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Abstract. During electorate campaigns, linguistic appraisals of presi-
dental candidates given by voters are essential. In order to deal with
linguistic appraisals and cluster analysis, this paper presents the results
of grouping the United States 2016 presidential candidates using lin-
guistic appraisals collected from a political survey. To do this, we have
developed an agglomerative hierarchical clustering procedure based on
consensus through the concept of ordinal proximity measure.
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sures, Consensus, Linguistic appraisals

1 Introduction

One of the main issues in many research fields is to classify a collection of data
into meaningful groups. Cluster analysis is a multivariate method which tries to
classify a sample of observations into similar groups regarding given characteris-
tics. This technique is used in several disciplines: Economics, Marketing, Biology,
Political Science, Artificial Intelligence, Computer Science, Engineering, etc.

In the political context, clustering has hardly considered the views of the
electorate. This method has been applied mainly to identify relationships among
demographically similar voters, voting tendencies, as well as patterns of political
parties support in different elections (see Seabrook [13], Pearson and Cooper [11]
and Aleskerov and Nurmi [1], among others).

Appraisals of candidates given by voters are essential during presidential
races, being easy to find linguistic scales in political surveys for evaluating can-
didates. In recent years, there have arisen voting systems based on linguistic
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appraisals. For instance, Balinski and Laraki [2, 3] introduce the Majority Judg-
ment voting system, where voters assign a linguistic term of the following ordered
qualitative scale: ‘reject’, ‘poor’, ‘acceptable’, ‘good’, ‘very good’ and ‘excellent’
to each candidate. However, there is so far little literature addressing cluster
analysis applied to linguistic appraisals.

The main purpose of this paper is to cluster the United States (U.S.) 2016
presidential candidates taking the linguistic appraisals made by a random rep-
resentative sample of adults living in the U.S. as our starting point. To do this,
we have used the concept of ordinal proximity measure (see Garćıa-Lapresta
and Pérez-Román [8]), which allows to determine the degree of consensus in a
group of agents when a set of alternatives is evaluated through non-necessarily
qualitative scales.

The rest of the paper is organized as follows. Section 2 contains notation and
some applications of ordinal proximity measures to consensus and clustering.
Section 3 includes the results of clustering U.S. 2016 presidential candidates
through linguistic appraisals. Finally, Section 4 concludes with some remarks.

2 Consensus and clustering

In this section we introduce the concept of ordinal proximity measure and we
tackle some applications of this concept to consensus and clustering.

2.1 Preliminaries

Consider a set of agents A = {1, . . . ,m}, with m ≥ 2, and a set of alternatives
X = {x1, . . . , xn}, with n ≥ 2, which have to be appraised. Each agent assigns
a linguistic term to every alternative within an ordered qualitative scale L =
{l1, . . . , lg}, arranged from the lowest to the highest terms, where the granularity
of L is at least 3 (g ≥ 3).

We now recall the notion of ordinal proximity measure, introduced by Garćıa-
Lapresta and Pérez-Román [8], which is a mapping that assigns an ordinal degree
of proximity to each pair of linguistic terms of an ordered qualitative scale.
These ordinal degrees of proximity belong to a linear order ∆ = {δ1, . . . , δh}
with δ1 � · · · � δh, being δ1 and δh the maximum and the minimum degrees of
proximity, respectively. The elements of ∆ have no meaning, they only represent
different degrees of proximity.

Definition 1. ([8]) An ordinal proximity measure on L with values in ∆ is a
mapping π : L2 −→ ∆, where π(lr, ls) = πrs means the degree of proximity
between lr and ls, satisfying the following conditions:

1. Exhaustiveness: For every δ ∈ ∆, there exist lr, ls ∈ L such that δ = πrs.
2. Symmetry: πsr = πrs, for all r, s ∈ {1, . . . , g}.
3. Maximum proximity: πrs = δ1 ⇔ r = s, for all r, s ∈ {1, . . . , g}.
4. Monotonicity: πrs � πrt and πst � πrt, for all r, s, t ∈ {1, . . . , g} such that

r < s < t.
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Every ordinal proximity measure can be represented by a g × g symmetric
matrix with coefficients in ∆, where the elements in the main diagonal are πrr =
δ1, r = 1, . . . , g: 

π11 · · · π1s · · · π1g
· · · · · · · · · · · · · · ·
πr1 · · · πrs · · · πrg
· · · · · · · · · · · · · · ·
πg1 · · · πgs · · · πgg

 .

This matrix is called proximity matrix associated with π.

2.2 Consensus

To determine the degree of consensus we follow the approach introduced by
Garćıa-Lapresta and Pérez-Román [8]. We start from the appraisals of alterna-
tives given by agents, collected in a profile, that is a matrix

V =


v11 · · · v1i · · · v1n
· · · · · · · · · · · · · · ·
va1 · · · vai · · · van
· · · · · · · · · · · · · · ·
vm1 · · · vmi · · · vmn

 = (vai )

consisting ofm rows and n columns of linguistic terms, where the element vai ∈ L
represents the linguistic appraisal given by the agent a ∈ A to the alternative
xi ∈ X.

According to Garćıa-Lapresta and Pérez-Román [10], for measuring the con-
sensus in a group of agents over a set of alternatives, the first step is to consider
the degrees of ordinal proximity between the linguistic appraissals over the al-
ternatives. These degrees are arranged in a vector of ordinal degrees δ ∈ ∆p, for
some p ∈ N, from the highest to the lowest degrees (decreasing fashion).

In order to avoid loss of information, Garćıa-Lapresta and Pérez-Román [10]
select the median(s) of the mentioned ordinal degrees in such a way that if the
number of ordinal degrees of the vector is odd, the median is unique, δr ∈ ∆,
but if the number of ordinal degrees is even, then δ has two medians, δs, δt ∈ ∆
with s ≤ t. In order to unify this assignment of medians, the authors consider
the pair of medians (δr, δr) in the odd case and (δs, δt) in the even case.

Given the set of feasibles medians ∆2 = {(δr, δs) ∈ ∆2 | r ≤ s}, the median
operator is the mapping

M :

∞⋃
p=1

∆p −→ ∆2

that assigns the corresponding pair of medians to each vector of ordinal degrees.

We denote with #I the cardinality of I and with P2(A) = {I ⊆ A | #I ≥ 2}
the family of subsets of at least two agents.
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Definition 2. Given a profile V = (vai ), the degree of consensus in a subset of
agents I ∈ P2(A) over a subset of alternatives ∅ 6= Y ⊆ X is defined as

C(I, Y ) = M

(
π
(
vai , v

b
i

)
a,b∈I , a<b

xi∈Y

)
∈ ∆2.

For comparing the degrees of consensus in a group of agents I when they
evaluate two subsets of alternatives Y, Z, i.e. C(I, Y ) ∈ ∆2 versus (I, Z) ∈ ∆2,
an appropriate linear order on ∆2 is required. In this paper we use the following
linear order used by Garćıa-Lapresta and Pérez-Román [10]:

(δr, δs) � (δt, δu) ⇔


r + s < t+ u

or

r + s = t+ u and s− r ≤ u− t
for all (δr, δs), (δt, δu) ∈ ∆2.

It is important to note that the above linear order for ranking the medians
is not the only one that can be considered on ∆2.

Since the cardinality of ∆2 may be low, it is very easy to have ties among the
degrees of consensus in different subsets of agents or alternatives. In these cases,
we resort to a sequential tie-breaking procedure [2] which consists of removing
the median(s) of the respective agents or alternatives that are in a tie, and select
again the new median(s) of remaining ordinal degrees until ties are broken.

Starting from C(1)(I, Y ) = C(I, Y ), we calculate C(2)(I, Y ) as in C(I, Y )
but after dropping the pair of medians of the list π

(
vai , v

b
i

)
a,b∈I , a<b

xi∈Y
, and anal-

ogously for C(3)(I, Y ), etc.

2.3 Clustering

The goal of clustering methodology is to reduce the number of objects by clas-
sifying them into a set of groups with similar features.

There are many types of clustering and applications (see Everitt et al. [5])
being the agglomerative hierarchical clustering the method used in this paper.
This process starts by assigning each item to its own cluster and then, clusters
are sequentially merged according to a given similarity criterion, until all of them
end up in the same cluster.

The first steps in cluster analysis are to determine the variables and the
criterion that will be used for joining clusters or elements. In general, many
clustering procedures are based on distances to determine the similarity in a set
of elements. However, in this paper we have taken into account the degree of
consensus as similarity measure in order to merge clusters. For this purpose, we
have considered a similarity function and a sequential similarity vector based on
the degree of consensus [7, 9], in such a way that the consensus is measured by
means of the degrees of proximity between all pairs of individual appraisals over
the evaluated alternatives.
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Definition 3. Given a profile V = (vai ), the similarity function relative to a
subset of agents I ∈

(
P(A) \ {∅}

)
SI :

(
P(X) \ {∅}

)2 −→ ∆2

is defined as

SI(Y,Z) =

{
C(I, Y ∪ Z), if #(Y ∪ Z) ≥ 2,

(δ1, δ1), if #(Y ∪ Z) = 1.

Definition 4. Given a profile V = (vai ), the sequential similarity vector relative
to a subset of agents I ∈

(
P(A) \ {∅}

)
for ∅ 6= Y,Z ⊆ X is defined as

SI(Y,Z) =
(
S
(1)
I (Y,Z), S

(2)
I (Y, Z), . . .

)
,

where

S
(k)
I (Y,Z) =

{
C(k)(I, Y ∪ Z), if #(Y ∪ Z) ≥ 2,

(δ1, δ1), if #(Y ∪ Z) = 1.

The agglomerative hierarchical clustering procedure is related to the one
provided by Garćıa-Lapresta and Pérez-Román [8]. It consists of a sequential
process addressed by the following stages:

1. Given a subset of agents I ∈
(
P(A) \ {∅}

)
, the initial clustering is AI

0 =
{{x1}, . . . , {xn}}.

2. Calculate the similarities between all the pairs of alternatives SI({xi}, {xj})
for all xi, xj ∈ X.

3. Select the two alternatives xi, xj ∈ X that maximize SI (taking into ac-
count the corresponding sequential similarity vectors) and construct the first
cluster AI

1 = {xi, xj}.

4. The new clustering is AI
1 =

(
AI

0 \ {{xi}, {xj}}
)
∪ {AI

1}.

5. Calculate the similarities SI(AI
1, {xk}) and take into account the previously

computed similarities SI({xk}, {xl}), for all {xk}, {xl} ∈ AI
1

6. Select the two alternatives of AI that maximize SI and to construct the
second cluster AI

2

7. Proceed as in previous items until obtaining the next clustering AI
2.

The process continues in the same way until obtaining the last cluster,
AI

n−1 = {X}.
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3 Clustering presidential candidates

Recently, the issue of clustering presidential candidates of U.S. has been tackled
in some publications. For instance, Dowdle et al. [4] gather Republican and
Democratic candidates of the parties according to the multiple donor networks,
regardless of voters’ appraisals.

In this section, taking linguistic appraisals as starting point, we have devel-
oped an agglomerative hierarchical clustering in the context of the U.S. 2016
presidential elections. For this purpose, we have considered some data from the
January 2016 Political Survey conducted by the Pew Research Center [12], which
provides information about political values, domestic policy issues and the in-
terests of U.S. electorate.

In particular, we have focused on a question in which a total of 1184 individ-
uals appraised the nine U.S. presidential candidates included in Table 1, in case
of being elected in November 2016. To do this, the individuals used the linguistic
terms of the qualitative scale contained in Table 2.

As has been previously explained in Subsection 2.3, the clustering procedure
is based on the similarity between alternatives with respect to a group of agents.
Therefore, the candidates (alternatives) are classified into different clusters when
they maximize the degree of consensus among the agents.

Agents Name

1 Ben Carson
2 Bernie Sanders
3 Chris Christie
4 Donald Trump
5 Hillary Clinton
6 Jeb Bush
7 John Kasich
8 Marco Rubio
9 Ted Cruz

Table 1. Candidates.

l1 Terrible president
l2 Poor president
l3 Average president
l4 Good president
l5 Great president

Table 2. Linguistic terms in L.

In order to show the clustering process when the proximities between the
linguistic terms of the scale are different, we considered the three most reasonable
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cases in accordance with the qualitative scale used in the survey question. First,
the uniform case, where the proximities between consecutive linguistic terms are
always the same, and two non-uniform cases in which l2 and l4 are considered
symmetric with respect to l3.

The ordinal proximity measures and the clusters of candidates related to each
cases are shown below.

1. The uniform case is represented in the following upper half proximity matrix,
where the subindices of the matrix correspond to the subindices of the δ’s
appearing just over the main diagonal and denoting the proximity between
consecutive terms of the scale.

A2222 =


δ1 δ2 δ3 δ4 δ5
δ1 δ2 δ3 δ4
δ1 δ2 δ3
δ1 δ2
δ1


This case can be visualized in Figure 1.

l1 l2 l3 l4 l5

Fig. 1. Ordinal proximity measure with associated matrix A2222.

After comparing the different sequential similarity vectors1, we have obtained
the following clusters of candidates:

AA
0 = {{1}, {2}, {3}, {4}, {5}, {6}, {7}, {8}, {9}}
AA

1 = {{1}, {2}, {3, 7}, {4}, {5}, {6}, {8}, {9}}
AA

2 = {{1}, {2}, {3, 6, 7}, {4}, {5}, {8}, {9}}
AA

3 = {{1}, {2}, {3, 6, 7, 8}, {4}, {5}, {9}}
AA

4 = {{1, 3, 6, 7, 8}, {2}, {4}, {5}, {9}}
AA

5 = {{1, 3, 6, 7, 8, 9}, {2}, {4}, {5}}
AA

6 = {{1, 2, 3, 6, 7, 8, 9}, {4}, {5}}
AA

7 = {{1, 2, 3, 5, 6, 7, 8, 9}, {4}}
AA

8 = {{1, 2, 3, 4, 5, 6, 7, 8, 9}}.

1 The computations for obtaining the corresponding sequential consensus and similar-
ity vectors have been performed with MATLAB.
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2. The non-uniform case in which l2 and l4 are considered further away from
l3 is associated with the matrix

A2332 =


δ1 δ2 δ4 δ6 δ7
δ1 δ3 δ5 δ6
δ1 δ3 δ4
δ1 δ2
δ1


that can be visualized in Figure 2.

l1 l2 l3 l4 l5

Fig. 2. Ordinal proximity measure with associated matrix A2332.

AA
0 = {{1}, {2}, {3}, {4}, {5}, {6}, {7}, {8}, {9}}
AA

1 = {{1}, {2}, {3}, {4, 7}, {5}, {6}, {8}, {9}}
AA

2 = {{1}, {2}, {3, 6}, {4, 7}, {5}, {8}, {9}}
AA

3 = {{1, 4, 7}, {2}, {3, 6}, {5}, {8}, {9}}
AA

4 = {{1, 4, 7}, {2}, {3, 6, 8}, {5}, {9}}
AA

5 = {{1, 3, 4, 6, 7, 8}, {2}, {5}, {9}}
AA

6 = {{1, 3, 4, 6, 7, 8, 9}, {2}, {5}}
AA

7 = {{1, 2, 3, 4, 6, 7, 8, 9}, {5}}
AA

8 = {{1, 2, 3, 4, 5, 6, 7, 8, 9}}.

3. The non-uniform case in which l2 and l4 are considered closer to l3 is asso-
ciated with the matrix

A3223 =


δ1 δ3 δ5 δ6 δ7
δ1 δ2 δ4 δ6
δ1 δ2 δ5
δ1 δ3
δ1


that can be visualized in Figure 3.
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l1 l2 l3 l4 l5

Fig. 3. Ordinal proximity measure with associated matrix A3223

AA
0 = {{1}, {2}, {3}, {4}, {5}, {6}, {7}, {8}, {9}}
AA

1 = {{1}, {2}, {3, 7}, {4}, {5}, {6}, {8}, {9}}
AA

2 = {{1}, {2}, {3, 7, 8}, {4}, {5}, {6}, {9}}
AA

3 = {{1}, {2}, {3, 6, 7, 8}, {4}, {5}, {9}}
AA

4 = {{1, 3, 6, 7, 8}, {2}, {4}, {5}, {9}}
AA

5 = {{1, 3, 6, 7, 8, 9}, {2}, {4}, {5}}
AA

6 = {{1, 2, 3, 6, 7, 8, 9}, {4}, {5}}
AA

7 = {{1, 2, 3, 5, 6, 7, 8, 9}, {4}}
AA

8 = {{1, 2, 3, 4, 5, 6, 7, 8, 9}}.

The clusters of candidates associated with the above ordinal proximity mea-
sures are illustrated in Figure 4, Figure 5 and Figure 6, which display hierarchical
relationships among presidential candidates.

Carson Christie Kasich Bush Rubio Cruz Sanders Clinton Trump

Fig. 4. Clustering tree obtained from the matrix A2222
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Carson Trump Kasich Christie Bush Rubio Cruz Sanders Clinton

Fig. 5. Clustering tree obtained from the matrix A2332

As seen in the above results obtained using the proposed agglomerative hier-
archical clustering, the outcomes associated with matrices A2222 and A3223 are
very similar. However, the way that merge the candidates Bush and Rubio is
different in each case. Therefore, the results from the three clustering processes
developed are distinct depending on the ordinal proximity measure used.

On the other hand, it is interesting to note that the candidate Kasich always
appears in the first merged cluster in all considered cases, and the Democratic
U.S. presidential candidate Hillary Clinton and her Republican rival Donald
Trump are in different clusters throughout the process and they only merge in
the final step.

4 Concluding remarks

Appraisals of presidential candidates given by voters are considerably influential
during presidential campaigns. However, to date, these appraisals have been
barely considered in clustering procedures. In this paper, we have developed an
agglomerative hierarchical clustering through linguistic appraisal of U.S. 2016
presidential candidates made by a sample of voters.

From the results of the clustering procedure, it should be noted the impor-
tance of determining an appropriate ordinal proximity measure, since the way
in which elements or clusters are merged may change depending on the ordinal
proximity measure used. This issue is addressed in Garćıa-Lapresta et al. [6].

As further research, it might to be possible to extend this clustering process
based on consensus to multi-criteria decision-making, in such a way that each
criterion requires a clustering procedure.
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Carson Christie Kasich Rubio Bush Cruz Sanders Clinton Trump

Fig. 6. Clustering tree obtained from the matrix A3223
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