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Uniform estimates on the velocity in Rayleigh—Bénard
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The kinetic energy of a fluid located between two plates at different temperatures is
easily bounded by classical inequalities. However, experiments and numerical
simulations indicate that when the convection is turbulent, the volume of the do-
mains in which the speed is large, is rather small. This could imply that the maxi-
mum of the speed, in contrast with its quadratic mean, does not admitpaiori

upper bound. It is proved that, provided the pressure remains bounded, a uniform
estimate for the speed maximum does indeed exist, and that it depends on the
maxima of certain ratios between temperature, pressure, and veloc2p08&
American Institute of Physic$DOI: 10.1063/1.1855400

I. INTRODUCTION

The study of thermal convection of a fluid powered by the difference of temperature between
two plates, known as Rayleigh—Bénard convection, has been an extensively studied subject for a
long time. Computer modeling and physical experiments have produced an enormous wealth of
information: for recent reviews, see Refs. 1 and 2. Perhaps unavoidably, there has not been a
comparable volume of rigorous studies, if we except the study of the stability of different patterns
(Ref. 3, pp. 23-95 It is well known that when the difference of temperature between the top and
bottom plates exceeds a certain amount, usually measured in terms of the Rayleigh d@nstant
convection sets in. Near the onset, convection cells occur; with increRsiagd depending also
on the ratio between viscosity and thermal diffusivitiye Prandtl numbgmore complex patterns
appear and bifurcations to chaotic states may occur. The same may be said of the temperature: for
a colorful illustration, starting with regular rolls, see e.g., Ref. 4.

The standard mathematical model of Reyleigh—Bénard convection is given by the Boussinesq
approximation to the equations of motion, which we repeat here for convenience. We will consider
a d-dimensional domaitJ of the form() X [0,h], and as usual we will assume that the tempera-
ture is constant at the lower and upper lidls; Ty at Q X {0} and T=T,<T, at ) X {h}. The rest
of the boundary conditions will be discussed later. Let us denote the fluid velocity, T the
temperaturey the kinematic viscosityx the thermal diffusivity, andr the kinetic pressure. Then
the nondimensionalized Boussinesq approximatsae, e.g., Ref.)&o the equations of motion is

ov
E:VAV—V-VV—V’JT‘F(T—Th)ed, (1)

aT
= kAT-Vv- VT, 2)
at
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V.v=0. ©)

&4 denotes the vertical unit vector. Traditionally the differeasf the actual temperature with the
linear one between the lidassociated to pure heat conducjias used,

0=T-Ty+ BXy,

(4)
_To— Ty
p=t "

m is also changed ter+ 8x3/2—(Ty—Th)Xg (Which we denote again by). The final system is

ov
E:VAV—V-VV—VW'l'Hed, (5)
a0
—=kAfO-v-V 0+ Buy, (6)
at
V.v=0. (7)

Boundary conditions are usually the following ones: the upper and lower plates are taken either
rigid, where we assume a no-slip condition anganishes there, or stress free, in which aage0

and the vertical derivatives of the remaining components of the velocity are als@ggrd). The

lateral walls are assumed rigid and conducting, so ¥hand 6 vanish there.

Let us state some classical results, sificgatisfies(2), which is a scalar parabolic equation
without terms inT, it also satisfies the maximum and minimum principlese, e.g., Ref.)6 That
means thaT lies always betweeily andT,, which makes excellent physical sense. Theretoise
uniformly bounded. By multiplying5) by v, integrating inU and making use of the boundary
conditions, one gets

1d
22| v (vurav= [ moav=ld. vorued. ®)
Zdt U U U

where Vo[U) denotes the volumérea in dimension twoof U. Since with our boundary condi-
tions a Poincaré inequality holds, there exists a positive constanth that

cf |v2|dV<J | Vv[2dv.
U U

Thus, by standard inequalities,

1
21°¢?

1d
2dt

VI + VB < 5 5zlel2 Vol u), ©)
which implies that|v||, is bounded for all time.

As in many other turbulent situations, modeling of the chaotic phase of convection shows a
tendency of the flow to concentrate the velocity in regions of small volUfiteus the bounded-
ness of the kinetic energy does not provideaapriori bound upon the maximum of the speed. It
is true that physically it seems obvious that this maximum cannot grow without limit, but never-
theless it is interesting to obtain rigorous estimates in terms of the main magnitudes of the
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problem. Our only hypothesis will be the boundedness of the presslicg, to be specific, of
l(1+v)].

II. ANALYSIS OF THE MOMENTS OF THE VELOCITY

Let us start with the momentum equation

ov
E:vAv—v-Vv—Vvﬁeed, (10

and forp=1,2.., let

Fp:f vPdv, (12)
U

wherev=|v| represents the modulus wof F, is a function of time. Since?=v-v,

P v
—— =2p?P . —.
ot ot
Therefore
1 \

. d
—F=| v¥ . —dv,
2p f o' at

and taking into account the momentum equation,

1 .
Z—szp: —f VP v Vv)-vdV+ vf v2P 2y - Av dV+f (P 2vg=v® v - V mdV.
U u u
(12)
In the first place,
1
f UZD_Z(V'VV)'VdV:f —v-Vy?dv=0. (13
U ] 2p

As for the dissipative term,

f UZp_ZV -AvdV= E (V . (UJ'UZp_ZV U]) -V vj- \% (UZp_ZUj))dV
u U j

1 Jv? -1
== f 0?22 dg - f (va_2|VV|2+ P v2p_4|V02|2>dV. (14)
2J) an u 2

It is understood that the last tergmultiplied by p—1) vanishes whemp=1; there are never
negative powers of. As for the boundary integral, it also vanishes, sidgé& on vanishes in all
the boundary, including possible stress-free surfaces.

The last term we must consider is
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f (0% 2vg— v 2 - V m)dV. (15)
]
Since
—f v 2. Vadv= —f v 2y - n d(r+f (p-Dm?® - Voladv, (16)
U aJ U
and again the boundary integral vanishes, the teri@i@h is

f 0P 2004+ (p- )72 - Vod)dV, (17
u

with the same meaning as before whenl. We may bound17) in several ways. We first choose

o
(® 2 +og® ) +(p- 1) (v?
v 1+

U o
vl+

+0?P 3y . Vo2dV

f 2P 2004+ (p- D) m?P 4 - Vo2dv
U

ool | @ g -] T

© ©

XJ (V2P 4+ 0P 3)|v . Vo2laV
U

f(va L+ u2P)dV + (p- 1)

1+v|. ©

XJ (V2P 3+ %72 VI dv. (18
u

From now on we will denote

Notice that they are functions of Thus

1. -1
_sz = - Vf va—2| v, V|2 dv - V(p—)f U2p—4| v, U2|2 av + aj (v2p—l+ U2p)dv
2p u 2 u u

+(p- 1)Bf P2+ 0272 VodV. (19
U
For our first estimate we will not make use of the first dissipative term. We have
a J P2+ 0P 1AV < a(Fgpg + Fap). (20)
U

As for the second term, by using Cauchy—Schwarz and Young’s inequalities,
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1/2 1/2
(p— 1)Bf (UP‘1+Up)vp-2| sz|dV$ (p_ 1)[3([ (vp—l+vp)2 dV) (J UZp—4| Vv2|2 dV)
U U U

<(p- 1),32%f Pt +ouP)2dv
U

+ M}f UZp—4| \vj U2|2 av
4 ]

2 (p—-Dv _
s(p—l)ﬁ2;<F2p-2+F2p)+ P 2 f v® Y Vo?Pav.
V]

(21)
We have proved the recursive inequality
- 1 -1 2 2(p-1 2
sz V(p ) f VP Vo2 AV + aF gy + aF gy + 2p-1B Fopo+ (p-1B Fap.
2p v v
(22
We use now the fact thad has finite volume to bound all thig, in terms ofF,
Fap-2 =< Vol(U) PR3P,
(23)
F2p 1= Vo|(U)1/2pF1 1/23
Let us begin studying a series of alternatives. It may happen
(A) Fy,<1. Otherwise,
(B) Fapp=<Vol(U )1/PF2p, Fap-1=VoI(U)!/2PFy,
We will consider the consequences of alternatiBe We have
: 1 1)8?
zszp ”(p ) f VP V2P dv < (a(l +m(U)Y%) + ﬁ(l + vm(U)l/p))sz,
14
(24)
and if we callk=1+maxVol(U), 1},
Lo 0= oue o 2(p- 1P
2_pF2p+ 2 fuvp4|Vv| dv<k a+f Fop- (25)

Let us now remember a particular case of the Gagliardo—Nirenberg ineqiirRéity8, pp. 69 and
70). For any functionf € H(U), there exists a constaft depending only oiJ such that

If]5°% =< (| V fllo + [IfllDIflIE- (26)
Since(x+y)4=29"1(xd+y9), by takingh=max29-1C, 1},

11372 < NV 5+ [FIDIFIZ, (27)
with A=1. Notice that forf=v",

2
M= F3 Ifl=Fp  Vi= 20202 V=t f o VUIRAV. (29
U

In the inequality(27), there exist two alternatives. Either
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(bD)  [[fly < N2, (29
or
IF]15°2 = NIF1§*)
(b2 [Vil5= (— (30
? NIfl1E
With our election off, the first alternative means
Fop < NZ(H2EZ. (31)
Alternative (b2), when taken intd25), yields
1. wp-1) < Fgrz)/z _ AF§+2>2"’ ( 2(p- 1)32)
—Fops=- +Kla+ —— |Fy. 32
2p 2p p2 )\FIZJ o . 2p ( )
Take now, forp=2,
2 d/2 2(p_ 1)ﬁ2 d/2
= 1+kd/2( P _> ( = P ) 33
e ( wp-1) \¢ v (39

Notice thaty,=\=\?@2=1. A short calculation will convince us that F,,> y,F3 and (b2)
occurs, therf,,<0. Since alternativébl) is included in

the remaining possibility is
(B2) Fy,=<0.
Recall that all this assuméB). Therefore the alternatives af8) F,,<1, (B1) or (B2).

IIl. UNIFORM ESTIMATES IN TIME

Let us consider a time interv@d, 7], and let

@y (7) = max1,maxFy(t):t € [0,7]}}

(34)
I'p(7) = maxy,(t):t € [0,7]}.
For everyte[0,7] where(A) or (B1) occurs, certainly
Fap(t) < Tp(nPy(7)2. (35
Now, if (35) occurs for everyt [0, 7], obviously
Dyp(7) < Fp(T)CDp(T)Z. (36)
The other possibility is that for a certatpe [0, 7],
F2p(t1) > I‘p(7—)q)p(7')2y (37)

which implies that(B2) holds, i.e.,Fy(t;) <0. Let (to,t;] be a maximal left interval whereg7)

occurs. We know thaf,, is decreasing there. If,>0, sz(to):l“p(r)@p(r)z, which, since
Fap(ty) <Fp(to), contradicts our hypothesis. The only possibility is tt&f) occurs nowhere, i.e.,
to=0. In that casef,, is decreasing if0,t;] and therefore=,,(t;) < F,,(0). Thus, in every case

qDZp(T) < max{rp(T)(I)p(T)leZp(o)}- (38)

Since|v(t)[|,=F,(t)*, if we denote
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¢p(7) = max{1,max|v(t),:t € [0,7]}}, (39)
the 2oth root of (38) yields

Bap(7) < max{T (1) Py (7), [V(0)]| 0} (40)
Hence

ba(7) < maxTo(n)Y4epy(7), [V(0)|la},

bg(7) = MaxTa(n)*To(1)ho(1), Tu() IV (O) |, [V(Olg}- -,
(41)
on(7) < T gra(DVZT o) V2 T ) V),

Lara( D2 o) V2 - Ty ()Y ()., [V(O)
Let us study the infinite product
DoAY 4DV - Tonea( DY (42)
Recall that

a(t)
1L+o(t)].,

7 (t)

a(t) = 1+o(t)|.

B(t) = (43

Let us denote byx(7), B(7) their respective maxima if0,7]. By the expression ifi33),

2n dr2 n_ 42
et oo 2550

arA2\ \d2 TAY: d/r2
<>\<1+<22“+2k(a(7) @)) )<>\<1+<22“+2k(a(7) @u)) ) (44)

14 14

The addition of 1 to the parentheses is intended to ensure that

onegy | @) B ))”’2>
(2 k( v R =1

Since for those&, log(1+x)<1+logx holds,

2
Iogl“zn(r)<Iog)\+1+9<Iogk+(2n+2)log2+l4 (T) E;) +1>).

Hence the sum of the logarithms Bn satisfies

1 1 d 2n+2 d_(a(n  B(n?
22n+llogF2n(r)<—(1+Iog)\+élogk> —IogZE 2n+1 - g(aT)+B(Z) +1).

1 n=1 14 14

(45)

Thus, since the sum of the seriB&2n+2)/2"1 is 3,

* — (A2 d/a
H on( 7_)1/2”+1 = 23d/2()\e)1/2kd/4(M + '3(72') + 1) ’ (46)
14

n=1 4

and the same may be said of any finite product
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m
[T Don(n ¥, (47)
n=1
Since, on the other hand,
V() < [V(0)].. VoI (U)*P < Kjv(0)].., (48)

we find

bon(D) < 23d/2()\e)1/2kd/4<@ ,3( 7?

dr4
v +1) max{ (7). V(). (49)

It is well known that|jv||,—v].. asp—, so thatgxn( :te[0, 7]} Also, ¢(7)
represents the maximum of the kinetic energy0nr|, which we denote b¥(7). Calling M the
universal constant written it49), we obtain our main estimate

e a(t) 1 m(t) |? )d"‘
max|[v(t)|..:t € [0,7]} < M( ; [0 ﬂ){ T+o0)|. + Vzr[rgi# Tro0|. +1
x maxE(7),K|v(0)|..}. (50

IV. COMMENTS AND EXTENSIONS OF THE ESTIMATES

In principle it could look as if the estimates in terms @&&nd 7 divided by 1+ are unnec-
essary, since it is bounded so ar@ and 7. While there is no conceptual gain in taking these
magnitudes divided by 1w the estimate50) is in fact finer than one involving onld||.. and
| 7|... It can be far better if the regions whesfeand/or are larger coincide with regions of high
velocity. In particular, high temperature deviation propels the fluid faster, so it is likely that
0/(1+v) is considerably smaller thaf

When the flow is chaotic, the temperature may become irregular. Therefore it is possible that
some primitive ofé (e.g., a functior® such that for some coordinajed;® = 6) may have a better
behavior than the temperature deviation: portions wlfldsepositive may compensate with others
where it is negative to obtain a smooth result. We will see [at may also be bounded in terms
of ®/(1+v). The method follows the steps of the previous one: the term

J 60 %4 dV (51)
U

may be written as

f ((9j®)U2p_ZUd dv=- f @&j(UZp_zvd)dV == J (v2p—2(9jvd + 2(p - 1)vzp_4UdV . ﬁJV)dV
u u u

(52
This may be bounded by

(02p_2+v2p_1)| Vv|dV = (2p- 1) f %P2+ % Y| Vv|dV.

(53

Using now the Cauchy—Schwarz inequality, the term is bounded by
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2p-1)?
(2p-1) T+o

1
— f (V2P 2+ p2P)dV + v f R AAVIENYA (54)
0027/ U U

The last term may now be cancelled with the first of the dissipative téwhikh we did not use
in our previous progfand we are left with

2

1
(2p-1)? Z)(sz—z +Fap). (55)

1+v

The rest of the proof is analogous to the previous one. We are left with a bound of the form

. _ l (t) 2 i 7T(t) 2 )d/4
max{||v(t)|..;t € [0,7]} < M( Vzr[r&:iﬁ Tro0 | + Vzr[rc}i% T+o0). +1
X maxE(7),K|v(0)|..}. (56)

Notice, however, that now a factor of the formi£/appears before the maximum norm of
®/(1+v), and this is squared, while before we had only Ahd the power of/(1+v) was one.
This may be important when the viscosity is low.

V. CONCLUSIONS

While the kinetic energy of the flow in Rayleigh—Bénard convection may be easily bounded
by classical inequalities, the maximum of the velocity is harder to handle. As soon as the flow
becomes chaotic small islands or filaments of high velocity are observed, which makes compatible

the boundedness of the square mean of the vel@itigykinetic energywith the existence of large

velocity peaks. It is proved here that, provided the pressure remains uniformly bounded, so does
the velocity, and its maximum may be estimated by the maxima of the temperature deviation and
pressure divided by one plus the velocity modulus. Other estimates may be made in terms of
certain means of the temperature, which may be considerably smaller than the temperature itself if
its distribution is irregular. The bounds depend on certain powers, depending on the dimension, of

the previously mentioned magnitudes and the flow viscosity.
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