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Abstract

The objective of this paper is to replicate the results in Kristoufek (2014)

on the leverage e¤ect in energy futures and to analyze its robustness to both

the methodology and the type of returns used. We �rst apply correlation-based

tools for detecting both conditional heteroscedasticity and leverage e¤ect. Then,

we estimate asymmetric and long memory GARCH-type models using the data

provided by Kristoufek (2014) by considering di¤erent software and the possibility

that innovations follow a non-Gaussian distribution. Our �ndings con�rm most of

the results in the replicated paper. In particular, we can strongly con�rm there is

a signi�cant leverage e¤ect in the return series of WTI (West Texas Intermediate)

and Brent crude oils. For the heating oil and the natural gas series, the statistical

signi�cance of the leverage e¤ect depends on both the methodology and the type

of returns used.
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1 Introduction

It is already well known that time series of �nancial returns are conditionally hete-

roscedastic with volatilities responding asymmetrically to negative and positive past

returns. In particular, the volatility increases tend to be higher in response to past neg-

ative shocks (�bad� news) than to positive shocks (�good� news) of the same magnitude.

Following Black (1976) this feature is usually referred to as leverage e¤ect.

Whether or not the leverage e¤ect is present in energy commodities markets is an

open question which has attracted the interest of researchers during the last decade.

Most of the empirical literature on the topic have used the same methodology, based on

estimating several asymmetric GARCH-type models to the �nancial returns and testing

the statistical signi�cance of the coe¢cient capturing the leverage e¤ect. Kristoufek

(2014) points out that by doing so, the leverage e¤ect is assumed ex ante and the

volatility process is estimated as a part of a model under various assumptions and

restrictions. Hence, it can occur that the coe¢cient capturing the leverage e¤ect is

statistically signi�cant, not only because the e¤ect is actually present, but also because

the model is missespeci�ed. To overcome this problem, Kristoufek (2014) proposes �rst,

to estimate the volatility outside the returns model. Then, taking into account the

possibility that the volatility is a long-memory process on the edge of stationarity, he

proposes to compute the correlation between returns and volatility using two detrended

correlation coe¢cients to deal with potential non-stationary series.

Table 1 contains a brief summary of the empirical results in those papers reviewed

in Kristoufek (2014) that analyze the same four energy commodities as he does, namely

WTI and Brent crude oils, heating oil and natural gas. We are aware that there are

many other papers dealing with the problem, however, as we can see in the last column

of the table, the selected articles are good examples of the mixed results found.

Regarding the WTI crude oil returns, Kristoufek (2014) �nds what he calls the

standard leverage e¤ect (signi�cant negative correlation between returns and volatility).

This result agrees with Reboredo (2011), Nomikos and Andriosopoulos (2012) and Chkili

et al. (2014). However, Agnolucci (2009), Cheong (2009), Chang (2012) and Wu et

al. (2012) �nd that the leverage e¤ect in di¤erent asymmetric GARCH models is not

statistically signi�cant. On the other hand, Fan et al. (2008) and Zhang et al. (2008)
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�nd an inverse leverage e¤ect (positive shocks result in larger increases of the volatility

than negative shocks) by estimating di¤erent asymmetric GARCH models. Zhang et al.

(2008) justify this e¤ect by arguing that when oil price increases, the expectation is that

oil supply will decrease, which makes traders to buy oil as soon as possible increasing

even more the price of oil and also its volatility.

With respect to the Brent crude oil, Kristoufek (2014), as well as Cheong (2009)

and Reboredo (2011), also �nd the standard leverage e¤ect. However, this result di¤ers

from Fan et al. (2008) who �nd that there is not leverage e¤ect in the Brent returns.

Furthermore, Wei et al. (2010) �nd mixed results for Brent but also for WTI returns.

Finally, Kristoufek (2014) �nds the standard leverage e¤ect for heating oil, although

weaker than for WTI and Brent crude oils, and the inverse leverage e¤ect for natural gas.

These results are in line with Nomikos and Andriosopoulos (2012) but di¤er from Chkili

et al. (2014) who �nd the standard leverage e¤ect when asymmetric and long-memory

models are estimated to both the spot and future returns of the natural gas.

The di¤erent and sometimes contradictory results summarized above can be ex-

plained by several reasons. First, as shown in the second column of Table 1, the data

used in the di¤erent articles are not the same. Some authors consider spot prices while

others consider future contracts with di¤erent maturities and, also, the data frequency is

di¤erent: some prices are observed daily while others are observed weekly. Second, the

sample period analyzed also varies among the di¤erent papers, as we can see in the third

column of Table 1. And �nally, the methodology is not always the same. Even though

many authors use asymmetric GARCH-type models, the large number of alternative

models (with di¤erent parametrizations) that are able to cope with the leverage e¤ect,

as well as the possibility of using di¤erent software with several estimators implemented,

make the comparison very di¢cult (a further discussion on this topic is included in the

online Appendix A). As an illustration, Table 2 reviews, for the models we will consider

in this paper, di¤erent software that can be used for estimation purposes. It is worth

noticing that one should be very careful when comparing the results obtained from dif-

ferent software packages as the parametrization of the same model can change from one

to another. For example, assuming a TGARCH model (to be described in Section 2),

the leverage coe¢cient estimated using the Oxford MFE Toolbox is equal in magnitude,

but with opposite sign, to the leverage coe¢cient estimated using Stata. Moreover, even

3



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

when the parametrization of the model is the same, di¤erent software will start the es-

timation procedure with di¤erent initial values, leading to possibly di¤erent estimates;

see Brooks et al. (2001) for a detailed discussion on this topic.

On top of the reasons given above to explain the mixed results, we agree with Kris-

toufek (2014) in the possibility of obtaining misleading results when estimating asym-

metric GARCH-type models if the underlying assumptions are not satis�ed. In particu-

lar, if the assumed model is not �exible enough to capture the empirical characteristics

of the data, then it will be very likely that the Gaussian Quasi Maximum Likelihood

estimators, usually implemented in the more commonly used software, lead us to in-

correct conclusions. In this sense, the assumed distribution for the innovations of the

model, as well as the estimator used, are essential to obtain reliable results.

For instance, it is already well known that in the presence of outliers, maximum

likelihood based methods do not have good properties in symmetric GARCH models

and can lead to biased estimators. Therefore, the extreme observations in the returns

of energy commodities could be partly responsible for the mixed results found in the

literature. In this context, robust estimators of both the parameters and the volatility

are needed; see, for example, the proposals in Carnero et al. (2007, 2012), Muler and

Yohai (2008) and Hill (2015), among many others. Alternatively, some authors deal with

this problem by applying methodologies based on detecting and correcting outliers; see,

for example, Doornik and Ooms (2005), Charles and Darné (2014a, 2014b), Behmiri

and Manera (2015) and Laurent et al. (2016).

With respect to the e¤ect of outliers in detecting the leverage e¤ect, Carnero et al.

(2016) show that outliers bias the sample cross-correlations between past and squared

returns, which are often used to identify this e¤ect. In particular, they show that one

isolated big outlier biases the sample cross-correlations towards zero and hence could

hide true leverage e¤ect, whereas the presence of two or more big consecutive outliers

could lead to detecting spurious asymmetries or asymmetries of the wrong sign. To

overcome this problem they propose robust cross-correlations which are shown to out-

perform other measures in identifying asymmetric conditionally heteroscedastic models.

Moreover, biased estimators of the parameters and volatilities are also expected in asym-

metric GARCH models if robust methods are not used.

Taking all this into account, the objective of this paper is to replicate the results
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found in Kristoufek (2014) by working with the supplementary data on daily prices

of future contracts provided in Appendix A of that paper. To face this goal, we �rst

take the same returns and the same methodology used by Kristoufek(2014) and show

how we reach the same results and conclusions using di¤erent software. Then, we an-

alyze whether employing a di¤erent methodology and another type of returns lead to

the same conclusions. In particular, we compute both the sample and robust cross-

correlations to detect possible leverage e¤ects, and then we estimate three popular

asymmetric GARCH-type models (TGARCH, EGARCH and FIEGARCH) assuming

di¤erent distributions for the innovations (Gaussian, GED and Student). The TGARCH

and EGARCH models have been chosen because, as Rodríguez and Ruiz (2012) show,

they are more �exible than their competitors to cope simultaneously with the restric-

tions for positivity of the conditional variance and stationarity and the features observed

in �nancial returns, namely, excess kurtosis, positive and persistent autocorrelations of

squares and negative cross-correlations between squared and lagged returns. The FIE-

GARCH model is chosen as a natural generalization of the EGARCH model that is able

to capture long-memory in the volatility (as it is claimed to be present in the replicated

paper).

Our results show that, when the three asymmetric GARCH-type models are esti-

mated using the Brent and WTI crude oil returns, the leverage e¤ect is statistically

signi�cant at 5% signi�cance level, regardless of the model, the estimator and the type

of returns used. This con�rms the results in Kristoufek (2014) who also �nds the stan-

dard leverage e¤ect for these two series. When the previous models are �tted to the

returns of heating oil, the estimated coe¢cient capturing the leverage e¤ect is negative

in most cases, in line with the results in Kristoufek (2014), but its statistical signi�cance

depends on both the model and the type of returns used. A similar result is found when

the asymmetric GARCHmodels are applied to the returns of natural gas. In general, the

positive sign of the estimated leverage coe¢cient (indicating an inverse leverage e¤ect)

agrees with the results in Kristoufek (2014), however its statistical signi�cance depends

on the �tted model. These results support our �ndings from applying cross-correlation

based methods to detect possible leverage in these four series.

The rest of the paper is organized as follows. Section 2 describes the methodology we

employ to identify and estimate the leverage e¤ect, as an alternative to the methods used
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in the replicated paper. Section 3 contains the empirical results obtained by applying

both methodologies to the same data analyzed in Kristoufek (2014) and discusses the

di¤erences and similarities found. The robustness of such results to the return de�nition

is discussed in Section 4. Finally, Section 5 concludes the paper with a summary of the

main results.

2 Methodology

Kristoufek (2014) claims that the leverage e¤ect can be seen as a correlation between

returns and volatility. To measure this e¤ect and deal with the potential non-stationarity

of the volatility, he utilizes two detrended cross-correlation coe¢cients, namely DCCA

and DCMA, between contemporaneous returns and volatility. However, we wonder

whether computing such correlation is appropriate to capture the leverage e¤ect, since

this e¤ect is commonly understood as the asymmetric response of volatility to negative

and positive past returns; see the seminal paper by Black (1976) as well as Nelson

(1991), Zakoian (1994), Engle (2011), Hibbert et al. (2008) and the references therein.

Therefore, in Section 2.1, we focus on the dynamic relationship between lagged returns

and current volatility. Alternatively, the presence of leverage e¤ect can be detected by

estimating asymmetric GARCH-type models and testing the statistical signi�cance of

the leverage coe¢cient. This is the approach discussed in Section 2.2.

2.1 Detection of leverage

The identi�cation of the leverage e¤ect is often based on the sample cross-correlations

between past returns, yt�h; and squared returns, y
2
t , the latter regarded as a proxy for

the underlying volatility; see, for instance, Bollerslev et al. (2006), Ruiz and Veiga

(2008), Zivot (2009), Rodríguez and Ruiz (2012) and Tauchen et al. (2012). If the

volatility increase is larger (smaller) in response to negative than positive past returns

of the same magnitude, then the cross-correlations between yt�h and y
2
t are negative

(positive). Hence, negative values of these cross-correlations indicate potential leverage

e¤ect. However, as Carnero et al. (2016) show, the sample cross-correlations are not

robust to the presence of extreme observations and could convey misleading results. In

such cases, robust measures are more appropriate.
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In this paper, we will �rst compute the usual sample cross-correlations between yt�h

and y2t , de�ned as

r12(h) =

TP
t=h+1

(yt�h � y) (y2t � y2)
s

TP
t=1

(yt � y)2
s

TP
t=1

(y2t � y2)
; (1)

for h = 1; 2; ::::; where T is the sample size, y =
1

T

TP
t=1

yt and y2 =
1

T

TP
t=1

y2t . For

comparison purposes, we will also compute the robust cross-correlation introduced by

Carnero et al. (2016), which is based on applying Ramsay�s weights to the sample

variances and cross-covariances, and is de�ned as follows

er12;W (h) =
e12(h)p
e1(0)e2(0)

(2)

where

e12(h) =

TP
t=h+1

wt�h
�
yt�h � Y w

�
w2t (y

2
t � Y 2w)

TP
t=h+1

wt�hw2t

;

e1(0) =

TP
t=1

wt
�
yt � Y w

�2

TP
t=1

wt

; e2(0) =

TP
t=1

w2t (y
2
t � Y 2w)2

TP
t=1

w2t

with

Y w =

TP
t=1

wtyt

TP
t=1

wt

; Y 2w =

TP
t=1

w2t y
2
t

TP
t=1

w2t

; wt = exp

�
�a jyt � yjb�y

�
; b�y =

vuut 1

T � 1

TX

t=1

(yt � y)2:

Following Teräsvirta and Zhao (2011), we use a = 0:3. Notice that when applying

the weights wt to the series in levels, every observation will be downweighted except

those equal to the sample mean, and when applying squared weights, w2t , to the squared

observations, bigger observations in squares are more downwards weighted than their

corresponding observations in levels.

The cross-correlations in (1) and (2), when computed using daily data, are capturing

the dynamic relationship between the past return observed h days ago (i.e., yesterday if
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h = 1) and the volatility today. However, the estimated correlation coe¢cients between

returns and volatility computed by Kristoufek (2014) are contemporaneous (h = 0),

only capturing the relationship between the return and the volatility at the same day.

2.2 Asymmetric GARCH-type models

GARCH-type models are the most widely used to represent the dynamic evolution of

the volatility of �nancial returns. Incorporating the leverage e¤ect into such models

is important to better capture the dynamic behavior of �nancial returns and improve

the forecasts of future volatility. Among the pleiad of alternative GARCH models that

are able to cope with the leverage e¤ect, we focus on the TGARCH model proposed

by Zakoian (1994) and the EGARCH model proposed by Nelson (1991). These two

models are �exible speci�cations for representing the evolution of asymmetric variances,

as compared to other asymmetric GARCH models; see Rodríguez and Ruiz (2012). We

also consider a GARCH-type model that represents both leverage and long-memory in

the volatility, namely the FIEGARCH model introduced by Bollerslev and Mikkelsen

(1996). In all cases, we only consider the simplest parametrizations.

The TGARCH model accommodates the asymmetric relationship between past re-

turns and volatility, by making the latter, denoted as �t, be a function of both the

magnitude and the sign of past returns. In particular, if yt denotes the series of de-

meaned returns, the basic TGARCH model is given by the following equations:1

yt = �t "t (3)

�t = ! + � jyt�1j + ��t�1 + �yt�1 (4)

where �t is the volatility and "t is a sequence of independent identically distributed

(i.i.d.) random variables with zero mean and unit variance. When yt�1 is positive, the

volatility response is linear in yt�1 with slope (� + �) but if yt�1 is negative, the slope

of the response is (� � �). Thus, the volatility can respond asymmetrically to rises and
falls in stock prices and the value of � is expected to be negative. Under the constraints

1This is the parametrization used in Rodríguez and Ruiz (2012), but other equivalent reparametriza-

tions are possible; see, for instance, the original one in Zakoian (1994) or those in He and Teräsvirta

(1999) and He et al. (2002).
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! > 0, � � 0 and � � j�j, �t is always positive and represents the conditional standard
deviation of yt. Moreover, the model is covariance stationary if �

2 < 1��2��2�2���j"j,
where �j"j = Ej"tj: The conditions for existence of higher-order moments, as well as the
analytical expressions for unconditional moments and cross-moments can be found in

He and Teräsvirta (1999) and He et al. (2008).

Alternatively, the EGARCH model speci�es the log-squared volatility as a function

of both the magnitude and the sign of lagged returns innovations. In particular, the basic

EGARCH model is given by equation (3) and the following equation for the volatility:

log(�2t ) = ! + � log(�
2
t�1) + �

�
j"t�1j � �j"j

�
+ �"t�1. (5)

When "t�1 is positive, the log-volatility response is linear in "t�1 with slope (� + �)

but if "t�1 is negative, the slope of the response is (� � �). Thus, as in the TGARCH
model, the value of � is expected to be negative for the model to capture the leverage

e¤ect.2 Since the volatility equation (5) is speci�ed in terms of logarithms, there are no

inequality constraints on the parameters to ensure the positivity of �t. Moreover, the

model is covariance stationary under certain conditions on both the parameters and the

innovation distribution. For instance, if j�j < 1 and "t is N(0,1) or GED with thickness
parameter � > 1; the model is covariance stationary and possesses �nite moments of

any order, but this is not the case for some Student-t distributions; see Theorem 2.2 and

Theorem A1.2 in Nelson (1991). The analytical expressions for unconditional moments

and cross-moments can be found in Demos (2002), He et al. (2002) and Karanasos and

Kim (2003). Moreover, under the assumption that "t is Gaussian, �j"j =
p
2=�, whereas

for a GED distribution with parameter �, we have �j"j = �(2=�)=
p
�(3=�)�(1=�) and

we have �j"j =
p
(� � 2)=��((� � 1)=2)=�(�=2); for a Student-t with v > 2 degrees of

freedom, where �(�) is the Gamma function.
The FIEGARCH model is an extension of the EGARCH model that allows for long-

memory in the volatility by introducing a fractional operator in equation (5). In partic-

2Some authors make a distinction between asymmetry, referred to as the di¤erent impacts on condi-

tional volatility of positive and negative shocks of equal magnitude, and leverage e¤ect, regarded as the

negative correlation between returns shocks and subsequent shocks to volatility; see Chang and McAleer

(2017) for the regularity conditions that an EGARCH(1,1) model obtained from a random coe¢cient

complex nonlinear moving average process, should ful�ll to capture asymmetry and/or leverage e¤ects.
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ular, the equation for the volatility in the basic FIEGARCH model is the following:

(1� �L)(1� L)d log(�2t ) = ! + �
�
j"t�1j � �j"j

�
+ �"t�1,

where L is the lag operator such that Lxt = xt�1 and (1�L)d is the fractional operator
de�ned as

(1� L)d =
1X

k=0

�(k � d)
�(k + 1)�(�d)L

k:

When d = 0, the EGARCH model in (5) is obtained. As for the EGARCH model, no

restrictions on the coe¢cients are required for the conditional variance to be positive.

Moreover, if "t is N(0,1) or GED with parameter � > 1 and j�j < 1 and d < 0:5; the
model is covariance stationary. For further theoretical results on the main properties of

the FIEGARCH model, see Ruiz and Veiga (2008) and Lopes and Prass (2014).

2.3 Estimation methods

The three models introduced above are usually estimated by maximizing the conditional

log-likelihood function, given by

L(�) =

TX

t=1

lt(�) = �
1

2

TX

t=1

log �2t +
TX

t=1

log f

�
yt
�t

�
; (6)

where � denotes the parameter vector to be estimated and f(�) is the probability density
of "t. In particular, if "t is assumed to be N(0; 1), the corresponding Gaussian log-

likelihood function, that will be denoted as LN , comes up, namely:

LN(�) = �
T

2
log 2� � 1

2

TX

t=1

�
log �2t +

y2t
�2t

�
:

The resultant estimator is the Gaussian Quasi-Maximum Likelihood estimator (QML

here onwards) which is the most commonly used one for GARCH-type models, in general,

and in particular, for the asymmetric GARCH models introduced in Section 2.2; see, for

instance, Bollerslev and Mikkelsen (1996) and Ruiz and Veiga (2008) for an empirical

application using QML with FIEGARCH models and Zivot (2009) for an application of

QML with both TGARCH and EGARCH models.

The lack of robustness of the QML estimator in symmetric GARCH models is al-

ready well known; see, for instance, Carnero et al. (2007) and the references therein.
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To overcome this drawback, some authors propose estimation methods resistant to out-

liers which consist of maximizing the log-likelihood based on heavy tailed distributions;

see, for instance, Sakata and White (1998). Actually, in the seminal paper of Nelson

(1991), he estimates the EGARCH model by maximizing the loglikelihood function in

(6) assuming that "t followed a GED distribution normalized to have zero mean and

unit variance. In such a case, the density of "t will be

f(") =
�

�2(1+1=�)�(1=�)
exp

�
�1
2

��� "
�

���
�
�
; (7)

where � =
p
2�2=��(1=�)=�(3=�) and � > 0 is the tail-thickness parameter. When

� = 2, the GED collapses to the N(0,1) but it provides thicker (thinner) tails than

the Normal when � < 2 (� > 2). Putting back (7) into (6), the corresponding GED

log-likelihood function, that will be denoted as LGED, is obtained, namely:

LGED(�) = T

�
log
��
�

�
�
�
1 +

1

�

�
log 2� log �

�
1

�

��
� 1
2

TX

t=1

�
log �2t +

����
yt
��t

����
��
: (8)

Finally, we also consider an estimator based on maximizing the Student-likelihood,

i.e., assuming that "t follows a Student-t distribution with � degrees of freedom normal-

ized to have zero mean and unit variance. In such a case, the log-likelihood function,

that will be denoted as LStu, will be:

LStu(�) = T log

 
�((� + 1)=2)p
�(� � 2)�(�=2)

!
� 1
2

TX

t=1

�
log �2t + (� + 1) log

�
1 +

1

� � 2
y2t
�2t

��
:

(9)

The resultant estimators obtained by maximizing (8) and (9) will be denoted as

QML-GED and QML-t, respectively; see, for example, Rodríguez and Ruiz (2012) for

an empirical application of QML-t in TGARCH and EGARCH models.

The asymptotic properties of these three estimators for asymmetric GARCH-type

models are not well known. Pan et al. (2008) show that QML is consistent and asymp-

totically Normal for a general asymmetric GARCH model that includes as a particular

case the TGARCH model. In particular, they show that, provided that "t is symmetri-

cally distributed with E"2t = 1 and E"
4
t < 1 and some regularity assumptions hold, it

follows that p
T (b�QML � �) L�! N(0;��1
��1); (10)
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where

�(�) = E

�
@2lt(�)

@�@�0

�
and 
(�) = E

�
@lt(�)

@�

@lt(�)

@�0

�
,

where lt(�) is given in (6).

The asymptotic distribution of the QML estimator in EGARCH and FIEGARCH

models is still unknown. Its �nite sample properties are studied and compared to Whit-

tle estimators in Pérez and Za¤aroni (2008). In EGARCH models, Straumann and

Mikosch (2006) prove the consistency of the QML estimator in a very particular case

and Wintenberger (2013) extends this result under less restrictive conditions and proves

the consistency and asymptotic Normality of a new estimator, called stable QML. With

respect to QML-GED and QML-t, no asymptotic theory exists in the context of asym-

metric GARCH models. Hence, we will assume the usual practice of researchers using

GARCH models that the asymptotic distribution of the three QML estimators discussed

above is that in (10) and we will approximate their asymptotic variance by the so-called

�sandwich� estimator

V ar(b�QML) � H(b�QML)
�1B(b�QML)H(b�QML)

�1;

where H(�) denotes the Hessian matrix of the log-likelihood and B(�) is the inner

product of the gradient (or score) of the log-likelihood, namely

H(�) =
TX

t=1

@2lt(�)

@�@�0
; B(�) =

TX

t=1

@lt(�)

@�

@lt(�)

@�0
:

When estimating the TGARCH and EGARCH models by QML, the vector para-

meter is � = (!; �; �; �)0 but it becomes � = (!; �; �; �; �)0 when either QML-GED or

QML-t are applied. In the FIEGARCH model, there is an additional parameter d and

so, � = (!; �; �; �; d)0 for QML and � = (!; �; �; �; d; �)0 for QML-GED or QML-t.

3 Empirical results based on open-close returns

Kristoufek (2014) faces the treatment of the leverage e¤ect focusing on four energy

commodities futures, namely Brent and WTI crude oils, heating oil and natural gas,

observed from 4 January 2000 to 28 June 2013. In particular, the paper works with
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the open-close returns, de�ned as rt = log(Ct) � log(Ot), and the Garman-Klass (GK)
estimator of the squared volatility, de�ned as

[�2GK;t =
(log (Ht=Lt))

2

2
� (2 log 2� 1) (log (Ct=Ot)) ; (11)

where Ht and Lt are daily highs and lows, respectively, and Ct and Ot are daily closing

and opening prices, respectively. However, in the data downloaded from the Appendix

A of Kristoufek (2014), these four prices are only available for three out of the four

series, namely Brent and WTI crude oils and heating oil. For natural gas, no closing

prices (Ct) are provided. Hence, for this series, we cannot compute either the open-close

returns or the GK estimator of the squared volatility, de�ned in (11). Therefore, in this

section, we focus our analysis on Brent and WTI crude oils and heating oil.

First, we try to replicate the results in Kristoufek (2014) by applying the same

methodology as he does for the treatment of the leverage e¤ect in energy futures, using

the same data (open-close returns) but di¤erent statistical packages. Second, we apply

a di¤erent methodology to the same data for both detecting and estimating the leverage

e¤ect. In particular, we apply robust correlation-based methods for the detection of

leverage and then we estimate this e¤ect in the context of asymmetric GARCH-type

models using robust methods. In doing so, we try to �nd out whether analyzing the

same data with di¤erent methodologies could lead to di¤erent conclusions. Furthermore,

in Section 4, we will analyze the robustness of the results to the return de�nition used,

by considering other type of returns that are commonly used in the literature and can

be computed, with the available data, for the four commodities.

3.1 Descriptive statistics and correlation analysis

Figure 1 displays, in its �rst two rows, the open-close returns, rt, and the estimated

volatility, [�GK;t, respectively, for Brent and WTI crude oils and heating oil. The sample

sizes of these series are: T = 3453 (Brent), T = 3367 (WTI) and T = 3370 (Heating

oil). These plots should replicate Figures 1 and 2 in Kristoufek (2014) for the three

series mentioned above. We can see that the estimated volatilities are exactly the same

as those plotted in Figure 2 of the replicated paper. However, the returns plotted in

Figure 1 of the replicated paper, although very similar, are not exactly the same as ours,
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since they have a di¤erent scale. This fact becomes more clear by looking at Table 3,

where we display the same descriptive statistics and tests as in Table 1 of the replicated

paper, computed using Stata3 (the version used along this paper is Stata/SE13.1). By

comparing the top panel of both tables, which describes the raw returns, we realize that

we are not able to �nd the same means and standard deviations. However, we are �nding

exactly the same skewness and excess kurtosis coe¢cients, as well as the same values

of all the Jarque-Bera, Ljung-Box Q(30), ADF and KPSS test statistics. As expected,

all series exhibit excess kurtosis and the Jarque-Bera test for Normality always rejects

the null. Moreover, using the Q(30) test statistic, the null hypothesis of uncorrelated

returns will be rejected in all cases, suggesting that a model for the conditional mean

(an autorregresive or moving average model) should be estimated. Nevertheless, when

a more suitable test statistic is considered, for example CH(30)4, the null is never

rejected at 5% signi�cance level. In particular, the values (and p-values) of CH(30)

for the three series considered are 30:704 (0:4301); 38:355 (0:1408) and 32:905 (0:3267),

respectively. We have also computed the heteroscedastic-corrected Q-test proposed by

Diebold (1988), obtaining the same conclusion. Hence, the returns will be assumed

to be uncorrelated, as expected. The middle and bottom panels of Table 3 describe

the standardized returns and logarithmic volatility, computed as rt
\�GK;t

and log([�GK;t),

respectively. In this case we are able to replicate everything in the corresponding panels

of Table 1 of the replicated paper, except the mean and the standard deviation of the

standardized returns.

Table 4 displays the results from two long-memory tests, namely the modi�ed rescaled

range test VT (Lo, 1991) and the rescaled variance testMT (Giraitis et al., 2003), as well

as the estimated Hurst exponent, H, for the logarithmic volatility, using GPH estimator

(Geweke and Porter-Hudak, 1983), computed with our own codes in Matlab. These

results should replicate Table 2 and the corresponding results on GPH in Table 3 of the

replicated paper. As we can see, we replicate all the values of VT and MT , except those

for the returns of heating oil, as well as all the optimal lags q�. With respect to GPH

3The lags used to compute the ADF and KPSS test statistics were chosen following the default value

given in Gretl, as this was the software used in the replicated paper. Along this paper we have used

Gretl 2017d.
4This is a test statistic proposed by Cumby and Huizinga (1992) which is robust to conditional

heteroscedasticity and it is implemented in Stata.
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estimates of the Hurst exponent, our values are around 1 and nearly the same as those

in the replicated paper for Brent and WTI crude oils, and slightly di¤erent for heating

oil. However, our conclusions are the same as those in Kristoufek (2014), that is, returns

and standardized returns are not long-term dependent, as expected, while logarithmic

volatility exhibits signi�cant and possibly nonstationary long memory.

Regarding the leverage e¤ect, Kristoufek (2014) measures this e¤ect by computing

the correlation coe¢cients DCCA and DCMA, between contemporaneous standard-

ized returns and logarithmic volatility. However, as discussed in Section 2, we wonder

whether computing the contemporaneous correlation between standardized returns (in-

stead of past returns) and logarithmic volatility (rather than volatility) is appropriate

to capture the leverage e¤ect. Instead, we should be looking at the dynamic relationship

between past returns and current volatility, as explained in Section 2.1. Then, it seems

to be more interesting to compute the DCCA coe¢cient between lagged returns and cur-

rent volatility. The bottom panels of Figure 1 display both coe¢cients. In particular,

the third row plots the values of the DCCA coe¢cient for Brent and WTI crude oils and

heating oil computed as in Kristoufek (2014). These graphs should replicate the black

lines in Figure 3 of the replicated paper but they actually mimic the gray lines in such

a �gure, which are supposed to be the other correlation coe¢cient, DMCA, considered

by Kristoufek (2014). The last row of Figure 1 plots DCCA coe¢cients between current

returns, as well as lagged 1 and 2 returns, and volatility. Noticeably, these coe¢cients

are negative, suggesting the presence of leverage e¤ect.

Further correlation analysis is performed in Figure 2. This �gure displays, in its �rst

row, the correlograms of the returns with the hereroscedastic-corrected 95% con�dence

bands proposed by Diebold (1988), given by

�1:96p
T

�
1 +

b2(h)
(b(0))2

�
;

for lags h = 1; 2; :::30, where b2(h) and b(0) are the h � th sample autocovariance of
the squared returns and the sample variance of the returns, respectively. As b2(h) > 0,
in our case, these bands are wider than the usual 95% Barlett bands (�1:96=

p
T ) and

show no evidence of autocorrelated returns, con�rming our previous result on the robust

test CH(30).

The correlograms of squared returns, displayed in the 2nd row of Figure 2, show
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that there is signi�cant and persistent correlation in the squares, indicating conditional

heteroscedasticity and possible long-memory in the volatility, as suggested in the repli-

cated paper. In fact, when we test for conditional heteroscedasticity, by applying the

Q and CH statistics to the squared returns, the values of both statistics for lag 30, are

2609:6 and 81:4 for Brent, 4789:2 and 73:0 for WTI and 1378:7 and 116:1 for heating

oil, respectively, being all of them signi�cant at 1% signi�cance level. Figure 2 also dis-

plays, in its 3rd row, the robust autocorrelations of squares proposed by Teräsvirta and

Zhao (2011), which are resistant to outliers. In this case, the di¤erence between robust

and non-robust correlations are not remarkable. However, as we will see in Section 4,

the use of robust correlations will be essential when dealing with outlying observations.

Finally, the last two rows of Figure 2 display the sample and robust cross-correlations

between past returns and current squared returns, as given in (1) and (2), respectively.

In general, these cross-correlations are negative, suggesting leverage e¤ect in the three

series. This feature will be further investigated in the next subsection, where asymmetric

GARCH-type models will be estimated for the open-close returns.

3.2 Estimation results

The TGARCH, EGARCH and FIEGARCH models, described in Section 2.2, have been

�tted to the series of open-close returns. Tables 5, 6 and 7 report the estimation results

for these three models, respectively. For each estimation method considered (QML,

QML-GED and QML-t), we also report, at the bottom rows of each panel, some diag-

nostics based on the residuals, b"t = yt=b�t, where b�t is the estimated volatility for each
model. The estimation has been mainly performed by using the Oxford MFE Toolbox

for Matlab, though in some particular cases, we have written our own codes. When car-

rying out the estimation (which is done by minimizing the minus log-likelihood function),

we keep the default options for the optimization in the MFE Toolbox. Moreover, the

variance-covariance matrix estimator used is the so-called �sandwich� estimator (also

known as robust covariance matrix estimator or heteroscedasticity-consistent covariance

matrix estimator), as described in Section 2.3. As pointed out by Brooks et al. (2001)

we are aware that di¤erent software could give di¤erent results. Therefore, to check for

the robustness of our results we have repeated the estimation of some models in Stata
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and Gretl, obtaining similar results5. In all cases, special care has been taken with the

reparametrization used in each package in order to compute the estimated parameter

values and the standard errors. This issue is particularly important in the TGARCH

model for two reasons. First, there are several (equivalent) parametrizations available

in the literature; see, for instance, Zakoian (1994), He and Teräsvirta (1999) and Ro-

dríguez and Ruiz (2012). Second, the GJR model, proposed by Glosten et al. (1993),

is sometimes referred to as TGARCH, as in Zivot (2009). Moreover, we should also be

cautious with the results obtained for the EGARCH and FIEGARCH models, because

we compute standard errors assuming the usual asymptotic distribution for QML esti-

mators in (10). This is a common practice among practitioners using GARCH models

since almost all of the major software packages do the same. However, as discussed in

Section 2.3, there is no theoretical results supporting such a practice. Actually, when

estimating FIEGARCH models, we have faced some numerical problems. This could be

related to the point made by Wintenberger (2013) regarding the unreliability of QML

methods for non-invertible EGARCH models.

Our discussion on the estimation results will be mainly focused on the estimated

parameter �, since we are interested in the leverage e¤ect: In general, the results obtained

for each commodity are quite similar for the three models and the three estimation

methods considered, but there are remarkable di¤erences between the series. For the

Brent and WTI crude oil series, the estimated � is always negative and statistically

signi�cant at 1% signi�cance level, regardless of the model and estimator used. This

provides strong evidence of leverage e¤ect in both series, in agreement with the features

of the cross-correlograms in Figure 2. The heating oil series is characterized, in all cases,

by a negative estimated � but this is closer to zero than in both crude oil series, becoming

no longer signi�cant when the FIEGARCH model is �tted to this series. These �ndings

con�rm the results of the replicated paper using a di¤erent methodology.

On the other hand, the fractional parameter d in FIEGARCH models is always esti-

mated larger than 0:5, suggesting a nonstationary long-memory behavior of the volatility,

in agreement with the estimated GPH Hurst exponents, H, displayed in Table 4. No-

tice that, since H = d + 0:5, nonstationary long memory is found for H � 1 (d � 0:5).
5The results are not displayed here to save space but they are available in the online Appendix A.
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Actually, based on the reported standard errors, we never reject the null hypothesis

H0 : d � 0:5 at any reasonable signi�cance level. It is also worth mentioning that the

thickness parameter � in QML-GED is always estimated smaller than 2, suggesting fat

tails. In fact, for the TGARCH model, the corresponding values of the test statistic to

test Normality (H0 : � = 2) are �7:3484; �5:9776, �5:9484 for Brent, WTI and heating
oil, respectively, which clearly rejects H0 : � = 2 against H1 : � < 2 (thick tails). The

corresponding values for the EGARCH model are �7:3419; �5:9836, �5:7746 and for
the FIEGARCH model are �7:1855; �6:0701; �6:1016, leading to the same conclusions.
Accordingly, the estimated values of the parameter � of the Student error distribution

in QML-t, also indicate fat tails.

When looking at residuals diagnostics, as expected, the values of the test statistics

Q2(30) and CH2(30) for remaining autocorrelation in the squared residuals, have been

reduced remarkably in all estimated models, as compared to their values for the squared

returns. Only for the Brent crude oil, the values of CH2(30) remain signi�cant at 10% in

all TGARCH and EGARCH models, indicating possible long memory in the volatility.

In all other cases, both statistics are no longer signi�cant, indicating that the estimated

models have been able to properly capture the dynamics in the conditional variance of

the returns6.

Finally, Figure 3 compares, for each series considered, the QML estimated volatili-

ties from the TGARCH, EGARCH and FIEGARCH models versus the GK estimated

volatilities computed from (11). For example, the graph in the 1st row and 1st column

is the scatter plot of the Brent volatility [�GK;t (in x�axis) against the Brent volatility
b�t from the estimated TGARCH model (in y�axis), the latter being computed from (4)
using as parameter values the QML estimated parameters in the �rst panel of Table 5.

As expected, the volatilities estimated by both methods are around the diagonal, but

in some cases the GK estimated volatilities tend to be more extreme than asymmetric

GARCH volatilities, which seem to be smoother. When volatilities are estimated by

QML-GED and QML-t, similar graphs are obtained7.

6As discussed in Li and Mak (1994), the test statistic Q2 applied to a residual series from a condi-

tional heteroscedastic model becomes conservative. This could explain why Q2 rejects less frequently

than CH2:
7They are not displayed here to save space but they are available upon request.
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4 Sensitivity analysis to the return de�nition

In this section, we analyze whether the results previously discussed are robust to the

return de�nition by considering other type of returns commonly used in the literature.

In particular, we consider the open-open returns, de�ned as rot = log(Ot)�log(Ot�1); as
these can be computed with the available data for the four commodities analyzed in the

replicated paper8. The sample sizes of these four series have one observation less than

the open-close returns, i.e. T = 3452 (Brent), T = 3366 (WTI), T = 3369 (Heating oil)

and T = 3368 (Natural gas). When comparing these series, plotted in Figure 4; with

the open-close returns displayed in Figure 1 of the replicated paper, we observe that

both share similar patterns. However, the open-open returns seem to be a¤ected by

large outliers, especially the natural gas, which exhibits two very extreme consecutive

observations around the middle of the sample period. These two observations are due

to the high open price of the natural gas on 14 April 2006, which was 11:26 dollars,

whereas the open prices on the previous and posterior days were 6:78 and 7:15 dollars,

respectively. These large changes (�rst increase and decrease later) in the open price

yield two consecutive outliers in the returns, the �rst one positive and the second one

negative, of magnitudes about 12 times the standard deviation of the series. These

extreme observations, that are not present in the open-close gas returns in the replicated

paper, are expected to a¤ect dramatically our results, as we will con�rm next.

4.1 Descriptive statistics and correlation analysis

Table 8 contains descriptive statistics of the open-open returns introduced above, rot;

computed using Stata. As we can see, these series share similar properties to the open-

close returns described in Table 3. However, it is worth mentioning the di¤erence in the

excess kurtosis coe¢cient for heating oil, being 1:6150 for the open-close returns and

3:5041 for the open-open returns. This is due to the presence of some outliers at the

beginning of the sample (compare Figures 1 and 4). For the natural gas, the di¤erence

is even more remarkable, with the excess kurtosis coe¢cient of the open-open returns

8We have also analyzed close-close returns for the three series we could compute them and we have

checked that they share similar properties to the open-close returns. The results are not displayed here

to save space but are available upon request.
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being 18:765 as compared to the corresponding one for the open-close returns in the

replicated paper, which is 1:6458.

The di¤erences between the behavior of open-open and open-close returns are fur-

ther illustrated when comparing Figure 5 to Figure 2. In both pictures, the sample

autocorrelations of squared returns are persistent and highly signi�cant, for Brent, WTI

and heating oil, indicating possible long-memory in their volatilities. However, this

is not the case for the natural gas, that exhibits a very high positive and signi�cant

1st-order autocorrelation with the correlations for higher lags being pushed downwards

towards zero. Noticeably, this is the typical pattern of the correlogram of the squared

observations in the presence of consecutive outliers (see Carnero et al. (2007)), and

this could be the case here, since, as commented above, the natural gas returns exhibit

two big consecutive outliers (see Figure 4). However, when we look at the robust auto-

correlations of squared returns of natural gas, the picture completely changes and the

correlations become signi�cantly di¤erent from zero even for long lags, resembling the

patterns of the other three commodities.

Finally, comparing the last two rows of Figures 2 and 5; we can see that the cross-

correlations between past returns and current squared returns for Brent and WTI crude

oils, are very similar and mainly negative, suggesting possible leverage e¤ect. However,

for the heating oil series, the leverage e¤ect seems to be more clear when looking at the

cross-correlations computed with open-close returns (Figure 2) than those computed

with the open-open returns (Figure 5), which could become non signi�cant. Again, the

behavior of the gas series is rather di¤erent, possibly due to the e¤ect of consecutive

outliers: the 1st sample cross-correlation is typically pushed upwards to a positive value

while the others become close to zero (see Carnero et al. (2016) for a theoretical dis-

cussion on this feature). However, when the robust cross-correlations are computed,

another picture comes up, with all the cross-correlations being around zero. Hence, the

possible inverse leverage e¤ect (positive correlation between volatility and past returns)

found in the natural gas by some authors, included the replicated paper, could be an

artifact due to the misleading e¤ect of outliers.
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4.2 Estimation results

Tables 9, 10 and 11 report the estimation results obtained when the TGARCH, EGARCH

and FIEGARCH models, respectively, are �tted to the open-open returns. In order to

check whether results change due to the de�nition of the return, we will compare these

tables with Tables 5, 6 and 7, focussing mainly in the estimated leverage parameter �.

For the Brent and WTI crude oil series, there are no remarkable di¤erences between

the results from open-open and open-close returns. Again, regardless of the model

and estimator used, the estimated � is always negative and statistically signi�cant at

5% signi�cance level, providing strong evidence of leverage e¤ect in both series. This

�nding con�rms the results of the replicated paper and highlights their robustness to

both the methodology and the type of returns used.

However, for the heating oil series, some di¤erences arise. In particular, when open-

open returns are used, the point estimates of � are nearly always negative but, in general,

they are not signi�cant at 5% level, indicating no leverage e¤ect, as suggested by the

cross-correlograms in Figure 5. This result slightly di¤ers from previous results with

open-close returns, for which both the methodology in the replicated paper and the one

discussed in this paper, �nd statistically signi�cant leverage e¤ect. Besides, we also �nd

that, regardless of the model, estimator and type of returns used, the heating oil series

is characterized by a weaker leverage e¤ect (estimated � closer to zero) than in the two

crude oil series (Brent and WTI), as pointed out in the replicated paper.

Regarding the fractional di¤erencing parameter d in the FIEGARCH model, the

point estimates for both crude oils and heating oil are smaller for the open-open than

for the open-close returns but they still suggest a nonstationary long-memory behavior

of the volatility. Moreover, for these three series, the estimated thickness parameter � in

QML-GED and QML-t, are also the same for both type of returns, indicating fat tails.

The results for natural gas are quite di¤erent from the other three series. In most

cases, the parameter � is estimated positive (suggesting inverse leverage e¤ect) but it is

never signi�cant at 1%, although it becomes signi�cant at 5% and 10% in some cases.

Hence, we partly agree with the replicated paper, who �nds inverse leverage e¤ect for

the natural gas using open-close returns, but unlike him, we cannot con�rm that � is

statistically signi�cant when using open-open returns. With respect to the estimated
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parameter d, QML provides a rather di¤erent value than those provided by QML-GED

and QML-t, the latter being more reliable, since these two estimators are expected

to be more robust to outliers. In fact, the estimated values of d for natural gas are

smaller than those for Brent and WTI crude oils and heating oil, in agreement with

the estimated Hurst exponent H in the replicated paper. Also notice that, for natural

gas, the thickness parameter � in QML-GED is estimated closer to one (indicating very

heavy tails) than in the other series. The same happens with the parameter � of the

Student error distribution in QML-t, which becomes much lower (heavier tails) for the

natural gas. Again, these results could be due to the pernicious e¤ect of consecutive

outliers which render QML methods unreliable.

When looking at the residuals, no remarkable di¤erences show up with respect to

our results in Section 3.2, and for the natural gas, the values of the test statistics Q and

CH indicate no remaining serial correlation. Only the value of Q2(30) is statistically

signi�cant at 1% when Gaussian QML is applied.

Finally, Figure 6 compares the volatilities estimated from our three parametric asym-

metric GARCH models by using the two types of returns, for the series of Brent, WTI

and heating oil, for which both open-open and open-close returns can be computed with

the available data. For each commodity and each model, we represent the scatter plot of

the estimated volatilities using open-open returns versus the estimated volatilities using

the open-close returns. For example, the graph in the 1st row and 1st column is the

scatter plot of the Brent volatility of the open-open returns (in x�axis) obtained from
the estimated TGARCH model in (4) using as parameter values the QML estimated

parameters in the �rst panel of Table 9 versus of the Brent volatility of the open-close

returns (in y�axis) computed from (4) using as parameter values the QML estimated

parameters in the �rst panel of Table 5. As expected, the estimated volatilities of both

type of returns are around the diagonal, but the open-open returns of WTI and heating

oil seem to be more volatile than the corresponding open-close returns.

5 Conclusions

In this paper we have replicated the results in Kristoufek (2014) on the leverage e¤ect

in energy futures by working with the same open-close returns and methodology as he

22



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

does, obtaining the same results and conclusions but using di¤erent software. We have

also analyzed the robustness of the results to both the methodology and the type of

returns used. In particular, using both, open-close and open-open returns, we compute

the sample and robust cross-correlations between past returns and squared returns to

detect leverage e¤ect and then, we estimate three popular asymmetric GARCH-type

models (TGARCH, EGARCH and FIEGARCH) with di¤erent distributions for the

innovations (Gaussian, GED and Student). Our �ndings strongly con�rm the results

in Kristoufek (2014) for two out of the four series analyzed, namely WTI and Brent

crude oils, where the standard leverage e¤ect (negative correlation between past returns

and current volatility) is found. However, for the heating oil and the natural gas series,

we cannot totally con�rm his results since the statistical signi�cance of the leverage

e¤ect depends on both the methodology and the type of returns used. The presence of

consecutive outliers in the natural gas and its possible e¤ect on both the correlation-

based tools and the QML estimators is also discussed, stressing the need for robust

methods to be applied in this setting.
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Table 2: Software available to estimate di¤erent asymmetric GARCH models
Model Assumed error distribution

Gaussian Student-t GED

TGARCH

EVIEWS

MFE-Toolbox

G@RCH4.0

Stata

Gretl

Splus

R

EVIEWS

MFE-Toolbox

G@RCH4.0

Stata

Gretl

R

EVIEWS

MFE-Toolbox

G@RCH4.0

Stata

Gretl

R

EGARCH

EVIEWS

Matlab

MFE-Toolbox

G@RCH4.0

Stata

Gretl

Splus

R

EVIEWS

Matlab

MFE-Toolbox

G@RCH4.0

Stata

Gretl

R

EVIEWS

MFE-Toolbox

G@RCH4.0

Stata

Gretl

R

FIEGARCH
G@RCH4.0

Splus
G@RCH4.0 G@RCH4.0
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Table 3: Descriptive statistics for open-close returns (Table 1 of the replicated paper)

Statistic Brent crude oil WTI crude oil Heating oil

Returns Mean 0:0000 0:0003 �0:0002
Std.Dev. 0:0206 0:0217 0:0211

Skewness �0:2045 �0:1523 �0:0618
Excess Kurtosis 3:0454 3:5389 1:6150

Jarque-Bera 1358��� 1770��� 368:4���

Q(30) 56:578��� 93:258��� 48:808��

ADF �9:3723��� �8:984��� �9:064���
KPSS 0:0729 0:2090 0:0936

Standardized returns Mean 0:0435 0:0721 0:0008

Std.Dev. 1:0430 1:0037 1:0521

Skewness 0:0051 0:0032 0:0046

Excess Kurtosis �0:3861 �0:5599 �0:4994
Jarque-Bera 21:47��� 43:98��� 35:04���

Q(30) 38:880 49:038�� 37:539

ADF �13:472��� �9:9800��� �8:9790���
KPSS 0:1990 0:1130 0:0604

Logarithmic volatility Mean �4:1419 �4:0664 �4:0993
Std.Dev. 0:4612 0:4348 0:4422

Skewness 0:0974 0:5431 0:1736

Excess Kurtosis 2:0910 0:9238 0:2861

Jarque-Bera 634:5��� 285:3��� 28:43���

Q(30) 12000��� 16000��� 15000���

ADF �4:117��� �4:135��� �3:777���
KPSS 2:0700��� 1:1000��� 5:2100���

��;���: statistically signi�cant at 5% and 1% respectively
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Table 4: Long-term memory tests and GPH estimates of the Hurst exponent for loga-

rithmic volatility (Tables 2 and partially 3 of the replicated paper)

Statistic Brent crude oil WTI crude oil Heating oil

Returns

VT
MT

q�

1:4605

0:0742

2

1:5972

0:1141

1

1:3539

0:0655

0

Standardized returns

VT
MT

q�

1:5400

0:1058

2

1:5731

0:0970

2

1:1522

0:0663

1

Logarithmic volatility

VT
MT

q�

2:6777���

0:6969���

18

2:8427���

0:5707���

20

3:2813���

0:8269���

19

GPH

St. error

1:0354���

0:0576

1:0979���

0:0607

1:0966���

0:0663
���: evidence of long-memory at 1% signi�cance level
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Table 5: Estimation of the TGARCH model with QML, QML-GED and QML-t using

open-close returns
Estimator Parameter Brent crude oil WTI crude oil Heating oil

QML ! 0:0003
(0:000)

��� 0:0002
(0:000)

��� 0:0002
(0:000)

��

� 0:0557
(0:010)

��� 0:0473
(0:007)

��� 0:0445
(0:007)

���

� 0:9441
(0:011)

��� 0:9516
(0:008)

��� 0:9553
(0:010)

���

� �0:0187
(0:005)

��� �0:0168
(0:005)

��� �0:0100
(0:004)

���

Log-Likelihood 8829:8 8460:5 8457:9

Residuals
Q(30)

CH(30)

29:342

29:084

38:644

37:852

31:264

31:360

Q2(30)

CH2(30)

39:876

44:709��
23:595

31:404

32:587

34:988

QML-GED ! 0:0002
(0:000)

��� 0:0002
(0:000)

��� 0:0002
(0:000)

�

� 0:0549
(0:013)

��� 0:0474
(0:007)

��� 0:0441
(0:009)

���

� 0:9449
(0:016)

��� 0:9520
(0:007)

��� 0:9557
(0:012)

���

� �0:0179
(0:006)

��� �0:0162
(0:004)

��� �0:0102
(0:004)

��

� 1:5444 1:5995 1:6312

Log-Likelihood 8859:4 8482:2 8475:5

Residuals
Q(30)

CH(30)

29:425

29:149

38:517

37:755

31:282

31:379

Q2(30)

CH2(30)

39:943

44:656��
23:593

31:662

32:754

34:991

QML-t ! 0:0002
(0:000)

� 0:0002
(0:000)

�� 0:0002
(0:000)

� 0:0543
(0:013)

��� 0:0479
(0:008)

��� 0:0439
(0:009)

���

� 0:9455
(0:016)

��� 0:9519
(0:009)

��� 0:9559
(0:013)

���

� �0:0176
(0:006)

��� �0:0156
(0:004)

��� �0:0104
(0:005)

��

� 10:379 11:559 12:613

Log-Likelihood 8861:6 8487:8 8477:2

Residuals
Q(30)

CH(30)

29:484

29:191

38:378

37:666

31:295

31:395

Q2(30)

CH2(30)

40:043

44:608��
23:544

31:952

32:838

34:974
�;�� ;���: statistically signi�cant at 10%, 5% and 1% respectively
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Table 6: Estimation of the EGARCH model with QML, QML-GED and QML-t using

open-close returns
Estimator Parameter Brent crude oil WTI crude oil Heating oil

QML ! �0:0864
(0:030)

��� �0:0705
(0:024)

�� �0:0494
(0:020)

��

� 0:1068
(0:021)

��� 0:0900
(0:013)

��� 0:0863
(0:013)

���

� 0:9888
(0:004)

��� 0:9908
(0:003)

��� 0:9936
(0:003)

���

� �0:0349
(0:009)

��� �0:0307
(0:008)

��� �0:0203
(0:008)

���

Log-Likelihood 8830:7 8460:1 8463:0

Residuals
Q(30)

CH(30)

29:085

28:919

38:351

37:455

31:056

31:629

Q2(30)

CH2(30)

38:441

45:810��
22:512

30:787

30:883

37:083

QML-GED ! �0:0825
(0:034)

�� �0:0676
(0:020)

��� �0:0463
(0:019)

��

� 0:1049
(0:019)

��� 0:0902
(0:013)

��� 0:0858
(0:012)

���

� 0:9893
(0:004)

��� 0:9912
(0:003)

��� 0:9940
(0:002)

���

� �0:0333
(0:008)

��� �0:0297
(0:008)

��� �0:0202
(0:008)

���

� 1:5448 1:5991 1:6362

Log-Likelihood 8860:0 8481:9 8479:8

Residuals
Q(30)

CH(30)

29:216

29:027

38:240

37:373

31:046

31:640

Q2(30)

CH2(30)

38:615

45:918��
22:564

31:052

31:051

37:268

QML-t ! �0:0773
(0:031)

�� �0:0633
(0:019)

��� �0:0422
(0:018)

��

� 0:1035
(0:019)

��� 0:0910
(0:013)

��� 0:0858
(0:013)

���

� 0:9899
(0:004)

��� 0:9917
(0:002)

��� 0:9945
(0:002)

���

� �0:0324
(0:009)

��� �0:0284
(0:007)

��� �0:0202
(0:006)

���

� 10:321 11:541 12:630

Log-Likelihood 8862:2 8487:4 8481:7

Residuals
Q(30)

CH(30)

29:334

29:133

38:073

37:258

31:018

31:648

Q2(30)

CH2(30)

38:833

46:278��
22:583

31:444

31:169

37:528
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Table 7: Estimation of the FIEGARCH model with QML, QML-GED and QML-t using

open-close returns
Estimator Parameter Brent crude oil WTI crude oil Heating oil

QML ! �0:0142
(0:010)

�0:0044
(0:003)

� �0:0042
(0:005)

� 0:1909
(0:031)

��� 0:1541
(0:025)

��� 0:1105
(0:052)

��

� 0:1245
(0:140)

0:0526
(0:170)

0:3123
(0:362)

� �0:0665
(0:017)

��� �0:0502
(0:015)

��� �0:0231
(0:017)

d 0:7016
(0:060)

��� 0:7915
(0:046)

��� 0:7879
(0:070)

���

Log-Likelihood 8834:6 8456:3 8457:0

Residuals
Q(30)

CH(30)

29:803

29:874

38:887

37:651

32:565

32:382

Q2(30)

CH2(30)

29:816

35:848

21:906

29:262

32:526

37:789

QML-GED ! �0:0163
(0:010)

� �0:0074
(0:005)

�0:0062
(0:006)

� 0:1797
(0:044)

��� 0:1482
(0:020)

��� 0:1002
(0:048)

��

� 0:1473
(0:2956)

0:0707
(0:074)

0:3892
(0:3864)

� �0:0606
(0:014)

��� �0:0472
(0:012)

��� �0:0210
(0:016)

d 0:7127
(0:079)

��� 0:7988
(0:063)

��� 0:7816
(0:109)

���

� 1:5545 1:5933 1:6217

Log-Likelihood 8862:4 8479:0 8475:7

Residuals
Q(30)

CH(30)

29:888

29:935

38:765

37:562

32:530

32:376

Q2(30)

CH2(30)

30:044

36:516

21:768

29:486

32:028

37:411

QML-t ! �0:0147
(0:010)

�0:0066
(0:006)

�0:0053
(0:014)

� 0:1728
(0:046)

��� 0:1435
(0:022)

��� 0:0900
(0:116)

� 0:1695
(0:2556)

0:0967
(0:0916)

0:4584
(0:7095)

� �0:0572
(0:020)

��� �0:0439
(0:013)

��� �0:0186
(0:0456)

d 0:7198
(0:067)

��� 0:8031
(0:083)

��� 0:7821
(0:186)

���

� 10:600 11:331 11:977

Log-Likelihood 8862:2 8485:1 8478:2

Residuals
Q(30)

CH(30)

29:898

29:952

38:628

37:483

32:416

32:348

Q2(30)

CH2(30)

30:225

37:185

21:731

29:881

31:432

37:173
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Table 8: Descriptive statistics for open-open returns
Statistic Brent crude oil WTI crude oil Heating oil Natural gas

Mean 0:0004 0:0004 0:0004 0:0001

Std.Dev. 0:0219 0:0240 0:0231 0:0377

Skewness �0:2476 �0:1592 �0:2604 0:7462

Excess Kurtosis 2:0974 3:5503 3:5041 18:765

Jarque-Bera 668��� 1782��� 1762��� 4973���

Q(30) 61:701��� 64:918��� 40:726� 64:271���

CH(30) 36:530 34:461 29:527 31:966

Q2(30) 3480:0��� 3003:8��� 724:7��� 633:1���

CH2(30) 80:258��� 72:321��� 117:71��� 80:661���

�;�� ;���: statistically signi�cant at 10%, 5% and 1% respectively
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Table 9: Estimation of the TGARCH model with QML, QML-GED and QML-t using

open-open returns
Estimator Parameter Brent crude oil WTI crude oil Heating oil Natural gas

QML ! 0:0003
(0:000)

�� 0:0005
(0:000)

�� 0:0003
(0:000)

� 0:0010
(0:001)

�

� 0:0613
(0:013)

��� 0:0723
(0:016)

��� 0:0566
(0:013)

��� 0:0749
(0:029)

��

� 0:9385
(0:015)

��� 0:9234
(0:018)

��� 0:9432
(0:016)

��� 0:9172
(0:035)

���

� �0:0168
(0:005)

��� �0:0270
(0:008)

��� 0:0006
(0:001)

0:0077
(0:012)

Log-Likelihood 8606:9 8122:1 8186:4 6481:5

Residuals
Q(30)

CH(30)

33:673

33:220

37:403

33:891

29:593

28:043

31:888

28:714

Q2(30)

CH2(30)

36:781

40:584�
22:558

24:334

36:554

26:848

51:920���

27:695

QML-GED ! 0:0003
(0:000)

��� 0:0004
(0:000)

��� 0:0002
(0:000)

� 0:0009
(0:000)

���

� 0:0612
(0:011)

��� 0:0683
(0:013)

��� 0:0532
(0:012)

��� 0:0809
(0:013)

���

� 0:9386
(0:013)

��� 0:9287
(0:015)

��� 0:9466
(0:015)

��� 0:9147
(0:014)

���

� �0:0166
(0:005)

��� �0:0258
(0:007)

��� �0:0018
(0:002)

0:0156�
(0:008)

� 1:7429 1:6066 1:6201 1:2847

Log-Likelihood 8614:8 8145:0 8207:4 6670:2

Residuals
Q(30)

CH(30)

33:641

33:191

37:317

33:655

29:570

28:010

30:807

29:134

Q2(30)

CH2(30)

36:758

40:575�
25:116

25:100

40:559�

27:074

30:705

29:061

QML-t ! 0:0003
(0:000)

��� 0:0003
(0:000)

��� 0:0002
(0:000)

0:0008
(0:000)

���

� 0:0606
(0:011)

��� 0:0627
(0:016)

��� 0:0503
(0:012)

��� 0:0806
(0:010)

���

� 0:9392
(0:013)

��� 0:9358
(0:018)

��� 0:9495
(0:016)

��� 0:9144
(0:011)

���

� �0:0165
(0:005)

��� �0:0242
(0:008)

��� �0:0049
(0:003)

� 0:0185��
(0:007)

� 17:242 10:639 11:109 6:7493

Log-Likelihood 8618:2 8157:2 8216:9 6730:4

Residuals
Q(30)

CH(30)

33:667

33:199

37:238

33:323

29:602

28:032

30:697

29:330

Q2(30)

CH2(30)

36:919

40:625�
29:265

25:799

45:589��

27:162

26:532

29:186
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Table 10: Estimation of the EGARCH model with QML, QML-GED and QML-t using

open-open returns
Estimator Parameter Brent crude oil WTI crude oil Heating oil Natural gas

QML ! �0:0890
(0:035)

�� �0:1380
(0:054)

�� �0:0484
(0:022)

�� �0:1857
(0:082)

��

� 0:1185
(0:023)

��� 0:1386
(0:030)

��� 0:0977
(0:018)

��� 0:1437
(0:042)

���

� 0:9885
(0:005)

��� 0:9816
(0:007)

��� 0:9936
(0:003)

��� 0:9708
(0:013)

���

� �0:0312
(0:010)

��� �0:0476
(0:014)

��� �0:0053
(0:004)

0:0093
(0:011)

Log-Likelihood 8608:5 8121:0 8197:7 6496:8

Residuals
Q(30)

CH(30)

33:531

33:253

37:151

33:695

29:005

27:849

28:154

29:731

Q2(30)

CH2(30)

36:065

41:016�
22:611

24:762

27:560

30:408

11:388

26:658

QML-GED ! �0:0853
(0:031)

��� �0:1209
(0:050)

�� �0:0483
(0:052)

�0:1778
(0:050)

���

� 0:1181
(0:022)

��� 0:1299
(0:028)

��� 0:0960
(0:026)

��� 0:1517
(0:022)

���

� 0:9889
(0:004)

��� 0:9839
(0:007)

��� 0:9936
(0:007)

��� 0:9726
(0:007)

���

� �0:0305
(0:009)

��� �0:0458
(0:012)

��� �0:0077
(0:058)

0:0214
(0:020)

� 1:7448 1:6050 1:6420 1:2964

Log-Likelihood 8616:2 8144:1 8215:2 6674:5

Residuals
Q(30)

CH(30)

33:473

33:199

37:082

33:443

29:034

27:881

26:850

30:176

Q2(30)

CH2(30)

36:212

41:191�
25:529

25:671

27:870

30:388

4:861

27:786

QML-t ! �0:0816
(0:028)

��� �0:1003
(0:040)

�� �0:0493
(0:021)

�� �0:1802
(0:046)

���

� 0:1170
(0:021)

��� 0:1183
(0:023)

��� 0:0966
(0:017)

��� 0:1524
(0:020)

���

� 0:9894
(0:004)

��� 0:9867
(0:005)

��� 0:9935
(0:003)

��� 0:9728
(0:007)

���

� �0:0303
(0:008)

��� �0:0435
(0:010)

��� �0:0109
(0:009)

0:0269
(0:016)

�

� 17:206 10:584 11:688 6:9229

Log-Likelihood 8619:6 8156:5 8222:5 6731:8

Residuals
Q(30)

CH(30)

33:476

33:187

37:032

33:097

29:125

28:000

26:533

30:410

Q2(30)

CH2(30)

36:470

41:362�
30:149

26:453

27:810

30:187

3:620

28:063
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Table 11: Estimation of the FIEGARCH model with QML, QML-GED and QML-t

using open-open returns
Estimator Parameter Brent crude oil WTI crude oil Heating oil Natural gas

QML ! �0:0200
(0:017)

�0:0167
(0:011)

�0:0114
(0:012)

0:0014
(0:010)

� 0:2060
(0:039)

��� 0:1841
(0:037)

��� 0:1012
(0:030)

��� 0:2149
(0:037)

���

� 0:1486
(0:157)

0:2631
(0:154)

� 0:7042
(0:129)

��� �0:0473
(0:078)

� �0:0677
(0:028)

�� �0:0756
(0:027)

��� 0:0027
(0:037)

�0:0116
(0:0636)

d 0:6846
(0:077)

��� 0:6768
(0:059)

��� 0:6299
(0:123)

��� 0:7402
(0:038)

���

Log-Likelihood 8614:7 8124:2 8188:4 6495:4

Residuals
Q(30)

CH(30)

33:433

33:147

37:054

33:054

29:693

28:406

26:485

30:159

Q2(30)

CH2(30)

30:989

31:985

14:530

18:641

29:117

26:933

3:999

26:891

QML-GED ! �0:0207
(0:010)

�� �0:0196
(0:013)

�0:0127
(0:007)

� �0:0263
(0:036)

� 0:2030
(0:045)

��� 0:1800
(0:043)

��� 0:0972
(0:024)

��� 0:1603
(0:052)

���

� 0:1387
(0:257)

0:2488
(0:170)

0:6851
(0:136)

��� 0:5669
(0:461)

� �0:0658
(0:030)

�� �0:0758
(0:032)

�� �0:0014
(0:000)

��� 0:0189
(0:038)

d 0:6946
(0:053)

��� 0:6862
(0:058)

��� 0:6435
(0:091)

��� 0:5813
(0:260)

��

� 1:7591 1:6056 1:6135 1:2918

Log-Likelihood 8621:4 8147:7 8210:1 8479:8

Residuals
Q(30)

CH(30)

33:384

33:099

37:092

33:020

29:759

28:451

26:815

30:217

Q2(30)

CH2(30)

30:868

32:109

14:938

18:542

33:356

26:841

4:223

26:071

QML-t ! �0:0190
(0:008)

�� �0:0183
(0:009)

�� �0:0116
(0:006)

�� �0:0315
(0:026)

� 0:2002
(0:030)

��� 0:1734
(0:035)

��� 0:0937
(0:025)

��� 0:1577
(0:055)

���

� 0:1194
(0:104)

0:2357
(0:206)

0:6512
(0:180)

��� 0:6124
(0:335)

�

� �0:0650
(0:018)

��� �0:0756
(0:030)

�� �0:0076
(0:013)

0:0263
(0:028)

d 0:7057
(0:044)

��� 0:6970
(0:055)

��� 0:6640
(0:091)

��� 0:5530
(0:183)

���

� 17:927 10:654 10:635 6:767

Log-Likelihood 8624:6 8161:1 8220:7 6725:1

Residuals
Q(30)

CH(30)

33:382

33:091

37:162

32:964

29:884

28:535

26:709

30:515

Q2(30)

CH2(30)

30:916

32:260

15:756

18:407

41:257�

26:562

3:200

26:559
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