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Abstract 

Coronary artery disease is the leading cause of death around the world. Endovascular stenting 

is the preferred treatment option to restore blood flow in the coronary arteries due to the lower 

perioperative morbidity when compared with more invasive treatment options. However, stent 

failure is still a major clinical problem, and further technological solutions are required to 

improve the performance of current stents. Here, we developed coronary stents covered with 

elastin-like recombinamers (ELRs) by exploiting a layer-by-layer technique combined with 

catalyst free click-chemistry. The resulting ELR-covered stents were intact after an in vitro 

simulated implantation procedure by balloon dilatation, which evidence the elastic performance 

of the membrane. Additionally, the stents were mechanically stable under high flow conditions, 
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which is in agreement with the covalent and stable nature of the click-chemistry crosslinking 

strategy exploited during the ELR-membrane manufacturing and the successful embedding of 

the stent. Minimal platelet adhesion was detected after blood exposure in a Chandler loop as 

shown by scanning electron microscopy. The seeding of human endothelial progenitor cells 

(EPCs) on the ELR-membranes resulted in a confluent endothelial layer. These results prove 

the potential of this strategy to develop an advanced generation of coronary stents, with a stable 

and bioactive elastin-like membrane to exclude the atherosclerotic plaque from the blood stream 

or to seal coronary perforations and aneurysms, while providing a  non-thrombogenic luminal 

surface and favouring the endothelialization. 

 

Keywords: coronary stents, layer-by-layer, elastin-like recombinamers, biobased covered 

stents, click-chemistry, hemocompatibility.  

 

1. INTRODUCTION 

Coronary artery disease is responsible for approx. 20% of all deaths in Europe [1]. Endovascular 

stenting is a minimally invasive procedure to restore blood flow in the coronary arteries, which 

offers lower perioperative morbidity when compared with more invasive treatment options. 

Despite the great progress made with coronary stenting [2], restenosis and thrombosis after stent 

implantation are still major clinical complications that lead to stent failure and often to the need 

for reintervention [3]. Coated stents (e.g. drug eluting polymer coated stents and 

biofunctionalized endothelial progenitor cell-capturing stents) [4] and covered stents [5] have 

been proposed as a solution for these complications. Coronary covered stents feature a 

membrane that covers the metallic struts and functions as a physical barrier that can i) exclude 

the underlying atherosclerotic plaque from the blood flow, potentially preventing the ingrowth 

of smooth muscle cells and therefore the reocclusion of the stented vessel [6] and ii) seal 
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coronary artery perforations [7]. The success of such an approach relies mainly on the properties 

of the membrane’s material. Ideally, it should be hemocompatible, mechanically stable and 

elastic enough to allow the stent’s configurational changes upon implantation [5].  

Unfortunately, the synthetic materials originally used for covering small-caliber stents (Table 

1) display limited hemocompatibility, and their use has resulted in restenosis, thrombotic [8, 9] 

and inflammatory events [10, 11].  

 

Table 1: Materials employed for the fabrication of covered coronary stents and clinical 

outcomes. 

 

 

The need to address these issues has motivated the search for new membranes with non-

thrombogenic properties. In this regard, the use of bio-based materials (i.e. materials that have 

either a biological origin or a bio-inspired chemical composition) has been proposed as 

Covering material Illustrative devices Limitations/ outcomes Refs 

Polytetrafluoroethylene 

(PTFE) 

- JOSTENT® GraftMaster 

Stent Graft  

(Abbot, USA) 

- Symbiot TM (Boston 

Scientific, USA) 

-No improvement in clinical 

outcomes when compared to 

bare metal stents and in 

many cases, association with 

a higher incidence of 

restenosis and thrombosis 

[12-16] 

 

 

Polyethylene 

terephthalate (PET) 

- MGuard Coronary Stent 

System (InspireMD Ltd, 

Israel) 

- High incidence of major 

adverse cardiac events 
[17] 

Polyurethane (PU) 
PK Papyrus stent  

(BIOTRONIK, Germany) 

- No differences in major 

adverse cardiac events in 

patients treated with PU-CS 

or PTFE-CS after 1-year 

follow-up 

[18] 

Equine pericardium 

AneugraftDx  

(Amnis Therapuetics Ltd, 

Israel) 

- Potential risk of disease 

transmission 
[19, 20] 

Autologous vein 
Any balloon expandable metal 

stent 

- Time consuming 

fabrication 

- Limited availability 

- Patient morbidity 

[21] 
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alternative to the synthetic ones with the rationale of eliciting a more favourable host response 

[22]. Equine pericardium coronary covered stents are currently available on the market (Table 

1), but the xenogenic origin may represent a limitation. Autologous veins are also used in the 

operating room to cover bare metal coronary stents, but their use is hampered by their limited 

availability and the invasiveness of the harvesting procedure. Therefore, advanced materials, 

able to provide a non-thrombogenic surface while offering off-the-shelf availability, are 

required to address the unmet clinical need of coronary covered stents.  

The elastin-like recombinamers (ELRs) are a family of artificial polymers bioinspired by the 

pentapeptide VPGVG present in the natural elastin [18, 19]. The ELRs show the advantages of 

an engineered material because of the exhaustive control over their composition thanks to their 

recombinant nature, while maintaining inherent properties of the natural elastin (i.e. elastic 

mechanical behaviour, hemocompatibility and bioactivity) [20]. ELRs are therefore excellent 

candidates for the fabrication of devices intended to be in contact with blood [23, 24]. Besides 

the membrane material, the fabrication strategy represents a paramount aspect to be considered, 

as it must be suitable for covering a device with a very small diameter (e.g. 2-4 mm). 

Here, we show the fabrication of covered coronary stents by combining the efficiency, stability 

and selectivity of catalyst-free-click chemistry [25, 26], with a layer-by-layer dip-coating 

technique, and the hemocompatibility and elasticity of ELRs. We tested the resulting click-

ELR-coronary covered stents for their ability to withstand deployment by balloon catheter and 

high shear stress flow. We also evaluated the hemocompatibility of the stents and their 

capability to support endothelialization.  
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2. MATERIALS AND METHODS 

2.1. Layer-by-layer fabrication of ELR-covered coronary stents  

Two ELRs modified with either cyclooctyne or azide groups (Table 2) [27] were dissolved at 

100 mg/mL in PBS at 4 °C. ELR-c is a structural recombinamer while ELR-a contains the RGD 

adhesion sequence. For the dip coating process, ELR solutions were kept at 4 °C in separate 

cylindrical containers and the coronary stents (custom-made by R.T.M. Rainer Trapp 

Medizintechnik GmbH (Germany), L 605 Co-Cr-alloy, polished, with a length of 14.9 mm, an 

outer diameter of 1.8 mm and a strut thickness of 90 µm) were sequentially immersed in the 

ELR solutions and washed in PBS to remove the excess of polymer. The dipping procedure 

was repeated 5 times. The covered stents were stored in ethanol 70%. 

Table 2: Amino acid sequences of each ELR and the corresponding reactive groups used for 

catalyst-free-click chemistry (specifically Huisgen 1,3-dipolar cycloaddition of azides and 

alkynes). The reactive groups were incorporated by chemical modification of the lysine 

residues.  

ELR Amino acid sequence Reactive group 

ELR-c MESLLPVGVPGVG[VPGKG(VPGVG)5]23VPGKGVPGVGV

PGVGVPGVGVPGV 

Cyclooctyne 

ELR-a MGSSHHHHHHSSGLVPRGSHMESLLP[(VPGIG)2(VPGK

G)(VPGIG)2]2AVTGRGDSPASS 

[(VPGIG)2(VPGKG)(VPGIG)2]2 

Azide 
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2.2. Mechanical stability of ELR-covered coronary stents 

The ELR-coronary covered stents (n=3) were exposed for 24 h to high shear stress flow in a 

closed-loop flow system to evaluate the robustness of the polymer covering. The system 

consisted of two peristaltic pumps (Ismatec, MCP Process) connected in parallel to a fluid 

reservoir through silicone tubes (inner diameter 6.4 mm; Ismatec). The stents were fixed in the 

expanded state in a tube with a diameter of 3 mm, and then subjected to the pulsatile arterial 

pressure of 80-120 mmHg. The resulting flow rate was set to 300 mL/min resulting in a mean 

shear stress of 1.5 Pa, according to the equation [28].  

P = (4*η*Q)/(π*r³)                                                                                             Eq. 1 

where P is the shear stress (in Pa), η the dynamic viscosity (in Pa*s), r is the inner radius (in m) 

of the covered stent and Q the volumetric flow rate (in m³*s-1).  

The completeness of the ELR-layer was evaluated by measuring the difference of the dry weight 

of the ELR-covered stents before and after exposure to the flow. The dry weight was determined 

after storing the ELR-covered stent in a 70 % ethanol solution overnight and subsequently 

placing it in an oven (Binder GmbH, Germany) at 60 °C for 90 min. Values are expressed as 

mean ± standard deviation (SD). Wilcoxon signed rank test was used for the statistical analysis. 

 

2.3. Balloon expansion of the ELR-covered coronary stents 

The stents were positioned on the balloons (TREK coronary dilation catheter, Abbot), and 

expanded up to a pressure of 8 atm, corresponding to a stent diameter of 3.4 mm (supplementary 

video S1) as advised by the manufacturer.  
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2.4. Thrombogenicity assay  

Human blood was drawn from healthy volunteers and mixed with 3.2% sodium citrate using an 

S-Monovette CPDA1 device (Sarstedt, Germany) at a volumetric ratio of 1:9 to prevent 

coagulation. PVC tubes (CODAN pvd Medical GmbH) were filled with 1.5 mL of human 

blood. The blood and the ELR-covered stent were placed into a Chandler-loop system, formed 

by a closed PVC tube mounted on the rotating head of a roller pump (company) [29, 30]. The 

rotational speed of the Chandler loop resulted in a shear rate of 429 s-1 and a shear stress of ~ 

1.5 Pa (considering a blood dynamic viscosity of 3.5 x10-3 Pa*s), within the range of 

physiological values [31]. After 1 h of exposure to the blood flow, the stents were washed with 

PBS and cut into pieces for SEM visualization. The same procedure was done with the 

commercially available ePTFE grafts (GORE-TEX®) as controls. The platelet covered-area 

was assessed by image analysis with ImageJ software [32] by analyzing three different regions 

per sample, each with an area of 461 µm2.  SEM images were coloured with MountainsMap7 

SEM software courtesy of Digital Surf, France. 

 

2.5. Scanning electron microscopy 

Samples for SEM investigation were fixed in 3% glutaraldehyde in 0.1 M Sorenson’s buffer 

(pH 7.4) at room temperature for 1h. They were rinsed with sodium phosphate buffer (0.2 M, 

pH 7.39, Merck) and dehydrated consecutively in 30%, 50%, 70% and 90% acetone and then 

three times in 100% acetone for 10 minutes. After critical-point-drying in CO2, they were 

sputter-coated (Leica EM SC D500) with a 20 nm gold-palladium layer. Images were obtained 

with an ESEM XL 30 FEG microscope (FEI, Philips, Eindhoven, the Netherlands) with 

accelerating voltage of 10 kV.  
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2.6. Cell isolation and culture 

Endothelial progenitor cells (EPCs) were isolated from peripheral blood of human adult 

volunteers. Anticoagulated blood of healthy donors was carefully added to the separating 

solution Histo-Paque-1077 (Sigma-Aldrich, St Louis, Missouri), and centrifuged at 400 g at 

room temperature for 30 min. The layer containing mononuclear cells was gently washed twice 

with PBS. The cell pellet was resuspended with 15 mL of endothelial cell growth medium 

(Endothelial Cell Growth Medium MV2; PromoCell, Heidelberg, Germany) containing 

epidermal growth factor (5 ng/mL), basic fibroblast growth factor (10 ng/mL), insulin-like 

growth factor (20 ng/mL), vascular endothelial growth factor 165 (0.5 ng/mL), ascorbic acid (1 

µg/mL) and hydrocoecisone (0.2 µg/mL), and transferred into T-75 culture flask precoated with 

human fibronectin (1 mg/cm2, Sigma-Aldrich, St. Louis, MO). The cells were cultured in 5% 

CO2 and 95% humidity at 37 °C. EPCs colonies were trypsinized (0.25% trypsin/0.02% 

ethylenediaminetetraacetic acid solution (Gibco, Karlsruhe, Germany)) and transferred to T-25 

culture flask precoated with type I rat-tail collagen (5 mg/cm2, BD Biosciences, San Jose, CA). 

Cells with 70-80% of confluence were trypsinized and transferred into T-75 culture flasks. Cells 

up to passage 9 were used for all experiments. 

To study the ability to support endothelialization, the ELR membranes were incubated with a 

suspension of EPCs (5x104 cells/mL) for 6 h, after which the medium was exchanged. The 

scaffolds were then cultured for additional 18 h and subsequently investigated by 

immunohistochemistry followed by confocal microscopy.   

 

 

 



9 
 

2.7. Immunohistochemistry 

ELR membranes seeded with EPCs were fixed with methanol-free formaldehyde (Roth, 

Karlsruhe, Germany) at 4% for 1h at room temperature. Nonspecific sites were blocked and the 

cells were permeabilized by incubation in 5% normal goat serum (NGS, Dako) in 0.1% Triton-

PBS. The samples were incubated overnight at 4°C with a 1:100 dilution of the primary mouse 

anti-CD31 antibody (P8590, Sigma). After washing three times with PBS, the samples were 

incubated for 1 h at room temperature with a 1:400 dilution of AlexaFluor 594 goat anti-mouse 

antibody (A11005, Invitrogen). The samples were washed three times with PBS, and then 

incubated with Triton X-100 at 0.1 % in PBS for 5 min. The membranes were then incubated 

for 45 min at room temperature with Acti-stainTM 488 fluorescent phalloidin (7:1000 in PBS). 

Samples were counterstained with 4’,6- diamidino- 2-phenylindole (DAPI) nucleic acid stain 

(Molecular Probes). Images were acquired using a Zeiss LSM 710 confocal laser scanning 

microscope.  

 

3. RESULTS 

3.1. Layer-by-layer fabrication of ELR-covered coronary stents 

The layer-by-layer fabrication approach (Figure 1 a) resulted in a complete click-ELR 

membrane which uniformly covered the whole stent with no defects or voids detected by 

macroscopic and microscopic inspection (Figure 1 c).  
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Figure 1: Fabrication of the click-ELR coronary covered stents. a) i) Schematic of the layer-

by-layer technique, in which the stent is sequentially immersed in the solution of ELR-azide 

and ELR-cyclooctyne to create a crosslinked ELR-covering membrane by means of catalyst-

free click-chemistry; ii) Cross-section scheme of the click-ELR coronary covered stent; b) Bare 

metal coronary stent. i) lateral and ii) frontal view; iii) detailed view of the struts; c) ELR-

covered coronary stent i) lateral and  ii) frontal view; iii) detailed view of the struts covered 

with the click-ELR-membrane. Scale bars: 1 mm.  

 

3.2. Simulated delivery procedure of ELR-covered stent and mechanical stability 

The ELR-membrane was able to undergo the increase in diameter from 1.8 mm to 3.4 mm 

during balloon expansion without rupture (Figure 2 a and Supplementary video S1). SEM 

analysis revealed a thickness of the ELR-layer of approximately 30 µm after expansion (Figure 

2 c). The dry weight of the ELR-covered stent after exposure to arterial shear stress (1.5 Pa) 
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was not significantly different from that before the exposure (Figure 2 d), indicating a stable 

covering membrane.  

 

 

Figure 2: Simulated in vitro ELR-stent delivery procedure and mechanical stability. a) Balloon-

expansion of the ELR-covered stent; i) initial state before starting the expansion (stent diameter: 

1.8 mm); ii) intermediate state (balloon pressure 2 bar); iii) final state (balloon pressure: 8 bar; 

stent diameter: 3.4 mm); b) Deployed ELR-covered stent; i) semi-frontal image; ii) lateral 

image; iii) detailed view of the ELR membrane; c) SEM image showing the thickness of the 

layer (white arrows, approx. 30 µm); d) Assessment of the dry-weight of the covered stent 

before and after high shear stress flow. Scale bars: a) i-iii) 5 mm; b) i) 2 mm, ii) 5 mm; iii) 100 

µm. c) 20 µm. 
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3.3. Thrombogenicity evaluation  

After stent delivery and exposure to blood under physiological shear stress in the Chandler loop 

system, no macroscopic blood clots were found on the surface of the covered stents. Further 

microscopic analysis by SEM revealed a complete and homogeneous ELR-membrane, which 

completely embedded the struts and bridged the area in between (Figure 3 a-b). The zoom-in 

views of the luminal side of the stents showed minimal platelet adhesion on the surface of the 

ELR-covered stents, in contrast with the high number of activated platelets present on the 

GORE-TEX® surfaces used as control. Further image analysis showed that ELR-stents had a 

platelet covered area 5 fold-smaller than GORE-TEX® (Figure 3 g).  

 

Figure 3: Thrombogenicity assessment.  SEM images of the ELR-covered stents and GORE-

TEX® after blood exposure. a) Overview of the luminal surface of the ELR-covered stent; b) 

Detailed view of the stent strut embedded with the ELR-membrane; c)-d) Detailed views of the 
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lumen of the ELR-covered stent; e)-f) Detailed views of the lumen of GORE-TEX® used as 

control; g) Percentage of area covered by platelets for ELR-covered stent and for GORE-

TEX®. Scale bars: a) 500 µm; b) 100 µm; c)-f) 5 µm.  

 

 

3.4. Endothelialization 

The culture of human EPCs on the surface of the click-ELR membranes resulted in a confluent 

endothelial layer after 1 day, as shown by the CD31 immunostaining (Figure 4). This bioactive 

behaviour is in agreement with the presence of the integrin-mediated adhesion epitope RGD in 

the ELR (Figure 4).  

 

Figure 4. Endothelial progenitor cell layer obtained after 1 day of culture. a) and c) Confocal 

microscopy images showing CD31 staining (red) with DAPI as nuclear counterstain (blue); b) 

and d) Confocal microscopy images showing CD31 (red) and phalloidin (green) staining with 

DAPI as nuclear counterstain (blue). Scale bars: a)-d) 20 µm. 
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4. DISCUSSION 

The concept of the covered coronary stents relies on a membrane that bridges the area between 

the stent struts. The membrane material should ideally be hemocompatible to avoid thrombosis 

and be mechanically stable upon implantation to function as physical barrier either to prevent 

restenosis or to seal coronary perforations and aneurysms [33]. Thrombosis and restenosis are 

still major clinical complications associated with covered stents. Indeed, stents covered with 

synthetic traditional polymers (i.e. PET and ePTFE) suffer from the lack of hemocompatibility, 

and can elicit severe inflammatory reactions and thrombus formation, leading to low patency 

rates [34]. While drug-eluting stents loaded with anti-proliferative and anti-thrombotic drugs 

have been suggested as a solution to avoid thrombosis, intimal hyperplasia and subsequent stent 

occlusion, they have been also associated with delayed endothelialisation and allergic reactions, 

which hampers the expected benefits of the drug-delivery strategy [35, 36].   

Alternative solutions that combine advanced biomaterials with suitable fabrication techniques 

are, therefore, needed in order to develop covered stents that address the aforementioned current 

limitations. This represents an extra challenge for coronary stents, whose small diameter (in the 

order of a few millimeters) makes it difficult to use manufacturing techniques that are applicable 

to peripheral stents (e.g. injection moulding [24, 37] or suturing of preformed membranes on 

bare metal stents [22]). Additionally, the covering-membrane must be elastic to withstand the 

change in the diameter during the implantation.  

Here, we propose the elastin-like recombinamers, as the biopolymers of choice for covering 

coronary stents. The ELRs have shown their potential in a wide range of applications due to 

their good biocompatibility [38, 39], low thrombogenicity  [23, 24] and their elastic properties 

[40]. Specifically, we have used two ELRs that were chemically modified with cyclooctyne and 

azide to enable their stable crosslinking via catalyst-free click-chemistry reaction.  
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Catalyst-free click-chemistry (and specifically Huisgen 1,3-dipolar cycloadition of azides and 

alkynes) outperforms other cross-linking reactions, as it features i) high chemoselectivity, so 

that the reactant pairs do not interfere with other biomolecules or cellular reactions [25], ii) high 

yields under mild, non-toxic conditions; iii) rapidity; iv) no risk of the release of excess 

crosslinking reagents, as the chemical reactive groups are incorporated into the molecules 

intended to be crosslinked; v) no need of catalyst, guaranteeing the cytocompatibility of the 

reaction [26]. 

By exploiting the click-chemistry as a reliable cross-linking strategy and the layer-by-layer dip-

coating as a simple and reproducible fabrication approach, we have created ELR covered 

coronary stents (Figure 1). The resulting stents were placed on a balloon to undergo a simulated 

delivery procedure, in which they were expanded from 1.8 to 3.4 mm (Figure 2), to test their 

suitability for percutaneous implantation into coronary arteries. After stent deployment, neither 

macroscopic nor microscopic tears were observed when exposed to arterial flow and pressure 

conditions (Figure 2). The realization of an intact membrane enables also the use of these stents 

to seal aneurysms or arterial perforations, besides restoring the flow through occluded vessels 

by excluding the plaque or damaged tissue.   

Besides the mechanical elasticity and their potential to act as a physical barrier and to inhibit 

intimal hyperplasia, the click-elastin membrane might also provide an antithrombogenic surface 

that avoids platelet adhesion and activation. In order to check this, we deployed our ELR-

covered stents in a Chandler loop system and exposed them to whole human blood under 

dynamic arterial flow. There were no signs of leukocyte adhesion, and only few platelets were 

observed by SEM, in sharp contrast with the high number of platelets adhered and activated on 

the GORE-TEX® surface (Figure 3). These results agree with previous studies which proposed 

elastin and elastin-like polymers as excellent candidates for the fabrication of blood-contacting 



16 
 

devices [23, 24, 41, 42] and support the use of ELRs for the fabrication of covered stents that 

will be in direct contact with the blood before endothelialization. 

In addition to the intrinsic hemocompatibility shown in the blood-contacting test, the anti-

thrombogenicity of the ELR-covered stents is further guaranteed by their ability to support the 

formation of a confluent endothelial layer, as shown by culturing human EPCs (Figure 4). 

Circulating EPCs are increasingly recognized as important contributors to vascular prosthesis 

endothelialization, making them important mediators of implant compatibility [43, 44]. Besides 

its paramount role as anti-thrombogenic surface, the endothelium is involved in several aspects 

of vascular biology, e.g. blood vessel tone, hemostasis, neutrophil recruitment and hormone 

trafficking [45, 46]. Therefore, the ability of the covered stent to support endothelialization is 

of key importance to achieve the success of the implant. 

It is important to consider that a stented artery presents a geometry based on the stent strut 

configuration, which contrasts with the smoothness of the healthy arteries. This inevitably leads 

to a disturbed local hemodynamics (i.e. turbulent flow) [47], which has been related to the 

stimulation of vascular smooth muscle cell proliferation [48] and platelet activation [49]. 

Indeed, the thickness of the stent-struts plays an important role in-stent restenosis, with thinner 

struts showing considerably lower restenosis rates [50-52]. Importantly, covering the stent with 

the ELR-membrane bridges the stent-struts, with a concomitant reduction in the height changes 

in between the stent struts, which may further contribute to the positive outcome of the device. 

Overall, we have established a strategy that combines the simplicity of the layer-by-layer 

technique with the biocompatibility and specificity of the catalyst-free click-chemistry to 

develop a new class of coronary covered stents. The elastic membrane provided physiological 

hemocompatibility to the implant, and enabled endothelialization, while representing a physical 

barrier for the atherosclerotic plaque and smooth muscle cells ingrowth. Additionally, the 
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recombinant nature of the ELR allows for the introduction of further biological cues (e.g. 

immunomodulatory cues, antimicrobial peptides) to develop a platform that enables stent 

fabrication with tailored biofunctionalities.  
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