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Nonlinear Supersymmetry as a Hidden 1

Symmetry 2

Mikhail S. Plyushchay 3

Abstract Nonlinear supersymmetry is characterized by supercharges to be higher 4

order in bosonic momenta of a system, and thus has a nature of a hidden 5

symmetry. We review some aspects of nonlinear supersymmetry and related to 6

it exotic supersymmetry and nonlinear superconformal symmetry. Examples of 7

reflectionless, finite-gap and perfectly invisible PT -symmetric zero-gap systems, 8

as well as rational deformations of the quantum harmonic oscillator and conformal 9

mechanics, are considered, in which such symmetries are realized. 10

Keywords Hidden symmetry · Exotic supersymmetry · Nonlinear 11

superconformal symmetry · Reflectionless and finite-gap systems · Perfect 12
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1 Introduction 14

Hidden symmetries are associated with integrals of motion of higher-order in 15

momenta. They mix the coordinate and momenta variables in the phase space 16

of a system, and generate a nonlinear, W -type algebras [1]. The best known 17

examples of hidden symmetries are provided by the Laplace–Runge–Lenz vector 18

integral in the Kepler–Coulomb problem, and the Fradkin–Jauch–Hill tensor in 19

isotropic harmonic oscillator systems. Hidden symmetries also appear in anisotropic 20

oscillator with commensurable frequencies, where they underlie the closed nature 21

of classical trajectories and specific degeneration of the quantum energy levels. 22

Hidden symmetry is responsible for complete integrability of geodesic motion of 23

a test particle in the background of the vacuum solution to the Einstein’s equation 24

represented by the Kerr metric of the rotating black hole and its generalizations 25

in the form of the Kerr-NUT-(A)dS solutions of the Einstein–Maxwell equations 26
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[2]. Another class of hidden symmetries underlies a complete integrability of the 27

field systems described by nonlinear wave equations such as the Korteweg–de Vries 28

(KdV) equation. Those symmetries are responsible for peculiar properties of the 29

soliton and finite-gap solutions of the KdV system, whose equation of motion can 30

be regarded as a geodesic flow on the Virasoro-Bott group [3, 4]. 31

Nonlinear supersymmetry [5–45] is characterized by supercharges to be higher 32

order in even (bosonic) momenta of a system, and thus has a nature of hidden 33

symmetry. Here, we review some aspects of nonlinear supersymmetry, and related 34

to it exotic supersymmetry and nonlinear superconformal symmetry. 35

Nonlinear supersymmetry appears, particularly, in purely parabosonic harmonic 36

oscillator systems generated by the deformed Heisenberg algebra with reflection 37

[12] as well as in a generalized Landau problem [15]. The peculiarity of super- 38

symmetric parabosonic systems shows up in the nonlocal nature of supercharges 39

to be of infinite order in the momentum operator as well as in the ladder operators 40

but anti-commuting for a polynomial in Hamiltonian being quadratic in creation- 41

annihilation operators. Similar peculiarities characterize hidden supersymmetry 42

and hidden superconformal symmetry appearing in some usual quantum bosonic 43

systems with a local Hamiltonian operator [20, 21, 24–26, 30–32, 35, 46–51]. Exotic 44

supersymmetry emerges in superextensions of the quantum systems described 45

by soliton and finite-gap potentials, in which the key role is played by the 46

Lax–Novikov integrals of motion [30–33, 42]. A structure similar to that of the 47

exotic supersymmetry of reflectionless and finite-gap quantum systems can also 48

be identified in the “SUSY in the sky” type supersymmetry [52–55] based on the 49

presence of the Killing–Yano tensors in the abovementioned class of the black hole 50

solutions to the Einstein–Maxwell equations. Nonlinear superconformal symmetry 51

appears in rational deformations of the quantum harmonic oscillator and conformal 52

mechanics systems [49, 51]. Both exotic supersymmetry and nonlinear superconfor- 53

mal symmetry characterize the interesting class of the perfectly invisible zero-gap 54

PT -symmetric systems, which includes the PT -regularized two-particle Calogero 55

systems and their rational extensions with potentials satisfying the equations of the 56

KdV hierarchy and exhibiting a behavior of extreme (rogue) waves [56, 57]. 57

2 Nonlinear Supersymmetry and Quantum Anomaly 58

Classical analog of the Witten’s supersymmetric quantum mechanics [58–61] is 59

described by the Hamiltonian 60

H = p2 +W 2 +W ′N , (1)

where N = θ+θ− − θ−θ+, W = W(x) is a superpotential, x and p are even 61

canonical variables, {x, p} = 1, and θ+, θ− = (θ+)∗ are Grassmann variables with 62

the only nonzero Poisson bracket {θ+, θ−} = −i. System (1) is characterized by 63

the even, N , and odd, Q+ = (W + ip)θ+ and Q− = (Q+)∗, integrals of motion 64
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satisfying the algebra of N = 2 Poincaré supersymmetry 65

{Q+,Q−} = −iH , {H,Q±} = 0 , {N,H} = 0 , {N,Q±} = ±2iQ± .
(2)

For any choice of the superpotential, canonical quantization of this classical system 66

gives rise to the supersymmetric quantum system in which quantum supercharges 67

and Hamiltonian satisfy the N = 2 superalgebra given by a direct quantum analog 68

of the corresponding Poisson bracket relations, with the quantum analog of the 69

integral N playing simultaneously the role of the Z2-grading operator Γ = σ3 of 70

the Lie superalgebra. 71

A simple change of the last term in (1) for nW ′N with n taking any integer value 72

yields a system characterized by a nonlinear supersymmetry of order n generated by 73

the supercharges S+ = (W + ip)nθ+ and S− = (S+)∗ being the integrals of order 74

n in the momentum p. Their Poisson bracket {S+, S−} = −i(H)n has order n in the 75

Hamiltonian [12, 14, 62] 76

H = p2 + W2 + nW ′N . (3)

System (3) can be regarded as a kind of the classical supersymmetric analog of 77

the planar anisotropic oscillator with commensurable frequencies [63, 64]. Unlike 78

a linear case (1) with n = 1, canonical quantization of the system (3) with n = 79

2, 3, . . . faces, however, the problem of quantum anomaly: for arbitrary form of the 80

superpotential, quantum analogs of the classical odd integrals S± cease to commute 81

with the quantum analog of the Hamiltonian (3). In [14], it was found a certain class 82

of superpotentials W(x) for which the supercharge S+ has a polynomial structure 83

in z = W + ip instead of monomial one so that the corresponding systems admit an 84

anomaly-free quantization giving rise to quasi-exactly solvable systems [65–67]. 85

If instead of the “holomorphic” dependence of the supercharge S+ on the 86

complex variable z we consider the supercharges with polynomial dependence on 87

the momentum variable p, the case of quadratic supersymmetry turns out to be a 88

special one. The Hamiltonian and supercharges then can be presented in the most 89

general form 90

H = zz∗ − C

W2 + 4W ′N + a , (4)

91

S+ =
(
z2 + C

W2

)
θ+ , S− = (S+)∗ . (5)

Here a and C are real constants, and we have 92

{S+, S−} = −i
(
(H − a)2 + C

)
. (6)
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Supersymmetry of the system (4), (5), (6) with an arbitrary superpotential can 93

be preserved at the quantum level if to correct the direct quantum analog of the 94

Hamiltonian and supercharges by adding to them the term quadratic in Plank 95

constant [14, 62]: 96

Ĥ − a = −h̄2 d
2

dx2
+ W2 − 2h̄σ3W ′ − C

W2 +Δ(W) , (7)

97

Ŝ+ = ŝ+σ+ , ŝ+ =
(
h̄
d

dx
+ W

)2
+ C

W2 −Δ(W) , (8)

98

Δ(W) = 1
2
h̄2

(
W ′′

W − 1
2

(W ′

W

)2
)

= h̄2
1√
W

(√
W

)′′
, (9)

where σ+ = 1
2 (σ1 + iσ2). The quantum term Δ(W) can be presented as a 99

Schwarzian,Δ = − 1
2 h̄

2S(ω(x)), S(ω(x)) = (ω′′/ω′)′− 1
2 (ω

′′/ω′)2, of the function 100

ω(x) = ´ x dy/W(y). The quadratic in h̄ terms in the quantum Hamiltonian (7) 101

can be unified and presented in a form similar to that of the kinetic term of the 102

quantum particle in a curved space:−h̄2 d2
dx2

+Δ(W) = P̂†P̂ , where P̂ = h̄ζ−1 d
dx
ζ , 103

ζ = 1/
√
W . Analogously, the first and third terms in ŝ+ in (8) can be collected and 104

presented in the form ẑ2 −Δ(W) = (ζ ẑζ−1)(ζ−1ẑζ ), where ẑ = h̄ d
dx

+ W [62]. 105

3 Exotic NonlinearN = 4 Supersymmetry 106

The anomaly-free prescription for quantization of the classical systems (3) with 107

supersymmetry of order higher than two in general case is unknown, but there exist 108

infinite families of the quantum systems described by supersymmetries of arbitrary 109

order. They can be generated easily by applying the higher order Darboux–Crum 110

(DC) transformations [68–70] to a given, for instance, exactly solvable quantum 111

system instead of starting from a classical supersymmetric system of the form (3) 112

followed by a search for the anomaly-free quantization scheme. 113

In general case the DC transformation of a given system described by the 114

Hamiltonian operator Ĥ− = − d2

dx2
+ V−(x) is generated by selection of the set 115

of physical or non-physical eigenstates (ψ1, ψ2, . . . , ψn) of Ĥ− as the seed states. 116

Here and below we put h̄ = 1. If they are chosen in such a way that their Wronskian 117

W(ψ1, . . . , ψn) takes nonzero values in the region where V−(x) is defined, then the 118

new potential 119

V+ = V− − 2(lnW(ψ1, . . . , ψn))′′ (10)
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will be regular in the same region as V−. Physical and non-physical eigenstates of 120

the new Hamiltonian operator Ĥ+ = − d2

dx2
+ V+ are obtained from those of the 121

original system Ĥ− by the transformation 122

ψ+,λ = W(ψ1, . . . , ψn, ψλ)

W(ψ1, . . . , ψn)
= Anψλ , (11)

where ψλ is an eigenstate of Ĥ− different from eigenstates in the set of the seed 123

states with eigenvalue Eλ �= Ej , j = 1, . . . , n. The state ψ+,λ is of the same 124

eigenvalue of Ĥ+ as ψλ of Ĥ−, Ĥ−ψλ = λψλ ⇒ Ĥ+ψ+,λ = λψ+,λ, and vice 125

versa, from Ĥ+ψ+,λ = λψ+,λ it follows that Ĥ−ψλ = λψλ. Operator An in (11) is 126

a differential operator of order n, 127

An = An . . . A1 , Aj = (Aj−1ψj )
d

dx
(Aj−1ψj )−1 , j = 1, . . . , n , A0 = 1 ,

(12)
128

which is constructed recursively from the selected seed states. Operators An and A†
n 129

intertwine Hamiltonian operators Ĥ− and Ĥ+, 130

AnĤ− = Ĥ+An , A
†
nĤ+ = Ĥ−A†

n , (13)

and satisfy relations 131

A
†
nAn =

n∏
j=1
(Ĥ− − Ej) , AnA

†
n =

n∏
j=1
(Ĥ+ − Ej) , (14)

where Ej is eigenvalue of the seed eigenstate ψj . Relations (13) and (14) underlie 132

nonlinear supersymmetry of the extended system Ĥ = diag (Ĥ+, Ĥ−), the super- 133

charges of which are constructed from the operators An and A†
n. 134

Using Eq. (11), one can prove the relation [71] 135

W(ψ∗, ψ̃∗, ψ1, . . . , ψn) = W(ψ1, . . . , ψn) . (15)

Here and in what follows equality between Wronskians is implied up to inessential 136

multiplicative constant; ψ∗ is some eigenstate of Ĥ− with eigenvalue E∗ different 137

from Ej , j = 1, . . . , n, and ψ̃∗ = ψ∗
´ x
dy/(ψ∗(y))2 is a linear independent 138

eigenstate with the same eigenvalue E∗ so thatW(ψ∗, ψ̃∗) = 1. 139

Among supersymmetric quantum systems generated by DC transformations, 140

there exists special class of infinite subfamilies in which the corresponding superex- 141

tended systems are characterized simultaneously by supersymmetries of two dif- 142

ferent orders, one of which is of even order n = 2l, while another has some odd 143

order n = 2k + 1 [30–32, 36, 37, 42, 56]. This corresponds to supersymmetrically 144

extended finite-gap or reflectionless systems, which can be regarded as “instant 145
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photos” of solutions to the KdV equation [72] and are characterized by the presence 146

of a nontrivial Lax–Novikov integrals to be operators of the odd differential order 147

n = 2
 + 1 ≥ 3 with 
 = l + k. Factorization of Lax–Novikov integrals into two 148

differential operators of orders 2l and 2k+1 is reflected in the presence of the exotic 149

nonlinear N = 4 Poincaré supersymmetry generated by supercharges of orders 2l 150

and 2k + 1 instead of linear or nonlinear N = 2 Poincaré supersymmetry obtained 151

usually via the Darboux or Darboux–Crum transformation construction. 152

A simple example of a system with exotic nonlinear N = 4 supersymmetry is 153

generated via the construction of Witten’s supersymmetric quantum mechanics with 154

superpotential W(x) = κ tanh κx, where κ is a parameter of dimension of inverse 155

length. The corresponding superextended system is described by the Hamiltonian 156

Ĥ = diag (Ĥ+, Ĥ−) with Ĥ− = − d2

dx2
+ κ2, Ĥ+ = Ĥ− − 2κ2/ cosh2 κx, and first 157

order supercharges Q̂+ = ( d
dx

−W(x))σ+, Q̂− = (Q̂+)†. They generate theN = 2 158

Poincaré superalgebra via the (anti)commutation relations 159

{Q̂+, Q̂−} = Ĥ , [Ĥ, Q̂±] = 0 . (16)

This system can also be obtained via the construction of the n = 2 supersymmetry 160

by choosing W(x) = − 1
2κ tanh κx and C = − 1

16κ
4 [62]. In this case Δ = 161

− κ2

cosh2 κx
(1 + 1

4 sinh2 κx
), and the operator in the second order supercharge (8) is 162

factorized in the form 163

ŝ+ =
(
d

dx
− κ tanh κx

)
d

dx
. (17)

We have here 164

{Ŝ+, Ŝ−} =
(
Ĥ − 1

2
κ2

)2
− 1
16
κ4 , [Ĥ, Ŝ±] = 0 . (18)

The anti-commutators of the first and second order supercharges generate a 165

nontrivial even integral of motion, 166

{Ŝ+, Q̂−} = −{Ŝ−, Q̂+} = iL̂ , (19)
167

L̂ =
(
q̂+p̂ q̂†+ 0

0 Ĥ−p̂

)
, (20)

where q̂+ = d
dx

− κ tanh κx. Operator (20) satisfies the commutation relations 168

[L̂, Q̂±] = [L̂, Ŝ±] = [L̂, Ĥ] = 0 , (21)

which mean that the integral L̂ is the central element of the nonlinear superalgebra 169

generated by Ĥ, Q̂±, Ŝ±, and L̂. The lower term in the diagonal operator L̂ is the 170
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momentum operator of a free quantum particle multiplied by Ĥ−, while the third 171

order differential operator q̂+p̂ q̂†+ is the Lax–Novikov integral of reflectionless 172

system described by the Hamiltonian operator Ĥ+. 173

Operator L̂ plays essential role in the description of the system Ĥ: it detects 174

and annihilates a unique bound state in the spectrum of reflectionless subsystem 175

Ĥ+, which is described by the wave function Ψ0 =
(√

2κ−1 cosh κx, 0
)t

of zero 176

energy. It also annihilates the doublet of states Ψ+ = (tanh κx, 0)t and Ψ− = 177

(0, 1)t of the system Ĥ of energy E = κ2. Besides, operator L̂ distinguishes (with 178

the aid of the integral σ3) the states Ψ±k+ = (±ikx − κ tanh κx)e±ikx, 0)t and 179

Ψ±k− = (0, e±ikx)t in the four-fold degenerate scattering part of the spectrum of 180

Ĥ: L̂Ψ±k+ = ±k(κ2 + k2)Ψ±k+ , L̂Ψ±k− = ±k(κ2 + k2)Ψ±k− . Zero energy state Ψ0 181

is annihilated here by all the supercharges and by the Lax–Novikov integral L̂, and 182

thus the system realizes exotic supersymmetry in the unbroken phase [36, 42]. 183

Within the framework of the Darboux–Crum construction, the described reflec- 184

tionless system Ĥ+ is obtained from the free particle system Ĥ0 = − d2

dx2
by taking 185

its non-physical eigenstate ψ1(x) = cosh κx of eigenvalue −κ2 as the seed state by 186

constructing the operator 187

Ĥ+ = Ĥ− − 2(lnW)′′ , (22)

where Ĥ− = Ĥ0 + κ2 and W = ψ1(x). The supercharge Q̂+ is constructed then 188

from the operator q̂+ = ψ1
d
dx

1
ψ1(x)

= d
dx

− κ tanh κx. The same superpartner 189

system Ĥ+ can be generated via relation (22) by changing W = ψ1(x) in it 190

for Wronskian of the set of eigenstates ψ0 = 1 and ψ1 = sinh κx, which is 191

equal, up to inessential multiplicative constant, to the same function W = ψ1(x): 192

W(1, sinh κx) = κ cosh κx. This second DC scheme generates the intertwining 193

operator (17) corresponding to the second order supercharge Ŝ+ via the chain of 194

relations ŝ+ = A2A1, where A1 = ψ0
d
dx

1
ψ0

= d
dx
, A2 = (A1ψ1)

d
dx

1
(A1ψ1)

= q̂+. 195

In this construction the third order Lax–Novikov integral q̂+p̂ q̂†+ of the subsystem 196

Ĥ+ is the Darboux-dressed momentum operator of the free particle. 197

The described DC construction of superextended systems described by exotic 198

N = 4 supersymmetry is generalized for arbitrary case of the system of the form 199

Ĥ = diag (Ĥ+, Ĥ−), with reflectionless subsystems Ĥ+ and Ĥ− having an arbitrary 200

number and energies of bound states, but with identical continuous parts of their 201

spectra [42]. The key point underlying the appearance of the two supersymmetries 202

of different orders by means of which the partner systems Ĥ+ and Ĥ− are related 203

is that the same reflectionless system can be generated by two different Darboux– 204

Crum transformations. One transformation is generated by the choice of the set of 205

non-physical eigenstates 206

ψ1 = cosh κ1(x + τ1), ψ2 = sinh κ2(x + τ2), . . . , ψn (23)
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of the free particle system taken as the seed states. Here ψ2l+1 = cosh κ2l+1(x + 207

τ2l+1), ψ2l = sinh κ2l (x + τ2l ), 1 ≤ 2l < 2l + 1 ≤ n, and κj and τj , 208

j = 1, . . . , n, are arbitrary real parameters with restriction 0 < κj < κj+1. The 209

indicated choice of eigenstates guarantees that the Wronskian of these states takes 210

nonzero values, and the potential produced via the Wronskian construction, V (x) = 211

−2(lnW(ψ1, . . . , ψn))′′, will be nonsingular reflectionless potential maintaining n 212

bound states. The choice of the translation parameters τj in the form τj = x0j−4κ2j t 213

promotes the potential into the n-soliton solution to the KdV equation [43, 73] 214

ut = 6uux − uxxx . (24)

Exactly the same reflectionless potential V (x) is generated by taking the following 215

set of eigenstates of the free particle Hamiltonian operator: 216

φ0 = 1, φ1 = sinh κ1(x + τ1), φ2 = cosh κ2(x + τ2), . . . , φn , (25)

as the seed states for the Darboux–Crum transformation. Here 217

φ2l+1 = sinh κ2l+1(x + τ2l+1), φ2l = cosh κ2l(x + τ2l ),

and modulo the unimportant multiplicative constant, we have 218

W(ψ1, . . . , ψn) = W(1, ψ ′
1 . . . , ψ

′
n) . (26)

219

When the number of bound states n in each partner reflectionless system Ĥ+ 220

and Ĥ− is the same but all the discrete energies of one subsystem are different 221

from those of another subsystem, one pair of supercharges will have differential 222

order 2n while another pair will have differential order 2n + 1 independently on 223

the values of translation parameters τj of subsystems. This corresponds to the 224

nature of the described Darboux–Crum transformations. In this case one pair of 225

the supercharges is constructed from intertwining operators which relate the partner 226

system Ĥ+ via the “virtual” free particle system Ĥ0, and then Ĥ0 to Ĥ−. The 227

corresponding intertwining operators are composed from intertwining operators 228

obtained from the sets of the seed states of the form (23) used for the construction 229

of each partner system. Another pair of supercharges of differential order 2n + 1 230

is constructed from the intertwining operators of a similar form but with inserted 231

in the middle free particle integral d
dx
. This corresponds to the use of the set of the 232

seed states of the form (25) for one of the partner subsystems. The Lax–Novikov 233

integral being even generator of the exotic supersymmetry and having differential 234

order 2n + 1 is produced via anti-commutation of the supercharges of different 235

differential orders. It, however, is not a central charge of the nonlinear superalgebra: 236

commuting with one pair of supercharges it transforms them into another pair of 237

supercharges multiplied by certain polynomials in Hamiltonian Ĥ of corresponding 238

orders [42]. The structure of exotic supersymmetry undergoes a reduction each 239

time when some r discrete energies of one subsystem coincide with any r discrete 240
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energies of another subsystem. In this case the sum of differential orders of two pairs 241

of supercharges reduces from 4n+ 1 to 4n− 2r + 1, and nonlinear superlagebraic 242

structure acquires a dependence on r relative translation parameters τ+
j − τ−

j ′ whose 243

indexes j and j ′ correspond to coinciding discrete energy levels. When all the 244

discrete energy levels of one subsystem coincide with those of the partner system, 245

the Lax integral transforms into the bosonic central charge of the corresponding 246

nonlinear superalgebra [42]. 247

Different supersymmetric systems of the described nature can also be related 248

by sending some of the translation parameters τj to infinity. In such a procedure 249

exotic supersymmetry undergoes certain transmutations, particularly, between the 250

unbroken and broken phases, and admits an interpretation in terms of the picture of 251

soliton scattering [74]. 252

In the interesting case of a superextended system unifying two finite-gap periodic 253

partners described by the associated Lamé potentials shifted mutually for the half of 254

the period of their potentials, the two corresponding Darboux–Crum transformations 255

are constructed on the two sets of the seed states which correspond to the edges of 256

the valence and conduction bands, one of which is composed from periodic states 257

while another consists from antiperiodic states. One of such sets corresponding to 258

antiperiodic wave functions has even dimension, while another that includes wave 259

functions with the same period as the potentials has odd dimension. These sets 260

generate the pairs of supercharges of the corresponding even and odd differential 261

orders. On these sets of the states, certain finite-dimensional non-unitary represen- 262

tations of the sl(2,R) algebra are realized of the same even and odd dimensions 263

[30]. Lax–Novikov integral in such finite-gap systems with exotic nonlinearN = 4 264

supersymmetry has a nature of the bosonic central charge and differential order 265

equal to 2g + 1, where g is the number of gaps in the spectrum of completely 266

isospectral partners. The indicated class of the supersymmetric finite-gap systems 267

admits an interpretation as a planar model of a non-relativistic electron in periodic 268

magnetic and electric fields that produce a one-dimensional crystal for two spin 269

components separated by a half-period spacing [30]. Exotic supersymmetry in such 270

systems is in the unbroken phase with two ground states having the same zero 271

energy, particularly, in the case when one pair of the supercharges has differential 272

order one and corresponds to the construction of the Witten’s supersymmetric 273

quantum mechanics. The simplest case of such a system is given by the pair of 274

the mutually shifted for the half-period one-gap Lamé systems, 275

Ĥ± = − d2

dx2
+V±(x), V−(x) = 2sn2(x|k)−k2, V+(x) = V−(x+K), (27)

where k is the modular parameter and 4K is the period of the Jacobi elliptic function 276

sn (x|k). The extended matrix system Ĥ is described by the first order supercharges 277

constructed on the base of the superpotential W(x) = −(ln dn x)′ generated by 278

the ground state dn x of the subsystem Ĥ− which has the same period 2K as the 279

potential V−(x). The second order supercharges are generated via the Darboux– 280

Crum construction on the base of the seed states cn x and sn x which change sign 281
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under the shift for 2K, and describe the states of energies 1 − k2 and 1 at the edges 282

of valence and conduction bands of Ĥ−, respectively. 283

The superextended system composed from the same one-gap systems but shifted 284

mutually for the distance less than half-period of their potentials is described 285

by exotic nonlinear N = 4 supersymmetry with supercharges to be differential 286

operators of the same first and second orders, and Lax–Novikov integral having dif- 287

ferential order three. But in this case supersymmetry is broken, the positive energy of 288

the doublet of the ground states depends on the value of the mutual shift, and though 289

the Lax–Novikov integral is the bosonic central charge, the structure coefficients of 290

the nonlinear superalgebra depend on the value of the shift parameter [37]. 291

As was shown in [45], reflectionless and finite-gap periodic systems described 292

by exotic nonlinear supersymmetry can also be generated in quantum systems with 293

a position-dependent mass [75–78]. 294

Very interesting physical properties are exhibited in the systems with the exotic 295

nonlinearN = 4 supersymmetry realized on finite-gap systems with soliton defects 296

[73, 79]. By applying Darboux–Crum transformations to a Lax pair formulation of 297

the KdV equation, one can construct multi-soliton solutions to this equation as well 298

as to the modified Korteweg–de Vries equation which represent different types of 299

defects in crystalline background of the pulse and compression modulation types. 300

These periodicity defects reveal a chiral asymmetry in their propagation. Exotic 301

nonlinear supersymmetric structure in such systems unifies solutions to the KdV 302

and modified KdV equations, it detects the presence of soliton defects in them, 303

distinguishes their types, and identifies the types of crystalline backgrounds [73]. 304

4 Perfectly Invisible PT -Symmetric Zero-Gap Systems 305

Darboux–Crum transformations can be realized not only on the base of the physical 306

or non-physical eigenstates of a system, but also by including into the set of the seed 307

states of Jordan and generalized Jordan states [56, 57, 80–82], which, in turn, can be 308

obtained by certain limit procedures from eigenstates of a system. For instance, 309

one can start from the free quantum particle, and choose the set of the states 310

(x, x2, x3, . . . xn), xn = limk→0(sin kx/k)n. The first state x is a non-physical 311

eigenstate of Ĥ0 = − d2

dx2
of zero eigenvalue. The states x2l , x2l+1, l ≥ 1, are 312

the Jordan states of order l of Ĥ0: (Ĥ0)
l acting on both states transforms them into 313

zero energy eigenstates ψ0 = 1 and ψ1 = x = ψ̃0, respectively. The Wronskian of 314

these states isW(x, x2, x3, . . . , xn) = const · xn, and the system generated via the 315

corresponding Darboux–Crum transformation is Ĥn = − d2

dx2
+ n(n+1)

x2
. Operator 316

Ĥn, however, is singular on the whole real line, and can be identified with the 317

Hamiltonian of the two-particle Calogero [83, 84] model with the omitted center of 318

mass coordinate, which requires for definition of its domain with x ∈ (0,+∞) the 319

introduction of the Dirichlet boundary condition ψ(0+) = 0. Systems Ĥ0 and Ĥn 320

are intertwined by differential operators An = An . . . A1 and A
†
n, AnĤ0 = ĤnAn, 321
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A
†
nĤn = Ĥ0A

†
n whereAl = d

dx
− l
x
, and construction ofAn corresponds to Eq. (12). 322

The systems Ĥ0 and Ĥn can also be intertwined by the operators Bn = An . . . A1A0 323

and B
†
n, where A0 = d

dx
, which are obtained by realizing the Darboux–Crum 324

transformation constructed on the base of the set of the states (x2, . . . , xn+1) 325

extended with the state ψ0 = 1. One could take then the extended system composed 326

from Ĥ+ = Ĥn and Ĥ− = Ĥ0 with Ĥ0 restricted to the same domain as 327

Ĥn, and construct the supercharge operators of differential orders n and n + 1 328

from the introduced intertwining operators. However, we find that the supercharge 329

constructed on the base of the intertwining operators Bn and B†
n will be non-physical 330

as the intertwining operator Bn acting on physical eigenstates sin kx of Ĥ− of 331

energy k2 will transform them into non-physical eigenstates Bn sin kx of the system 332

Ĥ+ of the same energy but not satisfying the boundary condition ψ(0+) = 0. In 333

correspondence with this, differential operator of order 2n+ 1, L̂ = diag (L̂+, L̂−), 334

with L̂+ = BnA
†
n = An

d
dx
A
†
n and L̂− = A

†
nBn = (Ĥ−)n ddx formally commutes 335

with Ĥ, but it is not a physical operator for the system Ĥ as acting on its physical 336

eigenstates satisfying boundary condition at x = 0+, it transforms them into non- 337

physical eigenstates not satisfying the boundary condition. The situation can be 338

“PT -regularized” by shifting the variable x: x → ξ = x + iα, where α is a 339

nonzero real parameter [56]. The obtained in such a way superextended system can 340

be considered on the whole real line x ∈ R, and boundary condition at x = 0 341

can be omitted. The system Ĥ+(ξ) is PT -symmetric [85–91]: [PT, Ĥ+(ξ)] = 0, 342

where P is a space reflection operator, Px = −Px, and T is the operator defined 343

by T (x + iα) = (x − iα)T . Subsystem Ĥ+(ξ) has one bound eigenstate of zero 344

eigenvalue described by quadratically integrable on the whole real line function 345

ψ+
0 = ξ−n, which lies at the very edge of the continuous spectrum with E > 0. 346

System Ĥ+(ξ) therefore can be identified as PT -symmetric zero-gap system. 347

Moreover, it turns out that the transmission amplitude for this system is equal to one 348

as for the free particle system, and Ĥ+(ξ) can be regarded as a perfectly invisible 349

PT -symmetric zero-gap system. Exotic nonlinear supersymmetry of the system 350

Ĥ(ξ) will be described by two supercharges of differential order n constructed from 351

the intertwining operators An(ξ) and A
#
n(ξ) = A#

1 . . . A
#
n, A#

j = − d
dx

− j
ξ
, by 352

supercharges of the order n + 1 constructed from the intertwining operators Bn(ξ) 353

andB#
n(ξ), and by the Lax–Novikov integral L̂(ξ) to be differential operator of order 354

2n + 1. Operator L̂(ξ) annihilates the unique bound state of the system Ĥ(ξ) and 355

the state ψ0 = 1 of zero energy in the spectrum of the free particle subsystem, and 356

distinguishes plane waves eikx in the spectrum of the free particle subsystem and 357

deformed plane wavesAn(ξ)eikξ in the spectrum of the superpartner system Ĥ+(ξ). 358

In the simplest case n = 1, the supercharges have the form 359

Q̂1 =
(

0 A1(ξ)

A#
1(ξ) 0

)
, Q̂2 = iσ3Q̂1 , (28)

360

Ŝ1 =
(

0 −A1(ξ)
d
dx

d
dx
A#
1(ξ) 0

)
, Ŝ2 = iσ3Ŝ1 , (29)
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where Q̂1 = Q̂+ + Q̂−, Ŝ1 = Ŝ+ + Ŝ−. The Lax–Novikov integral is 361

L̂ =
(−iA1(ξ)

d
dx
A#
1(ξ) 0

0 −i d
dx
Ĥ0

)
. (30)

Together with Hamiltonian Ĥ = diag (Ĥ1(ξ), Ĥ0) they satisfy the following 362

nonlinear superalgebra [56]: 363

[Ĥ, Q̂a] = 0 , [Ĥ, Ŝa] = 0 , (31)
364

{Q̂a, Q̂b} = 2δabĤ , {Ŝa, Ŝb} = 2δabĤ2 , (32)
365

{Q̂a, Ŝb} = 2εabL̂ . (33)
366

[L̂, Ĥ] = 0 , [L̂, Q̂a] = 0 , [L̂, Sa] = 0 . (34)

In the case of the superextended system Ĥ = diag (Ĥ1(ξ2), Ĥ1(ξ1)), where 367

ξj = x + iαj , j = 1, 2, and α1 �= α2, exotic nonlinear supersymmetry is 368

partially broken: the doublet of zero energy bound states is annihilated by the 369

second order supercharges Ŝa and by the Lax–Novikov integral L̂, but they are not 370

annihilated by the first order supercharges Q̂a [56]. The first order supercharges 371

Q̂a are constructed in this case from the intertwining operators A = d
dx

+ W , 372

W = ξ−1
1 −ξ−1

2 −(ξ1−ξ2)−1, andA# = − d
dx

+W . The second order supercharges 373

Ŝa are composed from the intertwining operators A1(ξ2)A
#
1(ξ1) and A1(ξ1)A

#
1(ξ2). 374

In the limit α1 → ∞, the system Ĥ = diag (Ĥ1(ξ2), Ĥ1(ξ1) transforms into the 375

system given by the PT -symmetric Hamiltonian Ĥ = diag (Ĥ1(ξ2), Ĥ0), and 376

exotic nonlinear supersymmetry in the partially broken phase transmutes into the 377

supersymmetric structure corresponding to the unbroken phase [56]. 378

It is interesting to note that if to use the appropriate linear combinations of the 379

Jordan states of the quantum free particle as the seed states for the Darboux–Crum 380

transformations, one can construct PT -symmetric time-dependent potentials which 381

will satisfy equations of the KdV hierarchy and will exhibit a behavior typical for 382

extreme (rogue) waves [56]. 383

5 Nonlinear Superconformal Symmetry of the 384

PT -Symmetric Zero-Gap Calogero Systems 385

Free particle system is characterized by the Schrödinger symmetry generated by the 386

first order integrals P̂0 = p̂ = −i d
dx

and Ĝ0 = x + 2it d
dx
, and the second order 387

integrals Ĥ0 = − d2

dx2
, D̂0 = 1

4 {P̂0, Ĝ0} and K̂0 = Ĝ2
0. Operators Ĝ0 as well as D̂0 388

and K̂0 are dynamical integrals of motion satisfying the equation of motion of the 389
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form d
dt
Î = ∂

∂t
Î − [Ĥ0, Î ] = 0. These time-independent and dynamical integrals 390

generate the Schrödinger algebra 391

[D̂0,H0] = iĤ0 , [D̂0, K̂0] = −iK̂0 , [K̂0, Ĥ0] = 8iD̂0 , (35)

[D̂0, P̂0] = i
2 P̂0 , [̂D0, Ĝ0] = − i

2Ĝ0 , (36)

[Ĥ0, Ĝ0] = −2iP̂0 , [Ĥ0, P̂0] = 0 , (37)

[K̂0, P̂0] = 2iĜ0 , [K̂0, Ĝ0] = 0 , (38)

[Ĝ0, P̂0] = i I . (39)

Equations (35) and (39) correspond to the sl(2,R) and Heisenberg subalgebras, 392

respectively. If we make a shift x → ξ = x + iα, and make Darboux- 393

dressing of operators P̂0, Ĝ0, D̂0, and K̂0, we find the integrals of motion for 394

the perfectly invisible zero-gap PT -symmetric system Ĥ1(ξ). These are P̂1(ξ) = 395

A1(ξ)P̂0A
#
1(ξ), Ĝ1(ξ) = A1(ξ)Ĝ0A

#
1(ξ), and 396

D̂1(ξ) = − i

2

(
ξ
d

dx
+ 1
2

)
− tĤ1(ξ) , (40)

397

K̂1(ξ) = ξ2 − 8tD̂1(ξ)− 4t2Ĥ1(ξ) , (41)

where the dynamical integrals D̂1(ξ) and K̂1(ξ) have been extracted from the 398

corresponding Darboux-dressed operators by omitting in them the operator factor 399

Ĥ1(ξ) [57]. Operators Ĥ1(ξ), D̂1(ξ), and K̂1(ξ) generate the same sl(2,R) algebra 400

as in the case of the free particle. But now we have relations 401

[D1, P1] = 3
2
iP1 , [D1,G1] = i

2
G1 , [K1, P1] = 6iG1 , (42)

402

[G1, P1] = 3i(H1)
2 (43)

instead of the corresponding relations of the free particle system. In addition, two 403

new dynamical integrals of motion, 404

V1(ξ) = iξ2A#
1(ξ)− 4tG1(ξ)− 4t2P1(ξ) (44)

and 405

R1(ξ) = ξ3 − 6tV1(ξ)− 12t2G1(ξ)− 8t3ξ1 , (45)

are generated via the commutation relations 406

[K̂1, Ĝ1] = −4iV̂1 , [K̂1, V̂1] = −2iR̂1 , (46)
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and we obtain additionally the commutation relations 407

[V̂1, Ĥ1] = 4iĜ1 , [V̂1, D̂1] = i
2 V̂1 ,

[V̂1, P̂1] = 12iĤ1D̂1 − 6Ĥ1 , [V̂1, Ĝ1] = 12i(D̂1)
2 + 3

4 i I ,

[R̂1, Ĥ1] = 6iV̂1 , [R̂1, D̂1] = 3
2 iR̂1 , [R̂1, K̂1] = 0 ,

[R̂1, P̂1] = 36i D̂2
1 + 21

4 i I, [R̂1, Ĝ1] = 12i D̂1K̂1 − 6K̂1 , [R̂1, V̂1] = 3i K̂2
1 .

The Schrödinger algebra of the free particle is extended for its nonlinear general- 408

ization in the case of the PT -symmetric system Ĥ1(ξ), which is generated by the 409

operators Ĥ1(ξ), P̂1(ξ), Ĝ1(ξ), D̂1(ξ), K̂1(ξ), V̂1(ξ), R̂1(ξ), and central charge I 410

(equals to 1 in the chosen system of units). All these integrals are eigenstates of the 411

dilatation operator D̂1(ξ) with respect to its adjoint action. 412

Now we can consider the generalized and extended superconformal symmetry of 413

the system described by the matrix Hamiltonian operator Ĥ = diag (Ĥ1(ξ), Ĥ0). 414

Supplying the Hamiltonian Ĥ and Lax–Novikov integral (30) with the bosonic 415

integrals D̂ = diag (D̂1(ξ), D̂0(ξ)), K̂ = diag (K̂1(ξ), K̂0(ξ)), and commuting 416

them with supercharges (28) and (29), we obtain a nonlinear superalgebra that 417

describes the symmetry of the system Ĥ, which corresponds to some nonlinear 418

extension of the super-Schrödinger algebra. It is generated by the set of the even 419

(bosonic) integrals Ĥ, D̂, K̂, L̂, Ĝ, V̂ , R̂, P̂−, Ĝ−, Σ = σ3, Î = diag (1, 1), and by 420

the odd (fermionic) integrals Q̂a , Ŝa , and λ̂a , μ̂a and κ̂a , a = 1, 2, where 421

Ĝ = diag
(
Ĝ1(ξ),

1
2 {Ĝ0(ξ), Ĥ0}

)
, V = iξ2Aα#1 I − 4tG − 4t2L , (47)

422

R̂ = ξ3I − 6tV̂ − 12t2Ĝ − 8t3L̂ , (48)
423

P̂− = 1
2 (1− σ3)P̂0 , Ĝ− = 1

2 (1− σ3)Ĝ0(ξ), (49)
424

λ̂1 =
(

0 iξ

−iξ 0

)
− 2tQ̂1 , λ̂2 = iσ3λ̂1 , (50)

425

μ̂1 =
(

0 ξP̂0
P̂0ξ 0

)
− 2tŜ1 , μ̂2 = iσ3μ̂1 , (51)

426

κ̂1 =
(
0 ξ2

ξ2 0

)
− 4tμ̂1 − 4t2Ŝ1 , κ̂2 = iσ3κ̂1 , (52)

and we use the notation Ĝ0(ξ) = Ĝ0(x + iα). Explicit form of the nonlinear 427

superalgebra generated by these integrals of motion of the system Ĥ is presented 428

in [57]. All the even and odd integrals here are eigenstates of the matrix dilatation 429

operator D̂. 430
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Essentially different generalized nonlinear superconformal structure appears in 431

the system described by the matrix Hamiltonian 432

Ĥ = diag (Ĥ1(ξ2), Ĥ1(ξ1))

and characterized by the partially broken exotic nonlinear N = 4 supersymmetry. 433

In that case the number of the even and odd integrals of motion is the same as 434

in the system Ĥ = diag (Ĥ1(ξ), Ĥ0) in the phase with unbroken supersymmetry. 435

However, no odd (fermionic) integral of motion is eigenstate of the matrix dilatation 436

operator D̂ = diag (D̂1(ξ2), D̂1(ξ1)), and, as a result, the structure of the nonlinear 437

superalgebra has more complicated form. When one of the shift parameters, α1, is 438

sent to infinity, the system Ĥ = diag (Ĥ1(ξ2), Ĥ1(ξ1)) transforms into the system 439

Ĥ = diag (Ĥ1(ξ), Ĥ0) in the unbroken phase of the exotic nonlinear N = 4 super- 440

Poincaré symmetry, and all the integrals of the latter system can be reproduced from 441

the integrals of the former system. The relation between the integrals turns out to be 442

rather nontrivial and requires some sort of a “renormalization” [57]. 443

6 Rationally Extended Harmonic Oscillator and Conformal 444

Mechanics Systems 445

Quantum harmonic oscillator (QHO) and conformal mechanics systems [92–122] 446

described by de Alfaro-Fubini-Furlan (AFF) model [92] are characterized by 447

conformal symmetry. In the case of harmonic oscillator, like in the free particle 448

case, it extends to the Schrödinger symmetry [93–95, 123]. Heisenberg subalgebra 449

in the free particle system is generated by the momentum operator being time- 450

independent integral of motion, and by generator of the Galilean boosts Ĝ0, which 451

is a dynamical integral of motion. In the case of the QHO, Heisenberg subalgebra 452

is generated by two dynamical integrals of motion to be linear in the ladder 453

operators. In correspondence with this, ladder operators are the spectrum-generating 454

operators of the QHO having discrete equidistant spectrum instead of the continuous 455

spectrum of the free particle. As a consequence of these similarities and differences 456

between the free particle and QHO, exotic supersymmetry can also be generated 457

by Darboux–Crum transformations applied to the latter system. Instead of the two 458

pairs of time-independent supercharge generators in superextended reflectionless 459

systems, in superextended systems constructed from the pairs of the rational 460

extensions of the QHO, only two supercharges are time-independent integrals, 461

while other two odd generators are dynamical integrals of motion. As a result, 462

instead of the exotic nonlinear N = 4 supersymmetry of the paired reflectionless 463

(and finite-gap) systems, in the case of the deformed oscillator systems there 464

appear some nonlinearly deformed and generalized super-Schrödinger symmetry. 465

The superextended systems composed from the AFF model (with special values 466

g = n(n + 1) of the coupling constant in its additional potential term g/x2) and 467
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its rational extensions are described by the nonlinearly deformed and generalized 468

superconformal symmetry [51]. 469

Let us consider first in more detail the case of rational deformations of the 470

QHO system [5, 6, 49, 51, 71, 124–128]. To generate a rational deformation of the 471

QHO, it is necessary to choose the set of its physical or non-physical eigenstates 472

as seed states for the Darboux–Crum transformation so that their Wronskian will 473

take nonzero values. In this way we generate an almost isospectral quantum system 474

with difference only in finite number of added or eliminated energy levels. The 475

QHO Hamiltonian Ĥosc = − d2

dx2
+ x2 possesses the same symmetry under the 476

Wick rotation as the quantum free particle system: if ψ(x) is a solution of the time- 477

independent Schrödinger equation Ĥosc(x)ψ(x) = Eψ(x), then ψ(ix) is a solution 478

of equation Ĥosc(x)ψ(ix) = −Eψ(ix). To construct a rational deformation of the 479

QHO described by a nonsingular on the whole real line potential, one can take 480

the following set of the non-physical eigenstates of Ĥosc as the seed states for the 481

Darboux–Crum transformation: 482

(ψ−
j1
, . . . , ψ−

j1+l1), (ψ
−
j2
, . . . , ψ−

j2+l2), . . . , (ψ
−
jr
, . . . , ψ−

jr+lr ), (53)

where j1 = 2g1, jk+1 = jk + lk + 2gk+1, gk = 1, . . . , lk = 0, 1, . . ., k = 483

1, . . . , r − 1. Here ψ−
n (x) = ψn(ix), n = 0, . . ., is a non-physical eigenstate of 484

Ĥosc of eigenvalue E−
n = −(2n + 1), obtained by Wick rotation from a (non- 485

normalized) physical eigenstate ψn(x) = Hn(x)e
−x2/2 of energy En = 2n + 1, 486

where Hn(x) is Hermite polynomial of order n. The indicated set of non-physical 487

eigenstates of Ĥosc guarantees that the Wronskian of the chosen seed states, 488

W = W(−nm, . . . ,−n1), takes nonzero values for all x ∈ R [129]. Here we 489

assume that nm > . . . > n1 > 0, and in what follows we use the notation for 490

physical and non-physical eigenstates n = ψn and −n = ψ−
n , respectively. The 491

DC scheme based on the set of the non-physical states having negative eigenvalues 492

was called “negative” in [71]. WronskianW = W(−nm, . . . ,−n1) is equal to some 493

polynomial multiplied by exp(n−x2/2), where n− = (l1 + 1)+ · · · + (lr + 1) is the 494

number of the chosen seed states, and according to Eq. (10), the DC transformation 495

generates the system described by the harmonic term x2 extended by some rational 496

in x term. Transformation based on the negative scheme (−nm, . . . ,−n1) introduces 497

effectively into the spectrum of the QHO the n− bound states of energy levels 498

−2nm−1, . . .,−2n1−1. These additional energy levels are grouped into r “valence” 499

bands with lk + 1 levels in the band with index k, which are separated by gaps of 500

the size 4gk , with the first valence band separated from the infinite equidistant part 501

of the spectrum by the gap of the size 4g1. The same structure of the spectrum can 502

be achieved alternatively by eliminating n+ = 2(g1 + · · · + gr) energy levels from 503

the spectrum of the QHO by taking n+ physical states 504

(ψlr+1, . . . , ψlr+2gr ), . . . , (ψnm−2g1+1, . . . , ψnm), (54)

organized into n− groups. 505
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The duality of the negative and positive schemes based on the sets of the seed 506

states (53) and (54) can be established as follows. Applying Eq. (15) with ψ∗ = −0, 507

and equalities ψ−
0
d
dx

1
ψ−
0

= −a+, a+ψ̃−
0 = ψ0, a+(−n) = −(n − 1), where a+ = 508

− d
dx

+ x is the raising ladder operator of the QHO, we obtain the relation [71] 509

W(−nm, . . . ,−n1) = W(−0, −̃0,−nm, . . . ,−n1)
= ex

2/2
W(0,−(nm − 1),−(n− 1)). (55)

It means that the negative scheme generated by the set of the n− non-physical seed 510

states (−nm, . . . ,−n1) and the “mixed” scheme based on the set of the seed states 511

(0,−(nm − 1),−(n − 1)) involving the ground eigenstate generate, according to 512

Eq. (10), the same quantum system but given by the Hamiltonian operator shifted 513

for the additive constant term: the potential obtained on the base of the indicated 514

mixed scheme will be shifted for the constant +4 in comparison with the potential 515

generated via the DC transformation based on the negative scheme. Eq. (55) is 516

analogous to the Wronskian relation (26) for the free particle states, with the state 517

ψ0 = 1 and operator ψ0 ddx
1
ψ0

= d
dx

there to be analogous to the ground state and 518

raising ladder operator of the QHO here. In (26), however, the Wronskian equality 519

does not contain any nontrivial functional factor in comparison with the exponential 520

multiplier appearing in (55). As a result, as we saw before, in the case of the free 521

particle any reflectionless system can be generated from it by means of the two 522

DC transformations, which produce exactly the same Hamiltonian operator. Con- 523

sequently, we construct there two pairs of the supercharges for the corresponding 524

superextended system which are the integrals of motion not depending explicitly on 525

time. On the other hand, in the case of a superextended system produced from the 526

QHO we shall have two fermionic integrals to be true, time-independent integrals 527

of motion, but two other odd generators of the superalgebra will be time-dependent, 528

dynamical integrals of motion. 529

Applying repeatedly the procedure of Eq. (55), we obtain finally the relation [71] 530

W(−nm, . . . ,−n1) = e(nm+1)x2/2
W(n′

1, . . . , n
′
m = nm), (56)

where 0 < n′
1 < · · · < n′

m = nm. This relation means that the negative scheme 531

(−nm, . . . ,−n1) with n− seed states is dual to the positive scheme (n′
1, . . . , n

′
m = 532

nm) with n+ = nm + 1 − n− = 2(g1 + · · · + gk) seed states representing physical 533

eigenstates of the QHO. The two dual schemes can be unified in one “mirror” 534

diagram, in which any of the two schemes can be obtained from another by a kind 535

of a “charge conjugation,” see ref. [71]. In this way we obtain, as an example, 536

the pairs of dual schemes (−2) ∼ (1, 2) and (−2,−3) ∼ (2, 3). Eq. (56) means 537

that the dual schemes generate the same rationally extended QHO system but the 538

Hamiltonian corresponding to the positive scheme will be shifted in comparison to 539

the Hamiltonian produced on the base of the negative scheme for additive constant 540

equal to 2(n+ + n−) = 2(nm + 1). One can also note that in comparison with the 541
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free particle case, the total number of the seed states in both dual schemes can be 542

odd or even. 543

We denote by A−
(−) the intertwining operator An− constructed on the base of the 544

negative scheme, and A+
(−) ≡ (A−

(−))†, see Eq. (12). These are differential operators 545

of order n−. Analogously, the intertwining operators constructed by employing 546

the dual positive scheme we denote as A
−
(+), and A

+
(+) ≡ (A−

(+))†; they are 547

differential operators of order n+. We denote by L̂(−) and L̂(+) the Hamiltonian 548

operators generated from the QHO Hamiltonian Ĥ− = Ĥosc by means of the 549

DC transformation realized on the base of the negative and positive dual schemes, 550

respectively. Then L̂(+) = L̂(−) + 2(n+ + n−), A−
(−)Ĥ− = L̂(−), A−

(+)Ĥ− = L̂(+). 551

For the rationally deformed QHO system L̂(−) one can construct three pairs of the 552

ladder operators, two of which are obtained by Darboux-dressing of the ladder 553

operators of the QHO system A± = A
−
(−)a±

A
+
(−), and B± = A

−
(+)a±

A
+
(+), 554

while the third pair is obtained by gluing different intertwining operators, C− = 555

A
−
(+)A

+
(−), C+ = A

−
(−)A

+
(+). These ladder operators detect all the separated states 556

in the rationally deformed QHO system L̂(−) (or L̂(+)) organized into the valence 557

bands; they also distinguish the valence bands themselves, and any of the two sets 558

(C±,A±) or (C±,B±) represents the complete spectrum-generating set of the ladder 559

operators of the system L̂(−). The operators A±e∓2it , B±e∓2it , C±e±2(n++n−)it 560

are the dynamical integrals of motion of the system L(−). Being higher derivative 561

differential operators, they have a nature of generators of a hidden symmetry. If 562

we construct now the extended system Ĥ = diag (L̂(−), Ĥ−), the pair of the 563

supercharges constructed from the intertwining operators A
±
(−) will be its time- 564

independent odd integrals of motion, while from the intertwining operators A±
(+) 565

we obtain a pair of the fermionic dynamical integrals of motion. Proceeding from 566

these odd integrals of motion and the Hamiltonian Ĥ, one can generate a nonlinearly 567

deformed generalized super-Schrödinger symmetry of the superextended system Ĥ. 568

In the superextended system Ĥ = diag (L̂(+), Ĥ−), the pair of the time-independent 569

supercharges is constructed from the pair of intertwining operators A
±
(+), while 570

the dynamical fermionic integrals of motion are obtained from the intertwining 571

operators A
±
(−). This picture with the nonlinearly deformed generalized super- 572

Schrödinger symmetry can also be extended for the case of a superextended system 573

Ĥ composed from any pair of the rationally deformed quantum harmonic oscillator 574

systems. 575

In [71], it was shown that the AFF model Ĥg = − d2

dx2
+ x2 + g

x2
with special 576

values g = n(n + 1) of the coupling constant can be obtained by applying the 577

appropriate CD transformation to the half-harmonic oscillator obtained from the 578

QHO by introducing the infinite potential barrier at x = 0. As a consequence, 579

rational deformations of the AFF conformal mechanics model can be obtained 580

by employing some modification of the described DC transformations based on 581

the dual schemes applied to the QHO system. The corresponding superextended 582

systems composed from rationally deformed versions of the conformal mechanics 583

are described by the nonlinearly deformed generalized superconformal symme- 584
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try instead of the nonlinearly deformed generalized super-Schrödinger symmetry 585

appearing in the case of the superextended rationally deformed QHO systems, 586

see [51]. The construction of rational deformations for the AFF model can be 587

generalized for the case of arbitrary values of the coupling constant g = ν(ν + 1) 588

[130]. 589

7 Conclusion 590

We considered nonlinear supersymmetry of one-dimensional mechanical systems 591

which has the nature of the hidden symmetry generated by supercharges of higher 592

order in momentum. In the case of reflectionless, finite-gap, rationally deformed 593

oscillator and conformal mechanics systems, as well as in a special class of the 594

PT -regularized Calogero systems, the nonlinear N = 2 Poincaré supersymmetry 595

expands up to exotic nonlinear N = 4 supersymmetric and nonlinearly deformed 596

generalized super-Schrödinger or superconformal structures. 597

Classical symmetries described by the linear Lie algebraic structures are pro- 598

moted by geometric quantization to the quantum level [131, 132]. Though nonlinear 599

symmetries described by W -type algebras can be produced from linear symmetries 600

via some reduction procedure [64], the problem of generation of nonlinear quantum 601

mechanical supersymmetries from the linear ones was not studied in a systematic 602

way. It would be interesting to investigate this problem bearing particularly in mind 603

the problem of the quantum anomaly associated with nonlinear supersymmetry [14]. 604

Some first steps were realized in this direction in [62] in the light of the so-called 605

coupling constant metamorphosis mechanism [133]. Note also that, as was shown 606

in [12], nonlinear supersymmetry of purely parabosonic systems can be obtained by 607

reduction of parasupersymmetric systems. 608

Hidden symmetries can be associated with the presence of the peculiar geometric 609

structures in the corresponding systems [1, 2, 134]. It would be interesting to 610

investigate nonlinear supersymmetry and related exotic nonlinear supersymmetric 611

and superconformal structures from a similar perspective. 612
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