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Abstract: 

The Atlantic mountains of Spain are suffering a strong landscape change 
due to a widespread and intensive emigration to urban areas since the 
1950´s. This process, perfectly extensible worldwide in an imminent 
future, is dominated by urban societies, and leads to deep landscape 
changes in which crop fields and grasslands are abandoned and 
progressively covered by forest and shrubs. These dynamics have caused 
in turn a decrease in the runoff and a general slowdown of 
geomorphological processes. The impacts of land cover change have been 
simultaneous to an irregularity in precipitation and significant increase of 
temperatures. With this background, this paper assesses in detail the 
impact of landscape change occurred over the last decades (20th and 21th 
centuries) on the water and sediment yield in the Pisuerga catchment 
headwaters (Cantabrian mountains, N Spain).  
We analysed the different components of Global Change in a catchment of 
233 km2 extent, that has passed from 15 to 2 habitants/km2, from 
multiple data sources. Evolution of land use and land cover was 
reconstructed from old manuscripts, aerial photographs, and remote 
sensing. The climatic parameters have been studied through 
meteorological stations and historical data, and the hydrological and 
sedimentological responses over time are based on available runoff data 
and sedimentological analysis.  
Our results show a significant decrease in water and sediment transport 
mainly driven by vegetation increase occurred in a non-linear way, more 
intense immediately after abandonment. This fact opens the opportunity to 
control more accurately water resources in Mediterranean catchments 
through land use management. 
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1. Introduction. 1 

Changes to the physical environment caused by human settlements are inherent to the 2 

societies that occupy or exploit it. This idea was accepted long ago (Marsh, 1864) and has been 3 

widely developed since (Sauer, 1925, Thomas, 1956, Turner, 1990, Vitousek, 1992, Goudie, 4 

2013). Nevertheless, the urbanization of central areas and emigration trends have created a 5 

new paradigm in abandoned areas, which were previously intensely humanized. The European 6 

landscape is undergoing increased naturalization, vegetation colonization and densification 7 

(Pereira and Navarro, 2015), which obviously influences water resources even more than does 8 

climate change (Church et al. 2009). The direct relationship between vegetation and water 9 

drainage has already been described elsewhere for the Iberian Peninsula, e.g. in tributary 10 

catchments of the river Ebro mainly from the Pyrenees (Beguería et al., 2003, Gallart and 11 

Llorens, 2004, García-Ruiz et al., 2015, Lasanta et al. 2010; López-Moreno et al., 2006, 2011, 12 

2014; Vicente-Serrano et al. 2014), and worldwide (Good et al., 2015).  Research of this kind is 13 

of the utmost importance in areas such as the Iberian Peninsula where water resources are 14 

scarce. García-Ruiz et al. (2011) predict that for the period 2040-2070 between 100 and 200 15 

mm in hydrological balance (P-T) will be lost, based on data from the 1960-1990 period. Some 16 

authors commonly relate these trends with erosion rates and geomorphic changes, e.g. García-17 

Ruíz et al., (2010); Sanjuán et al. (2014).   18 

The hydrographic basin is usually the most appropriate spatial scale to relate many of the 19 

global changes to the water and sediment inputs received (Slaymaker and Embletton-Hamann, 20 

2009). With a few exceptions (Morán-Tejeda et al., 2010; Ceballos-Barbancho, 2008), research 21 

of this kind has not been generally considered for large areas of the Cantabrian Mountains or 22 

the Duero/Douro catchment. This is a key feature of water resources in the Duero/Douro 23 

catchment, however, in which the waters supplied by just four rivers flowing from the 24 

Cantabrian Range (Órbigo, Esla, Carrión and Pisuerga) contribute 44.5% of the total 25 
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Duero/Douro flow. Moreover, these waters irrigate around 280,000 hectares of agricultural 26 

land in the Castilla y León region alone (CHD, 2015, p. 102), supply water to hydroelectric 27 

plants that produce 1400 MW/yr. of electrical power and fresh water to over 800,000 people 28 

(CHD, 2015, p. 89).  29 

This paper aims to demonstrate that lack of use and management in a territory produces huge 30 

changes in its physical environment. Specifically, our particular research is focused on the loss 31 

of hydric resources and fall in sediment transport as a result of land cover transformation.  32 

 33 

Study site 34 

The entire Pisuerga catchment headwaters (233 km2) are above 1000 meters, with mountain 35 

peaks at over 2,000 meters (Figure 1). The Requejada reservoir (66.4 hm3) is at the outlet of 36 

the catchment, the dam of which was built between the 1920’s and 1940 for irrigation supply 37 

and hydropower production. The catchment lies to the North of the province of Palencia on 38 

the southern face of the Cantabrian Range. This is a humid area where total annual 39 

precipitation is 800 to >1400 mm (Ortega and Morales, 2015), much of which falls as snow. 40 

From a climatic perspective, this area is in transition between an Atlantic and a Mediterranean 41 

climate, with high annual precipitation but a clear arid season in summer. These conditions 42 

favor the growth of oak (Quercus sp.) on the southern slopes and beech (Fagus sylvatica) on 43 

the Northern slopes. The entire area is within the eastern part of Fuentes Carrionas y Fuente el 44 

Cobre Natural Park.  45 

Settlers from the Cantabrian Coast in the 8th and 9th centuries populated this area, intensively 46 

transforming its landscape. Subsistence agriculture with extensive cattle farming and forest 47 

use lasted until the XIX century, when some coal deposits were found and mined until the 48 

1960s – 70s. Meanwhile, an increasing emigration process began from the late 1940s mainly to 49 
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the benefit of the industrial centers on the N coast (e.g. Bilbao area) (Figure 1). There are 50 

currently around 500 people living in this area, distributed among 18 small villages.  51 

2. Methodology 52 

The method fits well with the Alto Pisuerga basin, at the outlet of which there is a reservoir 53 

that allows the hydric resources of the basin to be monitored. Thanks to this fact the present 54 

article is able to explain the relationships among the changes in land use, climate variability, 55 

flow rate and sedimentary load since the reservoir came into operation. The time scale begins 56 

with the commencement of reservoir water flow measurements. This is roughly the same time 57 

frame as the beginning of emigration from the region. 58 

The first part of the results focuses on the change in land cover over time, for which different 59 

resources were used. The most ancient systematic estimation of land use and vegetation cover 60 

in the catchment dates back to 1749, thanks to the Cadaster de la Ensenada, which was made 61 

by means of a questionnaire sent to each settlement in Spain. The responses to changes in 62 

cover given in different unit systems were converted to the decimal metric system (Castaño, 63 

2015). The 1955 land cover map was obtained from aerial imagery provided by the U.S. air 64 

force, which has recently been orthorectified by the Technological Institute of Agriculture of 65 

Castilla y Leon (ITACYL). The 1972 landcover map was drawn up from a supervised 66 

classification using Landsat satellite imagery. The 1997 map comes from the 1:50,000 scale 67 

Spanish Forestry Map and the 2011 map was acquired from the Spanish Landcover 68 

Information System (SIOSE). Finally, the last 2017 landcover map has been drawn up from a 69 

supervised classification of ESA Sentinel 2A-MSI imagery.  70 

The second group of results has two parts, one corresponding to climate and water flow 71 

evolution between 1955 and 2014 and the other featuring the volumetric quantification of 72 

hydrological deficit (D) and potential evapotranspiration (PET). Climate parameters were taken 73 

from the meteorological stations managed by the Spanish Meteorological Agency (AEMET), 74 
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which have continuous records since 1955 (Table 1), either in the study area or its close 75 

vicinity. Gaps in the series were filled by linear interpolation using the best correlated station. 76 

Data quality procedures were also applied, and some spurious outliers were identified and 77 

removed.  Water flow data from the Requejada reservoir inputs (x: 375489; y: 4750756) come 78 

from the Duero Hydrographic Confederation’s dataset and span from 1959 to 2016.   79 

In this first stage, a linear regression was performed between regional series of climate data 80 

and water flow to find the influence of non-climatic factors (likely associated to land cover 81 

change) on the hydrological response of the catchment. Using the residual values of the linear 82 

regression the temporal periods with non-climatic influence can be inferred. This procedure 83 

has been widely applied, e.g.  Beguería (2003), López-Moreno et al. (2011).  84 

The volumetric quantification of hydrological deficit (D) as result of the difference between 85 

volume of precipitation (P) and volume of water at the reservoir entrance of (Q) was calculated 86 

as follows:  87 

a. The 1955-2015 period was divided into 6 decennial intervals (1955-65), (1966-75), …, 88 

(2006-2015) with the aim of improving operability with GIS processing and to be able 89 

to make comparisons with periods of land cover change.   90 

b. For each of these periods, the annual average of P was calculated. The PET was also 91 

calculated using the Thornthwaite method from temperature and latitude data to get 92 

a maximum upper limit of evapotranspiration (ET), not the real ET (RET).  93 

c. The P and PET altitudinal gradient was calculated by means of a linear regression for 94 

the interval of each decennial year, hence resulting in six gradients in total for P and 95 

another six for PET. 96 

d.  Using a 5m pixel Digital Elevation Model and GIS software, the gradient of P and PET 97 

was applied to each pixel value to obtain P and PET models for each decade.    98 
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e. Two more digital models were calculated from the residual values in the linear 99 

regression using an IDW interpolation. These models were those mentioned in the 100 

previous paragraph and were used in order to improve fidelity. This type of GIS 101 

modelling has been used previously in climate analysis (Fernández-García, 1995; 102 

Ninyerola et al. 2010; Modallaldoust et al. 2008; Cañada et al. 2012). 103 

f. Finally, the sum was calculated of the pixel values of the two resulting models of P and 104 

PET in each time period and the result was converted to hm3, ready to be compared 105 

with the water flow data from the same periods (Q).   106 

The third block of results corresponds to the analysis of sedimentary yield trends through a 107 

lithostratigraphic profile in a lacustrine deposit inside the Requejada reservoir (42°55'13.60"N, 108 

4°29'14.94"W). Evolutive samples were collected when the reservoir was almost empty at the 109 

end of the summer in 2016. The granulometric analysis of the fine fraction was performed in 110 

the laboratory, where samples were prepared following the recommendations proposed by 111 

(Vaudour, 1979). Sands and silts were separated according to groups of grain diameter. Each 112 

group was weighed to construct a frequency distribution and the results were interpreted 113 

through logarithmic distribution graphs of grain size diameter according to the Krumbein 114 

(1934) phi scale following some of the statistical parameters improved by Folk and Ward 115 

(1957). The organic matter content was also calculated using the loss of ignition method, 116 

which consists of weighing a sample of sediment before and after the combustion period (Gale 117 

and Hoare, 1991).  118 

Results 119 

3.1. Land cover evolution  120 

Land cover analysis clearly shows an increase in forest and shrubs following the collapse of the 121 

traditional agrarian system and the beginning of the demographic decline (Error! Reference 122 

source not found.) leading to a fall in the area covered by crops and grasslands (Figure 2).  123 
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Forests and shrubs covered 18% of the land in the mid-20th century, but this figure has now 124 

increased to 60%. The extension of Grasslands, which were the basis of the economy sustained 125 

by stockbreeding, fell from 54% of the total area to 16% over the same period.  126 

Nevertheless, this transformation of the landscape by the change in land use did not happen 127 

linearly in time. Forest cover quickly increased between 1955 and 1972 (Figure 4) and 128 

subsequently stabilized. Meanwhile, shrub areas grew consistently at the same rate, which 129 

was also the rate at which grasslands diminished.  130 

In general, several episodes of behavior can be identified in the vegetation cover and linked to 131 

three spatial structures of land use. Firstly, grassland use was dominant in terms of extension, 132 

forest was secondary land cover, and shrubs and crops shared the remaining space in almost 133 

equal parts. Stockbreeding, forestry, and agriculture took up nearly the entire territory. This 134 

land use structure had been in place since the 10th century, transforming hydrological and 135 

geomorphological processes.  136 

The same distribution of grasslands, forest and shrubs define a second land use structure 137 

between the 60’s and 90’s, in which the main difference is the significant growth of shrubs and 138 

forest extension and the complete disappearance of crops. It is a 30-year period of transition 139 

during which abandonment took place following depopulation. Croplands turned into 140 

grasslands in the best areas located near the villages, while shrubs or young oak tree forests 141 

took over in the lower quality ones. Vegetation cover also increased in the high-altitude 142 

grassland areas, where shrubs and Quercus sp. forests, which had the best capacity to adapt, 143 

advanced to colonize high mountain pasturing areas no longer used by transhumance, in a 144 

long-lasting process that began in the 19th century.  145 

Finally, over the last 20 years a new land use structure has arisen as result of these changes. 146 

Grasslands have lost importance relative to shrubs, while forests have stabilized and even 147 
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decreased, a fact which will be discussed later. The land use structure of the area studied 148 

presents a trend towards equilibrium between a reduced percentage of grasslands in the 149 

bottom of the valleys and a dominant mosaic of forest and shrubs on slopes. 150 

3.2. Climate and water resource trends. 151 

There is a considerable annual water flow decrease at a rate of 0.97 hm3/year since 1956, 152 

which means a 21.3% total drop since records began (Error! Reference source not found.3). 153 

This contrasts with the evolution of precipitation, for which there is an absence of any 154 

significant trend. Precipitation shows variability among decades with positive anomalies in the 155 

1970s and negative ones in the 1980s and 1990s. Thereafter positive anomalies tend to 156 

dominate but with high interannual variability. The evolution of temperatures is different. 157 

There is a statistically significant 1.5⁰C increase since 1955, which correspons to a 0.023 158 

⁰C/year rate.   159 

Residuals in the linear regression between annual climatic data (P and T) and water flow 160 

(Error! Reference source not found.3 and Table 2) show strong positive anomalies during the 161 

1960s, whereas negative values are concentrated in the 1980s and 1990s. There is a 162 

subsequent fall in the magnitude of residuals until the present, although they remain mainly 163 

negative. This means that almost every year since the 1960s the real water flow should be 164 

lower than the calculated value. In other words, according to the climate parameters (P, T) 165 

observed, the real water flow should be higher.  166 

The growth of the hydrological deficit (D) between 1955 and 1995 was not always explained by 167 

temperatures. In the period 1975-1995, D increased even when PET decreased, and 168 

precipitations showed a clear increase, especially between 1975 and 1985. Table 3 and Figure 169 

4 show that the volume of accumulated annual water flow decreased and that it fails to match 170 

the total precipitation volume until after 1995. The PET would not be able to offset the water 171 

flow loss even at its highest scenario (PET = Real Evapotranspiration). Even during the period 172 
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with the highest temperature increase (1995-2005), the PET increased by 9.5 hm3 and water 173 

flow decreased by 31.3 hm3. From 1995 onwards a more stable period came and D showed a 174 

relative fall.  175 

3.3. Sediment yield evolution 176 

The study of the lacustrine deposit inside the reservoir (Figure 5) facilitated the calculation of 177 

landfill of 151 cm over a period of 75 years. Since 1940, the year the reservoir came into 178 

operation, it has been possible to check for any changes in grain size and composition. Even 179 

though clay is well represented throughout the profile since this is a lacustrine sedimentation 180 

environment, the general trend for the period studied shows a clear evolution from coarse to 181 

fine material, from a higher percentage of sands to a higher proportion of silt and clay (Figure 182 

5). The median shift in the frequency distribution shows a change from a grain size of 1.1 mm 183 

in the 1940s to 0.8 mm in the most recent layers.  184 

There are no well defined contacts between layers anywhere in the profile. Stability is quite 185 

clear in the center of the profile (CA-5 A-B-C). In contrast, the upper layers show more marked 186 

contacts. These possess layers with more irregular sand grain sizes though these follow a 187 

decreasing trend, except in layers (CA-6, CA-8 and CA-10). 188 

The proportion of organic matter following an equilibrium period (CA-1 to CA-7) increased 189 

exponentially in the profile from the CA-8 layer to CA-10. At that point a slight decrease is seen 190 

at the top of the profile. The exponential increase in organic matter coincides with the abrupt 191 

fall in the evolution of grain size anomalies. 192 

Grain-size showed a decreasing trend as indicated by the median anomalies that exhibited a 193 

sharp change from the CA-7 layer onwards, which fits the change in the negative water flow 194 

anomalies from the 1980s (Figure 3) until the present. Sediment depth, which has been subject 195 

to this dynamic, is just 55 cm, 36% of the total section.  196 
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3. Discussion 197 

A continuous reduction in water flow is observed in the Requejada reservoir since its 198 

construction. Such a trend cannot be explained away just by the evolution in precipitation, 199 

since this has not exhibited significant trends during the study period. In the meantime, 200 

shrubland and tree spices (especially Quercus pyrenaica) have extended on ancient crops and 201 

grasslands close the settlements and beyond into subalpine areas. Meanwhile, there has been 202 

a clear fall in the summer cattle and sheep-breeding economy. The increase in temperatures 203 

helped this process, which has extended the subalpine zone vertically at the expense of the 204 

alpine zone (Figure 2). The implications of these dynamics in water runoff are not clear here. 205 

Nevertheless, García-Ruiz et al. (1995), who studied the land changes caused by abandonment 206 

on different land covers in the Pyrenees, found that high mountain abandoned grasslands 207 

areas suffer the highest erosion rates during the first 10 years after abandonment and reach 208 

another peak of erosion between 25 and 50 years after abandonment, which is related to 209 

shrub degradation. Therefore, they conclude that grasslands are the best erosion-preventive 210 

land cover while still permitting significant water runoff. They explained this assertion by 211 

examining their catchment runoff model residuals, which were at their height during the 212 

1960s, the moment when most of the pasture was recovering thanks to decreasing livestock 213 

pressure. In our area, 1955-1956 was the decade with the most extensive grassland cover, 214 

which has decreased thereafter due to shrubland progress (Figure 2).  215 

Bearing in mind that water extraction for human use has always been negligible in this 216 

catchment, we see here the imprint from vegetation change. Vegetation is known to have a 217 

high-water storage and runoff reduction capacity, although this process is not a linear function 218 

of its growth (García-Ruiz et al. 1995). The initial vegetation spread over the old crop plots 219 

quickly, provoking a higher hydrological deficit than in all the subsequent years of forest 220 

densification (Figure 4). This fact has been proved elsewhere, especially in the Pyrenees, a 221 
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mountain range that suffered the same land abandonment dynamics (Beguería et al.,2003; 222 

García-Ruiz et al., 2015; Lasanta et al., 2010; López-Moreno et al., 2014; Sanjuán et al., 2014; 223 

Tasser and Tappeiner, 2002; Vicente-Serrano et al., 2014, 2004).  224 

Temperature has shown statistically significant warming, which had already been observed in 225 

previous research (Ortega and Morales, 2015). This increase has a big impact over the water 226 

flow especially in the period 1995-2005, although it is not large enough to justify the trends 227 

before this period (Figure 4).  228 

Sediment yield decreased immediately after shrub extension on grasslands and crop plots, as 229 

already pointed out by many authors (Liébault and Piégay, 2002, Keesstra et al., 2005; Molina 230 

et al., 2009; Wohl, 2015). The sediment load on streams is doubtlessly linked to erosion, which 231 

is in decline in the catchment due to the termination of activities that greatly altered soil 232 

conditions and vegetation cover, such as coal mining (ended between 1970s - 1990s), 233 

agriculture (ended between 1940s - 1970s) and stockbreeding. Summer transhumant 234 

stockbreeding was dominant in this area but gradually declined between the 19th century and 235 

the 1990s. This activity could modify landscapes and geosystems on its own (Bertrand, 1984; 236 

Bertrand and Bertrand, 1986) by increasing erosion and sediment yield, which was already 237 

documented and triggered some alarms in the late 1950s (Nossin, 1959). 238 

That situation has now been changed and erosion is no longer a problem. Vegetation covers 239 

screes, gullies, naked ground and river banks.  In this context, an exponential increase in the 240 

water-transported organic matter content was found in the catchment landfill. This situation 241 

can be explained by the more extensive and denser vegetation cover in the catchment, but it 242 

may also have happened due to a relative mass loss of non-organic matter in the profile due to 243 

lixiviation or greater water exposure to the atmosphere during the summer drought, which 244 

would have favored algal bloom. 245 
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This comprehensive scale study of the basin allows us to check the hypothesis that there are 246 

elements playing a decisive role in runoff beyond the balance of temperature and 247 

precipitation. Among these changes, those of vegetation cover that can be fitted using new 248 

practices of use and their management to regulate runoff, hydric resources, erosion and 249 

sedimentation in depopulated areas stand out. The effectiveness that extensive livestock 250 

farming has had throughout history in the Cantabrian Mountains on determining vegetation 251 

cover has been checked, and given that depopulation and abandonment are generalized, 252 

recovering the role of this industry for the purposes of land management may be a useful and 253 

replicable decision.   254 

5. Conclusions. 255 

Runoff in the Pisuerga catchment has fallen by 21,3% since the mid-20th century despite the 256 

lack of precipitation trends for the same period. Temperature has increased by 1,5⁰C, but this 257 

cannot fully explain the sharp reduction in water flow. Water extraction for human use is 258 

negligible in the catchment, hence this trend must have been caused by a combination of 259 

increased interception, and actual evapotranspiration associated to forest growth and shrub 260 

expansion.  261 

Impacts of increasing vegetation on runoff generation have not been linear. The response of 262 

water yield was more intense immediately after abandonment. Since the 1990s land cover 263 

changes have stabilized.  264 

Runoff reduction clearly impacts geomorphological activity making erosion, transport, and 265 

sedimentation processes less powerful. This in turn leads to smaller sized sediments at the 266 

outlet of the catchment and a general stabilization on slopes and river margins. 267 
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Table 1. Meteorological stations used in the study 434 

Station Location (x, y) Altitude Type Period Observations 

 UTM, ETRS 89      

Requejada 375123  4751856 1024 P, T 1961-2014  

Sta. M. Redondo 382986 4760666 1200 P 1955-2014 Snowfall days 

Polentinos 375411 4755245 1245 P 1965-2014  

Lores 374966 4761888 1210  1967-2009  

Cervera 377529 4746875 1013 P, T 1955-2014 10 km out 

El Campo 376846 4759385 1185 P, T 1968-2002  

 435 

 436 

Table 2. Summary of correlation results between series of water flow (Q), precipitation (P) and temperature (T) 437 

  Correlations     
   Year Q   
  Correlation Coefficient 1 -0,407   
 Year Sig (2-tailed)  0,002   
  N 62 57   
Spearman's rho       
  Correlation Coefficient -0,407 1   
 Q Sig (2-tailed) 0,002    
  N 57 57   
** Correlation is significant at the 0,01 level (2-tailed)    
          Coefficients    

  
Unstandardized 

Coefficients  
Standardized 

Coefficients   
Model  B Std. Error Beta t Sig. 

1 Constant 0,028 0,109  0,26 0,796 
 P 0,728 0,125 0,629 5,831 0 

2 Constant 0,034 0,099  0,343 0,733 
 P 0,665 0,114 0,574 5,812 0 
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 T -0,388 0,109 -0,351 -3,553 0,001 
Dependent Variable: Q 
      

 438 

 439 

Table 3.Values of volumetric quantification of water resources retained in the catchment 

 P 

(hm
3
) 

P ** Q 

(hm
3
) 

Q** D=(P-Q) 

(hm
3
) 

D ** PET 

(hm
3
) 

PET* P Mean 

(mm) 

P Desv.st 

(mm) 

A B r
2 

1955 - 1965 253,4 -0,28 184,4 1,08 64,5 -1,85 139,8 1,80 999,69 146,85 0,77 97,3 0,31 

1966 - 1975 271,9 1,05 184,8 1,10 84,4 -0,60 129,4 -0,44 1012,46 165,67 0,85 13,5 0,33 

1976 - 1985 280,5 1,66 171,6 0,46 105,7 0,74 129,1 -0,49 1035,39 157,23 0,86 29,7 0,29 

1986 - 1995 248,9 -0,60 140,3 -1,07 113,9 1,26 125,4 -1,30 1022,38 149,97 0,76 133,6 0,22 

1996 - 2005 246,2 -0,80 146,9 -0,75 97,4 0,22 134,9 0,75 952,04 155,57 0,90 -106,8 0,34 

2006 - 2016 243,0 -1,03 145,1 -0,83 97,5 0,23 129,9 -0,32 999,69 155,16 0,47 449,8 0,25 

P: Precipitation; ** Anomalies; D: Hydrological deficit; Q: Water flow; PET: Potential Evapotranspiration; A & B: Coefficients linear regression; r
2
: 

Pearson’s number 
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Figure 1. Location map and population evolution since trustworthy sources exist. Source:  Instituto Nacional 
de Estadística de España (INE) census and Diccionario Geográfico Estadístico de Pascual Madoz (Madoz, 

1850)  
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Figure 2. Land cover evolution since 1749  
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Figure 3. A) Annual water flow evolution in hm3 between (1956 and 2016). B) Evolution of regional series of 
precipitation, temperature, and water flow. C) Evolution of residual values from linear regressions among 

precipitation, temperature, and water flow. This graph allows the years in which climate parameters are able 

or unable to explain the water flow to be identified.  
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Figure 4. Comparative evolution of climate parameters (P, ETP), water flow (Q), hydrological deficit (D) and 
agrarian surface (mostly pastures).  
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Figure 5. Sedimentological changes on the Requejada reservoir deposit (1940 – 2016). Top left of the figure, 
comparison between trends in grain size, water flow, and organic matter; top right, texture composition of 

the deposit; bottom, sands size distribution the timespan  
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