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mikolaj.koscinski@amu.edu.pl (M.K.); msb@amu.edu.pl (M.Ś.-B.); stjurga@amu.edu.pl (S.J.)

4 Faculty of Physics, Adam Mickiewicz University, Umultowska 85, 61-614 Poznań, Poland
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Abstract: The capability of a phthalocyanine-based voltammetric electronic tongue to analyze
strong alcoholic beverages has been evaluated and compared with the performance of spectroscopic
techniques coupled to chemometrics. Nalewka Polish liqueurs prepared from five apple varieties
have been used as a model of strong liqueurs. Principal Component Analysis has demonstrated
that the best discrimination between liqueurs prepared from different apple varieties is achieved
using the e-tongue and UV-Vis spectroscopy. Raman spectra coupled to chemometrics have not
been efficient in discriminating liqueurs. The calculated Euclidean distances and the k-Nearest
Neighbors algorithm (kNN) confirmed these results. The main advantage of the e-tongue is that,
using PLS-1, good correlations have been found simultaneously with the phenolic content measured
by the Folin–Ciocalteu method (R2 of 0.97 in calibration and R2 of 0.93 in validation) and also with
the density, a marker of the alcoholic content method (R2 of 0.93 in calibration and R2 of 0.88 in
validation). UV-Vis coupled with chemometrics has shown good correlations only with the phenolic
content (R2 of 0.99 in calibration and R2 of 0.99 in validation) but correlations with the alcoholic
content were low. Raman coupled with chemometrics has shown good correlations only with
density (R2 of 0.96 in calibration and R2 of 0.85 in validation). In summary, from the three holistic
methods evaluated to analyze strong alcoholic liqueurs, the voltammetric electronic tongue using
phthalocyanines as sensing elements is superior to Raman or UV-Vis techniques because it shows an
excellent discrimination capability and remarkable correlations with both antioxidant capacity and
alcoholic content—the most important parameters to be measured in this type of liqueurs.

Keywords: electronic tongue; voltammetric sensor; UV-Vis; Raman spectroscopy; apple liqueurs;
nalewka

1. Introduction

Strong alcoholic beverages are complex mixtures of hundreds of components with different
characteristics. The most common techniques used to analyze spirits and liqueurs made from apples are
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gas and liquid chromatography and spectroscopy. The analysis of spirit beverages made from apples
has been recently reviewed [1,2]. Some of the most important parameters used for the characterization
and differentiation of fruit liqueurs are the alcoholic content and the polyphenolic content [3].

Due to the complexity of the mixtures, a variety of multivariate data analysis techniques can
be applied to data treatment in order to discriminate (for instance Principal Component Analysis or
Cluster analysis), to classify the samples (using, among others, K-nearest neighbors) or to establish
correlations with chemical parameters measured using classical techniques (using for instance Partial
Least Square analysis) [4]. Spectroscopic sensors (UV-Vis, near infrared spectroscopy (NIR), Fourier
transform infrared spectroscopy (FTIR), Raman or fluorescence) combined with multivariate data
analysis are frequently used for beverage analysis [5]. While UV-Vis and fluorescence are limited to
a small number of molecules, vibrational spectroscopy techniques are probing molecular vibrations
present in many chemical species [6].

Analyzing strong alcoholic beverages with electronic tongues (e-tongue—also called taste sensors)
can offer an alternative to spectroscopic sensors. An e-tongue is an instrument formed by a sensor
array combined with mathematical procedures for signal processing based on multivariate data
analysis [7–10]. E-tongues based on electrochemical sensors are advantageous because electrochemical
sensors are cheap, portable and can be tailored to obtain complementary information that cannot be
obtained by means of spectroscopy [5,11].

Potentiometric and voltammetric electronic tongues have been used to analyze a variety of foods
and beverages [9,10,12,13], including drinks with low alcoholic content such as wines [14–17] or
beers [18]. Regarding beverages prepared from apples, recently an e-tongue based on glassy carbon
electrodes has been successfully used to compare taste profiles of ciders produced with different yeasts
or to discriminate Polish commercial ciders [19]. Only few works have reported their use in the analysis
of spirits with high alcoholic content such as vodka or whisky [20,21]. In those works, a potentiometric
electronic tongue was used to evaluate the alcoholic content in strong alcoholic beverages. Since these
early works, the voltammetric e-tongue technology has progressed, and new strategies to develop
voltammetric sensors can be used to efficiently detect the alcohol content of spirits and liqueurs while
keeping the sensitivity towards other compounds of interest [10,11].

The aim of this work was to evaluate the capability of a purposely designed voltammetric
electronic tongue based on metallo-phthalocyanines (MPc) to analyze strong alcoholic beverages.
The performance of the e-tongue was tested in nalewka liqueurs (a traditional Polish beverage) prepared
from different varieties of apples. The discrimination capability and correlation with the alcoholic
degree and the phenolic content (two of the main markers of the nalewkas’ quality) were also evaluated
using UV-Vis and Raman spectra combined with chemometrics. The curves obtained from the three
methods were preprocessed using variable reduction methods and the data obtained were used
as the input variable for Principal Component Analysis (PCA). In addition, outputs of PCA were
used to calculate Euclidean distances (E. distance) and coefficients of variation (CV). Application of
the k-Nearest Neighbors algorithm (kNN) was used to confirm the discrimination capability results
obtained from PCA and to classify the samples. Using Partial Least Squares (PLS-1), correlations
were established with the alcoholic content measured by means of density and the polyphenolic
content obtained using the Folin–Ciocalteu method, and the performance of the three methods has
been compared.

2. Materials and Methods

2.1. Reagents and Solutions

All chemicals and solvents were of reagent grade and used without further purification.
The solutions were obtained by dissolving substances in deionized water (resistivity of 18.2 MΩ/cm)
obtained from a Milli-Q system (Millipore, Billerica, MA, USA).
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Gallic acid (97.5%–102.0%), sodium carbonate (anhydrous, powder, 99.99%), Folin–Ciocalteu
reagent, and ethanol (absolute, ≥99.8%, GC) were purchased from Sigma-Aldrich. Cobalt(II), iron(II)
and zinc(II) phthalocyanines (CoPc, FePc, ZnPc) were also purchased from Sigma-Aldrich. Graphite
ultra “F” purity was purchased from MERSEN USA.

2.2. Apple Nalewka Samples

Nalewkas are homemade liqueurs made almost exclusively from three ingredients: fruits or herbs,
grain alcohol and sugar. The alcoholic strength of the final product is of ca. 35%–60% v/v [22]. Apple
nalewkas used in this study were produced in homemade conditions using only apples, sugar, spirit
95% v/v and deionized water.

Five apple varieties were used to prepare nalewkas: Ligol, Kosztela, Grey Reinette, Rubin and Cox
Orange. All varieties of apples were harvested in October 2014 in Pomeranian voivodship in Poland.
Ligol and Kosztela varieties of apples originate from Poland, being the Kosztela, the oldest variety
cultivated in Poland since XVIIth century. Ligol is a new variety developed at the Research Institute of
Horticulture in Skierniewice in Poland [23]. The other three varieties originated from other European
countries (Grey Reinette from France, Rubin from Czech Republic and Cox Orange from UK) but were
widely cultivated in Poland [24].

After harvest, apples were thoroughly washed and chopped with the skin left on. A total of 225 g
of each variety was placed in the corresponding jar and covered with sugar (75 g). Then, jars were
sealed tightly and kept closed at an ambient temperature for 3 days. The next step was the addition of
spirit (80 mL) and deionized water (50 mL). Jars were closed again with a screw cap and left in a dark
and warm place (25 ◦C) for eight weeks. Three replicas per sample were prepared and analyzed.

2.3. Electronic Tongue, Raman Spectroscopy and UV-Vis Analysis

The electronic tongue consisted of an array of four carbon paste electrodes (CPEs) prepared
using a previously published method [25]. The array included an unmodified carbon paste electrode
(C-CPE) and three electrodes chemically modified with cobalt, iron and zinc phthalocyanines (denoted
as CoPc–CPE, FePc–CPE and ZnPc–CPE, respectively). Voltammograms were registered at room
temperature in a potentiostat/galvanostat PGSTAT128 (Autolab Metrohm, Utrecht, the Netherlands)
using a three-electrode configuration cell. The CPEs were used as working electrodes, the reference
electrode was Ag|AgCl/KCl 3 mol/L and the counter electrode was a platinum wire. Cyclic
voltammetry was carried out with a scan rate of 0.1 V/s in the potential range from −1.0 V to +1.0 V
(vs. Ag|AgCl). Three repetitions per sample were measured.

Raman spectra were obtained using an in Via Ranishaw Raman Microscopy system (Ranishaw,
Old Town, Wotton-under-Edge, UK) with a 633 nm He/Ne laser (0.75 mW laser power, Stage I)
and 1800 g/mm grating. The laser light was focused on the sample with a 50×/0.75 microscope
objective (LEICA). All Raman spectra were obtained from 450 to 4000 cm–1 using 20 s acquisition time.
All spectra were corrected by using the WiRETM 3.3 software attached to the instrument. Measurement
of peak positions was performed by using Lorentz profile at OriginPro 8.3 software (Northampton,
MA, USA).

UV-Vis spectra were registered from 380 to 780 nm in a Shimadzu UV-1603 (Kyoto, Japan)
spectrophotometer using 1 cm path length quartz cuvettes.

2.4. Data Preprocessing and Statistical Analysis

Voltammograms and Raman spectra were normalized and pre-processed by means of an
adaptation of a data reduction technique based on ‘kernels’ using Matlab v2014b (The Mathworks Inc.,
Natick, MA, USA) [26]. Using this variable reduction method, 10 variables were obtained from each
voltammogram or Raman spectrum. These data were used as input variables in statistical analysis.

Variable reduction of UV-Vis spectra was carried out using the CIELab coordinates (L*, a*, b*, X,
Y, Z) calculated following the recommendations of the Commission Internationale of L’Eclairage for the



Sensors 2016, 16, 1654 4 of 14

CIE illuminant D65 and 10◦ standard observer conditions using a Shimadzu Color Analysis Software
(Kyoto, Japan) [27]. These coordinates were used to calculate other color parameters: C*, h*, BI.

The statistical analysis was performed by using The Unscrambler v9.7 (CAMO Software AS,
Oslo, Norway). A non-supervised multivariate method, the Principal Component Analysis (PCA)
was used to evaluate the discrimination capability of each method. Euclidean distances (E. distance)
and coefficients of variation (CV) between groups of samples were calculated using Microsoft Excel
2007. Partial Least Squares (PLS-1) was used to establish correlations between the results obtained
from the holistic methods (e-tongue, Raman or UV-Vis spectra) and the chemical parameters obtained
using classical chemical methods. The kNN results were obtained by a program written in Python
3.5 programming language (Python Software Foundation, Wilmington, DE, USA).

3. Results and Discussion

3.1. Analysis of Density and Phenolic Content

After having the samples in a dark and warm place (25 ◦C) for eight weeks, the phenolic content
was estimated using the Folin–Ciocalteu procedure [28]. The density was measured by a Density Meter
(DMA 38, Anton Paar) at 20 ◦C. Results obtained are collected in Table 1.

Table 1. Phenolic content and density of liqueurs made from different varieties of apple.

Apple Variety Phenolic Content (mg·gallic·acid/L) Density (g/cm3)

Ligol 661.01 1.1061
Kosztela 767.81 1.0982

Grey Reinette 1005.98 1.0955
Rubin 783.88 1.0946

Cox Orange 600.52 1.0995

3.2. Analysis of Liqueurs Using an E-Tongue

Once prepared, the sensors were conditioned by performing repeatedly a cyclic voltammetry
(five cycles) in a 0.1 mol/L KCl solution. This process allowed the obtainment of a stable voltammetric
response before each measurement. After the conditioning step, the array of sensors was immersed
in the nalewka samples diluted 1:10 in 0.1 M KCl and cyclic voltammograms were recorded. Figure 1
illustrates the response of each sensor forming the array towards nalewka samples prepared from
different apple varieties. As observed in the figure, each electrode showed a particular response when
immersed in apple nalewka liqueurs.

The electrochemical response obtained with C-CPE (Figure 1a) showed a redox process at positive
potentials with the anodic peak at ca. 580 mV and the cathodic wave at 380 mV. Taking into account
previous studies in alcoholic beverages [17,29], these peaks could be associated to the presence of
polyphenols. Voltammograms also showed an intense cathodic peak at negative potentials that can be
associated to the decomposition of the water/alcohol mixture. Voltammograms registered for the five
nalewkas types showed similar habits, but differences in intensities could be observed from one type of
sample to another due to their diverse composition.

Phthalocyanine-modified CPEs showed a variety of responses that arose from the dissimilar
electrocatalytic effect of the three phthalocyanines used as modifiers and from the variety of
compositions of nalewka liqueurs. It is interesting to highlight the strong electrocatalytic effect
observed in CoPc–CPE and FePc–CPE electrodes that produced a clear increase in the intensity
of the responses towards nalewkas. In particular, a broad anodic peak at ca. −800 mV could be
observed in voltammograms registered using CoPc–CPE and FePc–CPE electrodes that, according to
the literature, can be associated to the presence of organic acids (i.e., tartaric or malic) [30]. Moreover,
the electrocatalytic effect towards the decomposition of the water/ethanol mixture produced a drastic
increase in the intensity of the peaks at −1000 mV.
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In summary, each sensor provides a unique response when immersed and cycled in an apple
nalewka. Due to the interactions occurring between the electrode and the sample, the responses of a
particular sensor differ from one apple, nalewka, to another (particularly in peaks related to phenols,
organic acids and decomposition of water/ethanol). For these reasons, these electrodes, selected for
this application, can be used to discriminate the liqueurs.
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Figure 1. Cyclic voltammograms registered using CPEs immersed in nalewkas made from different
varieties of apples. (a) Unmodified CPE; (b) ZnPc–CPE; (c) FePc–CPE; (d) CoPc–CPE Samples: Ligol
(black), Kosztela (red), Grey Reinette (blue), Rubin (green), Cox Orange (purple).

3.3. Analysis of Liqueurs Using UV-Vis and Color Analysis

UV-Vis spectra of the nalewka samples were registered from 380 to 780 nm. They were characterized
by a broad band with the onset at 650 nm and a shoulder at ca. 500 nm (Figure 2). As the color of the
liqueurs are related to their composition and in particular to the phenolic content, CIELab coordinates,
were calculated from the UV-Vis spectra. Results are collected in Table 2.

Lightness (L*) values were similar in all nalewka samples, showing mean values of 87.05–92.91.
The highest values of a* parameters were observed in nalewkas made from Kosztela and the lowest to
Cox Orange apples (the negative value being related to green color and positive values with reddish
tones). A sample made from Grey Reinette showed the highest b* positive values which respond to
yellow tone. Nalewkas prepared from the Cox Orange variety had the smallest b* value.
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Figure 2. UV-vis spectrum of liqueurs made with different varieties of apple. Samples: Ligol (black),
Kosztela (red), Grey Reinette (blue), Rubin (green), Cox Orange (purple).

The results of CIELab parameters were also used to calculate chroma C* (which reflects to color
saturation), h* (Color hue angle) and browning index (BI). This parameter is usually used as an
indicator of the browning extent in food products containing sugar. C*, h* and BI values showed by the
beverage made from Cox Orange were clearly different from the rest and indicated that this nalewka
did not have an intensive color. Nalewkas made from Grey Reinette appeared as the darkest and most
intensive colored sample.

Table 2. CIELab color parameters of liqueurs made from different varieties of apples.

Apple Variety L* a* b* C* h* [◦] BI

Ligol 87.74 ± 0.01 −0.10 ± 0.01 31.36 ± 0.01 31.36 ± 0.01 90.18 ± 0.01 42.39 ± 0.00
Kosztela 87.52 ± 0.01 1.16 ± 0.01 32.45 ± 0.01 32.47 ± 0.01 87.96 ± 0.01 45.49 ± 0.01

Grey Reinette 87.05 ± 0.01 0.41 ± 0.01 48.50 ± 0.01 48.50 ± 0.01 89.52 ± 0.01 76.64 ± 0.02
Rubin 92.52 ± 0.01 −0.34 ± 0.01 28.02 ± 0.01 28.02 ± 0.01 90.69 ± 0.01 34.46 ± 0.01

Cox Orange 92.91 ± 0.01 −1.43 ± 0.01 22.00 ± 0.01 22.04 ± 0.01 93.71 ± 0.01 24.90 ± 0.00

All values given are the mean calculated from three determinations ± SD (standard deviation).

3.4. Analysis of Liqueurs Using Raman Spectroscopy

Vibrational spectroscopic techniques such as FTIR and Raman can be used to analyze food
products [31,32]. Raman spectroscopy is more suitable for the analysis of aqueous systems because
water has none or minimal interference with Raman scattering [33]. In addition, Raman spectra have
been used to evaluate the alcoholic degree by establishing correlations between peak heights of ethanol
and the alcoholic content for several alcoholic beverages [6,34,35].

Figure 3 shows the Raman spectra of the apple, nalewkas, registered in the range of 400–1700 cm−1.
As expected, in all nalewka samples, the dominating peaks were associated to the ethanol which is the
majoritarian component of the sample. They included an intense peak at 879 cm−1 which is assigned
to the C–C–O stretching vibration, and that is traditionally used to evaluate the alcoholic content of
spirits; two small bands at 1045 cm−1 and 1085 cm−1 which are related to C–O stretching; and a peak at
1454 cm−1 assigned to the CH bending. The CH2 and CH3 stretching vibrations appear at 2877 cm−1,
2928 cm−1 and 2974 cm−1. Moreover, the broad band assigned to the O–H stretching (hydrogen bonds)
appeared at 3252 and 3397 cm−1. These bands associated to ethanol were accompanied by other bands
that were different in position and intensity from one nalewka to another. Moreover, the fluorescence
background was also dependent on the apple variety used to prepare nalewkas and is also a feature
that could help to discriminate the analyzed samples using chemometrics.
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3.5. Statistical Analysis

The three sensing systems used in this work provided curves (voltammograms or spectra)
showing a variety of peaks in different positions and with different intensities that can be used
to discriminate the samples using chemometrics.

Usually, the initial step is to decrease the complexity of the system by reducing the number
of variables (without loss of information). This new set of variables is then used as the input for
a Principal Component Analysis (PCA), Euclidean distances (E.distance), the k-Nearest Neighbors
algorithm (kNN) or Partial Least Squares 1 (PLS-1).

There are many solutions to simplify the high dimensionality of the curves, but it is important to
use the most adequate for each situation. In the case of voltammetric electronic tongues, one solution
is to use a feature extraction using the wavelet transformation [36], genetic algorithms [37] or using
“kernels” [26,38]. In this paper, the Kernel method was used with the aim to obtain 10 variables from
each voltammogram. In the case of UV-Vis spectra, a good approach is to reduce the number of
variables by calculating the CIELab coordinates. In Raman or FTIR spectra, a common strategy for
variable reduction is to use the first or second derivative of the curve. Using this method, the number
of variables is still high (typically over 100 variables) [39]. In this work, the variable reduction of
Raman spectra has been carried out using the Kernel method, in order to obtain a number of variables
similar to that obtained using the e-tongue or the UV-Vis spectra in order to facilitate the comparison
between different techniques.

Figure 4a represents PCA score plots for the e-tongue using the voltammetric signals (three replicas
per apple nalewka). PC1, PC2 and PC3 explained 98.0% of the total variance between the samples (PC1
75.9%, PC2 16.1% and PC3 6.0%). As observed in the figure, the clusters corresponding to the five
studied nalewka liqueurs were visibly separated and discriminated. Grey Reinette nalewka appears in
the positive area of PC2 and Rubin nalewka in the negative PC2 region, both clearly separated from
the rest of the samples. In turn, Cox Orange appears in the positive PC1 region and Ligol in the
positive PC1 area. The repetitions were reproducible with variation coefficients always lower than 0.15
(Table 3).
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UV-Visible spectra were used to obtain the CIELab coordinates (L, a*, b*, C, H and BI) giving global
color information from the studied samples that was used to discriminate liqueurs by means of PCA.
Figure 4b shows that samples could be easily discriminated using the color coordinates. Also, in this
case, the variety of Grey Reinette, which has the highest phenolic value, appears clearly separated from
the rest. Rubin and Kosztela nalewkas, which have phenolic content lower than 700 mg·gallic·acid/L,
were located at positive values of PC3 while Grey Reinette, Cox Orange and Ligol with phenolic
content higher than 700 mg·gallic·acid/L liqueur appear at negative values of PC3 (PC1, PC2 and PC3
explained 99.4% of the total variance between the samples).

Figure 4 shows the tridimensional PCA scores plot obtained from the Raman signals. PC1, PC2
and PC3 also explained 98.0% of the total variance between the samples (PC1 70.1%, PC2 26.0% and
PC3 1.9%). In this case the clusters were larger due to the lower reproducibility of the signals and only
Ligol and Grey Reinette could be clearly visibly discriminated according to PC1.

According to the score plots shown in Figure 4, it can be concluded that the e-tongue and the
UV-Vis spectroscopy coupled to chemometrics can be used to discriminate nalewka samples, whereas
Raman spectroscopy could not detect differences between groups.

In order to further quantify the discrimination capability of the three systems, the output of
e-tongue, UV-Vis and Raman spectroscopy PCA were used to calculate the Euclidean distance
(E. distance)—a variable used to compare the similarity of samples. The smaller the E. distance
between two samples, the more similar the taste and flavor [40]. Calculated values of Euclidean
distance and coefficients of variation are shown in Table 3. The coefficients of variation (CV) are the
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ratio between the standard deviation and the mean. It is a measure of the relative variation in observed
data, and in this case it applies to points in each group of samples in PCA results.

As observed in the table, the larger Euclidian distances were found in the e-tongue because of the
wide range of PC values.

Table 3. Calculated values of Euclidean distances and coefficients of variation between groups
according to PCA results from e-tongue, CIELab parameters and Raman Spectra.

Relation between Groups
E-Tongue CIELab Parameters Raman Spectra

E. Distance CV E. Distance CV E. Distance CV

Ligol Kosztela 5899.50 0.06 4.19 <0.01 28.83 0.15
Ligol Grey Reinette 2808.12 0.15 41.97 <0.01 34.86 0.18
Ligol Cox Orange 6064.19 0.06 22.81 <0.01 21.88 0.29
Ligol Rubin 5066.53 0.10 10.60 <0.01 20.34 0.23

Kosztela Grey Reinette 6514.71 0.05 38.57 <0.01 20.07 0.12
Kosztela Rubin 3238.44 0.14 13.97 <0.01 8.94 0.07
Kosztela Cox Orange 10191.66 0.04 26.66 <0.01 8.58 0.36

Grey Reinette Rubin 5916.40 0.09 51.48 <0.01 19.26 0.13
Grey Reinette Cox Orange 5115.47 0.07 64.30 <0.01 17.25 0.24

Rubin Cox Orange 8118.85 0.06 13.17 <0.01 2.13 1.17

E. distance—calculated Euclidean distance between two groups. CV (coefficient of variation)—sum of SD from
two groups divided by the Euclidean distance between them.

In the case of the e-tongue, Cox Orange-Kosztela and Cox Orange-Rubin nalewkas showed the
highest value of Euclidean distance, reflecting the large differences in the organoleptic properties
observed between those pairs of nalewkas. In turn, the similarities in the flavors of Kosztela and Rubin
nalewkas resulted in a low Euclidean distance.

Euclidean distances calculated from CIELab results showed the highest values of relation between
Grey Reinette and other samples. In this case, the same as in e-tongue, results of coefficients of variation
indicated low-variance.

On the other hand, the smallest distance was observed between the Rubin and Cox Orange sample
when analyzing Raman output. Additionally, distances are comparable in the case of Kosztela and
Rubin groups and Kosztela and Cox Orange groups. In comparison to the results of CV obtained from
the three techniques in the Raman spectra case, the range of values is wide (0.07–1.13). It should be
noticed that CV >1 is considered high-variance.

The kNN is a machine learning technique based on pattern recognition [4]. This classification
method is based on a distance matrix, in which an object is classified according to the classes of its
K-nearest neighbors in the data space, i.e., it classifies unlabeled objects based on their similarity
with samples in the training set. In our case, as there are five samples x three replicas, creation of a
test and training sets was impossible, so classification was done for all samples among each other.
Testing was done by the program written in Python that implements the kNN classification algorithm
using multi-dimensional vectors calculated with Euclidean distance. As observed in Figure 5, the
optimal kNN models were obtained using 1 to 3 for nearest neighbors. For electronic tongue, a kNN
of 1, 2 or 3 provides a classification accuracy of 100% in all cases, while for CIELab the number of
nearest neighbors were 1 and 2, also with a classification accuracy of 100% in both cases. For Raman,
the optimal kNN model was obtained using the three nearest neighbors with a classification accuracy
of 60%. These results also confirm those obtained with PCA where the clusters corresponding to
the five studied nalewka liqueurs were visibly better separated and discriminated using the e-tongue
and CIELab.
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Figure 5. Identification rate of the k-Nearest Neighbors algorithm with different k values.

PLS-1 was carried out to establish correlations between signals obtained from the instrumental
analysis (e-tongue, UV-Vis and Raman spectroscopy) and chemical parameters (polyphenolic content
and the alcoholic degree measured as density). The classification models were subjected to validation
by means of the “leave-one-out” method. Therefore, each sample is classified by means of the
analysis function derived from the other samples (all cases except the case itself). This process was
repeated k times (as many as samples) leaving out one different sample each time—the one to be
classified—which acts as the model validation sample. Thus, with this approach, all samples are used
once as validation. PLS-1 regression builds a calibration model, incorporating a relationship between
sets of predictors and responses based on the structure of signals considering the responses obtained
by the corresponding instrumental analysis as the X-variable set and the corresponding chemical
parameter as the Y-variable set. PLS-1 models both the X- and Y-variable set simultaneously to find the
latent variables in X that will best predict the latent variables in Y. Calibration fits the model to the
available data, while validation checks the model for new data. Results are shown in Table 4.

Figure 6 shows an example of the linear correlation between polyphenolic content predicted by
the voltammetric e-tongue system versus the values of polyphenols obtained by the Folin–Ciocalteu
method of the nalewkas (calibration in blue and validation in red color).
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Figure 6. Plot of predicted polyphenolic content obtained with the e-tongue vs. the values of
polyphenolic content obtained by the Folin–Ciocalteu method.

Good correlations were found between the e-tongue and both the polyphenolic content (0.98 in
calibration and 0.93 in validation) and the alcoholic content measured as density (0.93 in calibration
and 0.88 in validation) and using four latent variables. As expected, correlations were better with the
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polyphenolic content because, as already shown in Figure 1, voltammograms show peaks directly
related with the phenolic content.

The best correlations with the polyphenolic content were obtained with the UV-Vis data. R2 higher
than 0.99 in both calibration and validation were found using only three latent variables. In contrast,
correlations between CIELab data and density were lower and R2 of 0.81 in validation was obtained
indicating that this technique is not useful to evaluate the alcoholic content.

Correlations between UV-Vis data and the polyphenolic content showed lower errors in calibration
(RMSEc) and prediction (RMSEP) than e-tongue and Raman methods. In the case of the density,
the errors obtained were similar in all methods although the Raman method provided the lowest error.

Finally, Raman data presented a poor correlation with the polyphenolic content and a good
correlation with the density in calibration (R2 of 0.96). This can be explained taking into account the
contribution of the vibrational modes of the ethanol. The correlation in validation decreased due to the
dispersion of the data registered in different repetitions.

These results indicated that the electronic tongue is superior because it shows good discrimination
capabilities while providing good correlations with both polyphenolic content and density, whereas
the CIELab method is better correlated with polyphenolic content and Raman shows better correlations
with density.

Table 4. Statistical parameters obtained for the PLS-1 regression model established between the
chemical parameters and the voltammetric (e-tongue), CIELab and Raman responses towards
nalewka liqueurs.

Voltammetric Outputs

Parameters R2
C

(a) RMSEC
(b) R2

P
(c) RMSEP

(d) Latent Variables

Polyphenolic content
(Folin–Ciocalteu method) 0.976744 29.75508 0.939679 47.74666 4

Density 0.925237 0.001112 0.878397 0.001751 4

CIELab Outputs

Parameters R2
C

(a) RMSEC
(b) R2

P
(c) RMSEP

(d) Latent Variables

Polyphenolic content
(Folin–Ciocalteu method) 0.996525 8.180929 0.994252 11.27284 3

Density 0.879691 0.001410 0.807301 0.001912 3

Raman Outputs

Parameters R2
C

(a) RMSEC
(b) R2

P
(c) RMSEP

(d) Latent Variables

Polyphenolic content
(Folin–Ciocalteu method) 0.906231 42.49629 0.793365 67.59048 6

Density 0.962399 0.000788 0.856644 0.001650 3
(a) Squared correlation coefficient in calibration; (b) Root mean square error of calibration; (c) Squared correlation
coefficient in prediction; (d) Root mean square error of prediction.

4. Conclusions

In summary, in this work, the electronic tongue, UV-Vis and Raman spectroscopy combined with
chemometric methods have been used to discriminate strong alcoholic liqueurs called nalewka, made
from different apple varieties: Ligol, Kosztela, Grey Reinette, Rubin and Cox Orange.

The electronic tongue, formed by an array of sensors based on phthalocyanine-modified carbon
paste electrodes, could discriminate the five liqueurs prepared from different apple varieties. Analyses
are fast and once the system is calibrated measurements take ca. 6 min per sample. Moreover,
PLS-1 models showed good correlations between signals of the electronic tongue and the phenolic
content and the density (which is related to the alcoholic content) with only four latent variables,
correlation coefficients close to 0.9 and low errors. Statistical treatment of CIELab coordinates extracted
from UV-Vis spectra also showed a good discrimination capability and excellent correlation with the
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antioxidant content. However, Raman spectroscopy showed a poor discrimination capability but
excellent correlation with the alcoholic content.

Because the electronic tongue showed excellent discrimination capabilities and the best
correlations with both polyphenolic content and alcoholic degree, it can be concluded that this
technique is the most advantageous for the analysis of high alcoholic beverages such as liqueurs.
The lower price, ease of use and portability of the modified electrode system makes it a possible
alternative tool to analyze samples in situ.

This study could help to broaden knowledge of these traditional Polish spirit beverages and could
be useful for authenticity assessment of food products.
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reagents/materials/analysis tools.

Conflicts of Interest: The authors declare no conflict of interest.

References
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