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Abstract

The study of family budgets has been traditionally used to analyse consumers’
behaviour and estimate cost-of-living since the end of 19th century. Generally
speaking, the computation of the budgets has been based on two different method-
ologies, the prescriptive and the descriptive method. Both present several draw-
backs like the comparison among different areas, family types and over time.

This paper proposes a new methodology for reaching family budgets, namely
social consensus family budgets, to overcome such problems and examine the
main features of the novel approach. The suggested method uses the minimiza-
tion of the differences with respect to the consumer’s preferences to obtain a so-
lution that summarizes single behaviour into a social preference. This approach
is especially conceived for preferences on possibly related-expenditure groups.
In addition, several algorithms are introduced to compute the social family bud-
gets. Finally, the contribution includes the Spanish case as an example of reaching
some social consensus family budgets in order to show the operational character
and intuitive interpretation of the proposal approach.
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1. Introduction

Taking a decision means select among several alternatives. When decision
depends only on the opinion of one person, its study is related to Rational Deci-
sion Making Theory. If decision depends on a group of people, the process adds
a layer of complexity and its study is included in Group Decision Making The-
ory. A group decision making problem involves, basically, a set of individuals
and set of available alternatives. Under these simple assumptions, each individual
expresses her/his preferences on alternatives and the problem is solved when indi-
vidual’s preferences are mixed in a group’s preference1. Generally speaking, the
achievement of an overarching solution has been considered like an aggregation
problem from Borda [4], Kendall [5] (in a voting context) to Saari and Merlin [6],
Meskanen and Nurmi [7], Klamler [8, 9] and de Andrés Calle, Garcı́a-Lapresta
and González-Pachón [10] (using distance-based aggregation rules).

Nowadays, obtaining of a group’s preference entails not only aggregating
but also finding the best alternative or the solution that more consensus conveys
among decision-makers. Due to this fact, there has been an increasing interest in
developing approaches to solve this new paradigm in this kind of problems like
goal programming techniques [11], operational procedures [12], cluster models
[13], p-indicators [14], multi-objective programming theories [15], control strate-
gies [16] and conditional probabilities [17], among others.

This paper is focused on the contribution of González-Arteaga, Alcantud and
de Andrés Calle [18] which proposes a distance-based methodology to obtain
group consensus solutions, namely Mahalanobis social consensus solutions. This
particular methodology is especially designed for correlated alternatives and ob-
tains group solutions minimizing the dissensus among individual’s preferences2.
However, it is needed to stress that the main weakness of the approach presented
in [18] is its computational complexity even for a small set of alternatives3. In

1Preferences on alternatives can be expressed by means of different types of preference rela-
tions such as ordinal [1], linguistic [2], multiplicative [3], and so on.

2The paper is focused on preferences on alternatives express by means of complete preorders.
3In group decision making context, persons’ maximum efficiency on one-dimensional absolute

judgement coincides with the ability to differentiate among four and eight alternatives (see [19]).
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particular, the formulated optimization problem can be tackled by a force-brute
attack, but this strategy must be rejected because the cardinality of the set of all
complete preorders on the alternatives set grows dramatically in terms of the num-
ber of alternatives.

Taking into account the aforementioned limitations, the objectives of this re-
search are to improve and to extend the proposal of [18], by means of designing
a strategy to compute efficiently Mahalanobis consensus solutions, particularly
when the number of alternatives is not small. To achieve these goals, the central
thesis of this paper is to writte the optimization problem presented in [18] as a set
of mixed-integer quadratic programming problems and solve them, assuming that
they are NP-hard decision problems [20]. Then, this primary aim is divided into
three main research contributions:

• Firstly, prior to transform the original problem into mixed-integer quadratic
problems, the canonical codification included in [18] to codify ordinal in-
formation must be adapted due to the feasible set wich is determined by
equality linear constraints using continuous and binary variables. There-
fore, the concept of α-index is introduced as well as the characterization of
the canonical codified complete preorder based on the α-index.

• Secondly, the feasible set is setted by means of a novel recursive algorithm,
the Recursive α-index algorithm (RAI). As has already been evoked, one
of the main obstacles in the resolution of this type of optimization problems
is the setting of the feasible set for a “not small” set of alternatives. To
be precise, the number of preorders on a set of k alternatives is equal to∑k

j=0 j! ·S(k, j), being S(k, j) the Stirling number of the second kind4. To
our knowledge, there is not a procedure to determine feasible set on set of
preorders in the specialized literature5.

• Finally, an algorithm to efficiently compute Mahalanobis consensus solu-
tions, the Mahalanobis consensus solution algorithm (MCSA), is defined.

In closing and with the goal of putting in practice the aforementioned re-
searches, this study aims to contribute to this growing area of research by propo-
sing a new methodology to compute family’s budgets and then analyse consumers’

4see [21] and The On-Line Encyclopedia of Integer Sequences R© (OEIS R©) Wiki, http://
oeis.org/A000670

5In [22] there is another procedure to compute the number of preorders associated to a set of
alternatives, but not to identified them.
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behaviour. In these times of a new global economy, consumers’ preferences are
changing all the time (modifications in living standards, tendency, technology,
et cetera) and the establishment of consumers’ behaviour patterns is a key re-
search area. The study of consumers’ preferences and their behaviour is one of
the greatest challenges for companies because product marketing is largely de-
pendent on them (see [23], [24] and [25], ammong others) and for Governments
because the efficacy and efficiency of public policies (regulatory, welfare, etc.) is
also dependent on them (see [26]). Therefore, this paper sets out to investigate the
usefulness of the proposed methodologies to determine consumers’ preferences
and the ranking of those expenditure groups that best agrees with family pref-
erences. That is, the ranking that minimizes the disagreement among families’
ranking expenditure groups considering the relation among expenditure groups.
Specifically, the focus of the work is on the Spanish Economy. Based on Spanish
data on household budgets from 2016, the ranking of the expenditure groups for
the Spanish consumers, i.e., the Spanish consumers’ behaviour by the year 2016,
is obtained by means of the proposed methodologies. Among other research con-
sequences, getting Spanish consumers’ behaviour patterns will allow companies
and also the Spanish Government to improve their marketing and public policies,
respectively.

This paper is organized as follows. Section 2 introduces some starting points
like notation and basic definitions. In Section 3, the main research contributions
of this paper to compute efficiently Mahalanobis consensus solutions are intro-
duced. Section 4 includes the real case of study on Spanish Economy to obtain
family budgets. This section analyses the results obtained and provides discus-
sions on them. Finally, some conclusions and further research work are presented
in Section 5.

2. Starting points

Prior to commencing the study, this section reviews some previous definitions
as well as the approach proposed by González-Arteaga, Alcantud and de Andrés
Calle [18] to obtain social consensus solutions under the possibility of alternatives
correlated.

2.1. Notation
Let us denote by N = {1, 2, ..., n}, n > 1 a society of individuals and by

X = {x1, ..., xk}, a finite set of alternatives, options or issues. It is assumed that
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the cardinality of X is at least 2, |X| > 2. For simplicity of notation, we write s
instead of issue xs.

Without loss of generality it is required that experts rank alternatives by means
of complete preorders6. Centring on reflecting real situations, the representation
of agents’ opinions allows ties among alternatives7. W(X) denotes the set of all
complete preorders on X.

Let R ∈ W(X) be a complete preorder on X, then xi �R xj means xi
is strictly preferred to xj , xi ∼R xj means xi and xj are equally preferred and
xi <R xj means alternative xi is at least as good as xj . Any permutation π of the
alternatives {x1, . . . , xk} determines another preorder πR given by:

xi
πRxj ⇔ xπ−1(i)Rxπ−1(j), for every i, j ∈ {1, . . . , k}.

Let P = (R1, ...,Rn) ∈ W(X) × . . . ×W(X) = W(X)n be the profile of
N (the society) on X (the set of alternatives). The Ri ∈ P element stands for the
i-th individual’s preferences on the k alternatives for each i = 1, ..., n.

Dealing with ordinal information like preorders, necessarily involves to esta-
blish how it is represented. The first serious discussion and analysis of transform-
ing or codifying ordinal information into numerical values emerged with Borda’s
work [4]. Subsequently, several procedures have been suggested to that purpose
as [27], [28] and [29], among others.

The choice of a strong codification procedure is an essential issue to accom-
plish any methodology on ordinal information. Therefore, the next subsection
provides the codification method proposed in [18], the canonical codification and
includes a slightly modified characterization of it.

2.2. Codification of preferences
A codified complete preorder of R ∈ W(X) is a real vector

mR = (m1, . . . ,mk), being mj the codification value corresponding to alterna-
tive xj and satisfying mi ≥ mj ⇔ xi <R xj . Note that any m ∈ Rn produces
a unique preorder R, however every preorder R can be associated with infinitely
many vector m ∈ Rn.

6Complete preorders or weak orders, i.e., a complete and transitive binary relation on X.
7Throughout this paper, calligraphic letters are used to denote preorders and its corresponding

profiles, capital letters to represent matrices, capital bold typeface letters for sets, bold lowercase
letters to denote vectors, and finally scalars are represented by lowercase letters.
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Analogously, a codified profile of P = (R1, . . . ,Rn) is a n× k real matrix:

MP = (mR1 , . . . ,mRn) ∈Mn×k

where mij is the codification value of agent i over the alternative xj . We denote
Mn×k the set of all n× k real matrices.

Definition 1. Given R ∈ W(X) be a complete preorder on X , its canonical
codified complete preorder is defined by the vector:

cR = (c1, ..., ck) ∈ ({1, . . . , k})k

where cj is the number of alternatives that are graded at most as good as xj ,
cj = |{q : xj <R xq}|.
The set of all canonical codified complete preorders associated to W(X) is de-
noted by F = F(W(X)).

A canonical codified profile associated with P = (R1, ...,RN) ∈W(X)n is
an n × k real matrix, namely MP = (cR1 , ..., cRn) ∈ Mn×k, where the row i,
denoted by cRi , represents the canonical codified complete preorder associated
withRi.

This particular codification was characterised in [18, Proposition 1]. This con-
tribution includes such proposition although slightly modified. The same proof is
still valid and may be omitted.

Proposition 1. A vector c = (c1, . . . , ck) ∈ ({1, . . . , k})k is the canonical codi-
fied complete preorder cR associted withR ∈W(X) (i.e. cR ∈ F ) if and only if
the increasingly ordered vector ↑c = (c(1), . . . , c(k)) satisfies:

c(k) = k. (1)
c(j) = c(j+1) − tj+1dj+1, j ∈ k − 1, . . . , 1. (2)

where tj+1 is the number of values equal to c(j+1) and dj+1 =

{
0 if c(j+1) = c(j),
1 otherwise.

For abbreviation, a preorderR can be identified with its canonical codification
cR, i.e.,R ≡ cR.

Once the canonical codified procedure has been reviewed, the methodology
used in this paper to find the best option or solution from the set of alternatives is
now presented. The following subsection reminds the proposal of [18] to obtain
global solutions based on the Mahalanobis distance. These solutions are the ran-
kings of issues or alternatives that best concurs with individual preferences, that
is, the ranking that maximizes the agreement among agents.
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2.3. The Mahalanobis consensus solution for ordinal information
The Mahalanobis social consensus solution provides a complete preorder R̂

that is the best agreement taking into consideration the Mahalanobis distance. Al-
though the Mahalanobis consensus solution can be computed for any codification
of preorders, our presentation is restricted to the canonical codification introduced
at Subsection 2.2.

First, the Mahalanobis consensus distance function (MCDF) is defined. It is
the objective function that must be optimized to get the consensus solution.

Definition 2. Let Σ ∈ Mk×k be a definite positive matrix. Given a profile
P = (R1, . . . ,Rn) ∈ W(X)n of complete preorders and its canonical codi-
fied profile, MP = (cR1 , . . . , cRn) ∈Mn×k. The Mahalanobis consensus distance
function (MCDF) is a mapping

CΣ,P : W(X) −→ [0,∞)

that assigns to any complete preorderR ∈W(X) with canonical codification cR
the real number:

CΣ,P(R) =
n∑
i=1

dΣ(cRi , cR) =
n∑
i=1

(cRi − cR)Σ−1(cRi − cR)t (3)

Remark 1. If CP,R ∈Mn×k denotes a matriz whose i-th row is cRi − cR, we can
rewrite MCDF as:

CΣ,P(R) = tr(CP,RΣ−1Ct
P,R), (4)

where tr(·) is the trace operator (tr(A) =
∑n

i=1 aii).

Now, the Mahalanobis consensus solution can be introduced as the preorder
that minimizes the Mahalanobis distance to a given profile. Formally:

Definition 3. The Mahalanobis consensus solution R̂ ∈W(X) of a given profile
P = (R1, . . . ,Rn) ∈W(X)n of complete preorders, is a complete preorder that
solves:

min
R∈W(X)

CΣ,P(R) = min
c∈F

n∑
i=1

dΣ(cRi , c).

That is, R̂ = arg min
R∈W(X)

CΣ,P(R), being cR̂ its canonical codification.
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It should be noted that the existence of Mahalanobis consensus solution is
guaranteed because the feasible set is finite. However, in general its uniqueness
can not be assured.

The folowing theorem, proved at [18], establishes an equivalence between
rankings computed by the minimization of the MCDF and rankings closest to the
mean vector defined by the component-wise averages. This strategy simplify the
computation of Mahalanobis consensus solution.

Theorem 1. Let Σ ∈ Mk×k be a positive definite matrix and P = (R1, . . . ,Rn)
a profile of complete peorders, where MP = (cR1 , . . . , cRn) ∈ Mn×k denotes its
canonical codified profile.

Then, the following are equivalent statements:

1. R̂ ≡ ĉ is the Mahalanobis consensus solution associate to pair (Σ,P):

ĉ = arg min
c∈F

n∑
i=1

dΣ(cRi , c). (5)

2. R̂ ≡ ĉ is given by:
ĉ = arg min

c∈F
dΣ(mP , c). (6)

where mP is the average of the canonical codified profile:

mP = (m1, . . . ,mk), mj =
1

n

n∑
i=1

(cRi)j.

the properties of Mahalanobis social consensus solution (anonymity, unanim-
ity, weak neutrality, consistency, compatibility, reciprocity and non-dictatorship)
are analyzed and diccussed at [18] .

3. Practical computation of Mahalanobis consensus solution

This section is focused in designing a strategy to compute efficiently Maha-
lanobis consensus solutions, particularly when the number of alternatives is not
small. Note that problem of Eq. (6) can be tackled by a force-brute attack, but this
strategy must be rejected even for small k, because the cardinality of set W(X)
grows dramatically in terms of k.
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More specifically, the number of preorders φ(·) of a set X of cardinality k, is
given by:

φ(k) =
k∑
j=0

j! · S(k, j),

where S(k, j) = 1
j!

∑j
l=0(−1)j−l ·

(
j
l

)
· lk is the Stirling number of the second kind

(see [21]).
For that aforementioned purpose, the optimization problem presented in Defi-

nition 3 is written as a set of mixed-integer constrained quadratic programming
problems. Therefore, the feasible set is determined by equality linear constraints,
and it is then required the use of continuous and binary auxiliary variables.

Prior to transform the original problem into quadratic problems, the canonical
codification included in Subsection 2.2 requires to be adapted. Consequently,
some relations and definitions are introduced bellow.

3.1. Canonical codification adaptation
Some elaborations are required in order to relate a preorder R, and its corre-

sponding canonical codification cR via basic algebra. The concept of α-index is
now introduced:

Definition 4. LetR ∈W(X) be a complete preorder on X, and cR = (c1, . . . , ck)
its associate canonical codification. Then, the αR-index ofR, is a vector

αR = α(cR) = (α1, . . . , αk) ∈ ({0, . . . , k})k

where the i-th component is the number of occurrences of “i” in its canonical
codifications, cR:

αi = |{q : i = cq, q = 1, . . . , k}|

Note that two different preorders could have the same α-index. The relation be-
tween them is established below as well as the characterization of the canonical
codified complete preorder based on the α-index.

This codification is further illustrated in Example 1 in order to improve its
understanding.
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Proposition 2. A vector c = (c1, . . . , ck) ∈ ({1, . . . , k})k is the canonical codi-
fied complete preorder cR associted withR ∈W(X) if and only if the αR-index
of c verifies:

1 ≤ αk ≤ k. (7)
0 ≤ αj ≤ j, for j = 1, . . . , k − 1. (8)

If αj = β > 0 ⇒
{
αj−1 = . . . = αj−β+1 = 0,
αj−β 6= 0.

(9)

Proof 2. Since each vector c = (c1, . . . , ck) ∈ ({1, . . . , k})k induces a unique
complete preorder on X, we only have to prove necessity. Conditions 1 ≤ αk
and 0 ≤ αj (j = 1, . . . , k − 1) are consequence of Definitions 1 and 4. We now
examine:

αj ≤ j, for j = 1, . . . , k.

Arguing by contradiction, assume that there exits αl = l+1. That means that l+1
alternatives are graded with l in c: c(1) = c(2) = . . . = c(l+1) = l. Thus, there are
l + 1 alternatives that are equally preferred, and in particular any of them, e.g.
issue xi, is least at good at l + 1 options, which is a contradiction with the value
of c(i) = l < l + 1 (see Definition 1).

To conclude we have to prove Eq. (9). Let αj = β > 0, this implies that there
are β indifferent alternatives graded with j in c. Therefore, there exits a chain:

xj1 ∼ xj2 ∼ . . . ∼ xjβ � xi1 � xi2 � . . . � xiγ

that yields

• β + γ = j, because the alternatives xjl , l ∈ {1, . . . , β} are graded with j
in c.

• The alternative xi1 , is at least as good as j − β options, that implies
ci1 = j − β. Thus, αj−β > 0.

• In view of there are not elements that are at least as good as l alternatives
for j − 1 ≤ l ≤ j − β + 1, we deduce αj−1 = . . . = αj−β+1 = 0.

�
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Remark 2. A simple consequence of Definition 4 is that the αR-index of any
canonical codified complete preorder cR satisfies :

k∑
i=1

αi = k.

Now and in order to improve understanding of the notation, definitions and
results, the following illustrative example is introduced.

Example 1. Let X = {x1, x2, x3} be a set of alternatives (k = 3). All the possible
preorders, R, for these alternatives are summarized in the first column of Table
1. The second column includes the canonical codification of the aforementioned
preorders, cR, according to Definition 1. Their corresponding ordered vectors,
↑cR, are showed in the third column of the table. Their associated αR-indices are
summarized in the forth column (Definition 4).

R cR ↑cR αR

x1 ∼ x2 ∼ x3 (3, 3, 3) (3, 3, 3) (0, 0, 3)

x1 ∼ x2 � x3 (3, 3, 1)
(1, 3, 3)

(1, 0, 2)
x1 ∼ x3 � x2 (3, 1, 3)
x2 ∼ x3 � x1 (1, 3, 3)

x1 � x2 ∼ x3 (3, 2, 2)
(2, 2, 3) (0, 2, 1)x2 � x1 ∼ x3 (2, 3, 2)

x3 � x1 ∼ x2 (2, 2, 3)

x1 � x2 � x3 (3, 2, 1)

(1, 2, 3) (1, 1, 1)

x1 � x3 � x2 (3, 1, 2)
x2 � x1 � x3 (2, 3, 1)
x2 � x3 � x1 (1, 3, 2)
x3 � x1 � x2 (2, 1, 3)
x3 � x2 � x1 (1, 2, 3)

Table 1: Preorders, canonical codification, ordered vectors and αR-indices for
k = 3.

The αR-index (or increasingly ordered vector ↑ cR) provides a partition of
W(X). This will be fundamental in Subsection 3.3. First, an equivalence relation
in W(X) is established.
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Definition 5. Given R, R′ ∈ W(X), we state that both complete preorders are
related (or belong to the same class), R ≡ R′ if and only if there exists a permu-
tation π such thatR = πR′.

It is easy to prove that this binary relation is in fact an equivalence relation. In
fact, each equivalence class can be identified by its αR-index. The quotient set is
denoted by W(X)/ ∼ (set of equivalence classes).

Proposition 3. Let R, R′ be two complete preorder, and cR, cR′ their corre-
sponding canonical codifications. The following statements are equivalent:

1. R ≡ R′.
2. ↑cR =↑cR′
3. αR = αR′

Proof 3. We proceed by steps.

1⇒ 2 Since R and R′ belong to same class, there exits a permutation π such
that:

R′ =π R (xi
πRxj ⇔ xπ−1(i)Rxπ−1(j)),

thus (cR)i = (cR′)π(i), and them both preorders have the same ordered vector,
i.e., ↑cR =↑cR′ .

2⇒ 1 Let π and π′ be two permutations that map cR and cR′ onto ↑cR =↑cR′ .
Then, σ = (π′)−1 ◦ π satisfiesR′ = σR and thereforeR ≡ R′.

2⇔ 3 For a givenR ∈W(X), the relation between ↑cR and αR is one-to-one.
Definition 4 implies that exits a bijection between the set of ordered vector and the
set of α-indices. A simple consequence is that if two preorders, R and R′ have
the same ordered vector, then they have also the same α-index, and reciprocally.

�

The main consequence of the previous result is that allows to identify the quo-
tient set, W(X)/ ∼, with the set of all feasible αR-indices, that from now on is
denoted by A:

W(X)/ ∼ :
∼−−−−→ A

[R] −−−−→ αR
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This bijection will be an important key to achieve the goal of this paper. In other
words, αR-indices induce a partition of the set of canonical codified complete
preorder F

F =
⋃
·

α∈A

Fα, Fα = {c ∈ F : α(c) = α}, (10)

where Fα groups all canonical codified complete preorder with the same α-index.
The following results establishes the cardinality of the quotient set, W(X)/ ∼

(equivalently the cardinality of A).

Proposition 4. The cardinality of the W(X)/ ∼ is 2k−1.

Proof 4. From Proposition 3, we only have to count the number of ordered vectors
c =↑ c satisfying Eqs. (1)-(2). We proceed by steps to fill the coefficient cj ,
j = k, . . . , 1, and so build all possible c. In the first step the value of ck is fixed
to k. Now, filled cj+1, in the j-th step we only have two choices that depends of
the value dj+1 = 0, 1. Since we have k − 1 effective steps and two choice in each
step, we then conclude that the cardinality of W(X)/ ∼ is 2k−1. �

3.2. The establishment of the feasible set
One of the main obstacles in the resolution of the optimization problems pre-

sented in this contribution is the setting of the feasible set for a “not small” set of
alternatives. A recursive algorithm, Algorithm 1, is proposed to compute explic-
itly A for a given k. This novel algorithm benefits from Proposition 2 and it is
called Recursive α-index algorithm (RAI).

The algorithm receives as unique argument the number of alternatives, k. In
line 2, algorithm distinguishes between the trivial case (k = 1, where A = (1)),
and the generic one (k > 1). Lines 4-7 build A, when k > 1. In line 4,
the unique α-index with αk = k is generated (this index corresponds to k in-
different alternatives). Then, the for-loop in lines 5-7, builds α-indices with
αk ∈ {k − 1, . . . , 1}. Line 6 implements the main step of the algorithm. The
α-indices that have their k-th component equals to k− i are generated. According
to Eq. (9), these indices take value αj = 0 for j = i+ 1, . . . , k − 1, and their first
i-th components correspond to the α-indices associated to a set of cardinality i.
Note that the algorithm is called recursively.
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Algorithm 1 : RAI (Recursive α-index algorithm)
1: procedure A← GETALPHASET(k)
2: if k = 1 then return A← {(1)}
3: else
4: Ak ← (0, . . . , 0, k) ∈M1×k
5: for i← 1 to k − 1 do

6: Ak−i ←

getAlphaSet(i)

∣∣∣∣∣∣
...

. . . 0 . . .
...

∣∣∣∣∣∣
k − i
. . .
k − i

 ∈M2i−1×(i+(k−i−1)+1)

7: end for
8: return A← (Ak;Ak−1; . . . ;A1) ∈M2k−1×k

9: end if

3.3. Algorithm to compute the Mahalanobis consensus solution
Our procedure depends on two fundamental keys:

1. The partition of canonical codified complete peorders, F(≡ W(X)) as
disjoint union, Eq. (10).

2. The canonical codified complete preorders in Fα (preorders with the same
α-index) can be characterized via linear constrains.

Taking into account these issues, the optimization problem defined in Theorem
1 Eq. (6) can be rewrited as:

min
c∈F

dΣ(mP , c) ≡ min
α∈A

(
min
c∈Fα

dΣ(mP , c)

)
where Fα denotes the set of canonical codified complete preorders which has
α ∈ A as α-index (Definition 4).

Focusing on the optimization problem on Fα that can be formulated in stan-
dard way. The issue is to write c ∈ Fα using basic algebra.

14



Let {bij}1≤i,j≤k be k×k binary variables (bij = 0, 1). The following conditions
characterize c ∈ Fα:

ci =
k∑
j=1

jbij, ∀i = 1, . . . , k, (11)

k∑
j=1

bij = 1 ∀i = 1, . . . , k, (12)

k∑
i=1

bij = αi ∀j = 1, . . . , k, (13)

bij ∈ {0, 1} ∀i, j = 1, . . . , k, (14)
ci ∈ R ∀i = 1, . . . , k. (15)

Note that, on one hand Eqs. (11), (12) and(14) ensure that the components
{ci}ki=1 of the codified preorder c are integer and belong to {1, . . . , k} (ci = j ⇔
bij = 1). On the other hand, Eq. (13) provides the number of occurrences i in c
(i.e., the α-index of c).

In addition, several remarks should be highlighted:

• Since α ∈ A is a feasible α-index, any c = (c1, . . . , ck), satisfying Eqs.
from (11) to (15), is a canonical codified complete preorder.

• Each canonical codified complete preorder c ∈ F is solution of Eqs. from

(11) to (15). It is enough to choose bij =

{
1 if ci = j,
0 otherwise.

• Equations (11), (12), (13), (14) and (15) involve 3k equality linear con-
strains and k(k + 1) variables, of which k2 are binary and k are continuous
and unbounded.
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Collecting these results, the optimization problem on Fα can be represented
in matrix form as:

min (mP − c) Σ−1 (mP − c)t

s.a.  Id B1 . . . Bk

0 C1 . . . Ck
0 Id . . . Id




ct

bt1
...
btk

 =

 0t

1t

αt

 (16)

where Id, {Bi}ki=1, {Ci}ki=1 ∈Mk×k and 0,1, {bi}ki=1 ∈ Rk are given by:

Bi =


0 . . . . . . 0
. . . . . . . . . . . .
−1 −2 . . . −k
. . . . . . . . . . . .
0 . . . . . . 0

 Ci =


0 . . . . . . 0
. . . . . . . . . . . .
1 1 . . . 1
. . . . . . . . . . . .
0 . . . . . . 0



being gray row, the i-th row;

Id =

1 . . . 0
... . . . ...
0 . . . 1



0 = (0, . . . , 0) 1 = (1, . . . , 1) bi = (bi1, . . . , bik).

To finish this section, Algorithm 2 to compute Mahalanobis consensus solu-
tions, the Mahalanobis consensus solution algorithm (MCSA), is presented.

This algorithm requires as input parameters: the Σ matrix associated to the
Mahalanobis consensus measure, and the codified profile MP . Initially, some pre-
liminar calculations are done: the average of the canonical codified profile mP
(line 2), the cardinaltiy of the alternatives set k (line 3), and the set of α-indices
A (line 4). Then, the consensus solution value and its associated Mahalanobis dis-
tance are initialized. The for-loop of lines 7 to 13 solves the optimization problem
on the set Fα with α ∈ A (|A| = 2k−1). In each step, the quadratic optimiza-
tion problem of Eq. (16) is assembled (line 8), and solved (line 9). If the former
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Algorithm 2 : MCSA
1: procedure ĉ← COMPUTEMSCM(Σ, MP )
2: mP ← getAverage(MP )
3: k ← getNoAlternatives(MP )
4: A← getAlphaSet(k)
5: fmin← Inf
6: ĉ← 0
7: for i← 1 to 2k−1 do
8: OP = assemble(Σ, m, αi )
9: {c, fobj} ← solve(OP)

10: if fobj < fmin then
11: ĉ← c

12: end if
13: end for
14: return ĉ

consensus solution provides a better agree (the Mahalanobis distance is the small-
est one) then, the consensus solution is updated. This loop can be parallelized.
Finally, the best consensus solution is returned.

About the solution of the quadratic programing problem, note that Algorithm
2 (MCSA) has been implemented in Matlab [30]. The optimization problem was
addressed with Gurobi software [31], using a mixed-integer quadratic program-
ming solver (MIQP). It is based on branch-and-bound algorithm, and combines:
pre-solving, cutting planes, heuristics and branching.

By way of illustration of the procedure proposed, the next example is pre-
sented.

Example 2. Let α = (0, 2, 1) be an α-index for k = 3. The set Fα is characteri-
zed by the following constrains:
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c1 = b11 + 2b12 + 3b13

c2 = b21 + 2b22 + 3b23

c3 = b31 + 2b32 + 3b33

1 = b11 + b12 + b13

1 = b21 + b22 + b23

1 = b31 + b32 + b33

0 = b11 + b21 + b31

2 = b12 + b22 + b32

1 = b13 + b23 + b33

bi,j = {0, 1} i, j = 1, 2, 3
ci ∈ R i = 1, 2, 3

Expressing the constrains in matrix structure:



1 0 0 −1 −2 −3 0 0 0 0 0 0
0 1 0 0 0 0 1 −2 −3 0 0 0
0 0 1 0 0 0 0 0 0 1 −2 −3
0 0 0 1 1 1 0 0 0 0 0 0
0 0 0 0 0 0 1 1 1 0 0 0
0 0 0 0 0 0 0 0 0 1 1 1
0 0 0 1 0 0 1 0 0 1 0 0
0 0 0 0 1 0 0 1 0 0 1 0
0 0 0 0 0 1 0 0 1 0 0 1





c1

c2

c3

b11

b12

b13

b21

b22

b23

b31

b32

b33



=



0
0
0
1
1
1
0
2
1



A straightforward computation reveals that the solutions (codified complete
preorders) are given by:

{(2, 2, 3), (2, 3, 2), (2, 2, 3)}

that correspond with the third row-group of Table 1.

For the purpose of showing and justifying the computation efficiency of the
RAI-Algorithm and MSCA-Algorithm, some arguments are now introduced.
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3.4. About the complexity of the RAI and MSCA Algorithm
The computation of Mahalanobis consensus solutions can be tackled by a

force-brute attack but this strategy involves some technical difficulties:

a) First off it is necessary to emphasize that the use of the force-brute computa-
tion requires an exhaustive inspection of all preorders to define the feasible
set F . Due to the fact that the number of preorder grows dramatically in
terms of the number of alternatives, the establishment of the feasible set in
a reasonable time frame for a not small number of alternatives is a daunting
task. Table 2 shows that the number of preorders to be defined for k = 20
is 2677687796244384203115.

b) Secondly and to the best of our knowledge, there is not a parameterization
of the set of preorders in the specialized literature. Therefore, there not
exists an algorithm to explicit generate the feasible set F .

c) Lastly, it could be possible to produce the feasible set F selecting the set of
preorders from the k-tuples set although this process is high demanding.

In the light of the above, the RAI and MSCA Algorithm and force-brute attack
strategy are compared. To this end and to measure the computational cost in term
of the number of alternatives, a complexity rate is proposed. This ratio is defined
like the quotient of the computational cost to obtain the Mahalanobis consensus
solution between two consecutive values of k. Thereby, the complexity rate for
the force-brute attack strategy is defined by

CBF(k) =
|Fk|
|Fk−1|

,

where |Fk| and |Fk−1| is de cardinality of the feasible set for k and k − 1 alter-
natives, respectively.

For the MSCA-Algorithm, the complexity rate is defined by

CMSCA(k) =
|Ak| · tk
|Ak−1| · tk−1

,

where |Ak| and |Ak−1| denote the cardinality of the set of all feasible αR-indices
for k and k − 1 alternatives, respectively and tk denotes the average time to solve
the mixed-integer quadratic programming problem 8.

8To solve the mixed-integer quadratic programming problem, the associated matrix Σ and
the average canonical profile mP were randomly generated. Moreover, the α-index was fixed
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The results of the comparative study are shown in Table 2 and Figure 1. Note
that the complexity rate for MCSA-Algorithm remains between [2, 4] for k ≤ 20.
However the rate for the brute-force strategy grows linearly. That reveals that our
proposal is efficient and competitive.

The reported computation time in Table 2 corresponds to an average over 100
problems on a Dell Precision T7500. Data management and analysis was per-
formed using a equipped with two Intel Xeon X5550 v2 processors - 4 cores, each
working at 2.66 GHz - and 24 GB RAM. Matlab and Gurobi optimizer were com-
bined to solve the problems. In addition, since RAI-Algorithm allows to generate
the A set, the computation of Mahalanobis consensus solution can be trivially
parallelized. Therefore the computations time on Table 2 can be reduced using
the current generation of calculation platforms.
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Figure 1: Complexity rate for a brute-force attack strategy and for the MSCA-
Algorithm versus the number of alternatives (k).

In the coming section the novel procedures and algorithms exposed in this
work are put in practice in a real case.

to (1, . . . , 1) due to the fact that the associated feasible set is the biggest and heuristically, the
mixed-integer quadratic programming problem seems to be the hardest one.
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Brute-force attack strategy MSCA-Algorithm

k |Fk| CBF(k) |Ak| tk CMSCA(k)

3 13 - 4 0.0044 -
4 75 5.7 8 0.0052 2.4
5 541 7.2 16 0.0072 2.8
6 4683 8.6 32 0.0095 2.6
7 47293 10.1 64 0.014 2.9
8 545835 11.5 128 0.022 3.1
9 7087261 13.0 256 0.031 2.8
10 102247563 14.4 512 0.035 2.9
11 1622632573 15.9 1024 0.055 3.7
12 28091567595 17.3 2048 0.16 3.7
13 526858348381 18.7 4096 0.18 2.3
14 10641342970443 20.2 8192 0.26 2.8
15 230283190977853 21.6 16384 0.43 3.3
16 5315654681981355 23.1 32768 0.65 3.0
17 130370767029135901 24.5 65536 0.80 2.5
18 3385534663256845323 26.0 131072 1.2 3.0
19 92801587319328411133 27.4 262144 1.4 2.3
20 2677687796244384203115 28.8 524288 1.8 2.6

Table 2: Main features of the two proposed Mahalanobis consensus solution
strategies: brute-force attack and MSCA-Algorithm .

4. A real case: The Spanish social consensus family budget

The experimental work presented here provides one of the first investigations
into how to compute the family budgets that more consensus conveys among fami-
lies and then, to establish household consumption behaviour9. Particularly, the
focus of the work is on Spanish Economy and social consensus family budgets
are computed based on Spanish data on 2016 household budgets. As mentioned
in Introduction, the knowledge of the Spanish household consumption behaviour
allows companies and Governments to improve their marketing and public poli-
cies. It is hoped that this real study will contribute to a deeper understanding of
the methodologies proposed in the previous Sections.

The remaining part of the section proceeds as follows. Firstly, a a brief over-
view of the framework and the traditional approach used in Spain to determine
the family budgets is introduced. Secondly, the data provided by the Spanish

9In this particular case, families play the role of agents or consumers.
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National Statistics Institute for the households consumption are manipulated to
obtain families’ preferences. Subsequently, the canonical codification of the fam-
ilies preferences are computed as well as averages group expenditure. Thereupon,
different social consensus family budgets are calculated for different Σ matrices
to promote the debate. Finally, the aforementioned results are analysed and dis-
cussed.

4.1. The Spanish framework and approach
The Spanish National Statistics Institute performs the Household Budget Sur-

vey (HBS) since 1958. This survey is one of the oldest in Spain and its main goal
is to obtain information on the nature and destination of consumption cost, as well
as on various characteristics relating to the conditions of household life.

The survey was last reformed in 2006, it is nowadays annual, includes about
24000 dwellings in its sample and provides essential information on the estimates
on households consumption expenditure and on updating the Consumer Price In-
dex (CPI) weightings.

The HBS classifies expenses using the COICOP (national adaptation of the
international classification used by Eurostat for budget surveys) and it structures
them as follows:

• Group 1: Food and non-alcoholic beverages

• Group 2: Alcoholic beverages, tobacco and narcotics

• Group 3: Clothing and footwear

• Group 4: Housing, water, electricity, gas and other fuels

• Group 5: Furniture, household equipment and ordinary expenses for the
maintenance of the dwelling

• Group 6: Health

• Group 7: Transport

• Group 8: Communication

• Group 9: Leisure, performances and culture

• Group 10: Education
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• Group 11: Restaurants, coffee and hotels

• Group 12: Miscellaneous goods and services

The National Statistics Institute to estimate the characteristics of households
uses the following estimator [32]:

X̂A =
∑
h∈A

Ph · T∑
g∈hRg ·

∑
i∈g[chi ·

∑
j∈i phij]

·

[∑
g∈h

Rg ·
∑
i∈g

[chi ·
∑
j∈i

xhij]

]

being:

• X̂A: Estimate of the total annual household expenditure on a good or service
X in geographical area A.

• Ph: Population projection of stratum h, referring to half of the surveying
year.

• T : Temporary elevation factor. This factor depends on the reference period
of the good or service X.

• chi: Update coefficient. It is a value that depends on the selection and rep-
resents its growth from the moment of sample selection until the year of the
data in the survey. For the year 2016 this coefficient is equal to 1.

• phij: Population formed by the household members in household j of the
sample, section i, stratum h.

• xhij: Value of the expenditure on the good or service X in household j of
the sample, section i, stratum h.

• Rg: Non-response correction factor in group g. It is obtained as the quotient
between the total number of households of the theoretical sample of this
group and the household of the effective sample.

The previous X̂A estimator can also be expressed in the next simplified version
by calibration approach:

X̂A =
∑
k∈A

wkxk
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where k ranges over all of the effective sample units in geographical area A.
To obtained this final estimator, it is necessary to find a new weight dk enables

X̂A to verify:

i. The estimate based on the sample of a specific feature must match the value
of this feature on the population (this value is obtained through an external
source).

ii. Fixed a distance function10, the distance between dk and wk should be min-
imal.

In recent years, there has been an increasing interest in analysing the afore-
mentioned traditional approach and the main challenges faced by many researchers
are (see [33] and [34]):

• Selection of the appropriate equivalence scale to adapt the household bud-
gets for different sizes and types.

• Consideration of interrelationships among expenditure groups.

• Establishment of index/weights for geographical differences in prices.

• Updating budgets over time.

Although there are several approaches in the specialized literature to overcome
these drawbacks, there is no consensus on it. Therefore, in the pages that follow,
this research shows how to implement the new methodology and algorithms raised
above that improving such drawbacks.

4.2. Our proposal
Following the group decision making problem framework presented in Sec-

tion 2, the set of agents considered is composed of the households included in the
sample selected by the Spanish National Statistics Institute in 2016: 22130 house-
hold, then N = {1, . . . , 22130}. Additionally, the set of alternatives is formed by
the twelve expenditure groups11 , X = {x1, x2, . . . , x12}, k = 12.

10A truncated linear distance function is traditionally applied and the computations are per-
formed by the CALMAR software (CALibration of MARgins). This specific software is used by
many National Statistics Offices on the world like UK, Ireland, France, and so on.

11The structure of the expenditure groups as well as the sample distribution are preserved in
time.
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By means of the HBS, the data of the households consumption expenditure
is collected and classified according the expenditure groups12. For the purpose
of obtaining the households preferences on the expenditure groups, the consump-
tion for each household is aggregated for each expenditure group. After aggrega-
ting, the results are ordered to grade the groups, obtained a complete preorder
Ri ∈ W(X) on X for each household i = {1, . . . , n = 22 130}. These complete
preorders generate a particular profile:

P = (R1, . . . ,Rn) ∈W(X)× . . .×W(X) = W(X)n=22130

whereRi represents the preferences of the household i on the twelve expenditure
groups for each i = 1, . . . , 22 130.

Applying Definition 1 to each complete preorder the codified profile for P ,
MP ∈M22 130×12 is obtained.

By way of illustration of this first procedure, Table 3 shows the expenditure
of three families from the sample in the groups of goods. Taking into account the
data from Table 3, the household preferences are:

• Household 1:

R1 : x2 ≺ x9 ≺ x5 ≺ x6 ≺ x8 ≺ x7 ≺ x10 ≺ x3 ≺ x12 ≺ x4 ≺ x11 ≺ x1

• Household 2:

R2 : x3 ∼ x6 ∼ x7 ∼ x10 ≺ x5 ≺ x8 ≺ x2 ≺ x9 ≺ x12 ≺ x1 ≺ x4 ≺ x11

• Household 3:

R3 : x6 ∼ x10 ≺ x9 ≺ x5 ≺ x2 ≺ x8 ≺ x12 ≺ x1 ≺ x7 ≺ x3 ≺ x4 ≺ x11

12All data available through the website: http://www.ine.es/dyngs/INEbase/en/
operacion.htm?c=Estadistica_C&cid=1254736176806&menu=resultados&
idp=1254735976608
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Expenditure group∗

Household x1 x2 x3 x4 x5 x6

1 11.66 0.08 2.31 7.07 0.81 0.93
2 3.54 2.32 0.00 5.36 0.24 0.00
3 2.48 0.12 5.11 9.75 0.12 0.00

Expenditure group∗

Household x7 x8 x9 x10 x11 x12

1 1.61 1.54 0.65 1.75 7.82 5.14
2 0.00 0.59 2.71 0.00 7.40 2.84
3 3.04 1.18 0.11 0.00 15.14 1.92

∗: data in thousands of euro.

Table 3: Expenditure for group from original data.

Once the household preferences have been established, the corresponding pre-
orders, R1,R2 and R3 are codified following Definition 1. Table 4 shows these
codified complete preorders:

cRi
Household c1 c2 c3 c4 c5 c6

1 12 1 8 10 3 4
2 10 7 4 11 5 4
3 8 5 10 11 4 2

cRi
Household c7 c8 c9 c10 c11 c12

1 6 5 2 7 11 9
2 4 6 8 4 12 9
3 9 6 3 2 12 7

Table 4: Codified complete preordersRi for i = 1, 2, 3

Returning to the general issue, to obtain the social consensus family budgets
by means of the optimization problem presented in Eq. (6), it is necessary:
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1. To compute the average of the canonical codified profile:

mP = (m1, . . . ,m12)

The elements of mP vector are showed in Table 5.

2. To fix a Σ matrix. This matrix should convey the specific characteristics of
the problem at hand. The role of the Σ matrix allows to take into account the
variances of the expenditure groups and the covariances among them. In this
contribution, several different Σ matrices were considered to promote the
discussion and to capture the interrelations among the twelve expenditure
groups:

• Σ1 = Id matrix. The simplest case. The Σ matrix is the identity
matrix, then all expenditure groups are equally treated.

• Σ2 matrix. This Σ matrix accounts the case where the expenditure
groups are considered differently by means of a diagonal matrix. Spe-
cifically, Σ2 includes like diagonal elements the variances of the ex-
penditure groups from the original data. Table 6 includes this particu-
lar matrix.

• Σ3 matrix. A natural choice could be to consider the Σ matrix like
the empirical variance-covariance matrix computed directly from the
original data (without codification). This matrix involves not only that
all expenditure groups are not equally treated but they are also corre-
lated. Figure 2 presents a graphical interpretation of such relations13.
Table 7 shows Σ3 and its corresponding correlation matrix is in Table
8.

• Σ4 matrix. Similar to Σ2 matrix, Σ4 is a diagonal matrix which in-
cludes like diagonal elements the variances of the expenditure groups
but from the codified profile as shows Table 9.

• Σ5 matrix. Since the objective function in the optimization problem
uses the Mahalanobis distance among canonical codified preorders, it
is reasonable to propose like Σ matrix the statistical variance-covarince
matrix computed from the codified profile. This matrix Σ5 and its
corresponding correlation matrix are in Table 10 and Table 11, re-
spectively. Figure 3 shows a graphical interpretation of the respective
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correlation matrix13.

• Σ6 matrix. This special Σ matrix has been designed to capture the
correlations among the group of expenditures from original data and
to adapt them to the scale of the codified profile. To this aim, Σ6 is
defined by

Σ6 = D ·R ·D

where R is the correlation matrix computed from the twelve expen-
diture groups (Table 8) and D the diagonal matrix which diagonal
elements are the square roots of the variances of the codified profile
(Table 10). The Σ6 matrix is showed in Table 12.

3. To establish the feasible set. As mentioned in Subsection 2.3, the feasible
set in this problem is finite, although for k = 12, the number of complete
preorders to consider is φ(12) = 28 091 567 595 ≈ 3e + 10 (see [35]).
To manage such a number of preorders, Algorithm 1 is put in practice, to
compute the α-indices set A12 (|A12| = 211 = 2048).

4. To solve the quadratic optimization problems. For each α ∈ A12 we solve:

min
c∈Fα

dΣm(mP , c)

or in matrix form:

min (mP − c) Σ−1
m (mP − c)t

s.a.  Id B1 . . . B12

0 C1 . . . C12

0 Id . . . Id




ct

bt1
...

bt12

 =

 0t

1t

αt


where Id, {Bi}12

i=1, {Ci}12
i=1 ∈M12×12 and 0,1, {bi}12

i=1 ∈ R12.
Finally, among 2048 solutions associated to each Fα, we select the codified
preorder c that produces the best agreement.

13Ellipses in Figures 2 and 3 symbolize the correlation between two expenditure groups. El-
lipses slant upward (resp., downward) show a positive (resp., negative) correlation. Moreover, the
tighter the ellipse the stronger correlation.

28



Algorithm 2 reveals that the social consensus family budgets for the six Σ
matrices are given by:

Σ1: x4 � x1 � x12 � x7 � x9 � x11 � x3 ∼ x5 � x2 ∼ x6 ∼ x8 ∼ x10.

Σ2: x4 � x1 � x7 � x11 � x12 � x9 � x3 ∼ x8 � x2 ∼ x5 ∼ x6 ∼ x10.

Σ3: x4 � x1 � x7 � x11 � x12 � x9 � x3 ∼ x8 � x2 ∼ x5 ∼ x6 ∼ x10.

Σ4: x4 � x1 � x7 � x11 � x12 � x9 � x3 ∼ x5 ∼ x8 � x2 ∼ x6 ∼ x10.

Σ5: x4 � x7 � x1 � x11 � x12 � x9 � x8 � x3 � x5 ∼ x2 ∼ x6 ∼ x10.

Σ6: x4 � x1 � x7 � x12 � x11 � x9 � x8 ∼ x5 ∼ x3 � x2 ∼ x6 ∼ x10.

Moreover the group position for different Σ as well as the values of the objec-
tive function are displayed in Table 13 and showed in Figures 4 and 5.

Note that the calculation time employed to obtain the solutions aforemen-
tioned on a Dell Precision T7500 (equipped with two Intel Xeon X5550 v2 pro-
cessors – 4 cores, each working at 2.66 GHz – and 24 GB RAM) is on the order of
80 seconds. A brute-force procedure should calculate the distance between pre-
orders in a time of approximately 3.5e+ 8 preorders per second to be competitive
with the procedure implemented by Algorithms 1 and 2.

4.3. Discussion
The present case of study was designed to analyse consumer behaviour from a

non-standard point of view. The results of this study indicate that different social
consensus family budgets are obtained if the expenditure groups are not equally
treated as well as if the interrelations among them are taken into account.

In reviewing the literature, no data was found on the inclusion of such re-
lationships in the traditional computation on the family budgets. This fact may
disturb the results of the analyses of the consumer behaviour obtained and also
the computation of the consumer price index (CPI).

Closer inspection of the outcomes obtained in Subsection 4.2 and Figures 4
and 5, reveals that x4 the expenditure group 4 (Housing, water, electricity, gas and
other fuels), appears on the top of the social consensus family budget for each Σ
matrix.

The solutions obtained for Σ2 and Σ3 coincide among them although Σ3 takes
into account the interrelation among the groups. This fact could be due to the
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magnitude of the original data, that is, the large figures included in the Σ matrix
skew the preorders included in the codified profile and then the results. This prob-
lem is solved by including the special matrix, Σ6. This particular matrix has been
built to adapt the correlations among the original data from expenditure groups to
the scale of the codified profile.

For Σ4 and Σ5 the solutions obtained are similar but not equal. To be pre-
cise, for Σ5 the social solution presents less expenditure groups indifferent among
them, for instance: x8 � x3 � x5 for Σ5 against x8 ∼ x3 ∼ x5 for Σ3, due
to the incorporation of the interrelation among them even if their correlations are
relatively small (see Tables 10, 11 and Figures 3, 4 and 5).

About the change of expenditure group position respect to Σi, note that groups
x7 (transport) and x12 (services) are the more affected. Whereas the solution for
Σ1 orders x7 in the 2nd position, the choice Σ5 sets this group at 4th position. A
similar situation is presented for the alternative x12 (see Figure 5). It reveals that
the correlations among expenditure groups affects the final ranking of alternatives.

Together these results provide important insights into the relevance of con-
sidering the relationship among expenditure groups and the data scale in order to
compute the consumers’ behaviour (goods ranking) that more consensus conveys
to the society. Hence, it could conceivably be hypothesised that the Σ6 matrix
provides the best solution:

x4 � x1 � x7 � x12 � x11 � x9 � x8 ∼ x5 ∼ x3 � x2 ∼ x6 ∼ x10

5. Conclusions and futher research work

The present study makes several noteworthy contributions to find the best so-
lution in group decision making problems. Focusing on the problem presented
by González-Arteaga, Alcantud and de Andrés Calle in [18], the key strengths
of this study is provided a strategy to compute efficiently Mahalanobis consensus
solutions when the number of alternatives is not small. Particularly, this study
writes the original optimization problem like a set of mixed-integer quadratic pro-
gramming problems where the feasible set is determined by equality linear con-
straints by continuous and binary variables. Regarding this general goal, three
mains contributions are proposed: a new codification procedure based on the new
concept of α-index and its characterization; a recursive algorithm, the recursive
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α-index algorithm (RAI), to establish the feasible set and an algorithm to compute
Mahalanobis consensus solutions, the Mahalanobis consensus solution algorithm
(MCSA).

Finally and in order to show the several practical applications of this research,
a new approach is proposed to analyse consumers’ behaviour. The empirical find-
ings in this study provide a new understanding of computing family budgets, the
consensus family budgets. Based on Spanish data on household budgets from
2016, the rankings of the expenditure groups that best agrees with family preferen-
ces are obtained under different assumptions.

Regarding future research, this contribution has thrown up many questions in
need further investigation among which the following are noteworthy:

i. The computation of Mahalanobis consensus solutions requires to have a
reference matrix suitable to the problem at hand. Therefore, it is essential
to develop procedures to determine such a reference matrix. In this sense, it
could be interesting to design methodologies for generating this matrix by
means of an endogenous way.

ii. The α-codification proposed in this paper could also be used to generated
the feasible set F .

iii. Future studies related to Social Choice Theory and Preference Behaviour
Theory could be inspired by this research particularly, decision making
problems that have a not small set of alternatives.
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Group

x1 x2 x3 x4 x5 x6

Average Expenditure∗ 4.47 0.55 1.5 9.03 1.23 1.05

mi 10.08 4.22 6.06 11.61 5.71 4.78

Group

x7 x8 x9 x10 x11 x12

Average Expenditure∗ 3.31 0.82 1.69 0.41 2.68 2.15

mi 7.51 5.7 6.39 3.14 7.43 7.9

∗: data in thousands of euro.

Table 5: Expenditure averages for original data and codified data.

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12

x1 9.24 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
x2 0.00 0.92 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
x3 0.00 0.00 4.85 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
x4 0.00 0.00 0.00 24.99 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
x5 0.00 0.00 0.00 0.00 4.61 0.00 0.00 0.00 0.00 0.00 0.00 0.00
x6 0.00 0.00 0.00 0.00 0.00 8.35 0.00 0.00 0.00 0.00 0.00 0.00
x7 0.00 0.00 0.00 0.00 0.00 0.00 30.47 0.00 0.00 0.00 0.00 0.00
x8 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.30 0.00 0.00 0.00 0.00
x9 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 6.48 0.00 0.00 0.00
x10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.14 0.00 0.00
x11 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 14.12 0.00
x12 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 7.70

Table 6: Σ2: Variance matrix of the expenditure groups from original data.
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x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12

x1 9.24 0.48 1.71 3.54 1.23 0.83 3.01 0.44 1.92 0.65 2.33 1.83
x2 0.48 0.92 0.17 0.21 0.09 0.08 0.46 0.08 0.23 0.02 0.53 0.18
x3 1.71 0.17 4.85 2.20 1.04 0.63 2.70 0.31 1.69 0.55 2.65 1.58
x4 3.54 0.21 2.20 24.99 3.31 1.42 5.16 0.67 3.23 1.84 4.99 3.99
x5 1.23 0.09 1.04 3.31 4.60 0.53 1.70 0.22 1.22 0.60 1.68 1.29
x6 0.83 0.08 0.63 1.42 0.53 8.35 1.09 0.14 0.74 0.11 0.75 0.80
x7 3.01 0.46 2.70 5.16 1.70 1.09 30.47 0.79 3.10 1.38 5.88 2.94
x8 0.44 0.08 0.31 0.67 0.22 0.14 0.79 0.30 0.40 0.16 0.66 0.35
x9 1.92 0.23 1.69 3.23 1.22 0.74 3.10 0.40 6.48 0.75 3.41 1.61
x10 0.65 0.02 0.55 1.84 0.60 0.11 1.38 0.16 0.75 2.14 1.29 0.73
x11 2.33 0.53 2.65 4.99 1.68 0.75 5.88 0.66 3.41 1.29 14.12 2.48
x12 1.83 0.18 1.58 3.99 1.29 0.80 2.94 0.35 1.61 0.73 2.48 7.70

∗: data in thousands of euro.

Table 7: Σ3: Variance-Covariance matrix of the expenditure groups from original
data.

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12

x1 1.00 0.17 0.26 0.23 0.19 0.09 0.18 0.26 0.25 0.15 0.20 0.22
x2 0.17 1.00 0.08 0.05 0.05 0.03 0.09 0.16 0.09 0.02 0.15 0.07
x3 0.26 0.08 1.00 0.20 0.22 0.10 0.22 0.26 0.30 0.17 0.32 0.26
x4 0.23 0.05 0.20 1.00 0.31 0.10 0.19 0.24 0.25 0.25 0.27 0.29
x5 0.19 0.05 0.22 0.31 1.00 0.09 0.14 0.19 0.22 0.19 0.21 0.22
x6 0.09 0.03 0.10 0.10 0.09 1.00 0.07 0.09 0.10 0.03 0.07 0.10
x7 0.18 0.09 0.22 0.19 0.14 0.07 1.00 0.26 0.22 0.17 0.28 0.19
x8 0.26 0.16 0.26 0.24 0.19 0.09 0.26 1.00 0.29 0.21 0.32 0.23
x9 0.25 0.09 0.30 0.25 0.22 0.10 0.22 0.29 1.00 0.20 0.36 0.23
x10 0.15 0.02 0.17 0.25 0.19 0.03 0.17 0.21 0.20 1.00 0.24 0.18
x11 0.20 0.15 0.32 0.27 0.21 0.07 0.28 0.32 0.36 0.24 1.00 0.24
x12 0.22 0.07 0.26 0.29 0.22 0.10 0.19 0.23 0.23 0.18 0.24 1.00

Table 8: Correlation matrix computed from original data.

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12

x1 2.44 0.00 0.00 0.00 0.00 0.00 0.00 0.000 0.00 0.00 0.00 0.00
x2 0.00 6.18 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
x3 0.00 0.00 7.07 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
x4 0.00 0.00 0.00 0.58 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
x5 0.00 0.00 0.00 0.00 6.10 0.00 0.00 0.00 0.00 0.00 0.00 0.00
x6 0.00 0.00 0.00 0.00 0.00 7.34 0.00 0.00 0.00 0.00 0.00 0.00
x7 0.00 0.00 0.00 0.00 0.00 0.00 8.55 0.00 0.00 0.00 0.00 0.00
x8 0.00 0.00 0.00 0.00 0.00 0.00 0.00 3.88 0.00 0.00 0.00 0.00
x9 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 6.19 0.00 0.00 0.00
x10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 4.88 0.00 0.00
x11 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 7.30 0.00
x12 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 3.40

Table 9: Σ4: Variance matrix of the codified profile.
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x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12

x1 2.44 0.49 -0.34 0.03 0.14 0.08 -0.97 0.50 -0.426 -0.09 -1.15 0.16
x2 0.49 6.18 -0.95 0.12 0.13 -0.13 -0.86 0.93 -0.81 -0.03 -0.74 0.00
x3 -0.34 -0.95 7.07 -0.13 -0.39 -0.61 -1.03 -0.64 -0.61 -0.17 -0.66 -0.34
x4 0.03 0.12 -0.13 0.58 0.11 0.03 -0.49 0.27 -0.07 0.13 -0.23 0.13
x5 0.14 0.13 -0.39 0.11 6.10 0.36 -1.65 0.35 -0.59 0.36 -1.52 0.39
x6 0.08 -0.13 -0.61 0.03 0.36 7.34 -1.49 0.37 -0.92 -0.01 -1.69 0.22
x7 -0.97 -0.86 -1.04 -0.49 -1.65 -1.49 8.55 -0.95 -0.82 -0.48 0.17 -1.07
x8 0.50 0.93 -0.64 0.27 0.35 0.37 -0.95 3.88 -0.58 0.61 -1.27 0.67
x9 -0.42 -0.81 -0.61 -0.07 -0.59 -0.92 -0.82 -0.58 6.19 -0.03 -0.12 -0.66
x10 -0.09 -0.03 -0.17 0.13 0.36 -0.01 -0.48 0.61 -0.03 4.88 -0.32 0.15
x11 -1.15 -0.74 -0.66 -0.23 -1.52 -1.69 0.16 -1.27 -0.12 -0.32 7.30 -1.14
x12 0.16 0.00 -0.35 0.13 0.39 0.23 -1.07 0.67 -0.65 0.15 -1.14 3.39

Table 10: Σ5: Variance-Covariance matrix computed of the codified profile.

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12

x1 1.00 0.13 -0.08 0.03 0.04 0.02 -0.21 0.16 -0.11 -0.03 -0.27 0.06
x2 0.13 1.00 -0.14 0.06 0.02 -0.02 -0.12 0.19 -0.13 -0.01 -0.11 0.00
x3 -0.08 -0.14 1.00 -0.07 -0.06 -0.08 -0.13 -0.12 -0.09 -0.03 -0.09 -0.07
x4 0.03 0.06 -0.07 1.00 0.06 0.02 -0.22 0.18 -0.04 0.08 -0.12 0.10
x5 0.04 0.02 -0.06 0.06 1.00 0.05 -0.23 0.07 -0.10 0.07 -0.23 0.09
x6 0.02 -0.02 -0.08 0.02 0.05 1.00 -0.19 0.07 -0.14 -0.00 -0.23 0.05
x7 -0.21 -0.12 -0.13 -0.22 -0.23 -0.19 1.00 -0.16 -0.11 -0.07 0.02 -0.20
x8 0.16 0.19 -0.12 0.18 0.07 0.07 -0.16 1.00 -0.12 0.14 -0.24 0.19
x9 -0.11 -0.13 -0.09 -0.04 -0.10 -0.14 -0.11 -0.12 1.00 -0.01 -0.02 -0.14
x10 -0.03 -0.01 -0.03 0.08 0.07 -0.00 -0.07 0.14 -0.01 1.00 -0.05 0.04
x11 -0.27 -0.11 -0.09 -0.12 -0.23 -0.23 0.02 -0.24 -0.02 -0.05 1.00 -0.23
x12 0.06 0.00 -0.07 0.10 0.09 0.05 -0.20 0.19 -0.14 0.04 -0.23 1.00

Table 11: Correlation matrix from the codified profileMP .

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12

x1 2.45 0.65 1.07 0.28 0.73 0.40 0.82 0.82 0.97 0.51 0.86 0.63
x2 0.65 6.19 0.54 0.09 0.28 0.21 0.64 0.80 0.59 0.11 1.00 0.32
x3 1.07 0.54 7.07 0.41 1.45 0.72 1.73 1.37 2.00 1.00 2.31 1.27
x4 0.28 0.09 0.41 0.58 0.58 0.20 0.42 0.37 0.48 0.42 0.55 0.40
x5 0.73 0.28 1.45 0.58 6.10 0.57 1.04 0.94 1.38 1.04 1.40 0.99
x6 0.40 0.21 0.72 0.20 0.57 7.34 0.54 0.49 0.69 0.17 0.51 0.50
x7 0.82 0.64 1.73 0.42 1.04 0.54 8.55 1.51 1.61 1.11 2.24 1.04
x8 0.82 0.80 1.37 0.37 0.94 0.49 1.51 3.88 1.41 0.91 1.70 0.85
x9 0.97 0.59 2.00 0.48 1.38 0.69 1.61 1.41 6.19 1.12 2.40 1.05
x10 0.51 0.11 1.00 0.42 1.04 0.17 1.11 0.91 1.12 4.88 1.40 0.74
x11 0.86 1.00 2.31 0.55 1.40 0.51 2.24 1.70 2.40 1.40 7.30 1.19
x12 0.63 0.32 1.27 0.40 0.99 0.50 1.04 0.85 1.05 0.74 1.19 3.40

Table 12: Σ6. This matrix contains the covariances computed from the gadget and
the variances computed from the codified profile
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Correlations calculated with expenditures
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Figure 2: Graphical interpretation of the correlation matrix (Table 8) of the Spa-
nish expenditure groups from original data.

Group

O. F. value x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12

Σ1 12.64 11 4 6 12 6 4 9 4 7 4 8 10

Σ2 1.9 11 4 6 12 4 4 10 6 7 4 9 8

Σ3 2.04 11 4 6 12 4 4 10 6 7 4 9 8

Σ4 2.43 11 3 6 12 6 3 10 6 7 3 9 8

Σ5 3.5 10 3 5 12 4 3 11 6 7 3 9 8

Σ6 2.41 11 3 6 12 6 3 10 6 7 3 8 9

Table 13: Group position for different Σ matrices.
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Correlations calculated with codified profiles
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Figure 3: Graphical interpretation of the correlation matrix (Table 11) of the Spa-
nish expenditure groups from codified profile.
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Figure 4: Group position/ranking for {Σi}6
i=1 matrices. Results are clustered ac-

cording the matrix Σi used to compute the Mahalanobis distance.
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i=1 matrices. Results are clustered by

expenditure group.
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