

A mobile application for

weather and pollen statistics

industriële wetenschappen en technologie

bachelor in de elektronica-ICT

Eindwerk aangeboden tot het

behalen van het diploma van

bachelor in de elektronica-ICT

door Milan Lamote Campus Oostende

 Academiejaar 2016 - 2017

o.l.v. Tom Cordemans, Vives

 Luc Vanhee, Vives

 Quiliano Isaac Moro Sancho, E. Ingeniería Informática de Valladolid

 Javier Bastida Ibáñez, E. Ingeniería Informática de Valladolid

A mobile application for

weather and pollen statistics

industriële wetenschappen en technologie

bachelor in de elektronica-ICT

Eindwerk aangeboden tot het

behalen van het diploma van

bachelor in de elektronica-ICT

door Milan Lamote Campus Oostende

 Academiejaar 2016 - 2017

o.l.v. Tom Cordemans, Vives

 Luc Vanhee, Vives

 Quiliano Isaac Moro Sancho, E. Ingeniería Informática de Valladolid

 Javier Bastida Ibáñez, E. Ingeniería Informática de Valladolid

Announcement

This final project was an exam. The questions formulated during the defense

presentation are not included.

Deze eindverhandeling was een examen. De tijdens de verdediging

geformuleerde opmerkingen werden niet opgenomen.

Abstract in English

This bachelor’s thesis was given to me by the ‘Universidad de Valladolid’, it is

about an Android application for collecting and showing weather statistics. These

statistics concern things like temperature, wind, rainfall and pollen information

from the current day as well as the next few days. The goal is to be able to

download the needed information, save it and show it to the user in a way he or

she can read it. This book will cover the whole process from scratch to how to

install. The interface will be explained using a graphical user manual.

Abstract in Dutch

Dit eindwerk werd mij aangeboden door de ‘Universidad de Valladolid’, het

betreft een Android applicatie voor het verzamelen en tentoonstellen van

weerstatistieken. Deze statistieken betreffen informatie zoals de temperatuur, de

wind, de neerslag en stuifmeelconcentratie van de huidige dag zowel als enkele

komende dagen. Het doel is om deze informatie te downloaden, op te slaan en in

een leesbaar formaat aan de gebruiker te tonen. Dit boek omvat het hele proces

van nul tot hoe te installeren. Het gebruikersscherm wordt toegelicht aan de

hand van een gebruikershandleiding.

Abstract in Spanish

Esta tesis de licenciatura ha sido realizada en la Universidad de Valladolid, se

trata de una aplicación de Android para recopilar y mostrar estadísticas del

tiempo. Estas estadísticas se refieren a cosas como la temperatura, el viento, la

lluvia y la información sobre el polen del día actual, así como los próximos días.

El objetivo es poder descargar la información necesaria, guardarla y mostrarla al

usuario de manera que pueda leerla. Este documento cubrirá todo el proceso

desde cero, hasta cómo instalarlo. La interfaz se explicará mediante un manual

de usuario gráfico.

Dedication in English

I would like to thank ‘VIVES University College’ for giving me the opportunity of

completing my studies abroad with an Erasmus+ program. By this, I’d like to

personally thank my internal promotors Cordemans Tom and Vanhee Luc.

They’ve prepared me in any way possible for this experience. Although quite the

distance they were always prepared to answer any questions I had via mail.

Secondly, I’d like to thank the ‘Universidad de Valladolid’ for accepting and

helping me through this journey. By this, I’d like to thank my external promotor

Quilano Isaac Moro Sancho and supervising professor Javier Bastida Ibáñez. I

was always welcome at their offices for any questions or further ideas concerning

my project. Thirdly, I’d like to thank my local student mentor and friend Tamara

Alonso Bernal. She has helped me a lot getting settled in and giving me

opportunities to get to know the city and meeting new friends. Lastly, I’d like to

thank my family for supporting me in taking on this project abroad. I wouldn’t

have been able to enjoy this experience as much as I did without their support.

This project has taught me a lot on how to take on a big project by myself even

in an unknown environment, an environment most likely different than the one I

will be spending my career in. During the process, I’ve made a lot of friends and

memories, things I will never forget and will be able to use in my further life.

Dedication in Dutch

Ik wil graag ‘Hogeschool VIVES’ bedanken om mij de gelegenheid te geven mijn

studies in het buitenland te voltooien met een Erasmus+ programma. Hierbij wil

ik persoonlijk mijn interne promotors Cordemans Tom en Vanhee Luc bedanken.

Zij waren een grote hulp bij mijn voorbereiding op dit avontuur. Alhoewel ze niet

nabij waren, waren ze steeds bereid om vragen via mail te beantwoorden. Ten

tweede wil ik de 'Universidad de Valladolid' bedanken om mij als student te

accepteren en mij te helpen doorheen dit avontuur. Hierbij bedank ik mijn

externe promotor Quilano Isaac Moro Sancho en begeleidende professor Javier

Bastida Ibáñez. Ik was altijd welkom bij hun op kantoor voor vragen of verdere

ideeën in verband met mijn project. Ten derde wil ik mijn lokale student-mentor

en vriend Tamara Alonso Bernal bedanken. Zij heeft mij vooral geholpen me te

vestigen daarnaast gaf ze mij kansen de stad te leren kennen en nieuwe

vrienden te ontmoeten. Tenslotte wil ik mijn familie bedanken voor de steun bij

mijn keuze om dit project in het buitenland uit te voeren. Ik had nooit zoveel van

deze ervaring kunnen genieten zonder hun hulp. Dit project heeft mij vooral veel

geleerd over hoe ik een groot project dien aan te pakken. Zelf in een onbekende

omgeving, een omgeving die waarschijnlijk anders is dan die waar ik de rest van

mijn carrière zal doorbrengen. Tijdens dit proces heb ik veel vrienden en

herinneringen gemaakt dingen die ik nooit zal vergeten en ik in mijn verdere

leven zal kunnen gebruiken.

4

Table of contents

Announcement ... 4

Abstract in English.. 4

Abstract in Dutch .. 4

Abstract in Spanish .. 4

Dedication in English ... 5

Dedication in Dutch .. 5

Table of contents .. 4

List of figures .. 6

Objectives .. 7

Introduction .. 8

Planning .. 10

February ... 10

March ... 10

April .. 11

May ... 11

1 Project’s logic ... 12

1.1 Gather sources ... 12

1.1.1 Past and current data .. 13

1.1.2 Predictions ... 14

1.1.3 Pollen ... 14

1.2 Download data ... 16

1.2.1 Connection ... 16

1.2.2 DownloadManager .. 16

1.2.3 BroadcastReceiver .. 17

1.3 Read data ... 19

1.3.1 CSVReader ... 19

1.3.2 xmlParser ... 20

1.4 Show data .. 23

1.4.1 Swipe pages .. 23

1.4.2 TextView, ImageView .. 23

1.4.3 PopupWindow, Radio buttons .. 23

1.4.4 ScrollView .. 24

5

1.4.5 GraphView ... 24

2 Logic’s implementation ... 25

Manifest .. 25

2.1 Sources ... 26

Selecting location .. 27

URLs ... 29

2.2 Downloading ... 30

2.2.1 Connection ... 32

2.2.2 DownloadManager .. 32

2.2.3 BroadcastReceiver .. 34

2.3 Read data ... 35

Weather class ... 35

Pollen class .. 37

2.3.1 CSV reader .. 38

2.3.2 Xmlparser... 40

2.4 Show data .. 43

2.4.1 Swipe pages .. 45

2.4.2 ScrollView .. 51

2.4.3 GraphView ... 52

3 Tests .. 53

3.1 Finished downloads .. 53

3.2 Reading the files ... 53

3.3 Background image .. 54

3.4 X-axis labels.. 54

4 Conclusion ... 55

5 Appendix .. 56

5.1 Manual ... 56

Installation .. 56

How to use .. 58

5.2 Bibliography .. 62

6

List of figures

Figure 1: Smartphone OS market share ... 8

Figure 2: Historic data, website .. 13

Figure 3: Predictions, website ... 14

Figure 4: XmlPullParser explanation ... 20

Figure 5: GraphView XML layout .. 24

Figure 6: GraphView code snippet ... 24

Figure 7: GraphView example ... 24

Figure 8: Sources flowchart.. 26

Figure 9: Edit location screenshots ... 27

Figure 10: Edit location snippet .. 28

Figure 11: Constant UML ... 29

Figure 12: MainActivity UML ... 30

Figure 13: Downloading flowchart ... 31

Figure 14: Network state manifest .. 32

Figure 15: Access Shared Preferences snippet ... 32

Figure 16: File location snippet ... 33

Figure 17: Weather UML .. 35

Figure 18: Pollen UML ... 37

Figure 19: CSV file example ... 38

Figure 20: csvParser UML .. 39

Figure 21: XML file example ... 40

Figure 22: xmlParser UML ... 41

Figure 23: XML tags snippet .. 41

Figure 24: KEY_PROBPRECI snippet ... 42

Figure 25: MainActivity UML ... 43

Figure 26: Data showing flowchart .. 44

Figure 27: Fragment instances snippet ... 45

Figure 28: Fragment class 1, layout 1 ... 46

Figure 29: Fragment class 2, layout 1 ... 47

Figure 30: Fragment class 3, layout 2 ... 47

Figure 31: FirstFragment UML ... 48

Figure 32: Set fragment arguments snippet ... 48

Figure 33: Get fragment arguments snippet ... 49

Figure 34: Resize background image ... 49

Figure 35: ScrollView screenshots ... 51

Figure 36: graphActivity UML .. 52

Figure 37: Device usage screenshot ... 56

Figure 38: Installation screenshots ... 57

Figure 39: Open application screenshot .. 58

Figure 40: Swipe screenshots .. 59

Figure 41: Select location screenshots .. 60

Figure 42: Pollen screenshot .. 60

Figure 43: Charts screenshots .. 61

file:///C:/Users/milan/Desktop/EindTekst/EindTekst.docx%23_Toc483761896
file:///C:/Users/milan/Desktop/EindTekst/EindTekst.docx%23_Toc483761902

7

Objectives

Before we begin, it’s important to know what this project is about and what its

objectives are. This project is in fact a mobile application which gathers and

displays information about weather and pollen statistics. In order to do so we

have some objectives we need to fulfill. The following list summarizes these

objectives.

Objectives

Gathering the right sources where to obtain the necessary data.

This data contains information concerning:

• Past 24 hour weather statistics
• Current weather status
• Weather predictions

• Pollen status

Downloading this data to the user’s device in order to be able to let

the application handle this data.

Read the data collected from the internet and contain it within the
application.

Present this data to the user in an easy to read manner.

8

Introduction

When we try to find information about weather statistics there are a lot of

different places to look. We can look it up online, in the newspaper, on the

television and so on. In this work, I’m focusing on the information found online.

This information is most of the time scattered amongst different pages and it

takes some time to find everything you need. And, even though everything can

be found online, it isn’t always easy to read or even easy to access.

This application is in some way a collector of all this information and makes it

easier for the user to find the information needed in just one place, the

application. It provides a clear view of all the information it has gathered and

shows it so the user can access it all in one touch. It’s easily read and provides a

lot of information with just one glance at the screen.

This work concerns the process of making this application. It explains the things

you need as well as how to use these tools in order to produce such an

application.

This project was given to me by the ‘Universidad de Valladolid’, they’ve given me

just the idea of an application which contains information about the weather and

makes it easy accessible for everyone. Based on this idea I started brainstorming

on how to make this happen.

The first question I’ve encountered was the choice of environment I’d be working

with. Based not only on my own preference but based on worldwide statistics we

can see that Android keeps growing in the market share. At this point around

86% of all mobile devices are running with the Android operating system based

on the data in figure 1. (1)

Figure 1: Smartphone OS market share

9

At second place, we have the Apple operating system. Although also used in up

to 13% of all the devices in the world, it didn’t struck my interest for the

following reasons. I didn’t have any experience with the Apple development

environment. I did look it up but noticed that if you want a complete

environment it will cost you € 99/year (2). Even if you use free environments

they are at first very limited and Apple provides a lot of rules and guidelines you

are obligated to follow.

Based on these facts I chose for the Android environment. It’s free to use and

everything is included into the development environment, Android Studio. Some

other fun facts are that Android is opensource which makes it easy to do

research on how to develop, it provides a lot of libraries to tackle whichever

problem and it contains an online user manual where every class, method or

function is described in an understandable way.

So, the winner was Android. “Android is a mobile operating system developed by

Google, based on the Linux kernel and designed primarily for touchscreen mobile

devices such as smartphones and tablets. [...] Android's source code is released

by Google under an open source license. […] Its open nature has encouraged a

large community of developers and enthusiasts (such as myself) to use the

open-source code as a foundation for community-driven projects.” (3)

With the environment chosen, I could start working on the project itself. The first

thing to do was to find the different places online where I would fetch my

information. My mentor Isaac suggested me with the page ‘aemet.es’, it’s a

website where I could find a lot of information and use this information without

any sort of login required. This was what I needed because I found other options

where I could use an API, but for this, I was in need of an API key. Which was

free to get but when someone else wanted to use my application they would

have to make an account themselves and pass their own API key in order for the

application to keep working as it should. Thanks to ‘aemet.es’ this was not the

case. The information found on this website could be obtained through CSV- and

XML-files.

I’ve made the decision to save these files locally on the users device. This way

when the user does not have access to the internet they can still see the

information gained from the last time they were connected to the internet. The

files itself do not take a lot of space on the device and are stored as files from

the application so the user does not have to, but can if they want to, interfere

with them.

Once the files are on the device, they are immediately processed. Since there are

two types of files, CSV and XML, this project contains two different parsers for

each of these types.

Due to this data originating from a Spanish website, the information gained is

only for cities in Spain. Nonetheless, it is easy to expand the recourses of this

project for other countries if you have valuable sources for this information.

10

Planning

To make this final project and write the thesis I had a timespan of four months.

In February I started working on the project and by the 31st of May I had to

present my work. During these four months I had to prepare, do research,

develop and test the application, write this thesis and prepare my defense.

February
During this month I spent most of my time exploring the possible sources. I’ve

got some suggestions by my mentor and I found some options myself too. In the

end these options I found did not seem to be a good solution because they were

not entirely free to use. Therefore I chose to move on with the sources I’ve

gotten from my mentor.

I then started to refresh my knowledge of the Android environment. I followed

some online courses to make a basic application. I reread some of my books

from the past years in college.

Once I was accustomed with the surroundings, I started building the first version

of my application. The first thing I had to do was getting the online information

on my device. I experimented with different methods in order to directly read the

file and process it. But later on decided it’s better to store the data on the device

in case there is no connection the user still has the chance to see some saved

information.

Once I was able to download these files I tried to do a simple parsing action on

them but that didn’t work at first, there was no data found while I could see the

file located on the device.

March
I’ve solved the parsing problem by implementing a broadcast receiver which told

me when the download was finished. After which I tried parsing again, this time

successfully.

I implemented different ways of representing the data I’ve collected. I made

some simple lists, tried to fill some tables and even make some charts with the

data I’ve obtained.

Then I’ve improved the downloader to download more than one file, which was

now the case. I was able to download information about the current state,

predictions and pollen.

The application at this point was able to download and display the data but it

wasn’t very beautiful or easy in use. So I started thinking of ways to improve the

design.

11

April
It was a long struggle to find a good and suitable layout I’d be satisfied with

myself. But I did find it, I got the idea to make separate pages for each day and

make the user swipe through them.

In order to do so it was easier to start with a fresh application, nonetheless I

could still use the knowledge from my first application. It took me some time to

get everything in a good place I liked, but I managed to finish the design on my

device. But, when I tried my application on a different device it didn’t look very

good. Therefore I had to redo some of the application in order to make it more

flexible.

I also implemented different locations into the application, this would make the

application applicable for a wider range of people.

May
Once I had my pages swiftly working I started building 2 last activities, one for

historic data and one for the pollen. For these I mostly used parts from my first

application.

I did have a hard time reading the XML file containing information about the

pollen. The parser returned faulty information although this parser was mostly

recycled from the one used to read the predictions, which worked perfectly. After

a long search and building the parser part by part I found out I forgot a

statement and wrote some typo’s. Although very frustrating I did feel very

relieved once I had sorted this out.

This month I also built up my thesis, which was more work than expected. But I

did have a good list of sources which I used during the process, this list did help

me a lot by refreshing the different steps I went through.

12

1 Project’s logic

In order to take this project to a good finish we need to achieve some goals:

• Gather sources

• Download data

• Read data

• Present data to user

This chapter will be covering how we managed to complete these objectives and

what logic we’ve used to do so. It gives an explanation on what methods and

what knowledge we’ve used in order to achieve each of these goals. While in the

next chapter we will apply these methods and knowledge in order to make the

application itself.

1.1 Gather sources
First things first, we need to find good and reliable sources to obtain our

information. Information about the current weather state, the weather

predictions and pollen. With the fact that this work was made while in Valladolid,

Spain, the information we use concerns the Spanish weather.

For the first three (past statistics current state and predictions) we make use of

the website www.aemet.es. It’s a Spanish website which stands for ‘Agencia

Estatal de Meteorología’ or ‘State Agency of Meteorology’. It provides us with

information about the weather, current status as well as predictions.

The last one, the information about the pollen, can be found on the website

www.datosabiertos.jcyl.es which stands for open data which originates from

‘Junta de Castilla y León’.

“The Junta of Castile and León (Spanish: Junta de Castilla y León) is the

governing and administrative body of the Spanish autonomous

community of Castile and León and serves as the executive branch and

regulatory authority. […] The function of the Junta is to govern and administer

the autonomous community.” (4)

We can now dive deeper into each of these sources and show you where we

found each part of the information necessary to build up this project.

http://www.aemet.es/
https://en.wikipedia.org/wiki/Spanish_language
https://en.wikipedia.org/wiki/Autonomous_communities_of_Spain
https://en.wikipedia.org/wiki/Autonomous_communities_of_Spain
https://en.wikipedia.org/wiki/Castile_and_Le%C3%B3n

13

1.1.1 Past and current data

Concerning the past statistics and current status we can find data which is

updated every hour for different cities in Spain. We find information about

temperature, wind, precipitation, air pressure and humidity. For example, the

data for Valladolid can be found at:

http://www.aemet.es/es/eltiempo/observacion/ultimosdatos?k=cle&l=2422&w=

0&datos=det&x=h24&f=temperatura

Figure 2: Historic data, website

This information is also available for download in two different formats, XLS and

CSV. The XLS-format is specifically for Microsoft Excel while the CSV-format

provides us with a plain text file containing the information in such a way that its

more or less readable by a human as well. Since our application is designed for

Android, we prefer to use the CSV-format because this makes it possible to read

and process the contents of the file directly.

14

1.1.2 Predictions

Next, we have information about weather predictions which we can also find on

this website. We find information about temperature, precipitation, wind and the

state of the sky. This information is also available for multiple Spanish cities. For

example, the data for Valladolid can be found at:

http://www.aemet.es/es/eltiempo/prediccion/municipios/valladolid-id47186

Figure 3: Predictions, website

This information can be downloaded as a file with an XML-format. This format is

also a plain text file readable by a human being with possibilities to read and

process in our application.

1.1.3 Pollen

Last but not least, we need some information about pollen. Pollen consist of male

cells that fertilize plants, these are richly present during some periods. Pollen are

often a big cause for allergic reactions. We want to provide the user with

information concerning the concentration of pollen present.

The data provided is available for download in two different formats, CSV or XML.

We choose the XML-format because this makes it easier for us to read the data;

this will be clarified in another chapter. This file provides us with data from 13

different cities and 36 different types of pollen. The specific link is

http://www.datosabiertos.jcyl.es/web/jcyl/set/es/mediciones/niveles_de_polen/1

284208096554

http://www.datosabiertos.jcyl.es/web/jcyl/set/es/mediciones/niveles_de_polen/1284208096554
http://www.datosabiertos.jcyl.es/web/jcyl/set/es/mediciones/niveles_de_polen/1284208096554

15

We do now have all the sources we need in order to retrieve the necessary

information. We can update our objectives as follows:

Objective Completed

Gathering the right sources where to obtain the necessary

data. This data contains information concerning:

• Past 24 hour weather statistics

• Current weather status
• Weather predictions

• Pollen status

Downloading this data to the user’s device in order to be
able to let the application handle this data.

Read the data collected from the internet and contain it
within the application.

Present this data to the user in an easy to read manner.

The next step is to make our application download this information.

16

1.2 Download data
This part will cover the downloading of the files needed in order to access the

data required. In addition, it is very important to know when the downloads are

finished before we are able to show the information to the user.

1.2.1 Connection

Before we can actually start downloading, we have to check if there is a valid

internet connection on the user’s device. If so, we can go on to the next step and

actually download the requested files. (5)

If there is no valid internet connection, the program will use previously

downloaded data if these are available. If there is no previous data available, the

application won’t be able to reach its goal of showing the user actual weather

information.

1.2.2 DownloadManager

“The download manager is a system service that handles long-running HTTP

downloads. Clients may request that a URI be downloaded to a particular

destination file. The download manager will conduct the download in the

background, taking care of HTTP interactions and retrying downloads after

failures or across connectivity changes and system reboots.” (6)

With the manager concerning all the network operations required for

downloading a file, we can fill in a request for each file we want the manager to

download.

With this request, we can specify some information. Here are some common

examples:

• Network type: define which connections can be used in order to download

the requested file (wifi or/and mobile connection).

• Description and title: define the information shown in the notifications

while the file is being downloaded.

• Destination: where should the file be placed once the download has

finished.

• Notifications visibility: define if you want to show a notification at start,

during and after the download.

17

In my case, I’m not using all of these examples. I’ve decided not to show any

notifications at the start or during the download because the files are very small

and I don’t want to overload the user with additional unnecessary information.

With the files being very small I’ve neither chosen to set a limit on the network

type, any internet connection is valid.

What I have specified is the destination, this is very important because you

always want to know where to find your files once they are downloaded. The files

in this application are saved within the application’s external files. This way the

user doesn’t regularly encounter these files on their device but they can find it if

necessary.

Before actually downloading the file, we look if there are previous files like this

one available on the device. If so, we delete them in order not to stack up too

much place on the device.

At the end, we can finally enqueue the file to the manager, who will decide when

the device is ready to download. Each of these enqueues are given a unique id

which we need in the next step.

1.2.3 BroadcastReceiver

In order to decide whether the download has finished downloading we need to

listen to some broadcasts being sent from the manager. There are constantly

broadcast sent in the device by different applications or by the system itself. (7)

The manager itself has 2 different broadcasts as well:

• ACTION_DOWNOAD_COMPLETE: sent when a download completes.

• ACTION_NOTIFICATION_CLICKED: sent when the user clicks on a running

download either from a system notification or from the downloads UI.

We’re not using any notifications so we have no need for the second broadcast.

We do need the first broadcast because we can’t start reading the data and filling

our screen before the data is actually downloaded. Very important in this

description is the ‘a’, when we have multiple files to download each of these

downloads will send a broadcast when finished. In order to know which download

the broadcast is from we use the enqueue id we talked about earlier. Besides

from debugging issues it’s not very important to know which specific file has

finished downloading and which hasn’t. More importantly we need to be sure that

all files are finished before we start reading the data. In order to check this,

whenever a download has finished it increments a counter. We know in this

application we need three different files so when the counter reaches 2 the next

finished download broadcast can trigger the start of the data reading.

18

We do now have all of the data downloaded to the device so we can update our

objectives as follows:

Objective Completed

Gathering the right sources where to obtain the necessary

data. This data contains information concerning:

• Past 24 hour weather statistics

• Current weather status
• Weather predictions

• Pollen status

Downloading this data to the user’s device in order to be
able to let the application handle this data.

Read the data collected from the internet and contain it
within the application.

Present this data to the user in an easy to read manner.

The next step is to make our application read or parse the data.

19

1.3 Read data
Once we’ve downloaded the necessary files we can start reading, or using the

right terminology, parsing these files. We have two types of files, one is CSV the

other one is XML. For both these layouts we need a separate parser. We use

these to read out the files containing information about past weather statistics,

current weather, predictions and pollen. All of this information is put into neatly

organized classes so we can easily access it in the next chapter.

1.3.1 CSVReader

“In computing, a comma-separated values (CSV) file stores tabular data

(numbers and text) in plain text. Each line of the file is a data record. Each

record consists of one or more fields, separated by commas. The use of the

comma as a field separator is the source of the name for this file format.” (8)

In order to parse CSV files, I went looking online for a solution. After some

research, most of the problems I’ve encountered were solved with the help of a

library called ‘opencsv’. Looking further into this library, I came to the conclusion

that it was easy to use and exactly what I was looking for.

“Opencsv is a very simple CSV (comma-separated values) parser library for Java.

It was developed because all of current CSV parsers I've come across don't have

commercial-friendly licenses.” (9)

This library contains a class called ‘CSVReader’, which is essentially a CSV-

parser. With this class’s constructor, we can give along some information:

• Filereader with specific file: we define a reader along with the CSV-file to

be read.

• Separator: the default separator in a CSV-file is the comma ‘,’. Although

we can define another separator if necessary.

• Quote character: the default quote character in a CSV-file is the double

quote ‘ ” ’. Although we can define another separator if necessary.

• Skip lines: define the number of lines to be skipped before actually parsing

the file.

In my case, we define the correct file the download manager saved for us earlier.

The separator and quote characters are the default characters so no need to

change anything there. But, at the start of our CSV there is some information we

don’t need and cannot accept as values otherwise our system would crash.

Therefore, we skip the first 4 lines of the CSV file in order not to run into trouble

reading the data and in order to collect the correct information.

The information derived from the CSV files is information concerning the current

state and the past 24 hours. Values such as temperature, humidity, rainfall, air

pressure and wind. This information is put into a class called the ‘Weather’ class.

This class contains all of the information and can be called upon when we need it.

Because the information we derive from this CSV contains values for each of the

past 24 hours we immediately use this information after one of the lines is read.

In this case we use it to build up a graph (more on this in the next chapter).

20

1.3.2 xmlParser

The second type of file we want to parse is an XML-file.

“In computing, Extensible Markup Language (XML) is a markup language that

defines a set of rules for encoding documents in a format that is both human-

readable and machine-readable.” (10)

In order to do this we use an Android interface called ‘XmlPullParser’, this

interface intercepts different kinds of events occurring while reading the xml.

These events are:

• START_TAG: an XML start tag was read “<…>”.

• TEXT: text content was read, a certain string.

• END_TAG: an XML end tag was read “</…>”

• END_DOCUMENT: no more events are available.

In order to explain how does goes to work, I’m using an example I found online.

(11)

Figure 4: XmlPullParser explanation

The first event we use is the END_DOCUMENT, we use this do decide when our

document is fully read and we can exit our while-loop. As long as this event does

not occur, we keep reading the xml file.

Inside the while-loop we have a switch-case statement do decide which event

has occurred. The reader continues to read the document and looks for any

events to occur.

21

The first event who occurs is a START_TAG, of course we’re not interested in all

the tags inside of the XML. So, we decide what to do when a START_TAG occurs

by different if-statements. In this case, we are interested in the tags with values

‘book’ and ‘name’. So, we declare an if-statement where we check if the name

who goes along with this START_TAG is equal to “book” and another if-statement

where to name goes along with “name”. If not, we just skip the line as is done

with the first two lines inside this example XML.

The third START_TAG we encounter has the value ‘book’. In this tag we are

interested in its attribute ‘ISBN’ so we save this into a String called isbn using

the function getAttributeValue(). This function requires two parameters: the first

one being a namespace, if there is one, and the second one being the name of

the attribute we’re looking for. This XML does not use any namespaces so we

pass along the NO_NAMESPACE value, the name of the attribute we need is

“ISBN”. The value of the String isbn is now equal to “ISBN-001”.

The next tag we are interested in has the value ‘name’. We declare another if-

statement which looks for a START_TAG with the value ‘name’. We encounter it

on the 4th line of the XML file. Now we need the text next to this tag so, we save

this text into a String called name using the function nextText(). The value of the

String name is now equal to “How To Be A Cat”.

At the end of line 4 we encounter an END_TAG with the value ‘name’, we have

no interest in this tag so we move on.

The next interesting event occurs at line 7 where we encounter an END_TAG with

the value ‘book’. In human language, this means we have finished reading all the

values of one certain book. It is not described in this example but we could save

the variables we’ve noted like the strings ‘isbn’ and ‘name’ into a different class

so we don’t lose this information when we overwrite these variables with

information about the next book.

After we’ve checked all possible tags inside the switch-case statement or did not

encounter any interesting events, we call next() to go to the next parsing event.

When we reach the end of the document the END_DOCUMENT tag becomes the

current eventType and we quit the while loop, the document has been fully read.

In the case of the project concerning this book, all of the necessary information

is saved into weather classes so we can use this information for displaying the

information on the screen.

22

We do now have all the data from the downloaded files read and organized into

classes so it is contained into the application. We can update our objective list as

follows:

Objective Completed

Gathering the right sources where to obtain the necessary

data. This data contains information concerning:

• Past 24 hour weather statistics
• Current weather status

• Weather predictions
• Pollen status

Downloading this data to the user’s device in order to be

able to let the application handle this data.

Read the data collected from the internet and contain it
within the application.

Present this data to the user in an easy to read manner.

The next step is the most important one, use this data and finally present it on

the user’s device.

23

1.4 Show data
Now that we have all the data at our disposal, we only need to show it in an

easy-to-read manner to the user.

The idea I’ve come up with consists of 7 different pages through which you can

swipe. The first one containing information for today, the second one for

tomorrow and so on. In order to do that I needed a couple of classes and

methods.

1.4.1 Swipe pages

I wanted to have the application’s swiping go smoothly and not needing any

loading time. So we could only use one activity for these 7 pages because

loading an activity takes some time, although only milliseconds it doesn’t look

smooth. (12) (13) (14)

First we need the activity. “The Activity class serves as the entry point for an

app’s interaction with the user, providing the window in which the app draws its

UI.” (15) In other words an activity is the base of what your application does.

Linked to this activity we have a layout file which determines what the user gets

to see on the screen. We make use of one base on which we build our 7 pages.

Each page is a fragment. A fragment is a portion of a user interface, in one

activity you can have multiple fragments. You can arrange them neatly on one

screen or you can specify that the fragment uses the whole screen.

We use a fragment for each page so 7 fragments and manage them using a

ViewPager.

The viewpager is a layout manager which allows the user to swipe left and right

through pages of data. In order to generate all these pages we need a

PagerAdapter in our case we use the FragmentStatePagerAdapter.

1.4.2 TextView, ImageView

TextViews and ImageView are widgets from Android itself. TextView which

displays text to the user and optionally allows them to edit. ImageView shows an

image instead of text.

These views are easily added to the layout in the graphical design or straight into

the layout XML. The text and images can be logically set or fixed from the start.

They can also be made clickable so when the user pushes them a certain action

can be programmed.

1.4.3 PopupWindow, Radio buttons

The PopupWindow class speaks for itself. We can use this class in order to create

a popup window. It’s a floating container that appears on top of the current

activity. (16) (17)

Radio buttons allow the user to select one option from a set. Only one option can

be chosen each time. We’ll use both if these for the selection of the location.

https://developer.android.com/reference/android/app/Activity.html

24

1.4.4 ScrollView

Sometimes one screen is not enough to show all of the information you want to

show. Therefor we can add a scrollView which enables the user to scroll down,

up, left or right depending on which settings you apply to this view. With this we

can add more information in just one activity where the user can scroll through.

1.4.5 GraphView

To give a clear view about the course of the past 24 hours concerning

temperature, humidity and rainfall I’m using a library called ‘GraphView’.

“GraphView is a library for Android to programmatically create flexible and nice

looking diagrams. It is easy to understand, to integrate and to customize.” (18)

GraphView is inserted through the XML layout file as seen in this example.

Figure 5: GraphView XML layout

In order to get data into this graph you need a set of DataPoints, which are then

inserted into the graph. In the next example, we see a line graph being

generated through Java code.

Figure 6: GraphView code snippet

When this code is executed, we get something like the following.

 Figure 7: GraphView example

25

2 Logic’s implementation

In this chapter we will revisit all of the information from chapter 1 but now I will

show you how I’ve implemented this logic into the project.

But, before we start I have to explain the application’s AndroidManifest.xml or

the manifest file.

The figures used in this chapter are from the applications’ code or screenshots

from the running application.

Manifest

What is the manifest file and what does it do?

“Every application must have an AndroidManifest.xml file (with precisely that

name) in its root directory. The manifest file provides essential information about
your app to the Android system, which the system must have before it can run
any of the app's code.

Among other things, the manifest file does the following:

• It names the Java package for the application. The package name serves as a
unique identifier for the application.

• […]
• It declares the permissions that the application must have in order to access

protected parts of the API and interact with other applications. It also declares

the permissions that others are required to have in order to interact with the
application's components.

• […]

• It declares the minimum level of the Android API that the application requires.

• […]” (19)

Based on this information we will need to add some things to the manifest file
during our progress in order for everything to work. Once we’ve reached to point,
these things will be named and referred back to the manifest.

26

2.1 Sources
We’ve gathered the correct sources so now we can implement them into the

application. The application covers different locations and for each of these

locations the URL is different. So based on which location the user has selected

we decide which URL’s to use.

Flowchart

Load URLs from
shared preferences

Shared Preferences
Read

Fragment 1: Today,
day 1

Select location

Write

Three buttons

Location
button

Figure 8: Sources flowchart

27

Selecting location

The user has the ability to change his preferred location. In this application we

have 13 locations available. In the first screen the user gets to see, there’s the

possibility to change the preferred location. This location is then stored into the

shared preferences of the application.

This SharedPreferences object points to a file containing key-value pairs and

provides simple methods to read and write these pairs. When the application is

closed and rebooted, these values are still present so the previous preferred

location is still the active location.

Figure 9: Edit location screenshots

In order to change the location the user presses the highlighted location image in

the top left corner. The user is then provided with the 13 different locations from

which they can choose.

Once the user selects a certain location, there is a toast message at the bottom

confirming the selected location, the shared preferences are modified and the

activity with all its 7 pages is recreated implementing the data corresponding the

selected location.

28

In the next figure you can see the code required in order for the application to

edit the shared preferences and recreate the activity. It shows 2 of the 13

different possibilities corresponding to the 13 different locations.

case R.id.avilaBtn:

 popupWindow.dismiss();

 Toast.makeText(getActivity().getApplicationContext(),

 "Location: Ávila",Toast.LENGTH_SHORT).show();

 editor.putString("csvURL", Constant.AVILA_URLS[0]);

 editor.putString("xmlURL", Constant.AVILA_URLS[1]);

 editor.putString("location", Constant.AVILA_URLS[2]);

 editor.putString("pollenLocation", Constant.AVILA_URLS[3]);

 editor.commit();

 getActivity().recreate();

 break;

Figure 10: Edit location snippet

So, for each different option selected to following steps are performed:

• Edit the URL for the CSV file in the shared preferences.

• Edit the URL for the XML file in the shared preferences.

• Edit the location to be put on the screen in the shared preferences.

• Edit the location used to compare strings in the shared preferences.

• Commit these changes.

• Recreate entire activity.

We now have to correct location and its corresponding URLs saved into the

shared preferences. We will now see where these URLs are saved in the

application. (20)

29

URLs

As you may have noticed in the previous figure, we fetch our URL values from an

interface called Constant. In this interface we’ve hardcoded the URLs with their

responding location. The positive thing is that the URLs are nicely ordered and

are easily accessible from anywhere in the application. The values are saved as

strings in a string array, one for each location.

<<interface>>

Constant

+AVILA_URLS: String[]
+ARENAS_URLS: String[]

+ZAMORA_URLS: String[]
+VALLADOLID_URLS: String[]
+SORIA_URLS: String[]
+SEGOVIA_URLS: String[]

+PALENCIA_URLS: String[]
+PONFERRADA_URLS: String[]
+LEON_URLS: String[]
+MIRANDA_URLS: String[]

+BEJAR_URLS: String[]
+BURGOS_URLS: String[]

+SALAMANCA_URLS: String[]

Figure 11: Constant UML

The next figure shows an example of such a string array.

String[] AVILA_URLS = {

 "http://www.aemet.es/es/eltiempo/observacion/ultimosdatos_2444_datos-

horarios.csv?k=cle&l=2444&datos=det&w=0&f=temperatura&x=h24",

 "http://www.aemet.es/xml/municipios/localidad_05019.xml",

 "Ávila",

 "AVILA"

};

We have saved the name in two different forms, the first one is shown on the

screen thus the accents and capital letters are correct. While the second one is

used in order to compare strings when there are no accents used as is the case

in the pollen XML.

We do now have access to the URLs; do not forget that when we want to access

the correct URLs we have to use the ones stored in the shared preferences in

order to comply to the users’ location preference.

We can now start downloading the files corresponding to these URLs.

30

2.2 Downloading
The downloading happens automatically when the application is booted, so all of

this is done in the MainActivity. This activity is also responsible for generating the

ViewPager which generates our 7 swipeable pages, but this will be explained in

the next chapter.

MainActivity

-downloadsDone: int
-defaultCsv: String

-startUp(
onComplete: BroadcastReceiver): void

-mainPath: String
-sharedPref: SharedPreferences
-pager: ViewPager

-pollenReference: long
-predReference: long
-csvReference: long
-defaultLocation: String

-defaultXml: String
-pollenUrl: String

-onComplete: BroadcastReceiver

#onCreate(): void

-downloader(mainPath: String,
URL: String, fileName: String,
fileType: String): void

-checkConnection(): boolean

Figure 12: MainActivity UML

In order to be able to download files from the internet, the application needs the

permission to use an internet connection. Therefore, we need to add another

permission into the manifest.

<uses-permission android:name="android.permission.INTERNET" />

31

Flowchart

Open application

Connection?

Yes

Load URLs from
shared preferences

Download files

All downloads
done?

No

Generate fragments
using PagerAdapter

Yes

Use old files

No

Shared Preferences
Read

Figure 13: Downloading flowchart

32

2.2.1 Connection

Before downloading, we have to check if there is a valid internet connection.

The method checkConnection returns a Boolean, either true or false depending

on the fact that there is a connection or not. This Boolean is then used to depend

if we can start downloading or not.

In order to do so we use the class ConnectivityManager; this is a class that

answers queries about the state of network connectivity. From this class we use

the function getActiveNetworkInfo() which returns the currently active default

data network. If there is none, it returns null.

Therefore, we check whether this functions returns null. If not, it means there’s

currently an active internet connection so we return true and are able to start

downloading.

In order for the application to access information about networks, we need to

add a permission into the manifest.

<uses-permission android:name="android.permission.ACCESS_NETWORK_STATE" />

Figure 14: Network state manifest

We are now able to check for a valid connectivity to the internet.

2.2.2 DownloadManager

So, first we check whether there is an internet connection available. If not, a

message pops up notifying the user there is no valid internet connection and we

use the known data. The adapter is added to the view pager and the fragments

are produced which we will explain later on.

If we do have a valid internet connection, the checkConnection() method returns

true as seen before. We decide which URLs to use based on the URLs stored in

the shared preferences. This also requires a default value in case the required

value is not found, we’ve chosen to add the URLs for Valladolid.

sharedPref =

PreferenceManager.getDefaultSharedPreferences(getApplicationContext());

String csvURL = sharedPref.getString("csvURL", defaultCsv);

String xmlURL = sharedPref.getString("xmlURL", defaultXml);

Figure 15: Access Shared Preferences snippet

These URLs can now be used in order to download the correct information related

to the users’ requested location.

33

Next, we call the downloader method. We call this method 3 times, once for each

file to be downloaded.

We pass along some arguments with this function.

• mainPath: this is the path to the application’s external files directory

where we will save our downloaded files. We use this to determine the

download destination. This has been declared as follows.

final String mainPath = getExternalFilesDir(null) + "/";

Figure 16: File location snippet

• URL: previously defined URL who leads to the file you want to download.

• fileName: define a name for the file.

• fileType: describe the type of the file, we need this in order to give the

download a unique id so we can then check when the download is finished.

As noted before we first build up a request to pass along to the manager. This

request contains the URL. With this request, we can specify some properties but

with the choice of not showing any download notifications, we only need to

adjust the notification visibility and set it to hidden.

We then declare a file with the mainPath and fileName. This is in fact the file we

are downloading, but we need to declare it before the download to check if the

file does not already exist. If so, we delete the file before downloading it again in

order to save up space on the device.

We set the destination for the file, as discussed before we save the files into the

applications external files directory.

At last, we can enqueue the download to the manager. While doing this, each

enqueue generates a unique id, we need this id for the BroadcastReceiver in

order to know which download was finished. So, we save the id based on which

fileType we are downloading. We have 3 different references: csvReference for

the CSV file containing the historic and current information, predRefernce for the

XML file containing the predictions and pollenReference for the XML file

containing information about the pollen.

34

2.2.3 BroadcastReceiver

We need to check whether the downloads are finished in order to start filling the

screen.

In order to use a receiver, you need to register it. With this registration we

declare the name of the receiver as well what kind of broadcasts this receiver’s

interests are, in this case we want to know when a download has completed.

Therefore, we use the ACTION_DOWNLOAD_COMPLETE constant which checks

broadcasts concerning downloads which have been completed.

We declare the BroadcastReceiver with the name onComplete. Every time this

receiver receives a broadcast, this broadcast comes along with a unique id which

is linked to the id given by the downloader. We then compare this id with the id’s

we’ve filled in earlier to know which download has completed.

Once we receive a broadcast with an id we recongize, we call the startUp

method. This method checks the downloadsDone variable, this variable is in fact

a counter. For each download who has been completed this counter goes up,

once we reach 3 which means all of the necessary files are done downloading the

receiver is unregistered since we don’t need it anymore and an adapter is set for

the ViewPager. This causes the creation of our 7 pages which we’ll cover in the

next chapter.

The files are now downloaded to the device and available for reading.

35

2.3 Read data
We can now start reading the downloaded data which was saved on the device.

As mentioned before in order to contain this data and be able to use it

throughout the application we save it inside Weather classes and Pollen classes.

Weather class

The weather class will contain our information about the weather statistics and

make it easy for us to obtain it wherever necessary. The next figure shows a

shortened version of the UML from this class. I’ve shortened the method’s

because they are all just getters and setters for each attribute in order to be able

edit and read them.

Weather

+getHour (): int

-hour: int
-temperature: float

...

-temp12: String

-maxTemp: String

-temp18: String

-minTemp: String

-windSpeedCsv: int

-windDirDay: String

-windDir1824: String

-rainProb0006: String

-windSpeed0612: String

-temp00: String

-temp06: String

-windDirectionCsv: String

-windDir0612: String

-windSpeed0006: String

-windSpeed1824: String

-rainProb1218: float

-windSpeedDay: String

-windDir0006: String

-windDir1218: String

-windSpeed1218: String

-rainProbDay: String

-humidity: int

+setHour (hour: int)

-rainProb0612: String

-precipitation: float

-airPressure: float

-sky1824: String
-sky1218: String
-sky0612: String
-sky0006: String
-skyDay: String
-rainProb1824: String

Figure 17: Weather UML

36

As you can see, it has the ability to hold a lot of information. Although we don’t

always need all of this information.

Concerning the CSV file where we find information about the current weather

situation and the past 24 hours we only need certain values:

• temperature

• windSpeedCsv

• windDirectionCsv

• precipitation

• humidity

• airPressure

These are the values we can derive from the CSV file. We are able to fill up to 24

of these classes, one for each passed hour including the current hour.

The other values are used when reading the XML file where we have information

concerning weather predictions which are available per six hours.

37

Pollen class

The Pollen class will contain our information about the pollen statistics and make

it easy for us to obtain it wherever necessary. The next figure shows a shortened

version of the UML from this class. I’ve shortened the method’s because they are

all just getters and setters for each attribute in order to be able edit and read

them.

Pollen

+getLocation (): String

-location: String
-acer: String

...

-asteraceae: String

-aesculus: String

-betula: String

-alnus: String

-chenopodiaceae: String

-cyperaceae: String

-fagus: String

-taraxacum: String

-myrtaceae: String

-juglans: String

-brassicaceae: String

-apiaceae: String

-cupressaceae: String

-ercaceae: String

-galium: String

-mercurialis: String

-pinus: float

-fraxinus: String

-echium: String

-fabaceae: String

-juncaceae: String

-morus: String

-salix: String

+setLocation (location: String)

-olea: String

-rumex: String

-sambucus: String

-rosaceae: String
-quercus: String
-populus: String
-poaceae: String
-platanus: String
-plantago: String

-urticaceae: String
-ulmus: String
-tilia: String

Figure 18: Pollen UML

38

As you can see, there are a lot of different types of pollen for which we can

acquire information.

Each class concerns one location; we have 13 locations in total so in the end

there will be 13 objects of this class.

Although not every location contains all of these different types of pollen. Some

locations don’t supply information about a certain type of pollen because they do

not measure it or simply because this type is not common in that area.

This data is updated on the website once every week with data for the current

status and a prediction for the whole week. We only make use of the prediction

to supply a clear view for the whole week to come.

2.3.1 CSV reader

Before explaining how we derive the data from the CSV file, let me first give you

an example of what one of these CSV files might look like. The next figure shows

a part of such a file.

"Valladolid"

Actualizado: martes, 14 marzo 2017 a las 12:22 hora official

"Fecha y hora oficial","Temperatura (ºC)","Velocidad del viento (km/h)","Dirección del viento","Racha (km/h)","Dirección

de racha","Precipitación (mm)","Presión (hPa)","Tendencia (hPa)","Humedad (%)"

"14/03/2017 12:00","13.4","13","Nordeste","37","Nordeste","0.0","942.3","0.3","56"

"14/03/2017 11:00","11.9","9","Nordeste","39","Nordeste","0.0","941.9","0.1","61"

"14/03/2017 10:00","10.0","9","Nordeste","35","Norte","0.0","942.0","-0.3","69"

"14/03/2017 09:00","7.7","10","Nordeste","33","Nordeste","0.0","942.0","0.3","76"

"14/03/2017 08:00","6.2","10","Nordeste","33","Norte","0.0","941.8","0.5","81"

…

Figure 19: CSV file example

As we’ve mentioned before, the first 4 lines (“Fecha hora… is one line) are

information we don’t need so we can safely skip these 4 lines.

Starting from the fifth line we can see the different values each surrounded by “”

and separated by a comma. We have date and hour, temperature, windspeed,

wind direction, gust speed, gust direction, rainfall, air pressure, air pressure

trend and air humidity. Each of these for each of the past 24 hours.

Now that we know what we want to read, we can start reading. And saving the

information into a Weather class(es).

39

UML

csvParser

-reader: CSVReader

+getWeatherHistory(path: String):
List<Weather>

+getWeatherFromFile(path: String):
Weather

-line: String[]
-historyList: List<Weather>

-cur: Weather

Figure 20: csvParser UML

First, we collect information about the current status.

In order to put the CSV data into a Weather class I’ve made a csvParser class

with a method called getWeatherFromFile which returns a Weather object

containing the data.

With this function we pass along the location of where the file is supposed to be.

There is some safety built in to cover that by any chance the file is not there

using some exception handlers.

We start by initiating a CSVReader, which reads a stream of data coming from

the CSV-file. This stream contains each of the characters in the file one by one.

We also initiate a Weather object in which we will store our data.

We then specify the reader using the stream of data, which separator to look for

(here it’s just the default comma), which quote character to look for (also

default) and the 4 decides we skip the first 4 lines.

Each line is now transformed to a String array with each element being a value.

We can then fill our Weather object using the corresponding value in this String

array. At the end, we return the Weather object which can then be used to

obtain this information.

On the other hand, we also need information about the past 24 hours. We use

the getWeatherHistory method which works more or less the same as the

previous method with the only difference being it returns a list of Weather

objects for each hour instead of just one.

40

2.3.2 Xmlparser

Next up is the parsing of the XML files. The next figure gives you an example of

what an XML file containing information about the weather predictions might look

like. Note that this is just a small part of the XML as most of the tags are

collapsed and most of the information you see is available for each of the

following 7 days.

Figure 21: XML file example

41

UML

xmlParser

-KEY_DIA: String

+getPollenListFromFile(path: String):
List<Pollen>

+getWeatherListFromFile(path: String):
List<Weather>

-KEY_CIELO: String

-curPollen: Pollen

-KEY_PROBECI: String

-weathers: List<Weather>
-curWeather: Weather

-KEY_VALOR: String
-KEY_TIPO: String

-KEY_DIR: String
-KEY_VIENTO: String

-KEY_ESTACION: String

-KEY_DATO: String

-KEY_VELO: String

-KEY_TEMP_MIN: String

-KEY_TEMP: String
-KEY_TEMP_MAX: String

-pollens: List<Pollen>

+getPollenValue(xpp: XmlPullParser):
String

-xpp: XmlPullParser

Figure 22: xmlParser UML

Our XMLParser class has a function called getWeatherListFromFile which returns

a list of Weather objects, one for each day. We fill each of these objects with

information from a corresponding day. At the end we return a list of 7 Weather

objects.

We start by determining some tags we’ll need and applying them to a constant.

Each tag must correspond to a tag we’re interested in from the XML file.

private static final String KEY_DIA = "dia";

private static final String KEY_PROBPRECI = "prob_precipitacion";

…

Figure 23: XML tags snippet

42

We start by creating a XmlPullParser and give it the correct input, a stream

containing the information from the file. This parser will now listen to this stream

and generate different event types based on which tag it encounters.

The first one we see is KEY_DIA, this is where information from a new day starts

so we initiate a Weather object.

Next, we have KEY_PROBECI which contains information about the chance of

rain, but we have this information for different hour intervals during this day. So,

we need to check which hour each tag belongs to. The next figure is a part of the

code for the hour intervals 00-24 and 00-06. (21)

else if (tagname.equalsIgnoreCase(KEY_PROBPRECI)) {

 //Because with some there is no information yet.

 if (xpp.getAttributeCount() > 0) {

 if (xpp.getAttributeValue(null, "periodo") != null &&

xpp.getAttributeValue(null, "periodo").equals("00-24")) {

 curWeather.setRainProbDay(xpp.nextText());

 }

 if (xpp.getAttributeValue(null, "periodo") != null &&

xpp.getAttributeValue(null, "periodo").equals("00-06")) {

 curWeather.setRainProb0006(xpp.nextText());

 }
…

Figure 24: KEY_PROBPRECI snippet

We first check whether there is an attribute with the tag because for days further

in the future there isn’t as much information available yet as for the day in the

example.

We then check to which interval the tag belongs and add it to the corresponding

variable in the Weather object of the current day.

To determine the state of the sky, determined by KEY_CIELO we use the same

method. You can see that these tags have more than one attribute but we are

only interested in the first one stating the hour intervals. The second one gives a

String with information about the status of the sky but we use the integer

accompanied by it.

With the last two tags, in order to find the predictions concerning temperature

and wind, we approach a different method. The information is in fact hidden

inside of these tags, so we first need to get inside and then start another loop,

which runs through the information inside of the first tag.

Inside this second loop, we find information about the predicted maximum

temperature, minimum temperature and temperatures for different hours of the

day. Some of these were left out of this example in order not to overwhelm the

snippet.

When we reach the end tag KEY_TEMP it means we have read all the information

available and finish the loop.

A small variant of this logic is used in order to obtain wind information.

43

2.4 Show data
Now that we have all the data available inside Weather and Pollen classes we can

start filling up the screen with this information. As noted before, we’re making 7

pages we can swipe through, one for each day. These 7 pages are managed in

one activity, next we have an activity for the pollen information and one for

historic weather data.

The activity which contains the viewPager is yet again the mainActivity.

MainActivity

-downloadsDone: int
-defaultCsv: String

-startUp(
onComplete: BroadcastReceiver): void

-mainPath: String
-sharedPref: SharedPreferences
-pager: ViewPager

-pollenReference: long
-predReference: long
-csvReference: long
-defaultLocation: String

-defaultXml: String
-pollenUrl: String

-onComplete: BroadcastReceiver

#onCreate(): void

-downloader(mainPath: String,
URL: String, fileName: String,
fileType: String): void

-checkConnection(): boolean

Figure 25: MainActivity UML

As mentioned before the process of creating the 7 fragments, managed by a

viewPagers’ adapter, is triggered from the startUp method once all of the files

have been downloaded.

44

Flowchart

Generate fragments
using PagerAdapter

Fragment 1: Today,
day 1

Fragment 2:
Tomorrow, day 2

Fragment 3: Day
after tomorrow,

day 3

Fragment 4: Day 4

Fragment 5: Day 5

Fragment 6: Day 6

Fragment 7: Day 7

Swipe

Swipe

Swipe

Swipe

SwipeSwipe

Three buttons

Pollen activity

History activity

Pollen
button

History
button

Figure 26: Data showing flowchart

45

2.4.1 Swipe pages

The layout from the main activity on which we build our 7 pages is solely filled

with one viewPager. This pager manages the layouts of all these 7 pages. Well in

fact we only use 2 different layouts for these 7 pages.

The logic behind these 7 pages is based upon 3 different classes where we decide

what each layout element shows.

These views are being supplied to the viewPager by a PagerAdapter, more

precisely we use a FragmentStatePagerAdapter which is easier for implementing

fragments.

PagerAdapter

This adapter manages our 7 separate fragments. The creation of these fragments

is as follows.

At first, we call upon our readers from the previous chapter which supply us with

a weatherlist containing all the predicitions and a csvWeather which contains the

current weather data.

We then supply all of the possible pages, 7 in total. Each of these pages is an

instance of one of the 3 different classes FirstFragment, SecondFragment or

ThirdFragment. Along with these instances we pass the information necessary in

order to fill up each page.

case 0: return FirstFragment.newInstance(weatherlist.get(0), csvWeather, location);

case 1: return SecondFragment.newInstance(weatherlist.get(1), location);

case 2: return ThirdFragment.newInstance(weatherlist.get(2), 2, location);

case 3: return ThirdFragment.newInstance(weatherlist.get(3), 3, location);

case 4: return ThirdFragment.newInstance(weatherlist.get(4), 4, location);

case 5: return ThirdFragment.newInstance(weatherlist.get(5), 5, location);

case 6: return ThirdFragment.newInstance(weatherlist.get(6), 6, location);

default: return ThirdFragment.newInstance(weatherlist.get(5), 5, location);

Figure 27: Fragment instances snippet

For example, case 0: from the weatherlist we’ll need the first object which

concerns today’s predictions, we’ll need the csvWeather which concerns the

current state and we pass along the location specified in the shared preferences.

We now know how the pages are called upon; the next step is to see how each

page is made. As said before there are 3 different fragment classes and 2

different layouts. We will discuss each unique combination; the others are merely

supplied with different data.

46

Fragment class 1, layout 1

The next figure shows an example of what this one might look like.

Figure 28: Fragment class 1, layout 1

As we can see, there’s a lot going on. First of

all, we can see that the background is filled

with an image. This image is related to the

current weather state. So, when it would be

raining, there would be rain in the

background.

Next, we have a lot of textViews, all of the red

noted views are textViews. They are very

important in giving information to the user.

Some of them have fixed text, while others

are based on the data we’ve assembled.

Then we have the green ones, these are

imageViews, they are in fact just images on

the screen. Also here some are fixed while

others depend on the predictions.

The upper part consists of information

obtained from the CSV file, that is, the current

status. While the bottom half shows the

predictions.

47

Fragment class 2, layout 1

The next figure shows an example of what this one might look like.

Figure 29: Fragment class 2, layout 1

Fragment class 3, layout 2

The next figure shows an example of what this one might look like.

Figure 30: Fragment class 3, layout 2

If the previous one was for today, then this

one is information about tomorrow. As you

can see, we’ve used the same layout.

But the big difference is that here the upper

part also consists of predictions. So both, the

upper and the bottom half, are based upon

predictions. Same for the background, it looks

like they’re predicting some rain.

For the remaining fragments we use a

different layout. This one contains less

information for the simple reason that the

data we download doesn’t contain as much

information for days as far ahead.

We’ve got predictions for the temperatures,

the state of the sky (looks like it’ll be sunny),

the chance for rainfall and the wind.

48

Now we know what the different types of fragments look like, it’s time to look at

how we’ve managed to make them look like they do. Let’s take a look at the

logic behind each of the 3 types of fragment classes.

FirstFragment

This one is responsible for solely the first day, so in fact the current day.

FirstFragment

-c: Calendar

+newInstance (predWeather: Weather,
csvWeather: Weather, location: String):
FirstFragment

-radioGroup: RadioGroup

+onCreateView(inflater: LayoutInflater,
container: ViewGroup,
savedInstanceState: Bundle): View
-selectWindDir (direction: String):
Drawable
-selectIcon (sky: String): Drawable
-setBackground (v: View, sky: String):
void
+showPopup (anchorView: View): void

Figure 31: FirstFragment UML

We use a Calendar instance to acquire today’s date and add it to the screen, and

to decide the current hour in order to set the correct background image

depending on the prediction for the current time.

The radioGroup is for when the user selects a location.

When the PageAdapter generates these fragments, the first method that is called

is the newInstance. As seen before we pass along all the information necessary

in order to fill the screen. Inside this method we make a Bundle object who

concerns about the arguments of this fragment. We take all the information

given by the PageAdapters’ arguments and set them as arguments from this

fragment.

args.putFloat("curTemp", csvWeather.getTemperature());

args.putInt("curSpeed", csvWeather.getWindSpeedCsv());

args.putString("curDirection", csvWeather.getWindDirectionCsv());

Figure 32: Set fragment arguments snippet

These are some examples of how to put the information in the Bundle object

which describes the fragments’ arguments. It’s, like the shared preferences, with

a key-value pair. For example, in the last shown line we put the given location

49

String into an argument with the name location. We do this for all of the

necessary values.

When this method finishes it returns the fragment and the onCreateView method

is called. This is where we produce the actual view and give all the layout

elements their values.

The views must first be associated with a view in the layout file. Now each of

these views can be modified as desired. The text views are filled with the correct

data. This data is fetched from the arguments we formed when creating the

instance. We can now call on them by using the getArguments() method. (22)

tempView.setText(getArguments().getFloat("curTemp") + "°C");

speedView.setText(getArguments().getInt("curSpeed") + " km/h");

directionImage.setImageDrawable(selectWindDir(

 getArguments().getString("curDirection")));

Figure 33: Get fragment arguments snippet

In order for the sky icons to show the correct icon linked to the weather state we

made a method that returns the correct drawable based on the given sky state

selectIcon.

Next, we have the wind icons which show the direction of the wind. We do the

same as with the sky icons, we give the method selectWindDir a wind direction

as a String and it returns the correct drawable.

At last, we decide the correct background for this fragment using the

setBackground method. This does not only decide the background but sets it as

well. But very important here was that not every user is using the same device,

and not all the devices have the same screen size. Therefor the image has to be

scaled correctly before adding as background.

Display display = getActivity().getWindowManager().getDefaultDisplay();

Point size = new Point();

display.getSize(size);

Bitmap bmp;

bmp = Bitmap.createScaledBitmap(BitmapFactory.decodeResource(

 getResources(),R.drawable.clear_sky),size.x,size.y,true);

LinearLayout ly = (LinearLayout) v.findViewById(R.id.first_frag);

Drawable dr = new BitmapDrawable(getResources(), bmp);

(ly).setBackground(dr);

Figure 34: Resize background image

Therefore, we first determine which display is being used, along with that we can

decide the size. We then select the correct image based on the sky state and we

rescale it. This is only possible if the image has a bitmap or .bmp type. But we

cannot set the background with a bitmap type so at the end we convert the

converted bitmap, which now has the correct size along with the screen size, to a

drawable which we then use to set the background. (23)

50

Second and third fragment classes

The seconds’ class only difference with the first fragment class is the data used

to fill the layout elements. For tomorrow we can only use predictions, there is no

current data available.

The thirds’ class just has a lot fewer layout elements since there isn’t a lot of

information available from two days in the future.

51

2.4.2 ScrollView

The scrollView allows us to expand our layout on a single view. We are not

limited to the boundaries of the screen itself. We can make a view which is

bigger than the screen and scroll through it all on one screen.

In this project we use it to display a detailed list of different types of pollen and

their status.

Figure 35: ScrollView screenshots

As you can see on the second screenshot there’s a scrollbar present.

52

2.4.3 GraphView

In order to represent the historic data I’ve opted to use some charts. In order to

build these charts I’ve used a library called GraphView. The activity where I

make use of this is the graphActivity, which represents the historic data.

graphActivity

#onCreate (): void

-c: Calendar

-getPoints (historyList: List<Weather>,
size: int, hlabels: String []):
List<DataPoint[]>

-mainPath: String

-hLabels: String[]

-historyList: List<Weather>

-collection: List<DataPoint[]>

-size: int

-humidSeries:
LineGraphSeries<DataPoint>

-tempSeries:
LineGraphSeries<DataPoint>

-rainSeries: BarGraphSeries<DataPoint>
-pressSeries:
LineGraphSeries<DataPoint>

Figure 36: graphActivity UML

This class creates three charts. In order to do so it locates the XML file,

containing information about the pollen, using the mainPath string which

describes this location. It then passes this location to the xmlParser (using the

getPollenListFromFile method) which parses the file and returns a list of Weather

objects containing the information from the file. This list is saved as the

historyList, the size refers to the size of this list which we’ll need to transform

this list into a set of DataPoint collections.

In order to fill the charts we need LineGraphSeries for line graph and

BarGraphSeries for bar charts. These series are lists of DataPoint objects. A

DataPoint contains 2 numbers which describe a point on the chart. The getPoints

method converts this historyList into a list of collections of DataPoint objects, one

collection for each chart or graph we want to draw.

We then define each collection based on which series they describe:

temperature, rainfall, humidity or air pressure. The hLabels is also produced in

the getPoints method, this describes the x-axis’ labels which are timestamps.

While the y-axis’ labels are linked to the values displayed and are automatically

generated.

53

3 Tests

This chapter will cover some of the problems I ran into and how I’ve solved

them. The method of solving these problems involved some debugging by using

tags or console lines which returned certain information wherever these were

placed. This way I could read out what the application was doing step by step

and intervene where necessary.

3.1 Finished downloads
The main problem I’ve encountered when downloading the files was finding out

when the downloads are finished. When I ran the application, it didn’t find any

information to fill the pages with information. The cause was that it tried filling

the page before the files were finished downloading which caused the page to be

empty because no information was available yet.

Solution

I’ve solved this by implementing the broadcast receiver which looked for

broadcasts sent by the downloader notifying a file has finished downloading. Only

once this occurred the application could start filling the page with information.

The problem returned when I needed more than one file; I needed multiple files

to obtain all the information necessary. The broadcast receiver activated for

whichever file had finished downloading first. Therefor I saved the id’s given to

the download, one unique id for each download. Now I could identify each

broadcast with a certain file. Once all of the necessary files were downloaded the

application could start filling the page with information.

3.2 Reading the files
When trying to implement a parser for the XML files I ran into quite some

troubles. Most of these troubles were in fact just typo’s. I defined some tags with

faulty information which caused the parser to not find the wanted tags. Another

big problem was the separation between the START_TAG’s and the END_TAG’s.

At first the parser only returned END_TAG’s which caused it to return faulty

information or even no information. The problem was in my switch case where I

forgot to add the break; statement at the end of the START_TAG case. Therefor

the parser just skipped these tags and only looked for END_TAG’s.

Solution

The solution was quite simple, once I found out. I corrected the faulty defined

tags and added a break; statement at the end of each case. This resulted in the

parser returning the correct information when asked for.

54

A second problem which occurred while trying to read the files was with the CSV

type of file. The first couple of lines in these files contained for the application

unnecessary information. So the first parts of information this parser returned

was unusable.

Solution

In order to solve this I first implemented a for loop which does nothing the first

lines where this faulty information was defined. After these lines it started

reading and returning the correct information.

But, this method wasn’t really clean and I went to look for a better solution. I

found out that in the constructer of the CsvReader you can add an argument

which defines the number of lines to skip before actually starting to read. This

made my previous solution with the for loop unnecessary and still returned the

correct information. I opted for this solution as it was the cleaner solution.

3.3 Background image
The applications background is an image which differs depending on the current

or predicted weather state. I used some pictures and cut them to a ratio which is

most common with Android devices. But when I used this image on a different

device it was stretched messed up.

Solution

In order to solve this I used a scaler. First I measured the user’s screen, then the

image is rescaled to fit the screen perfectly and in a good state. Now whichever

device is used the image should be properly scaled to its screen size. (24)

3.4 X-axis labels
When generating the charts the graphView class looks at each of the DataPoint

objects and use them as coordinates. So I had to decide a way to generate the

x-coordinates in order for the charts to represent correct information. Since the

x-axis is about time, one DataPoint for each hour, I tried using a Date objects

because the graphView knew how to handle these. This resulted in the graph

itself being correct but the x-labels were unreadable. When I tried to format

these Date objects the graph didn’t represent the correct data because the

graphView saw these formats as simple strings which messed up the order.

Solution

The solution was to set up a custom list of strings which represented the x-

labels, they were yet again formatted Date objects but they have no relation to

the building of the chart. This caused the charts to be correct and the labels as

well.

55

4 Conclusion
This application provides an easy way to access the current weather status as

well as predictions as well as some statistics. It’s an easy tool to check whether

you’ll need a jacket when going outside or deciding when to do a barbecue in

your garden.

The application has met all of the required objectives. It gathers the right

sources for information and it provides the user with this information in a way

where it doesn’t take a lot of effort to find the information required.

This project has improved my knowledge and interests of the Android

environment not only by knowing how to implement certain functionalities but

mostly by solving the problems I’ve encountered. I’ve found a lot of information

and help online, the Android community is a very open community. You can

implement certain solutions but they don’t always fit your needs. By adapting

these solutions to my problems I came to understand them thoroughly. I came

to recognize some things I’ve been learning the previous years at college but

came to expand this knowledge by creating this application.

Nonetheless, this application is far from finished. Future improvements could

involve expanding the different locations, this will require valuable sources of

information.

All of the data acquired at this point is data straight from an online source, a

possible improvement could be to save some of this data on the device in order

to expand the information known about previous weather statistics as for now

you can only go back 24 hours.

Another useful improvement is a widget, a widget is a miniature version of the

application which can be embedded on the home screen. This way the user

wouldn’t have to open the application in order to receive some information

nonetheless.

56

5 Appendix

5.1 Manual
This part covers the use of this application from installation to how the

application is used.

Installation

First of all we have to retrieve the .apk file. This file is located on the disk

provided at the end of this book. Copy the .apk file to your Android device.

This can be done by connection your device to a computer and, when prompted,

select to use it to transfer files. You can now copy the .apk file through your

computer to a location on the device, it’s important to remember this location.

Figure 37: Device usage screenshot

57

Once the file is on your device, we have to enable the phone to install

applications from an unknown source. In order to do so go to the Settings of

your device, scroll down and choose the Security section. In here you can

activate the ability to install application from an unknown source.

Once this is done, locate the .apk on your device and click it. The installation will

now do its thing and when it’s done, the application is installed and can be

opened from your applications folder.

Figure 38: Installation screenshots

58

How to use

Once the application is installed, we can start using it. This part will guide you

through the application step by step.

You open the application by touching the applications’ icon.

Figure 39: Open application screenshot

59

Once opened, the first thing you’ll see is the data for the current day. The top

half is current data while the bottom half shows the predictions made for today.

If you swipe to the right, you’ll see tomorrows’ predictions if you swipe again

you’ll see predictions for the day after tomorrow and so on up to 7 days further.

Figure 40: Swipe screenshots

60

As you can see at the top of the screen, our location is currently set to Valladolid.

In order to change the location we go back to the current day. At the top left we

can see a location icon. Once we click this, we can select another location and

the data for this location will automatically be loaded.

Figure 41: Select location screenshots

Once again, on todays’ page we have two extra icons in comparison to the other

days. The one resembling a flower is for information regarding the pollen.

Figure 42: Pollen screenshot

61

The other one resembling a clock is for historical information 24 hours back in

time. This contains 3 charts: one for the temperature, one for humidity and rain

and one for the air pressure. Yet again, you can scroll through this page to see

all of the charts.

Figure 43: Charts screenshots

62

5.2 Bibliography

1. Apple Vs Android - A comparative study. AndroidPub. [Online] [Cited: May 25,

2017.] https://android.jlelse.eu/apple-vs-android-a-comparative-study-2017-

c5799a0a1683.

2. Choosing a membership. Apple Developer. [Online] [Cited: May 25, 2017.]

https://developer.apple.com/support/compare-memberships/.

3. Android (operating system). Wikipedia. [Online] [Cited: May 25, 2017.]

https://en.wikipedia.org/wiki/Android_(operating_system).

4. Junta of Castile and León. Wikipedia. [Online] [Cited: May 25, 2017.]

https://en.wikipedia.org/wiki/Junta_of_Castile_and_Le%C3%B3n.

5. ConnectivityManager getNetworkInfo(int) deprecated. stackoverflow. [Online]

[Cited: May 25, 2017.]

https://stackoverflow.com/questions/32547006/connectivitymanager-

getnetworkinfoint-deprecated.

6. DownloadManager. Android Developers. [Online] [Cited: May 25, 2017.]

https://developer.android.com/reference/android/app/DownloadManager.html.

7. Android download manager completed. stackoverflow. [Online] [Cited: May

25, 2017.] https://stackoverflow.com/questions/21477493/android-download-

manager-completed.

8. Comma-separated values. Wikipedia. [Online] [Cited: May 25, 2017.]

https://en.wikipedia.org/wiki/Comma-separated_values.

9. opencsv. opencsv. [Online] [Cited: May 25, 2017.]

http://opencsv.sourceforge.net/.

10. XML. Wikipedia. [Online] [Cited: May 25, 2017.]

https://en.wikipedia.org/wiki/XML.

11. XML Processing in Android and Java: XMLPull Example. VodeVoila. [Online]

[Cited: May 17, 2017.] http://www.codevoila.com/post/64/xml-processing-in-

android-and-java-xmlpull-example.

12. How to implement a ViewPager with different Fragments/Layouts.

stackoverflow. [Online] [Cited: May 25, 2017.]

http://stackoverflow.com/questions/18413309/how-to-implement-a-viewpager-

with-different-fragments-layouts.

13. Android ViewPager Example. Java Code Geeks. [Online] [Cited: May 25,

2017.]

https://examples.javacodegeeks.com/android/core/view/viewpager/android-

viewpager-example/.

14. Using ViewPager for Screen Slides. Android Developers. [Online] [Cited: May

25, 2017.] https://developer.android.com/training/animation/screen-slide.html.

https://android.jlelse.eu/apple-vs-android-a-comparative-study-2017-c5799a0a1683
https://android.jlelse.eu/apple-vs-android-a-comparative-study-2017-c5799a0a1683
https://developer.apple.com/support/compare-memberships/
https://en.wikipedia.org/wiki/Android_(operating_system)
https://en.wikipedia.org/wiki/Junta_of_Castile_and_Le%C3%B3n
https://stackoverflow.com/questions/32547006/connectivitymanager-getnetworkinfoint-deprecated
https://stackoverflow.com/questions/32547006/connectivitymanager-getnetworkinfoint-deprecated
https://developer.android.com/reference/android/app/DownloadManager.html
https://stackoverflow.com/questions/21477493/android-download-manager-completed
https://stackoverflow.com/questions/21477493/android-download-manager-completed
https://en.wikipedia.org/wiki/Comma-separated_values
http://opencsv.sourceforge.net/
https://en.wikipedia.org/wiki/XML
http://www.codevoila.com/post/64/xml-processing-in-android-and-java-xmlpull-example
http://www.codevoila.com/post/64/xml-processing-in-android-and-java-xmlpull-example
http://stackoverflow.com/questions/18413309/how-to-implement-a-viewpager-with-different-fragments-layouts
http://stackoverflow.com/questions/18413309/how-to-implement-a-viewpager-with-different-fragments-layouts
https://examples.javacodegeeks.com/android/core/view/viewpager/android-viewpager-example/
https://examples.javacodegeeks.com/android/core/view/viewpager/android-viewpager-example/
https://developer.android.com/training/animation/screen-slide.html

63

15. Introduction to Activities. Android Developers. [Online] [Cited: May 25,

2017.] https://developer.android.com/guide/components/activities/intro-

activities.html.

16. Android PopupWindow custom layout. tutorialsbird. [Online] [Cited: May 25,

2017.] http://www.tutorialsbird.com/android-popupwindow-custom-layout/.

17. Pop up window to display some stuff in a fragment. stackoverflow. [Online]

[Cited: May 25, 2017.] https://stackoverflow.com/questions/18461990/pop-up-

window-to-display-some-stuff-in-a-fragment.

18. GraphView - open source graph plotting library for Android. GraphView.

[Online] [Cited: May 25, 2017.] http://www.android-graphview.org/.

19. App Manifest. Android Developers. [Online] [Cited: May 25, 2017.]

https://developer.android.com/guide/topics/manifest/manifest-intro.html.

20. How to use SharedPreferences in Android to store, fetch and edit values.

stackoverflow. [Online] [Cited: May 25, 2017.]

https://stackoverflow.com/questions/3624280/how-to-use-sharedpreferences-in-

android-to-store-fetch-and-edit-values.

21. How I get Attribute using by XMLPull parser. stackoverflow. [Online] [Cited:

May 25, 2017.] https://stackoverflow.com/questions/7726239/how-i-get-

attribute-using-by-xmlpull-parser.

22. Best practiec for instantiating a new Android Fragment. stackoverflow.

[Online] [Cited: May 25, 2017.]

https://stackoverflow.com/questions/9245408/best-practice-for-instantiating-a-

new-android-fragment.

23. How to use relativelayout.setBackgroundDrawable() with a bitmap?

stackoverflow. [Online] [Cited: May 25, 2017.]

https://stackoverflow.com/questions/7466900/how-to-use-relativelayout-

setbackgrounddrawable-with-a-bitmap.

24. Full screen background image in an activity. stackoverflow. [Online] [Cited:

May 25, 2017.] https://stackoverflow.com/questions/16135984/full-screen-

background-image-in-an-activity.

https://developer.android.com/guide/components/activities/intro-activities.html
https://developer.android.com/guide/components/activities/intro-activities.html
http://www.tutorialsbird.com/android-popupwindow-custom-layout/
https://stackoverflow.com/questions/18461990/pop-up-window-to-display-some-stuff-in-a-fragment
https://stackoverflow.com/questions/18461990/pop-up-window-to-display-some-stuff-in-a-fragment
http://www.android-graphview.org/
https://developer.android.com/guide/topics/manifest/manifest-intro.html
https://stackoverflow.com/questions/3624280/how-to-use-sharedpreferences-in-android-to-store-fetch-and-edit-values
https://stackoverflow.com/questions/3624280/how-to-use-sharedpreferences-in-android-to-store-fetch-and-edit-values
https://stackoverflow.com/questions/7726239/how-i-get-attribute-using-by-xmlpull-parser
https://stackoverflow.com/questions/7726239/how-i-get-attribute-using-by-xmlpull-parser
https://stackoverflow.com/questions/9245408/best-practice-for-instantiating-a-new-android-fragment
https://stackoverflow.com/questions/9245408/best-practice-for-instantiating-a-new-android-fragment
https://stackoverflow.com/questions/7466900/how-to-use-relativelayout-setbackgrounddrawable-with-a-bitmap
https://stackoverflow.com/questions/7466900/how-to-use-relativelayout-setbackgrounddrawable-with-a-bitmap
https://stackoverflow.com/questions/16135984/full-screen-background-image-in-an-activity
https://stackoverflow.com/questions/16135984/full-screen-background-image-in-an-activity

