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The effects of a background uniform rotating magnetic field acting in a conducting fluid with a
parallel flow are studied analytically. The stationary version with a transversal magnetic field is
well known as generating Hartmann boundary layers. The Lorentz force includes now one term
depending on the rotation speed and the distance to the boundary wall. As one intuitively expects,
the rotation ofmagnetic field lines pushes backwards or forwards the flow. One consequence is that
near the wall the flowwill eventually reverse its direction, provided the rate of rotation and/or the
magnetic field are large enough. The configuration could also describe a fixed magnetic field and
a rotating flow.

1. Introduction

In [1], a generalization of theHartmann flowwas announced. TheHartmann flow is a parallel
one influenced by a strong transversal magnetic field [2, 3] and has been studied intensively
for its role in many aspects of plasma physics, such as liquid metal pumping [4, 5], plasma
convection [6, 7], and geophysics [8]. We now will allow the background magnetic field to
rotate while keeping its spatial uniformity. Our aim in this paper is to analyze in depth the
action of this field upon the flow through the Lorentz force, emphasizing the possibility of
flow reversal at some time near the walls confining the fluid. Given the Galilean invariance
of the relevant equations, we could change to a rotating reference frame and interpret the
problem as consisting in a fixed magnetic field and a rotating flow; this configuration could
perhaps be more easily constructed and have wider applications.

Let us begin by recalling briefly the MHD equations appropriate for our con-
figuration. The flow will be assumed two dimensional, and the background magnetic
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field will be uniform in space but rotating in time at a rate given by the angle
θ(t):

B(t) = B(cos θ(t), sin θ(t)). (1.1)

Although this field will create a secondary one b, it is assumed that all the terms in b
may be neglected when an analogous one for B is present; thus, |u × b| � |u × B|, |ḃ| � |Ḃ|.
This does not hold for the current density, as J = ∇ × B = 0, j = ∇ × b/= 0. The approximate
induction equation becomes

∂B
∂t

= ∇ × (−ηj + u × B
)
, (1.2)

where u is the flow velocity and η the resistivity. By substituting B by its value in (1.1),
uncurling (1.2) to find j and taking it to the Lorents force j ×B, we may write the momentum
equation as

∂u

∂t
+ u · ∇u = νΔu + σ(u × B) × B − σB2θ̇

(
y, 0

)
+∇f, (1.3)

where σ = η−1 is the conductivity, ν the viscosity, and f is the sum of the pressure and the
gauge obtained by uncurling (1.2). Detailed calculations may be found in [1]. If in analogy
with the classical Hartmann flow we assume a horizontal flow u(x, y) = (u(y), 0), (1.3)
reduces to

∂u
∂t

= ν
∂2u

∂y2
− σB2u sin2θ − σB2θ̇y + C, (1.4)

where C includes all the conservative forces upon the fluid, such as the pressure and a
possible electrostatic field. The interpretation is rather easy; as the magnetic field lines rotate
at angular velocity θ, their linear velocity grows linearly with the radius y. This has the
undesirable effect of providing infinite energy to the flow, but this should not deter us from
studying the model. Other classical flows, such as Karman’s, are the object of a vast literature
in relation with swirling flows [9, 10] and also possess infinite energy. Their local properties
are generalizable to many realistic situations.

We assume that the fluid is bounded either by one no-slip wall or two. In the first case,
initial and boundary conditions for (1.4) are

u(0, t) = 0,

u
(
y, 0

)
= φ

(
y
)
,

(1.5)
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whereas for the second one, if the walls are separated by a distance L,

u(0, t) = 0,

u(L, t) = 0,

u
(
y, 0

)
= φ

(
y
)
.

(1.6)

Obviously φ must satisfy at the walls the same conditions as u.

2. Flow with a Single Wall

We will solve (1.4), (1.5) for t ≥ 0, y ≥ 0. To simplify calculations and highlight the
contributions of the different terms, wewill consider separately the following three problems:

∂u1

∂t
= ν

∂2u1

∂y2
− σB2u1sin2θ + C,

u1(0, t) = 0,

u1
(
y, 0

)
= 0,

∂u2

∂t
= ν

∂2u2

∂y2
− σB2u2sin2θ − σB2θ̇y

u2(0, t) = 0,

u2
(
y, 0

)
= 0,

∂u3

∂t
= ν

∂2u3

∂y2
− σB2u3sin2θ,

u3(0, t) = 0,

u3
(
y, 0

)
= φ

(
y
)
.

(2.1)

Then, u = u1 + u2 + u3 is the desired solution. From now on, we will denote

F(t) = σB2
∫ t

0
sin2θ(s)ds,

wj

(
y, t

)
= eF(t)uj

(
y, t

)
.

(2.2)

Notice thatwj satisfies the same equation as uj , except that the term in σB2ujsin2θ disappears,
and the forcing is multiplied by eF(t). Although the general analysis is valid for any function
θ(t), in order to obtain explicit results we will consider a constant rotation θ(t) = λt; the
rotation is counterclockwise if λ > 0, clockwise otherwise. Then,

F(t) = σB2
(
t

2
− sin 2λt

4

)
, (2.3)
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so that for large t

eF(t) ∼ eσB
2t/2,

e−F(t) ∼ e−σB
2t/2.

(2.4)

2.1. Effect of the Constant Forcing

Let erf denote the error function,

erf(x) =
2√
π

∫x

0
e−t

2
dt. (2.5)

Then the solution of

∂w1

∂t
= ν

∂2w1

∂y2
+ CeF(t)

w1(0, t) = 0

w1
(
y, 0

)
= 0

(2.6)

is

w1
(
y, t

)
=
∫ t

0
erf

(
y

√
4ν(t − s)

)

CeF(s)ds, (2.7)

so that

u1
(
y, t

)
=
∫ t

0
erf

(
y

√
4ν(t − s)

)

Ce−F(t)+F(s)ds. (2.8)

This implies

∂u1

∂y
=

2C√
π

∫ t

0

1
√
4ν(t − s)

exp

(

− y2

4ν(t − s)
− F(t) + F(s)

)

ds. (2.9)

Let us study the limit of this function when t → ∞ in the case of constant rotation,
θ(t) = λt, λ > 0. It is an easy consequence of Lebesgue’s theorem that, for any fixed t0 > 0,

lim
t→∞

∫ t0

0

1
√
4ν(t − s)

exp

(

− y2

4ν(t − s)
− F(t) + F(s)

)

ds = 0. (2.10)
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Take t0 large enough that we may substitute F(t) by σB2t/2. It is enough to consider

2C√
π

∫ t

t0

1
√
4ν(t − s)

exp

(

− y2

4ν(t − s)
− σB2(t − s)

2

)

ds

=
2C√
π

∫ t−t0

0

1√
4νs

exp

(

− y2

4νs
− σB2s

2

)

ds,

(2.11)

whose limit when t → ∞ is

2C√
π

∫∞

0

1√
4νs

exp

(

− y2

4νs
− σB2s

2

)

ds, (2.12)

which is obviously a finite integral. It reaches its maximum at y = 0, where its value is

C√
πν

∞∫

0

s−1/2e−σB
2s/2 ds =

C√
πν

√
2

σB2

∫∞

0
r−1/2e−r dr

=
C√
πν

√
2

σB2
Γ
(
1
2

)
=

C√
πν

√
2

σB2

√
π = C

√
2

νσB2
=

C
√
2

B
√
Pm

,

(2.13)

where Pm is the magnetic Prandtl number. Therefore, u1 also has a limit when t → ∞ for
every y > 0, given by the integral of (2.12) with respect to y.

2.2. Effect of the Lorentz Force

w2 satisfies

∂w2

∂t
= ν

∂2w2

∂y2
− σB2θ̇y,

w2(0, t) = 0,

w2
(
y, 0

)
= 0.

(2.14)

Although there exists an appropriate Green function for this problem, in this particular case
it is simpler to assume that the solution is linear in y (which is correct). Setting first

w2
(
y, t

)
= h(t)y, h(0) = 0, (2.15)

and recovering u2 from it, one finds

u2
(
y, t

)
= −yσB2

∫ t

0
exp(−F(t) + F(s))θ̇(s)ds. (2.16)
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Therefore,

∂u2

∂y

(
y, t

)
= −σB2

∫ t

0
exp(−F(t) + F(s))θ̇(s)ds. (2.17)

This function also has a limit when t → ∞. Its value may be found by an argument similar
to the previous one, although simpler; in this case

lim
t→∞

− λσB2
∫ t

t0

exp

(

−σB
2(t − s)
2

)

ds = −2λ. (2.18)

Hence, u2(y, t) tends to −2λy when t → ∞. Notice how the Lorentz force pushes the fluid
backwards, the more rapidly the higher the distance from the wall.

2.3. Effect of the Initial Condition

w3 satisfies

∂w3

∂t
=

∂2w3

∂y2

w3(0, t) = 0

w3
(
y, 0

)
= φ

(
y
)
.

(2.19)

φ must satisfy φ(0) = 0. The solution is found by the method of images: φ is extended to
(−∞,∞) as an odd function. Then,

w3
(
y, t

)
=

1√
4πνt

∫∞

−∞
exp

(

−
(
y − z

)2

4νt

)

φ(z) dz, (2.20)

so that

u3
(
y, t

)
=

e−F(t)√
4πνt

∫∞

−∞
exp

(

−
(
y − z

)2

4νt

)

φ(z) dz. (2.21)

Therefore, provided φ is differentiable,

∂u3

∂y

(
y, t

)
=

e−F(t)√
4πνt

∫∞

−∞
exp

(

−
(
y − z

)2

4νt

)

φ′(z) dz. (2.22)
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All this supposes that φ and φ′ satisfy certain reasonable conditions: for this example. if both
are bounded. In that case, given that

1√
4πνt

∫∞

−∞
exp

(

−
(
y − z

)2

4νt

)

dz = 1, (2.23)

both u3 and ∂u3/∂y are bounded by a function of the form M exp(−F(t)), which means that
they tend to zero as t → ∞.

Thus, the limit when t → ∞ of u(0, t) is

k =
C
√
2

B
√
Pm

− 2λ. (2.24)

If k < 0, we may be certain that the fluid inverts its direction and flows backwards
from some point on. The factors contributing to this are a small (or negative) potential force
C, which includes pressure and electric fields; a large background magnetic field; a large
magnetic Prandtl number, which means that the viscosity dominates the resistivity; finally
and most obviously, a large rate of rotation of the magnetic field.

3. Flow between Two Walls

When the fluid is stationary along two walls, the Lorentz force does not have so clear an
effect as in the previous case, as it is stopped by the upper no-slip wall. We may again
decompose the solution in the three components given by (2.1) but with the boundary and
initial conditions of (1.6). The solution to these problems may be found again by the method
of images, but it is equivalent and somewhat simpler to postulate a Fourier series expression
of the form

∞∑

k=1

ck(t) sin
πk

L
y, (3.1)

and find the coefficients ck.

3.1. Effect of the Constant Forcing

We have

∂w1

∂t
= ν

∂2w1

∂y2
+ CeF(t),

w1(0, t) = w1(L, t) = 0,

w1
(
y, 0

)
= 0.

(3.2)
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First we extend the forcing CeF(t) as an odd function of y in the interval [−L, L]. Its Fourier
series is

CeF(t)
∞∑

k=0

4
π(2k + 1)

sin
π(2k + 1)

L
y, (3.3)

so that if we set

w1(t) =
∞∑

n=1

ŵ1(n, t) sin
πn

L
y, (3.4)

we have

∂ŵ1

∂t
(2k, t) = −νπ

2(2k)2

L2
ŵ1(2k, t),

ŵ1(2k, 0) = 0,

∂ŵ1

∂t
(2k + 1, t) = −νπ

2(2k + 1)2

L2
ŵ1(2k + 1, t) +

4
π(2k + 1)

CeF(t),

ŵ1(2k + 1, 0) = 0.

(3.5)

Hence, all the even terms ŵ1(2k, t) vanish and

ŵ1(2k + 1, t) =
4

π(2k + 1)
exp

(

−νπ(2k + 1)2t
L2

)

×
(∫ t

0
exp

(
νπ(2k + 1)2s

L2

)

C exp(F(s))ds

)

.

(3.6)

If we define

Fm(t) = σB2
∫ t

0
sin2θ(s)ds +

νπ2m2t

L2
, (3.7)

we obtain

û1(2k + 1, t) =
4C

π(2k + 1)
exp(−F2k+1(t))

∫ t

0
exp(F2k+1(s))ds. (3.8)
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Thus,

u1
(
y, t

)
=

∞∑

k=0

4C
π(2k + 1)

(

exp(−F2k+1(t))
∫ t

0
exp(F2k+1(s))ds

)

× sin
π(2k + 1)

L
y,

∂u1

∂t

(
y, t

)
=

∞∑

k=0

4C
L

(

exp(−F2k+1(t))
∫ t

0
exp(F2k+1(s)) ds

)

× cos
π(2k + 1)

L
y.

(3.9)

In particular

∂u1

∂t
(0, t) =

∞∑

k=0

4C
L

(

exp(−F2k+1(t))
∫ t

0
exp(F2k+1(s))ds

)

, (3.10)

∂u1

∂t
(L, t) = −

∞∑

k=0

4C
L

(

exp(−F2k+1(t))
∫ t

0
exp(F2k+1(s))ds

)

. (3.11)

To evaluate the limit of these expressions when t → ∞, let us assume as before that θ(t) = λt,
λ > 0. Analogously to (2.4), we have now

Fk(t) ∼
(

σB2

2
+
νπ2k2

L2

)

t,

−Fk(t) ∼ −
(

σB2

2
+
νπ2k2

L2

)

t,

(3.12)

for t large. Thus, for t0 fixed,

lim
t→∞

exp(−Fk(t))
∫ t0

0
exp(Fk(s))ds = 0. (3.13)

By using an argument similar to the one in (2.10) and glossing over the technicalities
concerning the infinite terms in the sums of (3.10) and (3.11) (which hold anyway), we obtain
that if we denote

αk = lim
t→∞

exp(−Fk(t))
∫ t

0
exp(Fk(s))ds, (3.14)
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then

αk =

(
σB2

2
+
π2νk2

L2

)−1
; (3.15)

moreover

∂u1

∂t
(0, t) =

4C
L

∞∑

k=0

α2k+1, (3.16)

∂u1

∂t
(L, t) = −4C

L

∞∑

k=0

α2k+1. (3.17)

To find these sums, we denote

γ =
BL

π

√
σ

2ν
. (3.18)

Then,

αk =
2

σB2

γ2

γ2 + k2
. (3.19)

It may be found by elementary means (e.g, the residue theorem) that

∞∑

k=1

γ2

γ2 + k2
= −1

2
+
πγ

2
cotanh πγ, (3.20)

Therefore

∞∑

k=1

α2k =
2

σB2

(γ
2

)2 ∞∑

k=1

1
(
γ/2

)2 + k2

=
1

σB2

(
−1 + πγ

2
cotanh

πγ

2

)
,

∞∑

k=0

α2k+1 =
1

σB2

(
πγ cotanh πγ − πγ

2
cotanh

πγ

2

)
.

(3.21)

This expression may be written in another form, which is more convenient if we take
L and ν as fixed and consider that the variation of γ comes from σB2. This is

∞∑

k=0

α2k+1 =
L2

2πνγ

(
cotanh πγ − 1

2
cotanh

πγ

2

)
. (3.22)
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Given the behavior of the hyperbolic cotangent, it is easy to see that this sum tends to
∞when γ → 0 and to 0 when γ → ∞. Combining this with (3.16) and (3.17), we obtain

lim
t→∞

∂u1

∂t
(0, t) =

2CL
πνγ

(
cotanh πγ − 1

2
cotanh

πγ

2

)
, (3.23)

lim
t→∞

∂u1

∂t
(L, t) = −2CL

πνγ

(
cotanh πγ − 1

2
cotanh

πγ

2

)
. (3.24)

3.2. Effect of the Lorentz Force

The Fourier series of the function y → −σB2θ̇y is

σB2θ̇
∞∑

k=1

2L
(−1)k
πk

sin
πk

L
y. (3.25)

Hence, ŵ2 satisfies

∂ŵ2

∂t
(k, t) = −π

2νk2

L2
ŵ2(k, t) +

2L(−1)k
πk

σB2θ̇(t) exp(F(t))

ŵ2(k, 0) = 0,

(3.26)

whose solution is

ŵ2(k, t) =
2L(−1)k

πk
σB2

∫ t

0
exp(Fk(s))θ̇(s)ds. (3.27)

Therefore,

û2(k, t) =
2L(−1)k

πk
σB2

∫ t

0
exp(−Fk(t) + Fk(s))θ̇(s)ds,

u2
(
y, t

)
=

∞∑

k=1

2L(−1)k
πk

σB2

(∫ t

0
exp(−Fk(t) + Fk(s))θ̇(s) ds

)

sin
πk

L
y,

(3.28)

which implies

∂u2

∂t

(
y, t

)
= 2

∞∑

k=1

(−1)kσB2

(∫ t

0
exp(−Fk(t) + Fk(s))θ̇(s) ds

)

cos
πk

L
y. (3.29)
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In particular

∂u2

∂t
(0, t) = 2

∞∑

k=1

(−1)kσB2
∫ t

0
exp(−Fk(t) + Fk(s))θ̇(s)ds,

∂u2

∂t
(L, t) = 2

∞∑

k=1

σB2
∫ t

0
exp(−Fk(t) + Fk(s))θ̇(s)ds.

(3.30)

To find the limit of this expression when t → ∞ and θ(t) = λt, we use the same
argument as in the previous paragraph. We find

lim
t→∞

∂u2

∂t
(0, t) = 2σB2λ

∞∑

k=1

(−1)kαk,

lim
t→∞

∂u2

∂t
(L, t) = 2σB2λ

∞∑

k=1

αk.

(3.31)

In terms of γ ,

lim
t→∞

∂u2

∂t
(0, t) = 4λ

∞∑

k=1

(−1)k γ2

γ2 + k2
, (3.32)

lim
t→∞

∂u2

∂t
(L, t) = 4λ

∞∑

k=1

γ2

γ2 + k2
. (3.33)

We know already (3.20) the value of the sum in (3.33). The one in (3.32) sums

∞∑

k=1

(−1)k γ2

γ2 + k2
= −1

2
+
πγ

2
cosechπγ. (3.34)

This sum is a decreasing function of γ , tending to 0 when γ → 0 and to −1/2 when γ → ∞.

3.3. Effect of the Initial Condition

To deal with the problem

∂w3

∂t
= ν

∂2w3

∂y2
,

w3(0, t) = w3(L, t) = 0,

w3
(
y, 0

)
= φ

(
y
)
,

(3.35)
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we extend φ to [−L, L] as an odd function, with Fourier series

φ
(
y
)
=

∞∑

k=1

φ̂(k) sin
πk

L
y. (3.36)

Then,

∂ŵ3

∂t
(k, t) = −π

2νk2

L2
ŵ3(k, t),

ŵ3(k, 0) = φ̂(k),

(3.37)

whose solution is

ŵ3(k, t) = exp

(

−π
2νk2

L2
t

)

φ̂(k). (3.38)

Therefore,

u3
(
y, t

)
=

∞∑

k=1

exp(−Fk(t))φ̂(k) sin
πk

L
y,

∂u3

∂y

(
y, t

)
=

∞∑

k=1

πk

L
exp(−Fk(t))φ̂(k) cos

πk

L
y.

(3.39)

It is trivial to prove that both tend to zero when t → ∞ for all y.
When

∂φ

∂y
(0) > 0,

∂φ

∂y
(L) < 0 (3.40)

the fluid flows initially in the positive sense. If we show that under certain conditions

lim
t→∞

∂u

∂t
(0, t) < 0, (3.41)

or

lim
t→∞

∂u

∂t
(L, t) > 0, (3.42)
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the fluid reverses flow at least in one of the walls. Since u = u1 + u2 + u3 and we have found
already these limits, we may combine first (3.23) and (3.34) to get

lim
t→∞

∂u

∂t
(0, t) =

2CL
πνγ

(
cotanh πγ − 1

2
cotanh

πγ

2

)

+ 4λ
(
−1
2
+
πγ

2
cosechπγ

)
.

(3.43)

On the other hand, combining now (3.24), (3.20), and (3.33), we find

lim
t→∞

∂u

∂t
(L, t) = − 2CL

πνγ

(
cotanh πγ − 1

2
cotanh

πγ

2

)

+ 2λ
(−1 + πγ cotanhπγ

)
.

(3.44)

The expression in (3.43) tends to −2λ < 0 when γ → ∞. Thus, for any C and L, when
λ and/or σB2 are large enough, there exists a flow reversal at this wall.

The limit of (3.44) when γ → ∞ is ∞. Since this becomes positive for σB2 or λ large
enough, the fluid will eventually flow backwards at y = L. Notice that given the respective
size of the limits, this occurs much earlier than the flow reversal at y = 0. This was to be
expected, as the Lorentz force pushes backwards the flow the more rapidly the larger y is;
magnetic field lines move faster the higher the radius.

4. Conclusions

A generalization of the classical Hartmann flow is obtained when we pose a background
uniform magnetic field rotating in time. Since the Lorentz force varies both in time and
space, the resulting flow cannot be stationary. If we add one or two walls with the no-slip
property, the interaction between the magnetic field and the boundary layers creates an
interesting phenomenology. We study in particular the phenomenon of flow reversal near
the walls for a magnetic field rotating at a constant rate; it is found that for large enough
values of this rate, the conductivity of the fluid, or the size of the magnetic field, there
exists always flow reversal at some instant. Forces opposing this include the kinetic pressure
and a possible electrostatic field. This reversal makes excellent sense, as the Lorentz force
(visualized through the rotation of magnetic field lines) pushes backwards the fluid if the
sense of rotation of the field is contrary to the original flow.
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