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We consider dynamic multi-species plasma equilibria whose variables depend on a single spatial

coordinate and linear perturbations of these. The linearized system may be reduced to a second-order

one satisfied by the respective fluid streamfunctions. For the two-species case, the electron mass is a

parameter small enough for a WKB asymptotic analysis to be justified. It turns out that the points

where either the ion or electron equilibrium velocity equals the ratio between the temporal

and transversal frequencies of the perturbation are turning or singular points of the system,

connecting exponentially increasing or decreasing solutions to oscillatory ones. The crucial role of

singular points in the balance between the different contributions to the electron kinetic energy is

explored. VC 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4867179]

I. INTRODUCTION

Plasmas are often described as single fluids whose

motion satisfies the Navier-Stokes equations and are gov-

erned by the Lorentz force. The electric and magnetic fields

satisfy the Maxwell equations with a current density given

by the flow of free charges. This is the simplest and probably

the most useful model, in particular when one assumes a sin-

gle neutral fluid and the natural plasma frequencies are low

enough to ignore the displacement current; this assumption

yields the magnetohydrodynamic approximation. However,

several important phenomena such as fast magnetic

reconnection1–4 cannot be adequately explained except by

separation of ions and electrons. The equations governing

the motion of all species of particles are conceptually simple:

each of them is considered as a different fluid, satisfying the

Navier-Stokes (or for inviscid fluids, the Euler) equation. All

species are linked by a common electromagnetic forcing,

while the electromagnetic field is generated by the flow of

charged particles. Additionally, a collisional damping is

present,5 although many astrophysical plasmas are so rarified

that can be considered effectively collisionless as well as

inviscid.6 The fluid equations may be obtained by taking

averages of the kinetic Vlasov equations.7,8 The full equa-

tions may be found in Ref. 9, and in a slightly simplified

form in Ref. 10. Other approaches include the interpretation

of plasmas as dielectric media.11,12 We will first consider the

existence of dynamic equilibria of a certain kind for a plasma

with any number of species, but for the study of linear per-

turbations of those equilibria, it is convenient to take the of-

ten used model of plasmas formed by three species: ions

(taken as protons), electrons, and neutral particles. In the ab-

sence of collisions, the last ones will decouple from the rest

to satisfy their own unforced Euler equation, so they can be

ignored. For the general collisionless system, let us denote

by ma; qa; na, and qa, respectively, the mass, electric charge,

number density, and material density (qa ¼ mana) of the a-

species, va will be its velocity, and E and B will denote,

respectively, the electric and magnetic fields; finally let Pa

be the kinetic pressure. Then the following equations hold:

@va

@t
þ va � rva ¼

qa

ma
ðEþ va � BÞ � rPa

qa
; (1)

@B

@t
¼ �r� E; (2)

1

l0

r� B ¼ Jþ �0

@E

@t
: (3)

A number of additional equations must be added: a state

equation relating pressure and density, and Ohm’s law defin-

ing the current density J. To simplify the analysis, we will

take the fluid as incompressible, ma; qa; na, and qa as con-

stants. Thus, we must add

r � va ¼ 0; (4)

J ¼
X

a

naqava: (5)

Although to find equilibria the following hypothesis is

unnecessary, later we will admit one of the MHD assump-

tions: that due to the low frequencies present, the displace-

ment current is vanishingly small, which mathematically is

equivalent to take �0 ¼ 0 in (3)

1

l0

r� B ¼ J: (6)

The role of the pressure is different in compressible fluids,

where it is linked to the remaining thermodynamic variables

by a state equation, than in incompressible ones. In the last

case, it plays an analogous role to a Lagrange multiplier, its

purpose being to ensure that the remaining terms in (1) form

an irrotational field (see, e.g., Ref. 13). In the compressible

case, the continuity equation for each number density na

must be added, as well as the state equation relating Pa to na

and the temperature Ta. Ta satisfies another evolution equa-

tion governed by the heat flux (see Ref. 9). In order to omit

the pressure, it is convenient to take the curl of (1). Denotea)Electronic mail: mnjmhd@am.uva.es
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by xa ¼ r� va the vorticity of the a-fluid. Then it is shown

in Ref. 14 that (1) may be changed to

@

@t
xa þ

qa

ma
B

� �
¼ r� va � xa þ

qa

ma
B

� �� �
; (7)

(7) follows from (1)–(3) by a straightforward calculation. The

converse goes as follows: provided the domain where all the spa-

tial variables lie is simply connected, (7) may be uncurled to

yield

@va

@t
þ va � rva ¼

qa

ma
ðEþ va � BÞ � rFa; (8)

for some potential Fa. If we define now the pressure Pa as

Pa ¼ qaFa �
1

2
qav

2
a; (9)

we recover (1).

II. ONE-DIMENSIONAL EQUILIBRIA AND LINEARIZED
EQUATIONS

Solutions of (2), (4)–(7) not depending on time must

satisfy

r� va � xa þ
qa

ma
B

� �� �
¼ 0; (10)

r� E ¼ 0; (11)

r� B ¼ l0

X
a

qanava: (12)

We will make the following assumptions: all the magnitudes

will depend only on the variable x 2 ½0;1Þ, the velocity and

the electric field will have the direction of ŷ, the magnetic field

the direction of ẑ. This is the cartesian version of the geometry

where the particles describe circles around the ẑ axis, and the

magnetic field is vertical. Although the equilibrium could eas-

ily be found in this axisymmetric case, the linearized equations

become more complex because of the presence of the radius in

the derivatives. Hence, we stick to our cartesian geometry.

Since (4) holds, there exists a streamfunction /aðxÞ such that

va ¼ r/a � ẑ ¼ ð0;�/0a; 0Þ: (13)

In what follows the prime will denote derivative with respect

to x. E plays no role in the equilibrium equations, except to

note that the electric field must be irrotational. Let

B ¼ ð0; 0;BÞ. Then

r� B ¼ ð0;�B0; 0Þ ¼ �l0

X
a

qanað0;/0a; 0Þ: (14)

Thus

B ¼ l0

X
a

qana/a þ C
� �

ẑ: (15)

We will take the logical assumption that velocities and fields

vanish as x!1. If they do so fast enough for them to be

integrable in ½0;1Þ, we may take the streamfunctions /a sat-

isfying also /að1Þ ¼ 0. With this condition, the constant C
equals zero. Thus

xa ¼ ð0; 0;�/00aÞ; (16)

va� xaþ
qa

ma
B

� �
¼�/0a �/00a þ l0

qa

ma

X
b

nbqb/b;0;0

 !
:

(17)

This is a function of the form ðf ðxÞ; 0; 0Þ, whose curl is zero.

Hence, (10)–(12) holds and all those configurations corre-

spond to (non-static) equilibria.

Let us consider now small perturbations of this equilib-

rium, va þ ua, Eþ e; Bþ b; Pa þ pa. The density is assumed

invariant, and the perturbations take the following form: all of

them depend only on ðt; x; yÞ; ua lies in the xy plane, e ¼ eŷ;
b ¼ bẑ. Let

wa ¼ r� ua: (18)

Taking (7) instead of (1) as momentum equation, the linear-

ized equations are

@

@t
wa þ

qa

ma
b

� �
¼ r� va � wa þ

qa

ma
b

� �� �

þr� ua � xa þ
qa

ma
B

� �� �
; (19)

@b

@t
¼ �r� e; (20)

1

l0

r� b ¼
X

a

naqaua; (21)

r � ua ¼ 0: (22)

Since (22) holds, we may take a streamfunction for ua

ua ¼
@wa

@y
;� @wa

@x
; 0

� �
; (23)

so that

wa ¼ �ðDwaÞẑ; (24)

where D ¼ r2 is the Laplacian operator. (21) may be written as

r b� l0

X
a

naqawa

� �
¼ 0: (25)

Choosing as before wa such that waðx ¼ 1Þ ¼ 0 and assum-

ing bðx ¼ 1Þ ¼ 0, we obtain

b ¼ l0

X
a

naqawa: (26)

After some calculation, one finds

va � wa þ
qa

ma
b

� �
¼ Dwa �

qa

ma
b

� �
r/a; (27)
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r� va � wa þ
qa

ma
b

� �� �
¼ � @

@y
Dwa �

qa

ma
b

� �
/0aẑ;

(28)

as well as

ua � xa þ
qa

ma
B

� �
¼ /00a �

qa

ma
B

� �
rwa; (29)

r� ua � xa þ
qa

ma
B

� �� �
¼ @

@x
/00a �

qa

ma
B

� �
@wa

@y
ẑ: (30)

Hence, (19) may be written as

@

@t
Dwa � l0

qa

ma

X
b

nbqbwb

 !

¼ @

@y
Dwa � l0

qa

ma

X
b

nbqbwb

 !" #
/0a

� @

@x
/00a � l0

qa

ma

X
b

nbqb/b

 !" #
@wa

@y
: (31)

We will take now a Fourier transform in the variables

ðt; yÞ ! ðx;mÞ. Since we will later assume that any solution

evolving as expðixtÞ is the limit of damped solutions

expð��tþ ixtÞ as �! 0, we need for the functions

expð��tÞwaðtÞ; expð��tÞw0aðtÞ; expð��tÞw00aðtÞ to be integra-

ble in time at least for 0 � � < c for some c > 0. This occurs,

for example, if wa has parabolic support, i.e., if wa vanishes

outside an interval ð�R;1Þ for some finite R. Alternatively,

we could take the Laplace transform in time, but this needs

that wa as well as w0a and w00a vanish at t¼ 0 if we want the

final equation to be homogeneous. Since wa is a perturbation,

this hypothesis is justified by arguing that we wish to study

the evolution of this perturbation as determined by the equilib-

rium quantities, not by any arbitrary initial values of it.

We will denote the Fourier transform of wa by Wa.

Since wa is a real function, Wa satisfies

Wað�x; x;�mÞ ¼ Waðx; x;mÞ: (32)

We must recall that W0a may be singular at some point even

if the original function ua remains small; the singularities of

the Fourier transform depend on the decreasing rate of wa
and may well occur even if wa is smooth. Assuming the rea-

sonable hypothesis that wa as well as w0a and w00a are tem-

pered distributions, (31) transforms into

ix W00a � m2Wa � l0

qa

ma

X
b

nbqbWb

 !

¼ �imWa /000a � l0

qa

ma

X
b

nbqb/
0
b

 !

þ im/0a W00a � m2Wa � l0

qa

ma

X
b

nbqbWb

 !
: (33)

Let

Fa ¼ /000a � l0

qa

ma

X
b

nbqb/
0
b; (34)

Ga ¼ /0a: (35)

Then (33) may be written as a second-order differential sys-

tem on the variables Wa

W00a � m2Wa � l0

qa

ma

X
b

nbqbWb ¼
mFa

mGa � x
Wa: (36)

III. ASYMPTOTIC ANALYSIS IN THE TWO-FLUID CASE

In order to make some progress with (36), we consider a

plasma formed by monoatomic ions, electrons, and neutral

particles and denote their respective streamfunctions vanish-

ing at infinity by Wp; We, and Wn. Since qn ¼ 0, the equation

for Wn decouples from the rest

W00n � m2Wn �
mFn

mGn � x
Wn ¼ 0; (37)

and will be omitted. To avoid dragging constants, we take

units so that qp ¼ 1; qe ¼ �1; mp ¼ 1; ne ¼ np ¼ N. These

are simplifying hypotheses and the analysis could be done

with more complex parameters; the condition that the num-

ber densities coincide models a globally neutral plasma. As

for me, we denote it by �2; for the case electron/proton,

�2 � 5:5 � 10�4, which is small enough to justify a WKB

approximation for the system (37). This now takes the form

W00p � m2Wp � NWp þ NWe �
mFp

x� mGp
Wp ¼ 0; (38)

W00e � m2We �
N

�2
We þ

N

�2
Wp �

mFe

x� mGe
We ¼ 0: (39)

We could obtain We in terms of Wp from (38) and plug it

into (39), obtaining a fourth-order equation in Wp. This equa-

tion, however, is far less transparent than the original system.

Writing down the expressions of Fp; Gp; Fe, and Ge, (38)

and (39) may be set for m 6¼ 0 as

W00p � m2 þ N
/0e � x

m

/0p � x
m

þ
/000p

/0p � x
m

 !
Wp þ NWe ¼ 0; (40)

W00e � m2 þ N

�2

/0p � x
m

/0e � x
m

þ /000e
/0e � x

m

 !
We þ

N

�2
Wp ¼ 0: (41)

We will look for solutions of rapid variation due to the pres-

ence of the large parameter k ¼
ffiffiffiffi
N
p

=� by the WKB method.

This scheme, named after Wentzel, Kramers, and Brillouin,

goes in fact much further back in time (see, e.g., Ref. 15).

We will extract the results relevant to our study from three

texts: the simplest but full of interesting examples is Ref. 16.

A more complete treatment including singular points and

first-order systems may be seen in Ref. 17, and the classical

reference18 devotes some chapters to the WKB method. We
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have found no reference where the connection formulas

through singular points are clearly written down, so we will

have to reconstruct them. As asserted, there exists a standard

WKB treatment for first order systems,17 but it runs into dif-

ficulties when the eigenvalues of the matrix which multiplies

the large parameter k are not all different, as well as in the

turning and singular points. Since these are the most interest-

ing aspects of the analysis, we simply pose a WKB form of

solution for (40) and (41), which we will abbreviate to

W00p ¼ fWp � NWe; (42)

W00e ¼ k2HWe þ gWe � k2Wp: (43)

f, g, and H do not depend on k. They are smooth except at the

points where /0p � x=m or /0e � x=m equal zero. The asymp-

totic expansion of these solutions is assumed to have the form

WeðxÞ ¼ ekSðxÞ A0ðxÞ þ
A1ðxÞ

k
þ A2ðxÞ

k2
þ :::

� �
; (44)

WpðxÞ ¼ ekSðxÞ B0ðxÞ þ
B1ðxÞ

k
þ B2ðxÞ

k2
þ :::

� �
: (45)

Taking (44) and (45) into (42) and (43), and equating the

terms in k2, we obtain the eikonal system

ðS02 � HÞA0 ¼ B0; (46)

S02B0 ¼ 0; (47)

which yields B0 ¼ 0; S0 ¼ 6
ffiffiffiffi
H
p

. Taking now the terms of

order k

S00A0 þ S02A1 þ 2S0A00 ¼ B1; (48)

S02B1 þ 2S0B00 ¼ 0; (49)

so that B1 ¼ 0 and the first two terms of Wp vanish; thus Wp

has order k�2 as compared with We, although the rate of vari-

ation given by S is the same. Hence, for the physical optics

approximation we may ignore Wp and consider only

W00e ¼ k2HWe þ gWe: (50)

Notice that even the possible singularities of f in (42) do not

challenge this relative order provided they are at most of

order two, since these are regular singularities and the solu-

tion there remains bounded. In fact, we will consider only

singularities of order one, which are the only stable ones; a

small perturbation of a higher order one will turn it into a

number of simple ones or will make it disappear. This rela-

tive order translates into the derivatives W0p and W0e, and

therefore into the ion and electron velocities. The larger elec-

tron velocity is a logical consequence of its smaller mass as

compared with the ions.

Equation (50) may be studied by the classical scalar

WKB method. The zeroes xp of H represent turning points,

whose behavior is well known, in particular when they are of

order one, as we assume.16 The poles xe of H represent sin-

gularities, studied, e.g., in Refs. 17 and 18, and as we will

see they have particular properties highly relevant to our

case. The key point is the distribution of zeroes of /0p �x=m
and /0e � x=m in the interval x 2 ½0;1Þ. Obviously, the pos-

sibilities are endless, but the essential point of the behavior

of the WKB approximation in each interval bounded by two

of these zeroes plus the connection formulas across them,

will be captured by a representative example. We choose the

following configuration: a single simple zero xp of /0p
�x=m followed by a single simple zero xe of /0e � x=m, in

the form 0 < xp < xe <1. This is appropriate for the rea-

sonable assumption that the equilibrium velocity /0p of the

ions is less than the one /0e of the electrons, and both

decrease with x as x grows. The case where both equilibrium

velocities are identical is completely different; there H¼ 1

and only the singularity of g may exist. We will consider this

case at the end. In our case, H is positive in ð0; xpÞ and

ðxe;1Þ, and negative in ðxp; xeÞ.

A. Exponential solutions and connections through the
turning point

The first point is that since Weð1Þ ¼ 0 and the coeffi-

cients of (50) are real, this will determine the We up to a mul-

tiplicative constant. In order to write down the WKB

solutions in each interval, let us define

SpðxÞ ¼
ðx

xp

ffiffiffiffiffiffiffiffiffiffi
HðsÞ

p
; ds: (51)

SeðxÞ ¼
ðx

xe

ffiffiffiffiffiffiffiffiffiffiffiffi
jHðsÞj

p
; ds: (52)

Notice that
ffiffiffiffiffiffiffi
jHj

p
is always integrable, even in a neighbor-

hood of xe, and

SpðxÞ ¼ SeðxÞ þ
ðxe

xp

ffiffiffiffiffiffiffiffiffiffiffiffi
jHðsÞj

p
ds ¼ SeðxÞ þ k: (53)

Also SpðxÞ < 0 for x < xp; SeðxÞ < 0 for x < xe. A funda-

mental system of WKB solutions is for any small d > 0

(1) In ð0; xp � dÞ [ ðxe þ d;1Þ

jHðxÞj�1=4e�kjSpðxÞj; jHðxÞj�1=4ekjSpðxÞj; (54)

(2) In ðxp þ d; xe � dÞ

jHðxÞj�1=4e�ikjSpðxÞj; jHðxÞj�1=4eikjSpðxÞj; (55)

or

jHðxÞj�1=4
cosðkjSpðxÞjÞ; jHðxÞj�1=4

sinðkjSpðxÞjÞ: (56)

We could take as well the same functions changing Sp by Se,

since

jSpj ¼ jSej � k for x < xp; (57)

jSpj ¼ �jSej þ k for xp < x < xe; (58)

jSpj ¼ jSej þ k for x > xe; (59)

032117-4 Manuel N�u~nez Phys. Plasmas 21, 032117 (2014)

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

157.88.44.102 On: Thu, 20 Mar 2014 14:56:44



so that the functions with the exponent jSej differ from the

ones in (55) by multiplicative constants. Connections

through the turning point xp are well known. The trick is to

identify equation (50) near xp with an Airy equation and

use these (or equivalently, the Bessel functions of order

1/3) to see how the WKB solutions are continuously con-

nected. Often,16 the connection proceeds from the exponen-

tial solutions to the right to the trigonometric ones to the

left, as the realistic solution is the exponentially decreasing

one as x!1. In our case, however, we must proceed

from x < xp to x > xp. Since these results are abundantly

explained in the literature (see, e.g., Ref. 17), we merely

state them. We have

jHj�1=4e�kjSpj ! 2jHj�1=4
sin kjSpj þ

p
4

� �

¼ 2jHj�1=4
sin �kjSej þ kk þ p

4

� �
; (60)

jHj�1=4ekjSpj ! jHj�1=4eiðkjSpjþp=4Þ ¼ jHj�1=4eið�kjSejþkkþp=4Þ:

(61)

As expected, the solutions are exponentially increasing

or decreasing in ð0; xpÞ and oscillatory in ðxp; xeÞ. Still

the only boundary condition we have, Weð1Þ ¼ 0, has

not appeared and leaves open the one-dimensional space of

solutions. To determine it we must turn to the singular

point at xe.

B. Connections through the singular point

As stated, even in the texts studying the singular case,17,18

explicit connection formulas through xe are lacking. To

obtain them, we must reconstruct the approximation proce-

dure. Assume that the functions /e and /p are analytic. One

first takes the Liouville transform

f ¼ sgnðx� xeÞ
ðx

xe

ffiffiffiffiffiffiffiffiffiffiffiffi
jHðsÞj

p
ds

 !2

; (62)

where sgn denotes the sign. Let

Ue ¼
@f
@x

� �1=2

We; (63)

GðxÞ ¼ @f
@x

� �2

¼ 4fHðxÞ; (64)

G1ðfÞ ¼
1

GðxÞ1=4

d2ðG1=4Þ
df2

þ gðxÞ
GðxÞ : (65)

Then Ue as a function of f satisfies an equation of the form

d2Ue

df2
¼ k2

4f
þ G1ðfÞ

 !
Ue; (66)

and G1 is analytic near f ¼ 0, so that the term k2=ð4fÞ is

dominant for two reasons near f ¼ 0: jfj � 1 and k2 � 1.

Hence, we may omit G1 from (66). The remaining equation

is well known. Its solutions are for f > 0

f!
ffiffiffi
f

p
I1ðk

ffiffiffi
f

p
Þ; f!

ffiffiffi
f

p
K1ðk

ffiffiffi
f

p
Þ; (67)

where I1 and K1 are Bessel functions of first order. To see

how the solution behaves for f < 0, recall that the Bessel

functions I1 and J1 are odd entire functions, satisfying

J1ðifÞ ¼ iI1ðfÞ: (68)

On the other hand, K1 and Y1 are multiform functions due to

the presence of a logarithm in their power expansion.

Usually, the ray ð�1; 0	 is excluded from the plane in their

definition (i.e., we take the principal branch of the loga-

rithm). In these conditions, for f > 0

K1ðifÞ ¼ �
p
2

J1ðfÞ þ i
p
2

Y1ðfÞ: (69)

Thus, if we take
ffiffiffiffiffiffi
�f
p

¼ i
ffiffiffiffiffi
jfj

p
, the solutions in (67) evolve

in the following way when going from f > 0 to f < 0

ffiffiffi
f

p
I1ðk

ffiffiffi
f

p
Þ ! i

ffiffiffiffiffi
jfj

p
I1ðik

ffiffiffiffiffi
jfj

p
Þ ¼ �

ffiffiffiffiffi
jfj

p
J1ðk

ffiffiffiffiffi
jfj

p
Þ; (70)

ffiffiffi
f

p
K1ðk

ffiffiffi
f

p
Þ ! i

ffiffiffiffiffi
jfj

p
K1ðik

ffiffiffiffiffi
jfj

p
Þ

¼ i
p
2

ffiffiffiffiffi
jfj

p
ð�J1ðk

ffiffiffiffiffi
jfj

p
Þ þ iY1ðk

ffiffiffiffiffi
jfj

p
ÞÞ

¼ � p
2

ffiffiffiffiffi
jfj

p
Y1ðk

ffiffiffiffiffi
jfj

p
Þ � i

p
2

ffiffiffiffiffi
jfj

p
J1ðk

ffiffiffiffiffi
jfj

p
Þ:

(71)

If instead we take
ffiffiffiffiffiffi
�f
p

¼ �i
ffiffiffiffiffi
jfj

p
, since all the Bessel func-

tions are real for real argument, their value at the conjugate

of z is the conjugate of their value at the point z. Thus, with-

out further calculationffiffiffi
f

p
I1ðk

ffiffiffi
f

p
Þ ! �

ffiffiffiffiffi
jfj

p
J1ðk

ffiffiffiffiffi
jfj

p
Þ; (72)

ffiffiffi
f

p
K1ðk

ffiffiffi
f

p
Þ ! � p

2

ffiffiffiffiffi
jfj

p
Y1ðk

ffiffiffiffiffi
jfj

p
Þ þ i

p
2

ffiffiffiffiffi
jfj

p
J1ðk

ffiffiffiffiffi
jfj

p
Þ:

(73)

We must now decide which sign is the appropriate one. First,

for x near xe; x > xe

HðxÞ � h0

x� xe
; (74)

where the value h0 is positive, since H is positive. Thus, fol-

lowing (62), f � 4h0ðx� xeÞ, so that f > 0 means x > xe.

The point xe is the root of /0eðxÞ � x=m ¼ 0 for fixed x, but

now we allow it to vary for times frequencies near x, and

denote it by xeðxÞ. Now, we use the previous assumption

that the solution for x must be the limit of the solutions for

the same Eq. (50) with xþ i�; � > 0; �! 0. If the zeroes

xeðxþ i�Þ lie in the upper half plane for small positive �,
then x� xeðxþ i�Þ and therefore f changes from f > 0 to

f < 0 through the lower half plane, which means that
ffiffiffi
f
p

changes to �i
ffiffiffiffiffi
jfj

p
. The opposite happens if xeðxþ i�Þ lies

in the lower half plane. Since
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xeðxÞ ¼ ð/0eÞ
�1 x

m

� �
; (75)

for Im x > 0 and m > 0 we have

Im xeðxÞ > 0 if ð/0eÞ
�1 x

m

� �
¼ 1

/00eðxeðxÞÞ
> 0; (76)

Im xeðxÞ < 0 if ð/0eÞ
�1 x

m

� �
¼ 1

/00eðxeðxÞÞ
< 0; (77)

whereas the opposite happens for m < 0. Thus, for m > 0,

the solutions connect as follows: if /e is convex at

xe; /00ðxeÞ > 0, the second solution (71) and (73) goes asffiffiffi
f

p
K1ðk

ffiffiffi
f

p
Þ ! �p

2

ffiffiffiffiffi
jfj

p
Y1ðk

ffiffiffiffiffi
jfj

p
Þ þ i

p
2

ffiffiffiffiffi
jfj

p
J1ðk

ffiffiffiffiffi
jfj

p
Þ:

(78)

If /e is concave at xe; /00ðxeÞ < 0, this solution changes asffiffiffi
f

p
K1ðk

ffiffiffi
f

p
Þ ! �p

2

ffiffiffiffiffi
jfj

p
Y1ðk

ffiffiffiffiffi
jfj

p
Þ � i

p
2

ffiffiffiffiffi
jfj

p
J1ðk

ffiffiffiffiffi
jfj

p
Þ:

(79)

The first solutions (70) and (72) do not depend on the sign of

Im x. The roles are changed for m < 0. Always an imaginary

part appears for f < 0 even if the solution is real for f > 0.

To recover We, we recall that

ffiffiffiffiffiffiffiffi
fðxÞ

p
¼
ðx

xe

ffiffiffiffiffiffiffiffiffiffiffiffi
jHðsÞj

p
ds ¼ SeðxÞ; (80)

so that fðxÞ ¼ SeðxÞ2, and

WeðxÞ ¼
df
dx

� ��1=2

� UeðxÞ ¼ 2SeðxÞS0eðxÞ
� ��1=2

UeðxÞ

¼ 1ffiffiffi
2
p jHðxÞj�1=4SeðxÞ�1=2UeðxÞ: (81)

For each of the Bessel functions of order one F, we will

denote by UeF the corresponding solution of (66), i.e.,

UeF ¼
ffiffiffiffiffiffiffiffi
fðxÞ

p
Fðk

ffiffiffiffiffiffiffiffi
fðxÞ

p
Þ ¼ SeðxÞFðkSeðxÞÞ; (82)

and WeF the associated solution of (50) given by (81)

WeFðxÞ ¼
1ffiffiffi
2
p jHðxÞj�1=4SeðxÞ1=2FðkSeðxÞÞ: (83)

It is known (see, e.g., Ref. 19) that as x!1

I1ðxÞ �
1ffiffiffiffiffiffiffiffi
2px
p ex 1þ O

1

x

� �� �
; (84)

K1ðxÞ �
pffiffiffiffiffi
2x
p e�x 1þ O

1

x

� �� �
; (85)

J1ðxÞ �
ffiffiffiffiffi
2

px

r
�sin x� p

4

� �
þ O

1

x

� � !
; (86)

Y1ðxÞ �
ffiffiffiffiffi
2

px

r
cos x� p

4

� �
þ O

1

x

� � !
; (87)

so that the first order terms of the functions WeF are

WeI �
1

2
ffiffiffi
p
p jHj�1=4ekSe ; (88)

WeK �
1ffiffiffi
p
p jHj�1=4e�kSe ; (89)

WeJ � �
1ffiffiffi
p
p jHj�1=4

sin kSe �
p
4

� �
; (90)

WeY �
1ffiffiffi
p
p jHj�1=4

cos kSe �
p
4

� �
: (91)

We are now able to see how solutions of (50) evolve from

x > xe to x < xe. Given the connection rules of (78) and

(79), we find first

jHj�1=4ekSe ! 2jHj�1=4
sin kjSej þ

p
4

� �
: (92)

This is an analogous rule to the one of the turning points, but

with the crucial difference that it is now the exponentially

increasing solution the one connected to the sinus. This solu-

tion has no physical relevance, so we must choose the expo-

nentially decreasing one to the right of xe. This crosses to the

left as

jHj�1=4e�kSe ! � p
2

cos kjSej þ
p
4

� �
� isin kjSej þ

p
4

� �� �
if m/00e ðxeÞ < 0; (93)

and

jHj�1=4e�kSe ! � p
2

cos kjSej þ
p
4

� �
þ isin kjSej þ

p
4

� �� �
if m/00e ðxeÞ > 0: (94)

As stated, in contrast to the turning point xp, an imaginary

part always occurs to the left of xe if the solution is decreas-

ing as x!1. In the alternative case 0 < xe < xp <1, the

solution is oscillatory but real between xe and xp, and an

imaginary part develops to the left of xe. For a more complex

distribution of zeroes of /0e � x=m and /0p � x=m, further

connections are possible; always the solution is oscillatory

whenever the two functions have different signs, nonoscilla-

tory otherwise. The condition Weð1Þ ¼ 0 yields a one-

dimensional space of solutions. Thus, we may impose Weð0Þ
or W0eð0Þ, but not both.

The case where the equilibrium velocities are the same

is best considered independently. In this instance, Eq. (50)

simplifies to

W00e ¼ ðk2 þ gÞWe; (95)

where
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g ¼ m2 þ /000e
/0e � x=m

: (96)

For H 6¼ 1, the singular point of g could be ignored because

it coincides with the one of H, which is multiplied by the

large constant k2. Since now the constant k2 has no relation

to the singular point, there is no reason to expect rapid varia-

tion of the solutions and (97) may be treated by the

Frobenius method. The indicial equation is rðr � 1Þ ¼ 0, so

one of the solutions has the form

We1ðxÞ ¼
X1
k¼1

ckðx� xeÞk; (97)

and the other one

We2ðxÞ ¼ f ðxÞ þWe1ðxÞlogðx� xeÞ; f ðxeÞ 6¼ 0: (98)

Outside a neighborhood of xe whose radius has order 1=k,

the solutions are to the first order a linear combination of

expðkxÞ and expð�kxÞ. The solution decreasing as x!1
behaves like expð�kxÞ for kx large, becomes a linear combi-

nation of We1 and We2 at kjx� xej < �, and extends to the

left of xe as a linear combination of expðkxÞ and expð�kxÞ.
The important part is that the logarithmic term in (98) will

again yield an imaginary part for x < xe: its sign depends as

before on /00e ðxeÞ. The relevance of this component of the so-

lution concerning the absorption of energy at differentes

parts of the plasma sheet will become evident in Sec. IV.

IV. BALANCE OF ENERGY

We will show that a study of the mean absorption of

electron kinetic energy will yield an invariant quantity which

combines transfers from kinetic to magnetic energy and vice-

versa. This invariant is trivially equal to zero in the case

where the solutions of (50) are real, i.e., when there is no

zero of /0e � x=m in the interval ½0;1Þ. We start from the

momentum equation (1) for the electrons, and in view of the

results of Sec. III we feel justified in eliminating the ion ve-

locity from the definition of the magnetic field in (5). The

linearized equation takes the form

qe

@ue

@t
þ qeve � rue þ qeue � rve

¼ �Nðeþ ve � bþ ue � BÞ � rpe:

(99)

Multiplying it by ue, we obtain

1

2
qe

@u2
e

@t
þ qeue � rve � ue þ

1

2
qeve � ru2

e

¼ �Ne � ue � Nðve � bÞ � ue �rpe � ue:

(100)

Since we have worked with the Fourier transforms in y and t
of the original quantities, we should write down (100) for the

Fourier transforms of ue; e; b and pe. An alternative easier

method is to consider Fourier modes separately, i.e., to take

functions of the form aðxÞexpðiðxtþ myÞÞ. Since for f real

one has

f̂ ðx; x;mÞ ¼ f̂ ð�x; x;�mÞ; (101)

we will take variables of the form

hðxÞeiðxtþmyÞ þ hðxÞe�iðxtþmyÞ; (102)

for x 6¼ 0. We choose them because for both terms of the

expression in (102) the ratio x=m is the same, so when sub-

stituting in Eq. (50) they will have the same turning points

and singularities. We will integrate (100) in slabs c < x < d,

with y 2 ð�1;1Þ fixed. Apparently, there is a problem

with this integration, since functions of the form (102) are

not integrable in the variable y. However, note that in (100)

there are always products of two functions in y; the remain-

ing one, where it appears, depends only on x as it corre-

sponds to an equilibrium quantity. The Parseval theorem

guarantees that, provided f(y) is square integrable when

y 2 ð�1;1Þ, so is f̂ ðmÞ when m 2 ð�1;1Þ. Moreover

ðd

c

dx

ð1
�1

f ðx;yÞgðx;yÞ dxdy¼
ðd

c

dx

ð1
�1

f̂ ðx;mÞĝðx;mÞ dxdm:

(103)

What we are really considering is each of the integrands

ðd

c

f̂ ðx;mÞĝðx;mÞ dx; (104)

adding only the one for m with the one for –m. The real

dynamic variables are assumed to decrease fast enough in y
for the integral in (103) to be finite. For functions of the type

(102), we have

f̂ ðmÞ ¼ hðxÞeixt; (105)

so if g is also of the type (102), with c(x) instead of h(x),

f̂ ðx;mÞĝðx;mÞ þ f̂ ðx;�mÞĝðx;�mÞ ¼ hðxÞcðxÞ þ hðxÞcðxÞ
¼ 2Re ðhðxÞcðxÞÞ:

(106)

Even without taking Fourier transforms, we may cancel the

integral of the third term

ðd

c

ð1
�1

1

2
qeve � ru2

e dxdy ¼
ðd

c

ð1
�1
r � 1

2
qeu2

eve

� �
dxdy ¼ 0;

(107)

by applying Gauss’ theorem, since ve has the direction of ŷ
and therefore it is orthogonal to the vector normal to the

slabs, 6x̂.

All the functions in (100) will be written in terms of the

expressions for the streamfunction we and the pressure pe.

Let us denote

we ¼ aðxÞeiðxtþmyÞ þ aðxÞe�iðxtþmyÞ; (108)

pe ¼ pðxÞeiðxtþmyÞ þ pðxÞe�iðxtþmyÞ: (109)
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b ¼ bẑ may be found through (26), which in our case

reduces to

b ¼ �Nweẑ ¼ �NðaðxÞeiðxtþmyÞ þ aðxÞe�iðxtþmyÞÞẑ: (110)

Hence

@b

@t
¼ �NðixaðxÞeiðxtþmyÞ � ixaðxÞe�iðxtþmyÞÞẑ: (111)

As for e ¼ eŷ, (20) yields

@b

@t
¼ � @e

@x
: (112)

Since we always assume that all the variables vanish at infin-

ity, eðx ¼ 1Þ ¼ 0, we obtain from (111)

e ¼ NðixAðxÞeiðxtþmyÞ � ixAðxÞe�iðxtþmyÞÞ; (113)

where A0ðxÞ ¼ aðxÞ; Að1Þ ¼ 0, i.e.,

AðxÞ ¼ �
ð1

x

aðsÞ ds: (114)

The integral in (114) will converge because a decreases

exponentially for large x. Finally, from (23)

ue ¼ imaðxÞeiðxtþmyÞ � imaðxÞe�iðxtþmyÞ;
	
�a0ðxÞeiðxtþmyÞ � a0ðxÞe�iðxtþmyÞ; 0



: (115)

We may now integrate each term of (100) in the slab. First

we notice

ûeðmÞ ¼ ðima; a0; 0Þeixt; (116)

@ûe

@t
ðmÞ ¼ ð�xma; ixa0; 0Þeixt: (117)

Therefore

qeûeðmÞ �
@ûe

@t
ðmÞ ¼ iqeðm2xjaj2 � xja0j2Þ; (118)

whose real part is zero. According to (106), the integral is zero.

Let us consider now Nðve � bÞ � ue. Since

ve � b ¼ Nð/0ewe; 0; 0Þ; (119)

ðve � bÞ � ue ¼ �N/0ewe

@we

@y
: (120)

Now

�N/0eŵe

@we

@y
¼ �im/0ejaj

2; (121)

whose real part is again zero. Hence we are left with

ðd

c

qeue � rve � ue þ Ne � ue þr � ðpeueÞ dx ¼ 0: (122)

Let us consider each of these terms. Since ve ¼ ð0;�/0e; 0Þ

qeue � rve ¼ �ð0; qe/
00
eðimaeiðxtþmyÞ � im�ae�iðxtþmyÞÞ; 0Þ;

(123)

so that

ðqeûe � rveÞðmÞ ¼ �ð0; qe/
00
e imaeixt; 0Þ; (124)

and

ðqeûe � rveÞðmÞ � ûeðmÞ ¼ qe/
00
e imaa0 ; (125)

so that when adding the term in – m we are left with

2qe/
00
e Re ðimaa0 Þ ¼ 2qe/

00
e m Im ð�aa0Þ: (126)

Let us denote by U and V the real and imaginary parts of

a; a ¼ U þ iV. Then

2qe/
00
e m Im ð�aa0Þ ¼ 2qe/

00
e m ðUV0 � U0VÞ

¼ 2qe/
00
e m WðU;VÞ; (127)

where WðU;VÞ denotes the wronskian determinant. Since U
and V are solutions of (50), which is a linear second-order

equation without term in W0e, the wronskian is constant at

each side of the singularity xe. For x > xe, it is zero because

there is not imaginary part there: V¼ 0. For x < xe, however,

its value W0 is not zero because of the generation of an imag-

inary part to the left of xe. Thus, the integral

Iðc; dÞ ¼
ðd

c

qeue � rve � ue dx; (128)

equals

Iðc; dÞ ¼ 2qemW0ð/0eðdÞ � /0eðcÞÞ for d � xe; (129)

Iðc; dÞ ¼ 2qemW0ð/0eðxeÞ � /0eðcÞÞ

¼ 2qemW0

x
m
� /0eðcÞ

� �
for c � xe < d; (130)

Iðc; dÞ ¼ 0 for c > xe: (131)

Let us turn now to the integral of Ne � ue in 122. Using 113

and (116), we find

NêðmÞ � ueðmÞ ¼ N2ð0; ix Aeixt; 0Þ � e�ixtð�im�a; a0 ; 0Þ
¼ N2ix Aa0 : (132)

Adding the term �m, the integrand becomes

2Re ðix Aa0 Þ ¼ 2xIm ð �Aa0Þ: (133)

Taking as before a ¼ U þ iV, let R0 ¼ U; S0 ¼ V, with

Rð1Þ ¼ Sð1Þ ¼ 0. Then the integrand may be written as

2xN2ðRV0 � SU0Þ ¼ 2xN2ðRS00 � SR00Þ

¼ 2xN2 d

dx
ðRS0 � SR0Þ: (134)

Hence
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ðd

c

Ne � ue dx ¼ 2x½WðR; SÞðdÞ �WðR; SÞðcÞ	; (135)

where WðR; SÞ denotes the wronskian of R, S

WðR; SÞðxÞ ¼ UðxÞ
ð1

x

VðsÞ ds� VðxÞ
ð1

x

UðsÞ ds: (136)

In contrast with WðU;VÞ; WðR; SÞ is continuous in the whole

interval ½0;1Þ, and there is no need to make different cases

as in (129)–(131). It is also zero for x > xe. A first order

approximation for WðR; SÞ could be found by integration by

parts of the WKB expression of U and V, but only in the

intervals where jHj > r > 0, so it useless near the turning

point and singularity.

Finally, by (109) and (116)

p̂eðmÞ ¼ peixt; (137)

ûeðmÞ � n ¼ 6im aeixt; (138)

where the 6sign is positive in x¼ d and negative in x¼ c.

Thus the integral of the last term in (122) is

2Re ð�imp �aÞjdc ¼ 2mIm ðp �aÞjdc ; (139)

which again vanishes for x > xe, since there both p and a are

real. If we write p ¼ Pþ iQ, this term equals

2mðQU � PVÞðdÞ � 2mðQU � PVÞðcÞ: (140)

Since (122) holds for any c and d, and we have set this inte-

gral as a difference of terms in d and c, we must conclude

that the values of this term

mqeWðU;VÞ/0e þ xN2WðR; SÞ þ mðQU � PVÞ; (141)

are the same for all points; thus it is constant for x 2 ½0;1Þ.
Since the first term of (141) is discontinuous at xe because

WðU;VÞ goes from W0 to zero, and the second one is contin-

uous, the third one must be discontinuous at the singularity.

Since V is zero there, it must be Q, i.e., the imaginary part of

the Fourier transform of the pressure which is discontinuous.

Since all the terms in (141) are known except for the pres-

sure, this identity may be viewed as defining it, or rather its

phase, since we have the two components P and Q and a sin-

gle equation. For x > xe, (141) does not provide any infor-

mation as all the terms are zero. The meaningful part

of (141) is

qeW0 þ
x
m

N2WðR; SÞ þ QU � PV ¼ const; (142)

which implies

x
m

N2WðR; SÞ þ QU � PV ¼ const; (143)

for x < xe.

V. CONCLUSIONS

To obtain dynamic equilibria in a multi-species colli-

sionless plasma is an easy task when the quantities depend

on a single spatial variable x to which velocity and magnetic

field are transversal, as well as among themselves. This cor-

responds to the cartesian equivalent of the geometry where

the particles describe plane circles under a vertical magnetic

field and a collinear electric one. Linear perturbations of

these equilibria have a rich and intrincate structure where

resonances with the equilibrium motion of the different spe-

cies provide a plethora of different flow possibilities. We

study the case where the plasma is formed by monoatomic

ions, electrons, and neutral particles (which decouple from

the rest and play no role in the analysis). Once a temporal

frequency x and a spatial one m in the transversal variable

are fixed, the Fourier transforms of the ion and electron

streamfunctions satisfy a linear system with singularities

whenever one of the equilibrium velocities equals x=m. By

taking the inverse of the electron mass as a large parameter,

one is able to use a WKB asymptotic method to show that

the electron streamfunction dominates the ion one that the

zeroes of the ion equilibrium velocity are turning points and

those of the electron equilibrium velocity are singularities of

the equation. The first order approximation to the solution

possesses an exponential character at the intervals where the

wave velocity x=m is either larger or smaller than both equi-

librium velocities, whereas it is oscillatory when it is larger

than one and smaller than the other. Even if the solution is

always real and exponentially decreasing for large values of

x (provided one assumes, plausibly enough, that the variables

vanish at infinity), the solution always develops an imaginary

part to the left of the singularities, which is essential for the

balance of the different contributions to the electron kinetic

energy. This balance yields an invariant of the system which

provides information on the otherwise unknown electron

pressure.
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