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Abstract 23 

There is a growing necessity to replace chemical agents with ecofriendly materials, arising from24 

their impact on the environment and/or human health, which calls for the design of new broad-25 

spectrum fungicides. In this work, chitosan oligomers (COs), propolis (Ps) and silver nanoparticles26 

(AgNPs) mixtures in solution were assessed to control the growth of different phytopathogenic fungi27 

and oomycetes in vitro. Binary solutions of COs-Ps and COs-AgNPs evinced the highest antifungal28 

effect against Fusarium circinatum and Diplodia pinea fungi, respectively, with a ca. 80% reduction29 

in their mycelial growth. The COs solution by itself also proved to be greatly effective against30 

Gremmeniella abietina, Cryphonectria parasitica and Heterobasidion annosum fungi, causing a31 

reduction of 78%, 86% and 93% in their growth rate, respectively. Likewise, COs also attained a32 

100% growth inhibition on the oomycete Phytophthora cambivora. On the other hand, Ps inhibited33 

totally the growth of Phytophthora ×alni and Phytophthora plurivora. The application of AgNPs34 

reduced the mycelial growth of F. circinatum and D. pinea. However, the AgNPs in some binary and35 

ternary mixtures had a counter-productive effect on the anti-fungal/oomycete activity. In spite of the36 

fact that the anti-fungal/oomycete activity of the different treatments showed a dependence on the37 

particular type of microorganism, these solutions based on natural compounds can be deemed as a38 

promising tool for control of tree diseases. 39 
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 42 

1. Introduction 43 

Phytopathogenic microorganisms are responsible for major economic losses and ecological 44 

impacts, affecting from seedling nurseries to mature trees in plantations, seed orchards, landscape 45 

plantings, or native forests (Hirooka and Ishii 2013; Gordon et al. 2015). All over the world, several 46 

species of conifers are affected by common ascomycete fungi, such as Fusarium circinatum 47 

Nirenberg & O'Donnell, responsible for pitch canker disease (Wingfield et al. 2008); Diplodia pinea 48 

(Desmaz.) J. Kickx fil. (= Sphaeropsis sapinea (Fr.) Dyko & Sutton), which causes Diplodia tip blight 49 

and stem canker disease (Gibson 1979; Adamson et al. 2015); and Gremmeniella abietina 50 

(Lagerberg) Morelet (anamorph: Brunchorstia pinea (P. Karsten) Höhnel) that produces shoots 51 

dieback and cankers on stems and trunks (Kaitera and Jalkanen 1992; Romeralo et al. 2015), causing 52 

the death of conifers including spruce, fir, larch, pine and juniper. In the same way, another of the 53 

most important pathogens in coniferous forests is Heterobasidion annosum (Fr.) Bref. (= Fomes 54 

annosus (Fr.) Cooke) basidiomycete, which causes root and butt rot (Asiegbu et al. 2005; Garbelotto 55 

and Gonthier 2013).  56 

Other main forest pathogens include Cryphonectria parasitica, one of the most undesirable 57 

introduced plant pathogens, which causes chestnut blight on species in the genus Castanea (Heiniger 58 

and Rigling 1994; González-Varela et al. 2011); and oomycetes species such as Phytophthora. These 59 

latter comprise P. cambivora (Petri) Buisman, also a common pathogen of Castanea, Fagus and other 60 

hardwoods (Jung et al. 2005); P. ×alni (Brasier & S.A. Kirk) Husson, Ioos & Marçais, nothosp. nov., 61 

which cause alder decline by dieback, small sparse and yellowish leaves, excessive fructification, and 62 

tarry and rusty exudates (Husson et al. 2015); and P. plurivora T. Jung and T.I. Burgess, which causes 63 

aerial canker and collar rot in several species, including beech, oaks and alders (Jung and Burgess 64 

2009; Haque et al. 2014; Haque et al. 2015).  65 

To date, control of plant diseases has typically been performed by application of high toxic 66 

chemicals, whose excessive use has occasioned undesired impacts on the environment and on human 67 

health (Hirooka and Ishii 2013). Moreover, regulations are increasingly limiting the utilization of 68 

high toxic chemicals and promoting the use of integrated pest management and non-chemical 69 

alternatives to pesticides (Directive 2009/128/EC). 70 

Chitosan is a natural polymer composed of randomly distributed β-(1-4) D-glucosamine and N-71 

acetyl-D-glucosamine units. It can be found in the form of chitin in the shells of crustaceans and in 72 
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the cell walls of fungi (Jayakumar et al. 2011). This cationic biopolymer is characterized by being 73 

biocompatible, biodegradable, non-toxic and features antimicrobial, antiviral and antifungal 74 

properties (Ngo et al. 2015). Indeed, all fungi are expected to be vulnerable to chitosan, except those 75 

containing chitosan as a major wall compound (i.e. zygomycetes) (Leuba & Stössel, 1986, cited in 76 

Laflamme et al. (2000)).  77 

Another natural compound that has been widely used for its antiseptic properties, mainly in 78 

traditional medicine, but also in plant protection (Özcan et al. 2004), is propolis. It is a resinous 79 

material collected by bees from different parts of plants, buds and exudates, which –once mixed with 80 

their own enzymes– is used as a void sealant or as a sanitization agent in the hive (Marcucci 1995). 81 

Propolis is rich in flavonoids, polyphenols, steroids, aldehydes, amino acids and quinones, which 82 

account for its strong antimicrobial power (Farooqui 2012; Mărghitaş et al. 2013).  83 

Regarding silver nanoparticles, they have gained attention in the past decade as a very promising 84 

bactericidal and antifungal agent, with a much higher activity than silver ions (Kashyap et al. 2012). 85 

Silver nanoparticles have the ability to destroy the cellular walls and interfere with bacterial DNA 86 

replication and protein production processes (Wei et al. 2009). 87 

Natural alternatives based on chitosan products have been widely studied against plant diseases, 88 

meanly in the crop protection, such as rice (Boonlertnirun et al. 2008), soybean (Zeng et al. 2012) 89 

and potatoes (Kurzawińska and Mazur 2006), to name a few. So that, the development of application 90 

strategies such as seeds coating, foliar treatment and soil amendment is very broad (El Hadrami et al. 91 

2010). Nonetheless, against forest diseases there are very few reports regard of chitosan uses (e.g. 92 

Reglinski et al. 2004; Fitza et al. 2013). 93 

In this work, the anti-fungal/oomycete activity of chitosan oligomers (COs), propolis (Ps) and 94 

silver nanoparticles (AgNPs) and their binary and ternary combinations in solution has been assessed 95 

against eight forest pathogens through an in vitro study. The information on their effectiveness against 96 

each of the pathogens could pave the way for the development of novel natural compound-based 97 

antifungals, useful in an integrated management approach. 98 

 99 

2. Materials and methods 100 

2.1. Fungal material and reagents 101 

To assay in vitro the effects of the different mixtures, eight species –five fungi and three 102 

oomycetes– were chosen. All these pathogens were isolated in natural areas in the North-West of 103 
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Spain (see Table 1). The pathogens were kept in dark at 25 ºC in Potato Dextrose Agar (PDA) culture 104 

medium in order to preserve the standard mycelial growth before the treatments.  105 

 106 
Table 1. Assayed fungi and oomycetes, isolated in previous studies. 107 
Species Isolate Host tree Origin Isolation year References 

Fungi 

Fusarium 
circinatum 

FcCa1 Pinus 
radiata 

Cantabria 2009 (Martínez-Álvarez et al. 2012)  

Diplodia pinea HP154 Pinus 
radiata 

Cantabria 2009 (Martínez-Álvarez et al. 2016) 

Gremmeniella 
abietina 

VAI-13 Pinus 
halepensis 

Valladolid 2003 (Botella et al. 2010) 

Cryphonectria 
parasitica 

EU1 Castanea 
sativa 

Zamora 2005 (Zamora et al. 2012)  

Heterobasidion 
annosum 

A14009-
AFZAPR001 

Pinus 
pinaster 

Zamora 2014  

Oomycetes 

Phytophthora 
cambivora 

PH14012- 
LR2-2 

Quercus ilex Segovia 2014  

Phytophthora  
×alni 

PA02 Alnus 
glutinosa 

Zamora 2012 (Zamora-Ballesteros et al. 
2016) 

Phytophthora 
plurivora 

SORLDD4 Alnus 
glutinosa 

Soria 2012 (Haque et al. 2014; Zamora-
Ballesteros et al. 2016) 

 108 
 109 

Unless otherwise stated, all chemicals and reagents were supplied by Sigma-Aldrich Química S.A. 110 

(Tres Cantos, Madrid) and were used without further purification. Chitosan with medium molar mass 111 

was purchased from Hangzhou Simit Chemical Technology Co. (Hangzhou, China). Propolis with a 112 

content of polyphenols and flavonoids of ca. 10% (w/v) came from Burgos (Spain). 113 

 114 

2.2. Synthesis of chitosan-based mixtures in solution 115 

The synthesis of the solutions based on COs with Ps and AgNPs was conducted according to the 116 

procedure described by Matei et al. (2015), with some modifications. COs aqueous solutions were 117 

prepared from medium molecular weight commercial chitosan (140000–300000 g/mol) in AcOH 2% 118 

at pH 4–6, after neutralization with KOH. However, when the final pH of the substrate was close to 119 

6, there was no influence on the growth of the pathogen (Jönsson-Belyazio and Rosengren 2006). 120 

Then, 0.3 M H2O2 was added to obtain 2000 g/mol oligomers. Ps extraction was carried out by 121 

grinding raw propolis to fine powder and by maceration in a hydroalcoholic solution 7:3 (v/v), which 122 

was subsequently percolated (1 L/min) and filtrated with a stainless steel 220 mesh to remove any 123 

residues. AgNPs were prepared with the procedure described by Venkatesham et al. (2012), where 124 

the nanoparticles from an aqueous solution of AgNO3 (50 mM) were obtained with chitosan acting 125 

as both reducing and stabilizing agent without using any toxic chemicals. The reaction was carried 126 
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out in an autoclave at 120 °C for 15 min to obtain a clear yellow color indicating the formation of 127 

silver nanoparticles.  128 

COs-Ps, COs-AgNPs, Ps-AgNPs binary and COs-Ps-AgNPs ternary solutions were prepared by 129 

mixing –under vigorous stirring– the necessary volumes of each solution in order to obtain a 130 

concentration of 10 mg/mL of COs, 1 mg/mL of Ps and 10 µg/mL of AgNPs in every solution. The 131 

AgNPs content was kept to a minimum to preserve the stability of the nanoparticles.  132 

In order to characterize the mixtures and identify the interaction of the chemical functional groups, 133 

the samples in solution were freeze-dried (lyophilized) for 24 hours and their infrared spectra in the 134 

400-4000 cm-1 spectral range was measured using a Thermo Scientific (Waltham, MA, USA) Nicolet 135 

iS50 FT-IR Spectrometer, equipped with an in-built diamond attenuated total reflection (ATR) 136 

system. 137 

 138 

2.3. In vitro experiments 139 

To assay the anti-fungal/oomycete activity, a typical in vitro mycelial growth inhibition test was 140 

performed. Indeed, the experimental design consisted of a factorial scheme with three factors: (1) 141 

COs (presence/absence), (2) Ps (presence/absence) and (3) AgNPs (presence/absence). So, the anti-142 

fungal/oomycete activity of the three compounds separately and their binary and ternary 143 

combinations was analyzed for each pathogen (Figure 1). Each solution was uniformly incorporated 144 

at a ratio of 1:10 (v/v) into PDA after its sterilization for 20 min at 121 °C, as described by Wang et 145 

al. (2014), obtaining a final concentration of 1 mg/mL of COs, 0.1 mg/mL of P and 1 µg/mL of 146 

AgNPs in every treatment. These concentrations correspond to the minimum inhibitory 147 

concentrations used in other similar studies (Yoksan and Chirachanchai 2010; Torlak and Sert 2013; 148 

Olicón-Hernández et al. 2015). 20 mL of the mixtures were spread in Petri dishes (9 cm in diameter) 149 

setting four replicates for each treatment. 150 

Once the culture medium had solidified, an inoculum of every pathogen (a 5×5 mm2 plug cut from 151 

the margins) was placed at the center of the Petri dish. Then, Petri dishes were sealed and incubated 152 

at 25 °C in the dark. The mycelial growth (𝑔) was measured on a daily basis until the day in which 153 

the dishes of the control treatment were fully covered with mycelium (𝑛).  154 

The radial growth rate was calculated according to the following equation: 155 

  Radial growth rate =
∑ 𝑔𝑖

𝑛
𝑖=1

𝑛
 Eq. (1) 156 

 157 
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 158 
Figure 1. In vitro growth inhibition test for Fusarium circinatum (day 7). Control and treatments with AgNPs, 159 
COs, Ps, COs-AgNPs, Ps-AgPNs, COs-Ps, COs-Ps-AgNPs (left-to-right, top-to-bottom). 160 
 161 

2.4. Statistical analyses 162 

Analyses of variance (ANOVAs) and multiple comparison procedures were performed to test the 163 

effect of three different anti-fungal/oomycete agents (chitosan, propolis and nanosilver) and their 164 

combinations on the mycelia growth of the eight forest pathogens. As the raw data violated two 165 

ANOVA assumptions (normality and homogeneity of variances), robust methods were applied 166 

(García Pérez 2011). In particular, three-way fixed factor ANOVAs were performed under non-167 

normality and inequality of variances, using the generalized Welch procedure, a 0.2-trimmed mean 168 

transformation and alpha value of 0.05. ANOVAs were carried out using the “Wilcox' Robust 169 

Statistics (WRS2)” package, in particular the functions “t3way” and “lincon” (see Wilcox (2016)), 170 

implemented in the R software environment (R Development Core Team 2016). 171 

 172 

 173 

3. Results  174 

3.1. Aqueous solutions characterization 175 

Insight into the interaction of COs with the functional groups (phenolic and acids) from Ps and 176 

into the chelation of AgNPs in the binary and ternary aqueous solutions was gained by attenuated 177 

total reflectance Fourier-transform infrared (ATR-FTIR) spectroscopy. The vibrational spectra of the 178 

COs, COs-Ps binary and COs-Ps-AgNPs ternary mixtures were depicted in Figure 2.  179 

 180 
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 181 
Figure 2. ATR-FTIR spectra of chitosan oligomers (COs), binary solution of chitosan oligomers and propolis 182 
(COs-Ps) and ternary solution of chitosan oligomers, propolis and silver nanoparticles (COs-Ps-AgNPs). A 183 
break has been inserted in the x-axis at 1800 cm-1 to allow a clearer representation of the fingerprint region. 184 
 185 

The COs spectrum (solid line in Figure 2) showed the characteristic absorption peaks of chitosan 186 

at 3256 cm-1 (stretching vibration of the O-H and N-H bonds); at 1633 and 1550 cm-1 (amide I (C=O 187 

stretching) and to N-H (amine) vibration overlapped to amide II (N-H vibration), respectively); at 188 

1152 cm-1 (C–O in oxygen bridges resulting from deacetylation of chitosan); and at 1065 and 1018 189 

cm-1 (C-O-C and C-O vibrations). 190 

The spectrum of the binary mixture of COs-Ps (dotted line in Figure 2) sensitized the interaction 191 

between the two components by significant changes vs. the COs spectrum, caused by the bonded Ps 192 

components (mainly flavonoids and lipids). An increase in the intensity of the bands at 1165 cm-1 (C–193 

O and C–OH vibration), 1434 cm-1 (C–H vibration), 1508 and 1610 cm-1 (aromatic ring 194 

deformations), and 1681 cm-1 (C = O stretching) took place. Another important difference between 195 

the COs-Ps and COs spectra was a shift of the band associated to ν(CΦ-O) from 1257 cm-1 to 1263 196 

cm-1, which occurs when hydrogen bonding between COs and phenolic groups from Ps components 197 

takes place. 198 

The lyophilizate of the ternary mixture COs-Ps-AgNPs (dashed line in Figure 2) showed a very 199 

similar pattern to the infrared spectrum of the COs-Ps binary mixture, albeit with a decrease in 200 

intensity for the bands at 1721, 1271 and 1130 cm-1. This change, unaccompanied by a shift in the 201 

bands, suggests weak bonding of NH2-AgNPs. 202 

 203 

3.2. Anti-fungal activity 204 

All individual agents and some mixtures demonstrated the ability to reduce the mycelial growth 205 

of fungi (Figure 3), in particular those with COs, however, their antifungal activity was dependent on 206 

the particular type of pathogen assayed. With regard to F. circinatum fungi (Figure 3a), an interaction 207 
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amongst the three agents was observed in the Post-hoc analysis (F=354.6, p<0.001). Nevertheless, 208 

the binary mixture of COs-Ps showed the best antifungal effect, where the radial growth rate (1.4 209 

mm·day-1) was 5.6 times lower than of the control treatment (8.0 mm·day-1), corresponding to 82% 210 

of inhibition. In this case, the addition of AgNPs did not increase the effectiveness of the COs-Ps 211 

binary solution, whereas it reduced the effect of Ps and COs as individual compounds, which 212 

presented a high capacity to inhibit the mycelial growth, with a 68% and 53% of inhibition, 213 

respectively. However, AgNPs by itself, although in a lesser extent, also inhibited the mycelial growth 214 

regarding the control (27% of inhibitions).  215 

The treatments against D. pinea (Figure 3b) also showed an interaction amongst the three agents 216 

in the Post-hoc analysis (F=7.4, p=0.02). The binary mixture COs-AgNPs showed the best antifungal 217 

effect, with a radial growth rate of 0.9 mm·day-1, over 4.3 times lower than the control treatment (3.9 218 

mm·day-1), that is equivalent to 77% of inhibition. No significant differences were found considering 219 

the addition of Ps in the ternary mixture (COs-Ps-AgNPs). Nonetheless, the binary mixture of COs-220 

Ps showed a 69% of inhibition. The separate application of COs, Ps and AgNPs also evinced some 221 

antifungal activity, with lower radial growth rates of 1.7, 2.4 and 3.2 mm·day-1, i.e., 55, 37 and 18% 222 

of inhibition, respectively.  223 

With regard to G. abietina (Figure 3c), there was an interaction between COs and AgNPs (F=6.6, 224 

p=0.03). The best antifungal effect was associated to COs, which caused a 78% reduction of the 225 

growth rate. On the contrary, the addition of AgNPs to COs not only did not improve the antifungal 226 

activity, but had a counter-productive effect. No significant differences were found with AgNPs 227 

solution in comparison to the control.  228 

In relation to C. parasitica ascomycete (Figure 3d), the results showed an interaction between COs 229 

and Ps (F=371, p=0.001), and the effectiveness of COs both with and without Ps was around 93%. 230 

This study seems to point out that there is no advantage in adding Ps to the COs, in spite of that the 231 

inhibition percentage of the individual Ps solution was also high (2.35 mm day-1, 64% inhibition).  232 

The treatments on H. annosum basidiomycete (Figure 3e) showed a high antifungal activity of 233 

individual COs solution (86% of inhibition), without any interactions amongst the three elements, so 234 

it may be inferred that the use of Ps and AgNPs, by themselves, or in addition to COs did not 235 

significantly increase the inhibitory effect.  236 

 237 
 238 
 239 
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 240 
Figure 3. Radial growth rate and interaction among treatments based on chitosan oligomers (COs), Propolis 241 
and silver nanoparticles (AgNPs) against (a) F. circinatum; (b) D. pinea; (c) G. abietina; (d) C. parasitica; and 242 
(e) H. annosum fungi. Different letters above bars indicate significantly different means (generalized Welch 243 
procedure 0.2 trimmed means, a = 0.05). Error bars show the standard deviation. Note: Only significant 244 
interactions from the Post hoc analyses are shown. 245 
 246 
 247 
3.3. Anti-oomycete activity  248 

As regards the assays conducted with oomycetes (Figure 4), a remarkable inhibitory activity was 249 

attained for COs and Ps. Treatments against P. cambivora (Figure 4a) evidenced an interaction among 250 

the three agents (F=64.1, p=0.001), but all treatments with COs (individual, binary and ternary 251 

mixtures) presented 100% of growth inhibition. The treatment with the individual Ps solution also 252 

showed growth inhibition (43%), but AgNPs and Ps-AgNPs treatments did not exhibit any significant 253 

differences vs. the control.  254 

 On the other hand, an interaction between COs and Ps was found in treatments against P. ×alni 255 

and P. plurivora (F=23, p=0.002 and F=722.8, p=0.001, respectively). While the application of COs 256 

and Ps (individual or mixed) resulted in a similar growth inhibition for P. ×alni, the addition of Ps 257 

played a leading role in the growth inhibition for P. plurivora (Figure 4b and Figure 4c).  258 

 259 
 260 
  261 
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 262 
Figure 4. Radial growth rate and interaction among treatments based on chitosan oligomers (COs), Propolis 263 
and silver nanoparticles (AgNPs) against (a) P. cambivora; (b) P. ×alni; and (c) P. plurivora oomycetes. 264 
Different letters above bars indicate significantly different means (generalized Welch procedure 0.2 trimmed 265 
means, a = 0.05). Error bars show the standard deviation. Note: Only significant interactions from the Post hoc 266 
analyses are shown. 267 
 268 
 269 
4. Discussion 270 

 271 
The present study has demonstrated that the three compounds (COs, Ps and AgNPs) have an 272 

antifungal effect on different forest pathogens. COs by itself showed an inhibitory effect on the 273 

mycelial growth of all pathogens tested. Although the antifungal activity of chitosan polymer has 274 

been already reported by other authors both in in vitro and in vivo experiments, for example, chitosan 275 

applications to increase the resistance of pine seedlings to F. circinatum and D. pinea (Reglinski et 276 

al. 2004; Fitza et al. 2013), this study confirms the importance of the use of low molecular weight 277 

chitosan such as COs. It is worth noting that when chitosan with higher molecular weight than that 278 

used in this study (e.g., 50,000 Da instead 2,000 Da) are applied, a lower antifungal activity is 279 

attained, with 35% of reduction of mycelial growth of D. pinea in the first day as reported by Singh 280 
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et al. (2008). This is consistent with the results reported by Avelelas et al. (2014), Qiu et al. (2014) 281 

and Cobos et al. (2015), who demonstrated that chitosan antifungal activity increased in inverse 282 

proportion to its molecular weight. Consequently, COs of molecular weight under 2,000 Da, might 283 

be a preferable option as compared to commercial ‘low molecular weight’ chitosan (i.e., 50,000 to 284 

190,000 Da, CAS Number 9012-76-4) in terms of its activity against D. pinea. On the other hand, in 285 

an in vitro study by Ziani et al. (2009), the use of chitosan solutions proved to be more effective 286 

against Aspergillus niger, Alternaria alternata and Rhizopus oryzae than the use of films, where 287 

presumably, the chitosan solution had positive charges on the quaternary amino groups that interacted 288 

with the fungal cell walls, while for the films a protonation loss occurred. 289 

The inhibitory effect of Ps was demonstrated on most of the pathogens tested (F. circinatum, D. 290 

pinea, C. pararisitica, P. cambivora, P. ×alni and P. plurivora). The use of propolis has not been as 291 

well studied as chitosan, although its inhibition capacity against F. circinatum was already reported 292 

by Iturritxa et al. (2013). However, they reported a fungicidal effect, whereas in this study a growth 293 

inhibition effect was found.  294 

The application of AgNPs by itself also reduced the mycelial growth of F. circinatum and D. 295 

pinea, which is consistent with the results reported by Narayanan and Park (2014), who observed 296 

slight to moderate inhibition against wood-degrading fungi when a low dose of AgNPs was used. 297 

Nevertheless, AgNPs had not a significant anti-oomycete activity on the species tested in this study, 298 

contrasting with Mahdizadeh et al. (2015), who found that another oomycete (Pythium 299 

aphanidermatum (Edson) Fitzp.) was the most sensitive pathogen to nanosilver among the six tested 300 

species.  301 

The effect of the binary solutions of the compound tested varies according to the species. While 302 

the COs-Ps binary solution showed the highest antifungal effect against F. circinatum, the result of 303 

the application of AgNPs in the binary solutions varies according to the pathogen. Indeed, the binary 304 

solution COs-AgNPs recommended by Wang et al. (2015) was the most promising mixture in order 305 

to control D. pinea. Nevertheless, the use of COs-AgNPs and Ps-AgNPs solutions had a counter-306 

productive effect on the anti-fungal/oomycete activity against G. abietina and P. cambivora, 307 

respectively. This is in contrast to other studies in which nanosilver was also incorporated into 308 

chitosan, although in higher doses. For example against ascomycete Colletotrichum gloeosporioides 309 

(Penz.) Penz. & Sacc., the mixture showed excellent results: the inhibitory action increased from 44% 310 

to 100% as the AgNPs concentration was increased from 0.1 up to 100.0 μg/mL (Chowdappa et al. 311 

2014). It is also noteworthy that the solution consisting only of AgNPs did not show statistically 312 

significant difference vs. the control treatment, in contrast to the study by Narayanan and Park (2014), 313 
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who observed slight to moderate inhibition against wood-degrading fungi when a low dose of AgNPs 314 

was used. In the same vein, Saharan et al. (2013) and Saharan et al. (2015) found that the nanocopper-315 

chitosan complex showed growth inhibition against other ascomycota such as Fusarium oxysporum 316 

and A. alternata. They suggested that addition of nanometals increased the surface charge density and 317 

provided more electrostatic interaction with fungal membrane. 318 

Differences in the inhibitory behavior of the similar COs-Ps-AgNPs mixture have been reported 319 

for other fungal species and different application procedures: the COs-Ps-AgNPs ternary complex did 320 

not improve the antifungal/anti-oomycete activity compared to the binary solutions in this study, 321 

which contrasts with the complete inhibition obtained using similar COs-Ps-AgNPs mixtures applied 322 

to D. seriata and Bipolaris oryzae (Breda de Haan) Shoemaker (Matei et al. 2015; Araujo-Rufino et 323 

al. 2016). This discrepancy may be associated to that the gel phase used was ascribed to the higher 324 

concentrations of chitosan oligomers in the gel (20-25 mg/mL) vs. the aqueous solution of this study 325 

(1 mg/mL). 326 

The bands in the ATR-FTIR spectrum of the COs-Ps-AgNPs composite evidenced a weak 327 

interaction among COs and AgNPs, even weaker than that reported for chitosan-AgNPs thin films 328 

and nanocomposites manufactured by spin-coating (Wei et al. 2009; Wang et al. 2015), whose 329 

infrared spectra showed shifts between 5 and 10 cm-1. On the other hand, the spectrums of COs and 330 

COs-Ps showed very similar bands to those reported in other works for chitosan (Matei et al. 2015; 331 

Stroescu et al. 2015; Branca et al. 2016) and propolis extracts (Franca et al. (2014); Siripatrawan and 332 

Vitchayakitti (2016). 333 

A differential feature of this investigation in comparison to the literature was that in the 334 

preparations described above Green Chemistry procedures were used, without need for the addition 335 

of chemical bond reinforcing agents, widely used in other works (Gu et al. 2014; Jemec et al. 2016). 336 

Accordingly, these eco-friendly compounds could be useful in management strategies based on 337 

integrated approach, for example in the use of appropriate nursery hygiene practices. Likewise, the 338 

application of chitosan had been suggested using the chitosan-based Biochikol 020 PC, a biological 339 

agent with fungicidal properties and resistance stimulator, in order to control P. xalni complex in 340 

forest nurseries (Oskazo 2007). 341 

In conclusion, from the results of the in vitro growth inhibition experiments respect the anti-342 

fungal/oomycete effect of individual, binary and ternary mixtures of COs, Ps and AgNPs, assayed 343 

against eight plant pathogens, it could be inferred that: (i) the inhibitory activity against fungi and 344 

oomycetes of the individual low molecular weight COs solutions was significantly high (reaching 345 

growth rate reductions of up to 78, 86, 93% and 100% against G. abietina, C. parasitica, H. annosum 346 
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and P. cambivora, respectively); (ii) the growth inhibition is enhanced by association of COs with Ps 347 

(e.g., F. circinatum) and COs with AgNPs (e.g. D. pinea); and (iii) the COs-P-AgNPs ternary complex 348 

did not improve the antifungal/anti-oomycete activity compared to the binary solutions. Thus, the 349 

weak interactions that appear in solution amongst the three components (evidenced by FTIR) 350 

suggested that strong interactions are necessary to achieve the desired anti-fungal/oomycete effect. 351 

Additionally, further studies are essential to determine the effect of the COs-Ps-AgNPs combinations 352 

on seeds, tree seedlings and mature trees infested by different pathogens, as an innovative application 353 

system useful in an integrated management approach.  354 
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