · · = βr̄,ℓ = 0
}
.

(4.19.4) lct(Ur̄+1,∆, b) =

min
{
Ψ̃ℓ(c, αn1, . . . , αns

, αr̄+1) | ℓ such that β1,ℓ = · · · = βr̄,ℓ = 0
}
.

Finally, for the case r̄ < r, the result follows from formulas (4.19.1) and (4.19.2). For
the case r̄ = r, it follows from formulas (4.19.1), (4.19.3) and (4.19.4). �

5. Computing lct for m-binomial ideals

Given a pseudo-resolution Σ′ → Σ (3.5) of a m-binomial ideal (2.12) we may use Proposi-
tion 4.19 to compute the log-canonical threshold of the ideal, by computing the minimum
of all affine charts in the pseudo-resolution. However we will see that the computation
of the pseudo-resolution may be avoided, instead of a regular subdivision Σ′ of the fan
Σ we only need a suitable subdivision Γ of Σ such that the minimum of a function is
attained at some ray of Γ.
Given a r × n matrix M with integer entries, we denote by rowi(M) ∈ Zn the i-th row
of M .

Definition 5.1. We say that (M+,M−, u) is a triple if

• M+ and M− are r × n matrices with non-negative integer entries,
• u = (u1, . . . , ur) ∈ kr and
• ui = 0 if and only if rowi(M

+) = rowi(M
−).

Definition 5.2. Let W = An
k = Spec(k[x1, . . . , xn]) be the n-dimensional affine space.

Let a ⊂ OW be a m-binomial ideal (2.12) generated by f1, . . . , fr. Where fi is either
a monomial xai or a binomial xai − ũix

bi , i = 1, . . . , r, ai, bi ∈ Zn
≥0 and ũi ∈ k∗. We
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associate to the generators of the ideal a a triple (M+,M−, u) = (M+
a
,M−

a
, ua) (5.1) as

follows, for i = 1, . . . , n:

• if fi = xai is a monomial then set rowi(M
+) = rowi(M

−) = ai and ui = 0, and
• if fi = xai − ũix

bi is a binomial then set rowi(M
+) = ai, rowi(M

−) = bi and
ui = ũi.

Definition 5.3. Let (M+,M−, u) be a triple as in Definition 5.1 and let c = (c1, . . . , cn) ∈
Zn
≥0 be a vector with non negative integer entries. We define a function associated to

the triple and c,
LCT(M+,M−, u, c) : Rn

≥0 → R

as follows: Let v ∈ Rn
≥0 be a vector with non negative entries. Set M = M+ −M−,

• β+(v) = (β+(v)1, . . . , β
+(v)r) = M+v,

• β−(v) = (β−(v)1, . . . , β
−(v)r) = M−v,

• β(v) = β+(v)− β−(v) = Mv,
• α(v) = min{β+(v), β−(v)} = (α(v)1, . . . , α(v)r) =
(min{β+(v)1, β

−(v)1}, . . . ,min{β+(v)r, β
−(v)r}).

• Let ε(v) : {1, . . . , r} → {1, . . . , r} be a permutation such that

α(v)ε(v)(1) ≤ α(v)ε(v)(2) ≤ · · · ≤ α(v)ε(v)(r).

• Let r
(v)
0 ≤ r be the maximum index such that

rowε(v)(i)(M) 6= 0
and βε(v)(i) = 0

i = 1, . . . , r
(v)
0 .

• Let n
(v)
1 < n

(v)
2 < · · · < n

(v)

s(v)
≤ r̄(v) be the sequence associated to the first r

(v)
0

rows of M and the first r
(v)
0 coordinates of the vector u defined in Remark 4.10,

but ordered with the permutation ε(v):

N (rowε(v)(1)(M), . . . , row
ε(v)(r

(v)
0 )

(M), uε(v)(1), . . . , uε(v)(r
(v)
0 )

) =
{
1 = n

(v)
1 < n

(v)
2 < · · · < n

(v)

s(v)
≤ r̄(v) ≤ r

(v)
0

}
.

Consider c+1 = (c1+1, . . . , cn+1) and the usual scalar product (c+1) · v =

(c1+1)v1+ · · ·+(cr +1)vr. To simplify notation set ε = ε(v), r0 = r
(v)
0 , s = s(v),

r̄ = r̄(v) and ni = n
(v)
i for i = 1, . . . , s.

• If r̄(v) < r then set

LCT(M+,M−, u, c)(v) = Ψ̃
(
(c+ 1) · v − 1, α(v)ε(n1), . . . , α(v)ε(ns), α(v)ε(r̄+1)

)

= min

{
(c+ 1) · v

α(v)ε(n1)
,

(c+ 1) · v +
(
α(v)ε(n2) − α(v)ε(n1)

)

α(v)ε(n2)

,

. . . . . . . . . ,

(c+ 1) · v +
(
α(v)ε(ns) − α(v)ε(ns−1)

)
+ · · ·+

(
α(v)ε(ns) − α(v)ε(n1)

)

α(v)ε(ns)

,

(c+ 1) · v +
(
α(v)ε(r̄+1) − α(v)ε(ns)

)
+ · · ·+

(
α(v)ε(r̄+1) − α(v)ε(n1)

)

α(v)ε(r̄+1)

}
.
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• If r̄(v) = r then set

LCT(M+,M−, u, c)(v) = min
{
s, Ψ̃((c+ 1) · v − 1, α(v)ε(n1), . . . , α(v)ε(ns))

}

We also define

LCT∗(M+,M−, u, c)(v) =
(c+ 1) · v

α(v)ε(n1)
.

Note that the definition of Ψ̃ in 5.3 is consistent with Definition 4.15. If the vector v has
integer entries then all the setting in Definition 5.3 represents the exponents of vertex
v in a subdivision. The index r0 represents the last binomial generator.

Remark 5.4. Note that LCT∗(M+,M−, u, c) = LCT(N,N, 0, c), where N is the 2r×n
matrix obtained by joining the rows of M+ and M−. In terms of ideals, if the triple
(M+,M−, u) corresponds to a m-binomial ideal a then the triple (N,N, 0) corresponds
to the monomial ideal generated by all monomials appearing in the generators of a.
Note also that in Definition 5.3 the coefficients u are used only to set the index r̄.

Example 5.5. Set W = Spec(k[x1, x2, x3, x4]) ant let a ⊂ k[x1, x2, x3, x4] be the ideal
defining the monomial curve (t6, t8, t10, t11). Generators of a may be computed with
Singular [DGPS12]:

a =
〈
x2
2 − x1x3, x

3
1 − x2x3, x

2
1x2 − x2

3, x
2
1x3 − x2

4

〉
.

The triple associated to a is (M+,M−, u) where

M+ =




0 2 0 0
3 0 0 0
2 1 0 0
2 0 1 0


 , M− =




1 0 1 0
0 1 1 0
0 0 2 0
0 0 0 2


 , u = (1, 1, 1, 1).

We compute the value LCT(M+,M−, u, 0)(v) for v = (6, 8, 10, 11). The ingredients in
Definition 5.3 are the following:

β+ = β+
v = M+v = (16, 18, 20, 22), β− = β−

v = M−v = (16, 18, 20, 22),

β = βv = (M+ −M−)v = (0, 0, 0, 0), α = αv = min{M+v,M−v} = (16, 18, 20, 22),

The permutation ε is the identity. The number r0 = r = 4 since all generators are
binomials and β = 0. Since all coordinates of the vector u are 1 then all rows of M are
compatible (4.7) and then r̄ = r0 = r = 4.
The sequence N (row1(M), row2(M), row3(M), row4(M), 1, 1, 1, 1) (4.10) is n1 = 1 <
n2 = 2 < n3 = 4 = r̄ and s = 3, the rank of M . Note that the third row of the matrix
M is in the linear span of the first two rows.
Finally LCT(M+,M−, u, 0)(v) is the minimum of

s = 3,
1 · v

αε(n1)
=

35

16
,

1 · v + (αε(n2) − αε(n1))

αε(n2)

=
35 + 2

18
=

37

18
,

1 · v + (αε(n3) − αε(n2) + (αε(n3) − αε(n1))

αε(n3)
=

35 + 4 + 6

22
=

45

22
,
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so that LCT(M+,M−, u, 0)(v) = 45/22.
Now consider the ideal

a1 =
〈
x2
2 − x1x3, x

3
1 − x2x3, x

2
1x2 + x2

3, x
2
1x3 − x2

4

〉
.

Note that the generators of a1 only differ in one coefficient from those of a. The triple
associated to a1 is (M+,M−, u1) with the same matrices and u1 = (1, 1,−1, 1).
Here we have the same β = (0, 0, 0, 0), α = (16, 18, 20, 22) and r0 = r = 4. But now
row1(M), row2(M), row3(M) and (1, 1,−1) are not compatible, see (4.7). The sequence
N (row1(M), row2(M), 1, 1) is n1 = 1 < n2 = 2 = r̄. In this case LCT(M+,M−, u, 0)(v)
is the minimum of

1 · v

αε(n1)
=

35

16
,

1 · v + (αε(n2) − αε(n1))

αε(n2)

=
35 + 2

18
=

37

18
,

1 · v + (αε(r̄+1) − αε(n2) + (αε(r̄+1) − αε(n1))

αε(r̄+1)
=

35 + 2 + 4

20
=

41

20
.

We conclude that LCT(M+,M−, u1, 0)(v) = 41/20

Lemma 5.6. The value of LCT(M+,M−, u, c)(v) only depends on the ray defining v.
If v ∈ Rn

≥0 then LCT(M+,M−, u, c)(v) = LCT(M+,M−, u, c)(λv), for every λ > 0.
And the same occurs with LCT∗.

Proof. It follows from Definition 5.3. �

This means that the map LCT(M+,M−, u, c) is, in some sense, projective.

Theorem 5.7. Let W = Uτ be a n-dimensional affine smooth toric variety associated
to a cone τ . Set Σ to be the fan associated to τ . Consider a set of vertices Ξ =
{v1, . . . , vn} extending the rays of τ . Let a ⊂ OW be a m-binomial ideal (2.12) generated
by f1, . . . , fr, where each fi is either a monomial or a binomial. Let (M+,M−, u) be
the triple associated to f1, . . . , fr (5.2) and vc = vc11 · · · v

cn
n be the monomial defined by

a divisor ∆ in W .
If Π : W ′ →W is a pseudo resolution associated to a regular subdivision Σ′ ⊃ Σ then

lct(W,∆, a) = min
{
LCT(M+,M−, u, c)(v) | v ∈ Σ′(1)

}

Proof. Set ∆′ = Π∗−KW ′/W and let σ ∈ Σ′ be a cone. By Proposition 1.4, it is enough
to prove that

lct(Uσ,∆
′, a∗) = min

{
LCT(M+,M−, u, c)(v) | v ∈ σ(1)

}

We may assume, for simplicity, that v1, . . . , vn are the canonical vectors

vi = ei = (0, . . . , 0,
i

1, 0, . . . , 0) i = 1, . . . , n.
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We extend the r × n matrices M+ and M− to r ×m matrices M̃+ and M̃−

M̃+ =




a1,1 · · · a1,n a1,n+1 · · · a1,m
...

...
...

...
ar,1 · · · ar,n ar,n+1 · · · ar,m




M̃− =




b1,1 · · · b1,n b1,n+1 · · · b1,m
...

...
...

...
br,1 · · · br,n br,n+1 · · · br,m




such that they represent the total transforms of f1, . . . , fr in W ′.
We consider the total coordinate ring k[v1, . . . , vm] of WΣ′ (2.6). For each i = 1, . . . , r,
if fi is a monomial then the

f ∗
i = vai = v

ai,1
1 · · · vai,mm .

If fi is a binomial then

f ∗
i = vai − vbi = v

ai,1
1 · · · vai,mm − uiv

bi,1
1 · · · v

bi,m
m .

For j = n + 1, . . . , m the j-th column of matrix M̃± is obtained as follows: Since vj is
a linear combination of v1, . . . , vn, say

vj =

n∑

ℓ=1

λℓ,jvℓ

then we have that

(5.7.1) ai,j =

n∑

ℓ=1

ai,ℓλℓ,j, bi,j =

n∑

ℓ=1

bi,ℓλℓ,j.

See Remark 2.4, Remark 2.6 and Definition 2.11.
Consider the relative canonical sheaf KW ′/W , let vκ = vκ1

1 · · · v
κm
m the monomial gener-

ating the ideal OW ′(−KW ′/W ). It is well known that

κj + 1 = 1 · vj =
n∑

ℓ=1

λℓ,j

The monomial associated to the divisor ∆′ is vc11 · · · v
cm
m where

cj + 1 =
n∑

ℓ

(cℓ + 1)λℓ,j

Let vj1 , . . . , vjn be vertices in Ξ′ such that they are a basis of the lattice N ≡ Zn and
the rays of σ are vj1 , . . . , vjn0

. For i = 1, . . . , r the total transform of fi at the open set
Uσ is

v
ai,j1
j1
· · · v

ai,jn
jn

if fi is a monomial,

v
ai,j1
j1
· · · v

ai,jn
jn
− uiv

bi,j1
j1
· · · v

bi,jn
jn

if fi is a binomial.

Since W ′ →W is a pseudo-resolution, in the case of fi being a binomial we have

v
ai,j1
j1
· · · v

ai,jn
jn
− uiv

bi,j1
j1
· · · v

bi,jn
jn

= ±v
αi,j1
j1
· · · v

αi,jn

jn

(
1− u±

i v
βi,j1
j1
· · · v

βi,jn

jn

)

Where βi,jℓ = |ai,jℓ − bi,jℓ| and αi,jℓ = min{ai,jℓ , bi,jℓ}, for ℓ = 1, . . . , n.
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Set αi = (αi,j1, . . . , αi,jn) and βi = (βi,j1, . . . , βi,jn) for i = 1, . . . , r and set xj = vij for
j = 1, . . . , n. We may reorder the generators f1, . . . , fr such that, for this cone σ, we
have that the ideal aOUσ

is either
〈
xα1(1− u1x

β1), . . . , xαr(1− urx
βr
〉

or 〈
xα1(1− u1x

β1), . . . , xαr′ (1− ur′x
βr′ , xαr′+1

〉

for some r′ < r. Where in both cases α1 � α2 � · · · � αr. So that we are in the setting
of Proposition 4.19.
Note first that the permutation ε in Definition 5.3 for all rays v of σ is the identity.
Note also that since v1, . . . , vn and vi1 , . . . , vin are both basis, it follows from (5.7.1) that
the sequence N (β1, . . . , βr, u) = {n1 < n2 · · · < ns < r̄} is the same as the sequence
N (row1(M), . . . , rowr(M), u), where M = M+ −M−.
Now the result follows by comparing Definition 5.3 for every ray viℓ of σ and Proposi-
tion 4.19 in terms of functions Ψℓ. �

Remark 5.8. Let W = Uτ be a n-dimensional affine smooth toric variety associated to
a cone τ as in Theorem 5.7, fix a point ξ ∈ Uτ in the orbit of the distinguished point of
Uτ (see [CLS11, page 116]) and assume that the m-binomial ideal a ⊂ OUτ

is such that
aξ 6= OUτ ,ξ, then

lct(Uτ ,∆, a)ξ = lct(Uτ ,∆, a).

If W = WΣ is a smooth toric variety and a ⊂ OW is a m-binomial ideal (2.12) then

lct(W,∆, a) = min {lct(Uσ,∆|Uσ
, a|Uσ

) | σ ∈ Σ} .

For a point ξ ∈ W such that aξ 6= OW,ξ, set σ ∈ Σ the unique cone such that ξ ∈ Uσ

and ξ is in the orbit of the distinguished point of Uσ (see [CLS11, page 116]), we have
that

lct(W,∆, a)ξ = lct(Uτ ,∆|Uτ
, a|Uτ

).

Theorem 5.7 gives a way of computing the log-canonical threshold of a m-binomial
ideal, but one needs to compute a pseudo-resolution of the ideal. We want to avoid this
computation and express the log-canonical threshold of the ideal in terms of simpler
computations.
The function LCT(M+,M−, u, c) is not continuous in general, but we may stratify the
space Rn

≥0 such that the function LCT(M+,M−, u, c) is continuous in every stratum.
In fact this stratification is given by a fan.

Proposition 5.9. Let (M+,M−, u) be a triple (5.1).
If c ∈ Zn then there is a fan Γ, with support Rn

≥0, such that for every cone γ ∈ Γ the
function LCT(M+,M−, u, c) is continuous in the relative interior of γ.

Proof. Consider the hyperplanes of Rn having normal vectors:

(5.9.1)
rowi(M

+)− rowi(M
−) i = 1, . . . , n ,

rowi(M
±)− rowj(M

±) i < j.

Let Γ be the fan obtained by the subdivision of Rn
≥0 given by these hyperplanes. For

every cone γ ∈ Γ the relative interior of γ is defined by some hyperplanes equalities and
some hyperplane inequalities, > 0 or < 0 of (5.9.1).

By our construction, the permutation ε(v), the number r
(v)
o and the sequence n

(v)
1 <

· · · < n
(v)

s(v)
≤ r̄(v) in Definition 5.3 are the same for all v in the relative interior of γ.
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The function LCT(M+,M−, u, c) in the relative interior of γ is continuous since it is
the minimum of continuous functions. �

Note that our fan Γ need not to be regular. The fan used for embedded resolution in
[GPT02] is compatible with a subset of hyperplanes in (5.9.1), see also [Tei04, Proposi-
tion 6.3].
In fact, we prove that the minimum of the function LCT(M+,M−, u, c) exists and it is
equal to lct(W,∆, a).

Theorem 5.10. Let W = Uτ be a n-dimensional affine smooth toric variety associated
to a cone τ ⊂ Rn

≥0. Set Σ to be the fan associated to τ . Consider a set of vertices Ξ =
{v1, . . . , vn} extending the rays of τ . Let a ⊂ OW be a m-binomial ideal (2.12) generated
by f1, . . . , fr, where each fi is either a monomial or a binomial. Let (M+,M−, u) be
the triple associated to f1, . . . , fr (5.2) and vc = vc11 · · · v

cn
n be the monomial defined by

a divisor ∆ in W .
Then the lct of the ideal a is the minimum of the function LCT(M+,M−, u, c):

lct(W,∆, a) = min
{
LCT(M+,M−, u, c)(v) | v ∈ τ

}
.

Proof. First note that LCT(M+,M−,u,c)(v) ≥ 0 so that inf{LCT(M+,M−, u, c)(v) | v ∈
Rn

≥0} exists.
By Theorem 5.7 we have

lct(W,∆, a) ≥ inf
{
LCT(M+,M−, u, c)(v) | v ∈ Rn

≥0

}
.

We only have to prove the reverse inequality. We want to prove that for any v ∈ τ we
have

(5.10.1) lct(W,∆, a) ≤ LCT(M+,M−, u, c)(v).

If v ∈ τ ∩Qn
≥0, let m ∈ N such that mv ∈ Nn. Consider a subdivision Σ1 of Σ containing

mv and refine Σ1 in order to have a subdivision Σ′ and a pseudo-resolution of a with
mv a ray of Σ′. By Theorem 5.7 and Lemma 5.6 we have inequality (5.10.1).
Let Γ be the fan of Proposition 5.9. If v ∈ Γ(1) then there exist λ ∈ R with λv ∈ Qn

≥0

and again by Lemma 5.6 we obtain inequality (5.10.1).
Assume that v ∈ τ and v 6∈ Γ(1), there exists a unique cone γ ∈ Γ with v in the relative
interior of γ. There is a sequence {wℓ}ℓ∈N such that with , with

• wℓ ∈ Qn
≥0 for all ℓ ∈ N,

• wℓ is in the relative interior of γ and
• limℓ→∞wℓ = v.

We have seen that

lct(W,∆, a) ≤ LCT(M+,M−, u, c)(wℓ) ∀ℓ ∈ N.

Finally, it follows from Proposition 5.9 that inequality (5.10.1) holds for v. �

By Theorem 5.10, the problem of computing lct(W,∆, a) is reduced to the problem of
computing the minimum of the function LCT(M+,M−, u, c). The last problem relies
on computing the rays of the fan determined by the rows of the matrices M+ and M−.

Theorem 5.11. Let (M+,M−, u) be the triple associated to a and let Γ be the fan given
by Proposition 5.9.
The minimum of the function LCT(M+,M−, u, c) (5.3) is attained at some ray of the
fan Γ. If Γ(1) = {w1, . . . , wt} then

minLCT(M+,M−, u, c) = min
{
LCT(M+,M−, u)(wi) | i = 1, . . . , t

}
.
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Proof. Let γ ∈ Γ be a cone. As in the proof of Proposition 5.9 There is a permutation
ε of {1, . . . , r} such that, with the notation of Definition 5.3,

αv,ε(1) ≤ αv,ε(2) ≤ · · · ≤ αv,ε(r) ∀v ∈ γ.

For v in the relative interior of γ set ϕ(v) = LCT(M+,M−, u, c)(v). Consider the
function ϕ : γ → R extended by continuity to the boundary.

Claim 1: If v ∈ γ is such that ϕ(v) = inf ϕ then v is in the relative boundary of
γ.

Claim 2: If v is in the relative boundary of γ then LCT(M+,M−, u)(v) ≤ ϕ(v).

First note that proposition will follow from claim 1 and claim 2.
For claim 1, note that ϕ is the minimum of functions like

ϕi(v) =
(c+ 1) · v + (αv,ε(ni) − αv,ε(ni−1

) + · · ·+ (αv,ε(ni) − αv,ε(n1))

αv,ε(ni)

for i = 1, . . . , sv, see Definition 5.3. Since the αv,ε(nj) are linear functions on v ∈ γ and
ϕi(λv) = ϕi(v) (5.6) we have that

inf {ϕi(v) | v ∈ γ} = inf
{
ϕi(v) | αv,ε(ni) = 1, v ∈ γ

}
.

The function ϕi restricted to the hyperplane αv,ε(ni) = 1 is a linear function and its
minimum will be attained at some point of the boundary of the domain. This proves
claim 1.
For claim 2 note that the number sv is constant for all v in the relative interior of γ. If
v′ is in the relative boundary of γ then sv′ ≥ sv and claim 2 follows. �

6. Computation and examples

This section is devoted to show several examples of computation of lct of m-binomial
ideals. All computations have been made with Singular [DGPS12]. We describe a
simple procedure to compute the rays of the fan Γ appearing in Theorem 5.11. It is a
naive procedure, but even if it may be improved it avoids any computation of a pseudo-
resolution of the ideal. In fact, complexity is bounded only in terms of the number of
variables n and the number of generators r.

Remark 6.1. Let a ⊂ k[x1, . . . , xn] be a m-binomial ideal generated by f1, . . . , fr, where
each fi is either a monomial or a binomial. Set (M+,M−, u) be the triple associated to
f1, . . . , fr (5.2). We denote M±

i the i-th row of the matrix M±.
By Theorem 5.11 we shall check the minimum of the values LCT(M+,M−, u, 0)(v) for
every v ∈ Γ(1), where Γ is the fan given by Proposition 5.9.
Set A to be the identity n × n matrix. Following proof of Proposition 5.9, add to the
matrix A the rows

M+
i −M−

i i = 1, . . . , n ,

M±
i −M±

j i < j.

We may delete some rows of A:

• every row with Ai = 0,
• every row Ai with non-negative entries and
• every row Ai proportional to some other row Aj .
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Ray LCT LCT∗

(2, 1, 3) 3 3 3 3
(2, 2, 3) 7/4 1.75 7/4 1.75
(1, 1, 2) 2 2 2 2
(4, 5, 6) 16/11 1.4545 3/2 1.5
(3, 4, 5) 13/9 1.4444 3/2 1.5
(1, 1, 1) 3/2 1.5 3/2 1.5
(2, 3, 2) 7/4 1.75 7/4 1.75
(4, 6, 7) 17/11 1.5454 17/11 1.5454
(2, 3, 5) 5/3 1.6667 5/3 1.6667
(2, 3, 3) 8/5 1.6 8/5 1.6
(2, 3, 4) 3/2 1.5 3/2 1.5
(1, 2, 1) 2 2 2 2
(2, 4, 3) 9/5 1.8 9/5 1.8
(1, 2, 2) 5/3 1.6667 5/3 1.6667
(1, 2, 3) 2 2 2 2

Ray LCT LCT∗

(1, 3, 0) 2 2 ∞ ∞
(1, 1, 0) 2 2 ∞ ∞
(2, 1, 0) 2 2 ∞ ∞
(2, 3, 0) 2 2 ∞ ∞
(1, 2, 0) 2 2 ∞ ∞
(1, 0, 3) 2 2 ∞ ∞
(2, 0, 3) 2 2 ∞ ∞
(1, 0, 2) 2 2 ∞ ∞
(1, 0, 1) 2 2 ∞ ∞
(1, 0, 0) 2 2 ∞ ∞
(0, 2, 1) 2 2 ∞ ∞
(0, 1, 1) 2 2 ∞ ∞
(0, 1, 2) 2 2 ∞ ∞
(0, 1, 0) 2 2 ∞ ∞
(0, 0, 1) 2 2 ∞ ∞

Figure 1. Rays for curve (t3, t4, t5)

Every ray in Γ(1) is defined by n− 1 Q-linear independent rows of the matrix A. The
problem of enumerating all rays of a fan has been solved in [AF92], the authors proved
that the full list of vertices can be found in O(r2A(n−1)N0) time, where N0 is the number
of rays and rA is the number of rows of the matrix A. Note that rA ≤ n +

(
2r
2

)
and

N0 ≤
(

rA
n−1

)
. In general the problem of estimating N0 is hard. Once we have obtained

the list of all rays, then we shall evaluate the function LCT(M+,M−, u, 0) at every ray
and compute the minimum.

Example 6.2. Let V ⊂ A3 be the monomial curve given by the parametrization
(t3, t4, t5). The ideal a, defining V , is generated by the binomials:

〈
x2
2 − x1x3, x2x3 − x3

1, x
2
3 − x2

1x2

〉
.

We have obtained these generators with Singular [DGPS12]. In fact these three bino-
mials form a standard basis of the ideal a. The triple (M+, M−, u) associated to these
generators is

M+ =




0 2 0
0 1 1
0 0 2


 M− =




1 0 1
3 0 0
2 1 0


 u = (1, 1, 1).

The transpose of matrix A, after deleting superfluous rows, is

At =




1 0 0 −2 −3 −1 0 −1 1 2 2 3 3 1
0 1 0 1 2 2 2 1 1 1 0 0 −1 0
0 0 1 0 0 −1 −2 0 −1 −2 −1 −2 −1 −1


 .

We obtain 30 rays and the minimum of LCT(M+,M−, u, 0) is lct(a) = 13/9. Fig-
ure 1 is the list of all the rays of Γ, each vector is the solution of the linear system
obtained by choosing two rows of A. We also show the values of LCT(M+,M−, u, 0)
and LCT∗(M+,M−, u, 0).
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Ray LCT LCT∗

(2, 5, 5) 4/3 1.3333 4/3 1.3333
(4, 10, 11) 25/19 1.3158 25/19 1.3158
(2, 6, 5) 13/9 1.4444 13/9 1.4444
(2, 4, 5) 11/8 1.375 11/8 1.375
(2, 5, 4) 11/8 1.375 11/8 1.375
(1, 3, 2) 3/2 1.5 3/2 1.5
(4, 9, 10) 24/19 1.2631 23/18 1.2778
(3, 7, 8) 19/15 1.2667 9/7 1.2857
(1, 2, 2) 5/4 1.25 5/4 1.25
(1, 3, 3) 7/5 1.4 7/5 1.4
(2, 5, 6) 13/10 1.3 13/10 1.3
(2, 3, 5) 5/3 1.6667 5/3 1.6667
(2, 5, 7) 7/5 1.4 7/5 1.4
(1, 1, 2) 2 2 2 2
(1, 3, 4) 8/5 1.6 8/5 1.6
(1, 2, 3) 3/2 1.5 3/2 1.5
(1, 5, 0) 2 2 ∞ ∞

Ray LCT LCT∗

(2, 5, 0) 2 2 ∞ ∞
(1, 3, 0) 2 2 ∞ ∞
(1, 2, 0) 2 2 ∞ ∞
(1, 1, 0) 2 2 ∞ ∞
(1, 0, 5) 2 2 ∞ ∞
(2, 0, 5) 2 2 ∞ ∞
(2, 0, 3) 2 2 ∞ ∞
(1, 0, 2) 2 2 ∞ ∞
(1, 0, 3) 2 2 ∞ ∞
(1, 0, 1) 2 2 ∞ ∞
(1, 0, 0) 2 2 ∞ ∞
(0, 2, 1) 2 2 ∞ ∞
(0, 1, 2) 2 2 ∞ ∞
(0, 1, 1) 2 2 ∞ ∞
(0, 1, 0) 2 2 ∞ ∞
(0, 0, 1) 2 2 ∞ ∞

Figure 2. Rays for curve t3, t7, t8

The ray giving the minimum coincides with the vector coming from the parametrization
of the curve. However this is not always true as it is illustrated by the next example.

Example 6.3. Let V ⊂ A3 be the monomial curve given by the parametrization
(t3, t7, t8). The ideal a defining V is generated by binomials and the standard basis
is:

a =
〈
x2
1x3 − x2

2, x1x
3
2 − x3

3, x
3
1x2 − x2

3, x
5
2 − x1x

4
3, x

5
1 − x2x3

〉
.

For computations it is enough to consider a set of generators, say,

a =
〈
x2
1x3 − x2

2, x
3
1x2 − x2

3, x
5
1 − x2x3

〉
.

The triple (M+, M−, u) associated to these generators is

M+ =




2 0 1
3 1 0
5 0 0


 M− =




0 2 0
0 0 2
0 1 1


 u = (1, 1, 1).

The transpose of A, after deleting superfluous rows, is

At =




1 0 0 −1 −3 2 2 2 3 3 5 5 5 0
0 1 0 −1 0 −2 0 −1 −1 1 −2 0 −1 2
0 0 1 1 1 1 −1 0 0 −2 0 −2 −1 −2


 .

We obtain 33 rays and the minimum of LCT(M+,M−, u, 0) is lct(a) = 5/4. Figure 2
shows the list of all the rays. Note that the minimum is achieved at ray (1, 2, 2) ant not
at ray (3, 7, 8).

Example 6.4. Let V ⊂ A4 be the monomial curve given by the parametrization
(t5, t6, t8, t9). The ideal a defining V is generated by six binomials

a = 〈x2x3 − x1x4, x
2
1x3 − x2

4, x
3
2 − x2

1x3, x1x
2
2 − x3x4, x

2
1x2 − x2

3, x
3
1 − x2x4〉.
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The triple (M+,M−, u) is

M+ =




0 1 1 0
2 0 1 0
0 3 0 0
1 2 0 0
2 1 0 0
3 0 0 0




, M− =




1 0 0 1
0 0 0 2
2 0 1 0
0 0 1 1
0 0 2 0
0 1 0 1




u = (1, 1, 1, 1, 1, 1).

The matrix A, after deleting superfluous rows, has 41 rows, we obtain a list of 848
rays. The minimum of LCT(M+,M−, u, 0) is 23/12 = lct(W, a) which is attained at
the ray (4, 5, 6, 7). The function LCT∗(M+,M−, u, 0) has minimum equal to 2, which
corresponds to the log-canonical threshold of the monomial ideal

〈x2x3, x1x4, x
2
1x3, x

2
4, x

3
2, x1x

2
2, x3x4, x

2
1x2, x

2
3, x

3
1, x2x4〉.

Example 6.5. Let V ⊂ A4 be the toric surface given by the parametrization

(t1t
3
2, t

2
1t

2
2, t

3
1t

2
2, t1t

7
2).

The ideal a defining V is generated by three binomials

a = 〈x2x4 − x3
1, x

4
3x4 − x1x

6
2, x

2
1x

4
3 − x7

2〉.

The triple (M+,M−, u) is

M+ =




0 1 0 1
0 0 4 1
2 0 4 0


 , M− =




3 0 0 0
1 6 0 0
0 7 0 0


 u = (1, 1, 1).

The matrix A, after deleting superfluous rows, has 19 rows and we obtain a list of 124
rays. The minimum of LCT(M+,M−, u, 0) is 99/76 = lct(W, a) which is attained at
the ray (4, 12, 19, 0). The function LCT∗(M+,M−, u, 0) has minimum equal to 17/12,
which corresponds to the log-canonical threshold of the monomial ideal

〈x2x4, x
3
1, x

4
3x4, x1x

6
2, x

2
1x

4
3, x

7
2〉.

Example 6.6. Set a1 the ideal in k[x1, x2, x3, x4, x5]

a1 =
〈
x2
2x4 − x1x3x4, x

2
2x5 − x1x3x5, x

3
1x4 − x2

3x4, x
3
1x5 − x2

3x5

〉
=

=
〈
x2
2 − x1x3, x

3
1 − x2

3

〉
〈x4, x5〉 .

Note that 〈x2
2 − x1x3, x

3
1 − x2

3〉 is the ideal of the monomial curve (t4, t5, t6) in R3.
Set a2 to be the ideal

a2 =
〈
x2
2x4 − x1x3x4, x

2
2x5 + x1x3x5, x

3
1x4 − x2

3x4, x
3
1x5 − x2

3x5

〉
.

Note that the triples associated to a1 and a2 are (M+,M−, u1) and (M+,M−, u2) re-
spectively, where

M+ =




0 2 0 1 0
0 2 0 0 1
3 0 0 1 0
3 0 0 0 1


 , M− =




1 0 1 1 0
1 0 1 0 1
0 0 2 1 0
0 0 2 0 1


 ,

u1 = (1, 1, 1, 1),
u2 = (1,−1, 1, 1).

The fan Γ, which is the same for both ideals, has 177 rays. The minimum of the
function LCT(M+,M−, u1, 0) is 17/12 which is attained at (4, 5, 6, 0, 0). The minimum
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of LCT(M+,M−, u2, 0) is 3/2 which is attained at (4, 5, 6, 0, 0), it is also attained at
(1, 1, 1, 0, 0) and at (2, 3, 4, 0, 0).
The ideals a1 and a2 only differ in one coefficient and they have different log canonical
threshold:

lct(W, a1) =
17

12
, lct(W, a2) =

3

2
.

This is an example that illustrates that the log canonical threshold of a binomial ideal
depends not only on the exponents of the monomials, but also on the coefficients.
Set v = (4, 5, 6, 0, 0), in what follows we are giving the details of the computations of
LCT(M+,M−, u1, 0)(4, 5, 6, 0, 0) and LCT(M+,M−, u2, 0)(4, 5, 6, 0, 0). Note that α =
M+v = M−v = (10, 10, 12, 12), β = (M+ −M−)v = (0, 0, 0, 0). The permutation ε is
such that ε(1) = 1, ε(2) = 2, ε(3) = 3, ε(4) = 4. The rank of M+ −M− is s = 2.
For the ideal a1, we have that r̄ = 2, since β1, β2, β3, β4 and 1, 1, 1, 1 are compatible.
The sequence of Remark 4.10 is n1 = 1, n2 = 3.
The value LCT(M+,M−, u1, 0)(4, 5, 6, 0, 0) is the minimum of

r̄ = s = 2,

|v|

α1
=

15

10
,

|v|+ (α3 − α1)

α3
=

17

12
.

For the ideal a2, we have that r̄ = 1 since β1, β2 and 1,−1 are not compatible (4.7) The
sequence of Remark 4.10 is now n1 = 1, n2 = 2.
The value LCT(M+,M−, u2, 0)(4, 5, 6, 0, 0) is the minimum of

|v|

α1
=

15

10
,

|v|+ (α2 − α1)

α2

=
15

10
.

Example 6.7. Example 6.6 may be generalized to the ideal

a3 =
〈
x2
2x4 − u1x1x3x4, x

2
2x5 − u3x1x3x5, x

3
1x4 − u2x

2
3x4, x

3
1x5 − u4x

2
3x5

〉
,

where u1, u2, u3, u4 ∈ k∗. In this case we have that

lct(A5, a3) =

{
3/2 if u1 6= u2

17/12 if u1 = u2
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