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Uniform estimates on the velocity in Rayleigh–Bénard
convection

Manuel Núñeza!

Departamento de Análisis Matemático, Universidad de Valladolid, 47005 Valladolid, Spain
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The kinetic energy of a fluid located between two plates at different temperatures is
easily bounded by classical inequalities. However, experiments and numerical
simulations indicate that when the convection is turbulent, the volume of the do-
mains in which the speed is large, is rather small. This could imply that the maxi-
mum of the speed, in contrast with its quadratic mean, does not admit ana priori
upper bound. It is proved that, provided the pressure remains bounded, a uniform
estimate for the speed maximum does indeed exist, and that it depends on the
maxima of certain ratios between temperature, pressure, and velocity. ©2005
American Institute of Physics.fDOI: 10.1063/1.1855400g

I. INTRODUCTION

The study of thermal convection of a fluid powered by the difference of temperature between
two plates, known as Rayleigh–Bénard convection, has been an extensively studied subject for a
long time. Computer modeling and physical experiments have produced an enormous wealth of
information: for recent reviews, see Refs. 1 and 2. Perhaps unavoidably, there has not been a
comparable volume of rigorous studies, if we except the study of the stability of different patterns
sRef. 3, pp. 23–95d. It is well known that when the difference of temperature between the top and
bottom plates exceeds a certain amount, usually measured in terms of the Rayleigh constantR,
convection sets in. Near the onset, convection cells occur; with increasingR, and depending also
on the ratio between viscosity and thermal diffusivitysthe Prandtl numberd more complex patterns
appear and bifurcations to chaotic states may occur. The same may be said of the temperature: for
a colorful illustration, starting with regular rolls, see e.g., Ref. 4.

The standard mathematical model of Reyleigh–Bénard convection is given by the Boussinesq
approximation to the equations of motion, which we repeat here for convenience. We will consider
a d-dimensional domainU of the formV3 f0,hg, and as usual we will assume that the tempera-
ture is constant at the lower and upper lids,T=T0 at V3 h0j andT=Th,T0 at V3 hhj. The rest
of the boundary conditions will be discussed later. Let us denote byv the fluid velocity,T the
temperature,n the kinematic viscosity,k the thermal diffusivity, andp the kinetic pressure. Then
the nondimensionalized Boussinesq approximationssee, e.g., Ref. 5d to the equations of motion is

]v

]t
= nDv − v · ¹ v − ¹ p + sT − Thded, s1d

]T

]t
= kDT − v · ¹ T, s2d
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¹ ·v = 0. s3d

ed denotes the vertical unit vector. Traditionally the differenceu of the actual temperature with the
linear one between the lidssassociated to pure heat conductiond is used,

u = T − T0 + bxd,

s4d

b =
T0 − Th

h
.

p is also changed top+bxd
2/2−sT0−Thdxd swhich we denote again bypd. The final system is

]v

]t
= nDv − v · ¹ v − ¹ p + ued, s5d

]u

]t
= kDu − v · ¹ u + bvd, s6d

¹ ·v = 0. s7d

Boundary conditions are usually the following ones: the upper and lower plates are taken either
rigid, where we assume a no-slip condition andv vanishes there, or stress free, in which casevd=0
and the vertical derivatives of the remaining components of the velocity are also zero,]dvi =0. The
lateral walls are assumed rigid and conducting, so thatv andu vanish there.

Let us state some classical results, sinceT satisfiess2d, which is a scalar parabolic equation
without terms inT, it also satisfies the maximum and minimum principlesssee, e.g., Ref. 6d. That
means thatT lies always betweenT0 andTh, which makes excellent physical sense. Thereforeu is
uniformly bounded. By multiplyings5d by v, integrating inU and making use of the boundary
conditions, one gets

1

2

d

dt
E

U
v2 dV + nE

U

u ¹ vu2 dV =E
U

uvd dV ø iui` VolsUd2ivdi2, s8d

where VolsUd denotes the volumesarea in dimension twod of U. Since with our boundary condi-
tions a Poincaré inequality holds, there exists a positive constantc such that

cE
U

uv2udV ø E
U

u ¹ vu2 dV.

Thus, by standard inequalities,

1

2

d

dt
ivi2

2 +
nc

2
ivi2

2 ø
1

2n2c2iui`
2 VolsUd, s9d

which implies thativi2 is bounded for all time.
As in many other turbulent situations, modeling of the chaotic phase of convection shows a

tendency of the flow to concentrate the velocity in regions of small volume.7 Thus the bounded-
ness of the kinetic energy does not provide ana priori bound upon the maximum of the speed. It
is true that physically it seems obvious that this maximum cannot grow without limit, but never-
theless it is interesting to obtain rigorous estimates in terms of the main magnitudes of the
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problem. Our only hypothesis will be the boundedness of the pressurep for, to be specific, of
p / s1+vdg.

II. ANALYSIS OF THE MOMENTS OF THE VELOCITY

Let us start with the momentum equation

]v

]t
= nDv − v · ¹ v − ¹ p + ued, s10d

and forp=1,2…, let

Fp =E
U

vp dV, s11d

wherev= uvu represents the modulus ofv. Fp is a function of time. Sincev2=v ·v,

]v2p

]t
= 2pv2p−2v ·

]v

]t
.

Therefore

1

2p
Ḟ2p =E

U
v2p−2v ·

]v

]t
dV,

and taking into account the momentum equation,

1

2p
Ḟ2p = −E

U
v2p−2sv · ¹ vd ·v dV + nE

U
v2p−2v · Dv dV +E

U

suv2p−2vd − v2p−2v · ¹ pddV.

s12d

In the first place,

E
U

v2p−2sv · ¹ vd ·v dV =E
U

1

2p
v · ¹ v2p dV = 0. s13d

As for the dissipative term,

E
U

v2p−2v · Dv dV =E
U
o

j

s¹ · sv jv
2p−2 ¹ v jd − ¹ v j · ¹ sv2p−2v jdddV

=
1

2
E

]U
v2p−2]v2

]n
ds −E

U
Sv2p−2u ¹ vu2 +

p − 1

2
v2p−4u ¹ v2u2DdV. s14d

It is understood that the last termsmultiplied by p−1d vanishes whenp=1; there are never
negative powers ofv. As for the boundary integral, it also vanishes, since]v2/]n vanishes in all
the boundary, including possible stress-free surfaces.

The last term we must consider is
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E
U

suv2p−2vd − v2p−2v · ¹ pddV. s15d

Since

−E
U

v2p−2v · ¹ p dV = −E
]U

v2p−2pv ·n ds +E
U

sp − 1dpv2p−4v · ¹ v2 dV, s16d

and again the boundary integral vanishes, the term ins16d is

E
U

sv2p−2uvd + sp − 1dpv2p−4v · ¹ v2ddV, s17d

with the same meaning as before whenp=1. We may bounds17d in several ways. We first choose

UE
U

v2p−2uvd + sp − 1dpv2p−4v · ¹ v2 dVU = UE
U

u

1 + v
svdv

2p−2 + vdv
2p−1d + sp − 1d

p

1 + v
sv2p−4

+ v2p−3dv · ¹ v2 dVU
ø I u

1 + v
I

`
E

U

sv2p−2 + v2p−1duvdudV + sp − 1dI p

1 + v
I

`

3E
U

sv2p−4 + v2p−3duv · ¹ v2udV

ø I u

1 + v
I

`
E

U

sv2p−1 + v2pddV + sp − 1dI p

1 + v
I

`

3E
U

sv2p−3 + v2p−2du ¹ v2udV. s18d

From now on we will denote

a = I u

1 + v
I

`

,

b = I p

1 + v
I

`

.

Notice that they are functions oft. Thus

1

2p
Ḟ2p ø − nE

U
v2p−2u ¹ vu2 dV −

nsp − 1d
2

E
U

v2p−4u ¹ v2u2 dV + aE
U

sv2p−1 + v2pddV

+ sp − 1dbE
U

sv2p−3 + v2p−2du ¹ v2udV. s19d

For our first estimate we will not make use of the first dissipative term. We have

aE
U

sv2p−2 + v2p−1ddV ø asF2p−1 + F2pd. s20d

As for the second term, by using Cauchy–Schwarz and Young’s inequalities,

033102-4 Manuel Núñez J. Math. Phys. 46, 033102 ~2005!



sp − 1dbE
U

svp−1 + vpdvp−2u ¹ v2udV ø sp − 1dbSE
U

svp−1 + vpd2 dVD1/2SE
U

v2p−4u ¹ v2u2 dVD1/2

ø sp − 1db21

n
E

U

svp−1 + vpd2 dV

+
sp − 1dn

4
E

U
v2p−4u ¹ v2u2 dV

ø sp − 1db22

n
sF2p−2 + F2pd +

sp − 1dn
4

E
U

v2p−4u ¹ v2u2 dV.

s21d

We have proved the recursive inequality

1

2p
Ḟ2p ø −

nsp − 1d
4

E
U

v2p−4u ¹ v2u2 dV + aF2p−1 + aF2p +
2sp − 1db2

n
F2p−2 +

2sp − 1db2

n
F2p.

s22d

We use now the fact thatU has finite volume to bound all theFk in terms ofF2p,

F2p−2 ø VolsUd1/pF2p
1−1/p,

s23d
F2p−1 ø VolsUd1/2pF2p

1−1/2p.

Let us begin studying a series of alternatives. It may happen

sAd F2p,1. Otherwise,
sBd F2p−2øVolsUd1/pF2p, F2p−1øVolsUd1/2pF2p.

We will consider the consequences of alternativesBd. We have

1

2p
Ḟ2p +

nsp − 1d
4

E
U

v2p−4u ¹ v2u2 dV ø Sas1 + msUd1/2pd +
2sp − 1db2

n
s1 + VolsUd1/pdDF2p,

s24d

and if we callk=1+maxhVolsUd ,1j,

1

2p
Ḟ2p +

nsp − 1d
4

E
U

v2p−4u ¹ v2u2 dV ø kSa +
2sp − 1db2

n
DF2p. s25d

Let us now remember a particular case of the Gagliardo–Nirenberg inequalitysRef. 8, pp. 69 and
70d. For any functionf [H1sUd, there exists a constantC depending only onU such that

ifi2
d+2 ø Csi ¹ fi2 + ifi1ddifi1

2. s26d

Sincesx+yddø2d−1sxd+ydd, by takingl=maxh2d−1C,1j,

ifi2
d+2 ø lsi ¹ fi2

d + ifi1
ddifi1

2, s27d

with lù1. Notice that forf =vp,

ifi2 = F2p
1/2, ifi1 = Fp, ¹ f =

p

2
v2p−2 ¹ v2, i ¹ fi2

2 =
p2

4
E

U
v2p−4u ¹ v2u2 dV. s28d

In the inequalitys27d, there exist two alternatives. Either
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sb1d ifi2 , l1/sd+2difi1, s29d

or

sb2d i ¹ fi2
2 ù S ifi2

d+2 − lifi1
d+2

lifi1
2 D2/d

. s30d

With our election off, the first alternative means

F2p , l2/sd+2dFp
2. s31d

Alternative sb2d, when taken intos25d, yields

1

2p
Ḟ2p ø −

nsp − 1d
p2 SF2p

sd+2d/2 − lFp
d+2

lFp
2 D2/d

+ kSa +
2sp − 1db2

n
DF2p. s32d

Take now, forpù2,

gp = lS1 + kd/2S p2

nsp − 1dD
d/2Sa +

2sp − 1db2

n
Dd/2D . s33d

Notice thatgpùlùl2/sd+2dù1. A short calculation will convince us that ifF2p.gpFp
2 and sb2d

occurs, thenḞ2pø0. Since alternativesb1d is included in

sB1d F2p ø gpFp
2,

the remaining possibility is

sB2d F2p ø 0.

Recall that all this assumessBd. Therefore the alternatives aresAd F2pø1, sB1d or sB2d.

III. UNIFORM ESTIMATES IN TIME

Let us consider a time intervalf0,tg, and let

Fpstd = maxh1,maxhFpstd:t [ f0,tgjj
s34d

Gpstd = maxhgpstd:t [ f0,tgj.

For everyt[ f0,tg wheresAd or sB1d occurs, certainly

F2pstd ø GpstdFpstd2. s35d

Now, if s35d occurs for everyt[ f0,tg, obviously

F2pstd ø GpstdFpstd2. s36d

The other possibility is that for a certaint1[ f0,tg,

F2pst1d . GpstdFpstd2, s37d

which implies thatsB2d holds, i.e.,Ḟ2pst1dø0. Let st0,t1g be a maximal left interval wheres37d
occurs. We know thatF2p is decreasing there. Ift0.0, F2pst0d=GpstdFpstd2, which, since
F2pst1døF2pst0d, contradicts our hypothesis. The only possibility is thats35d occurs nowhere, i.e.,
t0=0. In that case,F2p is decreasing inf0,t1g and thereforeF2pst1døF2ps0d. Thus, in every case

F2pstd ø maxhGpstdFpstd2,F2ps0dj. s38d

Sinceivstdip=Fpstd1/p, if we denote

033102-6 Manuel Núñez J. Math. Phys. 46, 033102 ~2005!



fpstd = maxh1,maxhivstdip:t [ f0,tgjj, s39d

the 2pth root of s38d yields

f2pstd ø maxhGpstd1/2pfpstd,ivs0di2pj. s40d

Hence

f4std ø maxhG2std1/4f2std, ivs0di4j,

f8std ø maxhG4std1/8G2std1/4f2std,G4std1/8ivs0di4, ivs0di8j¯ ,

s41d
f2nstd ø hG2n−1std1/2n

G2n−2std1/2n−1
¯G2std1/4f2std,

G2n−1std1/2n
G2n−2std1/2n−1

¯G4std1/8ivs0di4…, ivs0di2n.

Let us study the infinite product

G2std1/4G4std1/8
¯G2n−1std1/2n

¯ . s42d

Recall that

astd = I ustd
1 + vstdI`

, bstd = I pstd
1 + vstdI`

. s43d

Let us denote byastd, bstd their respective maxima inf0,tg. By the expression ins33d,

G2nstd ø lS1 + kd/2S 22n

ns2n − 1dD
d/2Sastd +

2s2n − 1d
n

bstd2Dd/2D
ø lS1 +S22n+2kSastd

n
+

bstd2

n2 DDd/2D ø lS1 +S22n+2kSastd
n

+
bstd2

n2 + 1DDd/2D . s44d

The addition of 1 to the parentheses is intended to ensure that

x = S22n+2kSastd
n

+
bstd2

n2 + 1DDd/2

ù 1.

Since for thosex, logs1+xdø1+logx holds,

log G2nstd ø log l + 1 +
d

2
Slog k + s2n + 2dlog 2 + logSastd

n
+

bstd2

n2 + 1DD .

Hence the sum of the logarithms ofG2n satisfies

o
n=1

`
1

2n+1log G2nstd ø
1

2
S1 + logl +

d

2
log kD +

d

2
log 2o

n=1

`
2n + 2

2n+1 +
d

4
logSastd

n
+

bstd2

n2 + 1D .

s45d

Thus, since the sum of the seriesos2n+2d /2n+1 is 3,

p
n=1

`

G2nstd1/2n+1
ø 23d/2sled1/2kd/4Sastd

n
+

bstd2

n2 + 1Dd/4

, s46d

and the same may be said of any finite product
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p
n=1

m

G2nstd1/2n+1
. s47d

Since, on the other hand,

ivs0dip ø ivs0di` VolsUd1/p ø kivs0di`, s48d

we find

f2nstd ø 23d/2sled1/2kd/4Sastd
n

+
bstd2

n2 + 1Dd/4

maxhf2std,kivs0di`j. s49d

It is well known thativip→ ivi` asp→`, so thatf2nstd→maxh1,ivstdi` : t[ f0,tgj. Also, f2std
represents the maximum of the kinetic energy inf0,tg, which we denote byEstd. Calling M the
universal constant written ins49d, we obtain our main estimate

maxhivstdi`:t [ f0,tgj ø MS1

n
max
f0,tg

I ustd
1 + vstdI`

+
1

n2max
f0,tg

I pstd
1 + vstdI`

2

+ 1Dd/4

3 maxhEstd,kivs0di`j. s50d

IV. COMMENTS AND EXTENSIONS OF THE ESTIMATES

In principle it could look as if the estimates in terms ofu andp divided by 1+v are unnec-
essary, since ifv is bounded so areu and p. While there is no conceptual gain in taking these
magnitudes divided by 1+v, the estimates50d is in fact finer than one involving onlyiui` and
ipi`. It can be far better if the regions whereu and/orp are larger coincide with regions of high
velocity. In particular, high temperature deviation propels the fluid faster, so it is likely that
u / s1+vd is considerably smaller thanu.

When the flow is chaotic, the temperature may become irregular. Therefore it is possible that
some primitive ofu se.g., a functionQ such that for some coordinatej , ] jQ=ud may have a better
behavior than the temperature deviation: portions whereu is positive may compensate with others
where it is negative to obtain a smooth result. We will see thativi` may also be bounded in terms
of Q / s1+vd. The method follows the steps of the previous one: the term

E
U

uv2p−2vd dV s51d

may be written as

E
U

s] jQdv2p−2vd dV = −E
U

Q] jsv2p−2vdddV = −E
U

Qsv2p−2] jvd + 2sp − 1dv2p−4vdv · ] jvddV.

s52d

This may be bounded by

s2p − 1dE
U
U Q

1 + v
Usv2p−2 + v2p−1du ¹ vudV ø s2p − 1dI Q

1 + v
I

`
E

U

sv2p−2 + v2p−1du ¹ vudV.

s53d

Using now the Cauchy–Schwarz inequality, the term is bounded by
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s2p − 1d2I Q

1 + v
I

`

1

2n
E

U

sv2p−2 + v2pddV + nE
U

v2p−2u ¹ vu2 dV. s54d

The last term may now be cancelled with the first of the dissipative termsswhich we did not use
in our previous proofd and we are left with

s2p − 1d2I Q

1 + v
I

`

2 1

2n
sF2p−2 + F2pd. s55d

The rest of the proof is analogous to the previous one. We are left with a bound of the form

maxhivstdi`:t [ f0,tgj ø MS 1

n2max
f0,tg

I Qstd
1 + vstdI`

2

+
1

n2max
f0,tg

I pstd
1 + vstdI`

2

+ 1Dd/4

3 maxhEstd,kivs0di`j. s56d

Notice, however, that now a factor of the form 1/n2 appears before the maximum norm of
Q / s1+vd, and this is squared, while before we had only 1/n and the power ofu / s1+vd was one.
This may be important when the viscosity is low.

V. CONCLUSIONS

While the kinetic energy of the flow in Rayleigh–Bénard convection may be easily bounded
by classical inequalities, the maximum of the velocity is harder to handle. As soon as the flow
becomes chaotic small islands or filaments of high velocity are observed, which makes compatible
the boundedness of the square mean of the velocitysthe kinetic energyd with the existence of large
velocity peaks. It is proved here that, provided the pressure remains uniformly bounded, so does
the velocity, and its maximum may be estimated by the maxima of the temperature deviation and
pressure divided by one plus the velocity modulus. Other estimates may be made in terms of
certain means of the temperature, which may be considerably smaller than the temperature itself if
its distribution is irregular. The bounds depend on certain powers, depending on the dimension, of
the previously mentioned magnitudes and the flow viscosity.
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