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We report the results of a combined empirical potential−Density Functional Theory (EP-DFT) study to assess the global min-
imum structures of free-standing zinc-magnesium nanoalloys of equiatomic composition and with up to 50 atoms. Within this
approach, the approximate potential energy surface generated by an empirical potential is first sampled with unbiased basin hop-
ping simulations, and then a selection of the isomers so identified is re-optimized at a first-principles DFT level. Bader charges
calculated in a previous work [Corr. Sci. 124, 35 (2017)] revealed a significant transfer of electrons from Mg to Zn atoms in
these nanoalloys; so the main novelty in the present work is the development of an improved EP, termed Coulomb-corrected-
Gupta potential, which incorporates an explicit charge-transfer correction term onto a metallic Gupta potential description. The
Coulomb correction has a many-body character and is feeded with parameterized values of the ab initio Bader charges. The
potentials are fitted to a large training set containing DFT values of cluster energies and atomic forces, and the DFT results
are used as benchmark data to assess the performance of Gupta and Coulomb-corrected-Gupta EP models. Quite surprisingly,
the charge-transfer correction is found to represent only a 6% of the nanoalloy binding energies, yet this quantitatively small
correction has a sizable benefitial effect on the predicted relative energies of homotops. Zn-Mg bulk alloys are used as sacrificial
material in corrosion-protective coatings, and the long-term goal of our research is to disclose whether those corrosion-protected
capabilities are enhanced at the nanoscale.

1 Introduction

Zinc-magnesium alloys have been intensively investigated in
the last decades due to their several industrial applications.
Zn-rich compositions, on one hand, are useful as sacrificial
coatings for corrosion protection of materials. As a specific
example, the application of steel-based construction materials
is largely dependent on the use of protective metallic coat-
ings containing zinc. These coatings provide barrier and gal-
vanic protection to the steel substrates employed in automo-
tive, building, and other industries, improving durability and
aesthetic properties of final products. Previous experimental
research1–3 has shown that the time for appearance of signifi-
cant amounts of red rust was 3 times longer for samples coated
with the Zn-Mg alloy as compared to a pure Zn coating. The
improved properties of Zn-Mg alloys have been suggested to
stem from the superior capability of Mg atoms on the surface
to form a protective oxide layer, which is more insulating and
stable than the ZnO layer that would be formed on pure zinc2.
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The effect of magnesium was most benefitial for the specific
intermetallic compositions MgZn2 and Mg2Zn11. Weight loss
for such alloy coatings was up to 10-fold lower than for a pure
zinc coating; the alloy coatings allowed to passivate the sam-
ple material in a chloride environment and limited the effi-
ciency of oxygen reduction. On the other hand, Mg-rich alloys
possess a good biocompatibility and similarity of its mechan-
ical properties to those of the human bone tissue, which ren-
ders those materials as promising candidates for biomedical
and implant applications4,5.

There are numerous examples by now that demonstrate that
the physical and chemical properties of a material can be dras-
tically modified at the nanoscale. Therefore, it is interesting to
investigate explicitly if the protective properties of Zn-Mg al-
loys, related to their chemical reactivity, can be enhanced at
the nanoscale, and this constitutes indeed the long term goal
of our research line on Zn-Mg nanoalloys. The properties of a
nanoalloy generally show a strong and non-monotonous de-
pendence on both cluster size and composition, as well as
on the number of electrons, and one could envisage taking
advantage of all those degrees of freedom to fine tune a de-
sired property such as the resistance against corrosion. In
our previous works on pure zinc clusters6,7, we have already
identified a peculiar property which might be a key factor in
explaining why zinc-based materials offer a good protection
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against corrosion. Specifically, the distance separating the out-
ermost atomic shell from the remaining interior or core atoms
is anomalously long as compared to typical interatomic dis-
tances, and the empty space thus generated in the subsurface
region is strongly depleted of electrons, effectively protecting
the core from environmental reagents. A preliminary report on
ZnxMg20−x nanoalloys has suggested that alloying with mag-
nesium might further improve these protection properties8.
More specifically, we found that the local reactivity (quanti-
fied by atom-condensed Fukui functions) becomes homoge-
neous across the nanoalloy surface precisely for compositions
close to the optimal ones (MgZn2 and Mg2Zn11), thus explain-
ing why those compositions are special: the uniform reactivity
of the whole shell is expected to promote the formation of a
uniform oxide crust of approximately constant thickness and
containing a minimum amount of defects, both features be-
ing desirable for a protective external layer. To make further
progress on this interesting problem and identify insightful re-
activity trends, we need to substantially extend our studies to
cover a wide range of nanoalloy sizes and compositions.

Structural characterization of nanoalloys as a function of
size and composition is a prerequisite for a detailed under-
standing of their reactivity properties, but it requires an ex-
haustive computational sampling of the potential energy sur-
face. Locating the Global Minimum (GM) structure of a
nanoparticle is a laborious task, particularly so when dealing
with nanoalloys, for which the GM structure depends not only
on cluster size but also on chemical composition. For fixed
size and composition, not only the geometrical structure of the
atomic skeleton has to be determined, but also the preferred
homotop (i.e. the most stable chemical ordering), which in-
creases the complexity of the potential energy surface to be
scanned as compared to homoatomic clusters. A well estab-
lished strategy consists of performing an exhaustive sampling
of the approximate potential energy surface provided by an
empirical potential (EP) to quickly determine trial structures
that are then reoptimized at a first-principles density functional
theory (DFT) level, which has come to be known as EP-DFT
approach9. In order for this approach to be successful, the EP
model must provide a reasonably accurate account of atomic
interactions.

Metallic nanoalloys, however, often show subtle electronic
effects that are not explicitly described by the commonly em-
ployed EP models, which reduces the predictive power of
EP-DFT approaches. Charge transfer phenomena, for ex-
ample, become significant whenever the two types of atoms
in the mixture have sufficiently different electronegativities,
and can significantly affect the segregation/mixing chemi-
cal order preferences. To deal with this issue, Zhang and
Fournier10,11 proposed EP models containing a term that de-
scribes metallic cohesion plus a coulombic charge transfer
contribution obtained through the electronegativity equaliza-

tion method (EEM). Their results showed that mixing is en-
hanced by coulombic interactions in systems with a large elec-
tronegativity difference. Cerbelaud et al.12 later proposed a
refined model in which the electronegativity and hardness of
each atom is coordination-dependent. The improved potential
always located a more stable homotop than the bare metallic
EP after DFT reoptimization. Incorporation of charge transfer
effects was found to increase both the number of hetero-bonds
and the number of gold atoms at the surface of Au-Ag nanoal-
loys.

Charge transfer phenomena were found to be important
also in our preliminar report on ZnxMg20−x nanoalloys8, with
maximum Bader charges of about +1.2e for Mg atoms and
−2.0e for Zn atoms. The substantial electrostatic energy as-
sociated with those charges was proposed as the main factor
explaining the magic composition observed at 1:1 equiatomic
ratio. It also explains the observation that Mg-Mg metallic
bonding in the alloy is isotropic while Zn-Zn metallic bonding
is more directional, because the charge transfer populates the
4p orbitals of Zn atoms. A significant observation from that
work is that a bare metallic EP is not able to reproduce the cor-
rect energetic ordering of homotops. Therefore, in this work
we will develop and present a new EP model, called Coulomb-
corrected-Gupta model, that augments the usual Gupta poten-
tial description of metallic interactions13–15 with an explicit
ionic contribution to bonding arising from charge transfer. Op-
posite to the previous similar attempts mentioned above, the
main novelty in our approach is the employment of Bader
charges of ab initio quality rather than EEM-derived charges,
which ensures that the EP reproduces the correct (DFT) charge
transfer trends. The success and efficiency of the whole ap-
proach is based on a very accurate parameterisation which al-
lows to predict the Bader charge on a given atom directly in
terms of its coordination environment, without the need for
expensive ab initio calculations. The several parameters of
the potential are fitted to a large training set containing DFT
values of nanoalloy energies and atomic forces, and an inde-
pendent testing set of DFT results is used as a benchmark to
assess the performance of the EP model. The potential is then
employed to locate the GM structures of equiatomic Zn-Mg
nanoalloys within an EP-DFT approach. The equiatomic com-
position ratio is chosen here because the homotopic problem
is most acute for this specific composition, providing thus a
stringent test for the newly proposed model.

The paper is organized as follows. As the Coulomb-
corrected-Gupta model is shown here for the first time, a de-
tailed exposition is justified, which we offer in Section II. Sec-
tion III contains then a description of the GM structures of
nanoalloys with up to 50 atoms, as well as their main elec-
tronic properties and an analysis of cluster stabilities. The
physical factors determining the preferred chemical ordering,
as well as those producing specially stable clusters, are iden-
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tified and discussed. Several insightful conclusions, as for ex-
ample a substantial strengthening of Zn-Zn bonds upon alloy-
ing due to charge transfer, will emerge from the detailed phys-
ical discussion. Finally, section IV summarizes all the relevant
conclusions from our work.

2 Computational Methods

The EP-DFT method relies on a two-step procedure: first, a
global optimization algorithm is employed to achieve a fast
and wide scan for local minima on the approximate potential
energy surface generated by an empirical potential (EP); sub-
sequently, the most promising structures obtained for each size
and composition are re-optimized at the Density Functional
Theory (DFT) level. The reliability of this approach depends
on the quality of the trial structures obtained during the global
optimization in the first step. Since the DFT energies are ob-
tained from a local optimization of trial EP structures, these
should not be very dissimilar to the real ones; in other words,
the EP should capture the physical behaviour of the real mate-
rial at a reasonable level. Thus, the design of an EP model that
accurately describes interaction energies in Zn-Mg nanoalloys
is a prerequisite to production runs, and the most important
advance in the present paper.

2.1 Gupta EP for metallic interactions

Since both Zn and Mg are metallic elements, the Gupta po-
tential13–15 is a sensible option to choose as a starting point,
which is often employed in nanoalloy research. Within this ap-
proach, the total energy of a binary AxBN−x nanoalloy is writ-
ten as a sum of atomic contributions Ei,α , where i = 1, ...,N
assigns a number label to each atom and α =A,B specifies the
atomic species it belongs to (throughout this work, the label
(iα) should be understood as a single compound label, but the
specification of the atomic species α will be added only in
those terms where it is needed). Each atomic contribution is
in turn decomposed into an attractive band-energy many-body
term Eband

i,α and a repulsive pairwise contribution Erep
i,α :

E(AxBN−x) =
N

∑
(iα)

Ei,α =
N

∑
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(Eband
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(1)

where ri j is the distance between atoms i and j, and
Aαβ ,ξαβ , pαβ ,qαβ ,r0

αβ
are constants traditionally fitted to

experimental bulk quantities. More specifically, the homo-
atomic (AA or BB) parameters are fitted to properties of the
corresponding elemental bulk crystal phases, such as lattice
constant, cohesive energy and elastic constants. The hetero-
atomic parameters may be fitted to alloy properties such as the
dissolution energy of a single impurity, or rather be estimated
as appropriate averages of the homo-atomic parameters. r0

αβ

is a scaling factor for the interatomic distances. Usually, r0
αα

is taken as the nearest-neighbor distance in the corresponding
bulk metal.

Parameters fitted to bulk properties do not need to be trans-
ferable to the nanoscale, and thus their direct application to
nanoparticles should be deprecated unless explicit transfer-
ability tests are reported. In recent work by our group6,7, a
novel, alternative methodology has been proposed to extract
optimal Gupta parameters for homo-atomic clusters, and there
we explicitly showed that the optimal parameters for pure zinc
clusters are significantly different from those appropriate for
bulk zinc. The optimal potential was able to locate new, un-
precedented, GM structures for most zinc cluster anions that
could be independently assessed through an explicit compari-
son to experimental photoemission spectra. Therefore, in the
present work we will similarly try to train our potential models
exclusively using ab initio data on small clusters.

2.2 Performance of the bare Gupta potential for Zn-Mg
nanoalloys

The bare Gupta potential has been already tested in a prelim-
inary report on the ZnxMg20−x nanoalloys8. It was found to
correctly capture the main structural features of these nanoal-
loys, in particular the geometry of their atomic skeleton is in
good agreement with DFT results. However, the potential was
not able to locate the most stable chemical order patterns, i.e.
it failed badly in the search for stable homotops. By analizing
the electronic structure provided by DFT, the authors observed
that charge transfer effects are not negligible. Charge trans-
fer effects should promote mixing, increasing the number of
Zn-Mg hetero-bonds. However, this charge transfer effect is
absent from equation 1. The failure of the bare Gupta poten-
tial in identifying stable homotops was then tentatively traced
back to its omission of the strong coulombic interactions orig-
inating from charge transfer.

A detailed analysis of the Bader atomic charges in
ZnxMg20−x nanoalloys8 showed that they can be accurately
parametrised in terms of simple structural order parameters.
This will be a very important result for our development of
an improved potential in the next subsection, as it implies that
atomic charges can be expressed as explicit functions of the
distances ri j and so they can be obtained “on-the-fly” during
a geometry optimization or molecular dynamics run, without
the need for expensive ab initio calculations. Therefore, we
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summarize here the main findings on the environmental de-
pendence of Bader charges.

As a general trend, Zn atoms acquire a negative charge (and
Mg atoms a positive charge) in the nanoalloys, as expected
from the electronegativity values of the two chemical species
(the electronegativities of Mg and Zn are 1.31 and 1.65, re-
spectively, in the adimensional Pauling scale16). The amount
of charge transfer can be quantitatively very large, with maxi-
mum Bader charges of +1.2e for Mg atoms and of −2.0e for
Zn atoms. The Bader charge of a given atom follows a sim-
ple trend as a function of the local coordination environment
of the atom. Moreover, the chemical nature of that coordina-
tion environment plays a clear dominant role in determining
the value of the Bader charge, while purely geometric factors
such as the coordination number (i.e. the distinction between
corner, edge, facet or core sites, for example) play only a sec-
ondary role.

The simplest order paramater that achieved an accurate
parameterisation of Bader charges is the number of Zn-Mg
hetero-bonds. An important ingredient here is the precise def-
inition of coordination number. In a bulk crystalline sample,
the atomic environment around each atom can be easily orga-
nized into coordination shells, each appearing at a well defined
distance due to the translational symmetry of the crystalline
lattice. In the small clusters studied here, however, there is a
large dispersion in the interatomic distances about the mean
value (more similar to the situation found in an amorphous
material), and it is not convenient to employ an abrupt cutoff
to decide whether two given atoms are first-neighbors or not.
We have thus defined the number of A-B bonds, N(Zn−Mg),
as a continuous real variable by using a hyperbolic tangent
as a smooth cutoff function. The hyperbolic function is con-
strained so that the coordination number is equal to one for Zn-
Mg distances shorter than d1(AB), and approximately equal to
zero for Zn-Mg distances longer than d2(AB). d1(AB)= 2.7Å
is the shortest Zn-Mg distance found in all the nanoalloys,
while d2(AB) = 3.3Å is chosen to lie approximately at the
middle point between the first and second atomic coordination
shells. This way, our definition of coordination number in-
corporates information about the precise values of interatomic
distances:

N(Zn−Mg)=
1
2

[
−tanh

(
4.1
(

ri j−
d1(AB)+d2(AB)

2

))
+1
]

(2)
The absolute value of the Bader charge on a given Zn (Mg)
atom was found to smoothly increase as the number of Mg
(Zn) atoms in its first coordination shell increases, allowing to
estimate the atomic charge from the value of N(Zn−Mg)8.
Our generalized definition of coordination number is the key
ingredient to obtain such a smooth quality fitting.

An even more accurate parametrisation was obtained with
improved order parameters incorporating information about

the total coordination number of each atom (thus discrimi-
nating between corner, edge, facet, and internal atomic sites,
for example). The new order parameters continue to consider
N(Zn−Mg) as the dominant term, but with a small admixture
of the total number of bonds (the sum of homo-atomic and
hetero-atomic bonds). The number of A-A and B-B bonds
are now also needed, and they are defined by the same type
of hyperbolic tangent function (equation 2), but with differ-
ent limiting values of d1(AA), d2(AA), d1(BB) and d2(BB)
(values of all these parameters are provided in the ESI†). The
order parameters are then:

β (Zn) = N(Zn−Mg)−0.2[N(Zn−Zn)+N(Zn−Mg)]+1.08
β (Mg) = N(Mg−Zn)+0.2[N(Mg−Mg)+N(Mg−Zn)]−0.68,

(3)

with the constant offsets having no physical relevance (they
are added just to ensure that the order parameters remain pos-
itive and take similar values for Zn and Mg atoms). The rel-
ative weight and sign of the geometrical term are those lead-
ing to optimal order parameters (i.e. producing the smallest
dispersion in the fitting of Bader charges as a function of β ),
and notice that the sign of this term is different for Mg and
Zn atomic species. The new order parameters describe much
better the local coordination dependence of the Bader charge
for both Mg and Zn atoms, as demonstrated by a very small
dispersion (around 0.03e on average) of the DFT-calculated
Bader charges with respect to a quadratic polynomial fitting
in terms of the order parameters8. In practice, this significant
finding implies we have direct access to Bader charges of ab
initio quality for each set of atomic coordinates, up to an er-
ror of ±0.03e, without the need for their explicit (expensive)
calculation.

There remains just a final caveat: it is well known that Bader
charges are additive, i.e. their sum exactly recovers the total
molecular charge. Our numerical polynomial fitting, however,
obviously does not exactly satisfy this constraint, despite be-
ing quite accurate. In practice, for the neutral clusters that will
be the object of this work, we impose this constraint explicitly
by correcting a posteriori the charges read off the numerical
fitting:

Qi⇒ Qi−
∑i Qi

N
, (4)

where N is the total number of atoms in the cluster. Imposing
charge neutrality this way corrects the charges by an amount
smaller than the dispersion of the fitting in all cases. In other
words, the correction does not alter the charges within the ac-
curacy of our fitting. In the rest of this paper, it will be under-
stood that all charges are corrected to satisfy charge neutrality.

Coming back to the development of an improved EP model,
it is obvious that the potential should contain an ionic interac-
tion component in addition to the many-body metallic inter-
actions, and the charges entering the coulomb interaction part
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may now be easily chosen according to the local coordination
environment of each atom in the alloy, with the confidence that
they are of ab initio quality.

2.3 The Coulomb-corrected-Gupta model

The electrostatic interactions resulting from charge transfer
must be included in the atomistic model in order to provide
a trustworthy energy landscape. In the present work, this
is achieved by augmenting the original Gupta potential with
electrostatic monopole energy terms, which is the simplest op-
tion to start with. Our approach shares then formal similari-
ties with previous works11,12, but despite those similarities,
we will show there are fundamental differences in our imple-
mentation.

Our electrostatic energy term includes a monopole-
monopole pairwise Coulombic interaction and atomic self-
energies representing the energy cost of charging the atoms:

Eelec = ∑
(iα)

(
∑

( jβ ), j>i
Ji jQiQ j +Esel f ,(iα)

)
, (5)

where Qi is the net charge on atom i, Ji j =

(
1

2(η0
iα η0

jβ )
3
+

r3
i j

)−1/3

is the screening function developed by Louwen and

Vogt17, and η0
iα is the chemical hardness of atom i, species α .

The screening function is computationally convenient in order
to have an EP model without instabilities associated with pos-
sible divergences, and physically represents the fact that atoms
have a finite spatial extension with a core electron density. The
self-energy is expressed as a power series expansion in terms
of the atomic charge18,19. For an isolated atom:

E0
sel f ,α = χ

0
α Qα +η

0
α Q2

α +C0
α Q3

α +D0
α Q4

α + ...

χ
0
α =

∂Esel f ,α

∂Qα

∣∣∣∣
Qα=0

η
0
α =

1
2

∂ 2Esel f ,α

∂ 2Qα

∣∣∣∣
Qα=0
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α =

1
6

∂ 3Eα

∂Q3
α
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Qα=0

D0
α =

1
24

∂ 4Eα

∂Q4
α

∣∣∣∣
Qα=0

(6)

where α =Mg or Zn, and the zero superindex is used to de-
note isolated atom properties. χ0

α is the electronegativity of the
isolated atom, quantifying its ability for attracting and hold-
ing additional electrons. According to general DFT princi-
ples, χ0

α =−µ0
α , with µ the chemical potential. The chemical

hardness η0
α , on the other hand, quantifies the sensitivity of the

chemical potential to changes in the number of electrons: the
larger the hardness, the more reluctant the system is to accept
or donate electrons. Cubic terms would represent the charge
dependence of the hardness, and so on, so different levels of

approximation are obtained by truncating the series at a given
order.

For an atom-in-molecule, the self-energy expression has the
same mathematical form, but effective expansion constants are
used that include corrections due to the incorporation of the
atom in a molecule (or crystal)20:

Esel f ,(iα) = χ
∗
(iα)Qiα +η

∗
(iα)Q

2
iα +C∗(iα)Q

3
iα +D∗(iα)Q

4
iα + ...

(7)
where χ∗(iα) = χ0

(iα) + ∆χ(iα), η∗(iα) = η0
(iα) + ∆η(iα) and so

on. The quantities ∆χ(iα) and ∆η(iα) subsume the influence
of molecular environment and connectivity on the electroneg-
ativity and hardness of each atom. The use of effective ex-
pansion constants, adapted to the molecular environment, is
convenient to get a faster convergence for the series. The en-
vironmental effects ∆χ(iα) etc. are in principle different for
each atom (notice the explicit use of (iα) label as a subindex),
as each atom will experience a different geometrical environ-
ment. In order to reduce the number of free parameters, how-
ever, in this work we will describe just an “average” environ-
mental effect by constraining the expansion coefficients to be
the same for all atoms of the same species:

Esel f ,(iα) = χ
∗
α Qiα +η

∗
α Q2

iα +C∗α Q3
iα +D∗α Q4

iα + ... (8)

Finally, placing 8 into 5 we get the full expression for the elec-
trostatic energy, which corresponds to the change of the clus-
ter total energy upon charge transfer, for a given set of atomic
coordinates11.

An obvious problem in previous practical implementations
of this energy model has been that the atomic charges are not
known a priori and are hard to calculate. So in previous com-
putational applications of it21,22, atomic charges were derived
from the electronegativity equalization method (EEM)23–25,
which states that when molecules are formed the electroneg-
ativities of the constituent atoms should become equal, their
common value coinciding with the molecular electronegativ-
ity χcluster. Atom-in-molecule values of the electronegativities
can be obtained within this model by differenciating the ex-
pression of the energy:

χ
AIM
(iα) =

∂Eelec

∂Qi
= ∑

j 6=i
Ji jQ j +χ

∗
α +2η

∗
α Qi +Θ(Qi), (9)

where Θ(Qi) = 3C∗α Q2
i +4D∗α Q3

i + ... accounts for the higher
order terms in the series. Notice that when all the Qi = 0 the
electronegativities retain their reference values, so the quan-
tity χ∗α should be understood as the electronegativity of a hy-
pothetical atom which has been already placed into a molec-
ular environment but which has not been allowed yet to ex-
change charge with its neighbors. Imposing the constraints
χcluster = χAIM

1 = χAIM
2 = · · · and the conservation of total

charge (Qtot =∑i Qi), a system of linear equations results from
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which equilibrium atomic charges Qi and the molecular elec-
tronegativity χcluster can be derived. One important virtue of
EEM-derived charges within the context of this empirical po-
tential model, is that they can be self-consistently evaluated
within the same model at a negligible computational cost. At
this point, however, it is important to emphasize that impos-
ing the equalization of atomic electronegativities is an external
addition to the energy model provided by equation 5, i.e. just
one possible way of implementing that equation into a practi-
cal method.

The principle of electronegativity equalization is a funda-
mental milestone in DFT, as it is exactly satisfied by the self-
consistent delocalized electron density. In effect, the con-
stancy of the molecular chemical potential (µ = δE[ρ(r)]

δρ(r) |v)
is automatically satisfied as µ enters the variational princi-
ple as a constant Lagrange multiplier to impose the conser-
vation of the total number of electrons. But strictly speak-
ing, DFT provides a sound value only for the electronega-
tivity of the whole molecule, while the EP model of equa-
tion 5 requires a partition of the total system into atoms. If
electronegativities of atoms-in-molecule are needed, one first
has to define what an atom-in-molecule is, and there is not
a unique definition within DFT for that concept. Therefore,
DFT does not provide, at least in a uniquely defined way, all
the input parameters required for an EEM application of equa-
tion 5. Additionally, this simplified energy model is written
in terms of effective point charges, which can not represent
all the complexity of the continuous density distribution of
a DFT calculation. Previous work by Bultinck and cowork-
ers21,22 already showed that EEM-derived point charges are
generally not compatible with well-established atomic charge
definitions such as charges fitted to reproduce the electrostatic
potential (CHELPG), or those based on Hirshfeld or Bader
partitions of the total electron density. We emphasize that a
DFT calculation produces both the “correct” electrostatic po-
tential (i.e. within a given XC-approximation) and a constant
chemical potential, for example, while the model of equation
5 can not satisfy both requirements. Failures like this one may
be due to the functional form of equation 5 not being suffi-
ciently flexible, to the point charge approximation truncated
at the monopolar level, to the imposition of the EEM model to
derive the values of the point charges, etc.

In the novel implementation of equation 5 employed in this
work, we depart from the electronegativity equalization as-
sumption because we have access to Bader atomic charges of
ab initio quality at a cost which is even lower than that needed
to derive EEM-charges. The Bader charges are directly ob-
tained from atomic coordinates and could in principle be fed
into equation 5. As the Bader charges are then explicit func-
tions of atomic coordinates and so depend on local environ-
ment, the whole model (both Gupta and Coulomb parts) ac-
quires a many-body character. The self-energy term retains

its role as an effective repulsive many-body interaction result-
ing from charge transfer. This alternative use of the EP model
given in equation 5 is, in our opinion, the main element of
novelty introduced by our work. It guarantees that a part of
the potential (the Coulomb part) is in correspondence with the
charge transfer trends obtained from ab initio calculations, so
it should improve the transferability and accuracy of the re-
sulting model.

Next we have to implement this new idea into a practical
method. The most naive approach, consisting of directly feed-
ing the full Bader charges into equation 5, is not expected to
work. Bader charges are extracted from a topological analysis
of the continuous electron density function provided by DFT,
and are at the very least delocalized over the finite spatial ex-
tension of a Bader basin, while the simple model of equation 5
replaces this complicated function with a set of point charges,
each of them associated with a particular atom in the molecule.
Moreover, our model is truncated at the monopolar level, i.e.
it does not include point dipoles or quadrupoles, while the
Bader analysis is not specifically constrained to minimize the
basin-integrated values of those atomic multipoles. Therefore,
despite being chemically meaningful, Bader charges alone
do not recover the electrostatic potential V outside the elec-
tron distribution, for instance26; Bader atomic dipoles and
quadrupoles would be also needed in order to obtain an ac-
curate representation of V as a superposition of atom-centered
potentials. As a practical solution that preserves the mathe-
matical simplicity of our monopolar model, we choose to feed
into equation 5 scaled Bader charges, Qi ⇒ εQi, where the
scaling parameter ε is constrained to be the same for all atoms.
This way, the charge transfer trends predicted by the Bader
analysis are strictly preserved, and ε can be considered as an
additional (in fact, the last) parameter in our potential model,
to be fitted together with the rest of parameters as explained
later in this section.

As atomic charges can not be uniquely defined, choosing
one particular definition is partially also a matter of personal
taste. At this point a pertinent question might be: why choos-
ing Bader AIM charges at all if they need to be scaled to
make them consistent with the model of equation 5? Our
answer is that Bader charges are recognized as being chem-
ically meaningful, applicable to both periodic and molecular
systems, valid for both surface and buried atoms, and strongly
rooted on general quantum-mechanical principles. Addition-
ally, they are quite stable, i.e. little-dependent on basis set
issues, and directly connected to the experimentally observ-
able electron density distribution. It is true that charges ob-
tained through electrostatic potential fitting (as, for example,
CHELPG charges) might be thought to be better adapted for
direct substitution into equation 5. But we have explicitly
evaluated CHELPG charges for several ZnxMg20−x nanoal-
loys, and observed they are strongly dependent on the def-
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inition of van der Waals radii for the constituent atoms, so
very different sets of CHELPG charges could be obtained for
the same nanoalloy, some of them even predicting an opposite
charge transfer from Zn towards Mg atoms. In other words,
they are quite useless for a metallic nanoalloy. The smooth
and accurate parametrisation of atomic charges in terms of
local atomic environment would have been impossible using
CHELPG charges, while physically sound trends were clearly
identified with the Bader charges. At least on average, the
CHELPG charges were always found to be much smaller in
absolute magnitude (by about 75%) than Bader charges, so
we expect an approximate value of ε = 0.25 for the scaling
parameter if the scaled Bader charges are to reproduce the cor-
rect electrostatic potential. We will see below that the optimal
value of ε is very close to this estimation, which supports the
whole approach. We admit that it is possible that some other
charge scheme26 might work as well within our model, but an
explicit test of different atomic charge definitions is beyond
the scope of the present work.

2.4 Parameterisation of the Coulomb-corrected-Gupta
model

The complete potential employed in our work is just the sum
of equations 1 and 5. Next we need to devise a method to ob-
tain optimal values for the many parameters appearing in the
total energy expression. The metallic part apparently contains
a total of 15 parameters due to the existence of separate A-A,
A-B and B-B interactions. Nevertheless, López and Jellinek27

demonstrated that the r0 parameters are indeed redundant and
can be fixed to unity without any loss of generality. In or-
der to avoid linear dependencies in parameter fitting, we thus
fix those parameters to unity so that 12 independent param-
eters are needed in the metallic part of the potential. Quite
obviously, the set of parameters that were optimal for the bare
Gupta potential will no longer be useful after addition of the
Coulomb part, so they need to be refitted. The Coulomb part
contains 9 parameters, namely the values of χ∗α , η∗α , C∗α and
D∗α constants for each atomic species and the scaling factor
ε . The total number of parameters of our combined potential
model thus adds up to 21.

Although one can in principle try a brute force approach
and consider all parameters as free, we have instead decided
to constrain the values of some parameters. Specifically, we
choose to fix the values of χ∗α for Zn (Mg) atoms to the ab ini-
tio values calculated for the homo-atomic Zn20 (Mg20) neutral
clusters:

χ
∗
α = χcluster =

∂E
∂Q

=
1
2
(I +A) (10)

where E is the cluster total energy, I is the ionization potential
and A the electron affinity. This way we enforce that those two
constants adopt physically reasonable values extracted from

first-principles calculations, and so ensure that the average en-
vironmental effects on those response properties are correct.
The choice of a cluster size of 20 atoms as reference is due to
our interest in the size range N = 2− 50, so we just chose a
typical cluster size within that interval.

With these choices, a total of 19 free parameters remain.
They are fitted to ab initio DFT properties calculated on a
training set of 102 different atomic configurations of Zn-Mg
nanoalloys. The training set includes several sizes in the range
N = 10− 50, different composition ratios, as well as a di-
verse selection of skeletal structures (including ordered and
amorphous geometries) and chemical order patterns. Some
configurations correspond to local minima (i.e. zero atomic
forces) on the DFT potential energy surface, some others are
distorted away from equilibrium. For those configurations
corresponding to local minima, we enlarged the training set
by adding both slightly expanded and contracted configura-
tions (by homogeneously scaling atomic coordinates), so that
the true number of atomic configurations is in fact larger than
102. The fitting involves varying the potential parameters to
minimize the difference between EP and DFT values of both
atomic forces and cohesive energies. The force matching pro-
cedure should result in potentials producing accurate geome-
tries (both distances and angles). The inclusion of energies in
the fitting plays important additional roles: on one hand, by
including in the training set several compositions, we train the
potential towards reproduction of excess energy trends; by in-
cluding several structural isomers of the same nanoalloy, we
guide the potential towards a correct energetic ordering of iso-
mers (i.e. the hierachy of local minima on the energy land-
scape); finally, introducing contracted and expanded configu-
rations about a local minimum (an analog of pressure-volume
curves in the bulk limit), we ensure the potential will repro-
duce at least the frequency of the average breathing vibrational
mode and the system’s compressibility. The optimization is
performed by using a simplex downhill method.

An interesting outcome of the fitting is that inclusion of the
ab initio compressibility tightly fixes the value of the scaling
parameter to ε = 0.28, i.e. about the same as the ratio between
CHELPG and Bader charges. No other value can reproduce
the volume dependence of the energy despite the many other
parameters involved in the fitting. It is both interesting and
reassuring that the ε value needed to reproduce the compress-
ibility is about the same as that required to produce a correct
electrostatic potential.

The optimal parameters emerging from the fitting proce-
dure, both for Gupta and Coulomb-corrected-Gupta poten-
tials, are provided in the ESI†. Following the conclusions of
our previous work, in the production runs we have employed
ten additional potentials with parameters in a local neighbor-
hood around the optimal ones, in an attempt to enhance struc-
tural diversity. The quality of the fitting is about equally good
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for all these eleven potentials as they are all close to the opti-
mal values.

The training error provides a first glimpse at the relative
performance of the two EP models. We have also generated a
testing set with over 700 structures which were not used in the
fitting but were evaluated at the DFT level as a result of the
optimizations performed in this work. At a quantitative level,
the mean absolute error in the testing system is approximately
three times bigger than in the training system, yet both training
and testing errors show the same qualitative trends. The mean
absolute errors of the bare Gupta potential in the testing set
are around 0.15 eV/atom for cluster binding energies and 0.5
eV/Å for the atomic forces. These errors may be considered
big at first sight, but we stress that the testing set contains over
700 clusters sampling a very wide region of configuration and
homotopic spaces, and tests as complete as the present one
are scarce in the previous literature. The Coulomb-corrected-
Gupta model reduces these errors by around 5% compared to
the bare Gupta errors, which is not a very significant improve-
ment at a quantitative level. In fact, the charge-transfer contri-
bution to the energy (eq. 5) is a mere 6% of the total binding
energy, i.e. around the same as the percentage improvement
in the fitting error.

As a conclusion of this section, the charge-transfer effects
do not seem to constitute the dominant correction to the bare
Gupta potential description, as it had been hypothesized based
on the large values of Bader charges. Although this is some-
how a “negative” conclusion of our work, we believe it is a
significant finding that may guide future studies. The small
size of the effect is traced back to scaling down of the original
Bader charges by ε = 0.28, a scaling that is strictly necessary
to reproduce the right curvature of the potential energy sur-
face around local minima. We doubt that inclusion of higher-
order multipolar effects such as charge-dipole, dipole-dipole
or charge-quadrupole interactions could significantly improve
the fitting error; we rather suspect it is the metallic part of the
potential which needs to be improved to efficiently reduce the
fitting error. We emphasize that the charge-transfer correc-
tion here described could be implemented together with any
other potential describing metallic interactions, so it may be
useful within that wider scope. We will also show in this pa-
per that the apparently small 6% charge-transfer contribution
is enough to significantly improve the relative energetics in
homotopic space, and in this sense it is also a worthwhile con-
tribution.

2.5 Technical details of the EP-DFT protocol

We have implemented the Coulomb-corrected-Gupta poten-
tial into a module of the freely available GMIN code28, with
which we perform Basin Hopping (BH) global optimiza-
tions29,30. For each nanoalloy of fixed size and composition,

we perform three independent BH runs (each 500000 steps
long) for each of the 11 potentials available. This adds up
to a total of 33 BH runs, or 18 million BH steps, for each
nanoalloy. Each BH step may be of two kinds: either a random
change of all atomic coordinates, or a swap move exchanging
the chemical identity of a randomly chosen A-B pair of atoms.
The percentage of swap moves in the BH runs is of 20%. The
three runs for each potential differ just in the specific tem-
perature value employed in the Metropolis Monte-Carlo ac-
ceptance step during the BH optimization. Additionally, if no
lower energy structure is identified during 50.000 consecutive
steps, the cluster structure is re-seeded to a random one in or-
der to enhance sampling. The best 100 structures from each
run are stored and merged together to form an initial databank
of trial structures. This databank is further enlarged by per-
forming additional BH runs with only swap moves on the 10
more stable structures identified by each potential, thus ob-
taining a more complete sampling of homotopic space.

The initial database so constructed may easily contain du-
plicate structures, because both the energy and the detailed
geometry of a given structural isomer are not directly compa-
rable between different potentials. So our next step is to apply
a filtering process that removes duplicates from the databank.
As explained in the ESI†, we have devised a structural de-
scriptor function, based on the distribution of pair interatomic
distances, that is able to identify similar structures, where the
“degree of similarity” can be quantitatively defined by the
user. The descriptor is very robust in removing duplicates. Be-
ing based purely on pair distances, it does not depend on the
global orientation of the cluster or on permutations of iden-
tical atoms, and automatically removes enantiomers in case
of chiral structures. Finally, after removal of duplicates, we
select a final list of 100 structures to feed the DFT reoptimiza-
tion process. The selection process involves a balance of sta-
bility and diversity factors: half of the list is formed by the
most stable structures found in the BH runs; for the other half,
we use again our structural similarity descriptor to choose a
set of candidates which is as diverse as possible. With this
choice, highly symmetric structures are usually selected for
re-optimization.

Next, we re-optimize locally the selected structures at the
Kohn-Sham density functional theory (KS-DFT) level, em-
ploying the SIESTA code31. Exchange-correlation effects
are treated within the generalized gradient approximation of
Perdew, Burke and Ernzerhof (PBE)32, and norm conserving
pseudopotentials are used to describe the effect of core elec-
trons33,34. The semicore 3d states of zinc are explicitly in-
cluded in the active valence space. Our pseudopotentials in-
clude non-linear partial core corrections35 which are known to
be important for both zinc and magnesium. A basis of local-
ized atomic orbitals is employed to expand the wave function
of the cluster. In our calculations, the size of the basis set was
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double-zeta plus two polarization orbitals (DZP2), resulting in
a total of eight basis functions per Zn atom and six basis func-
tions per Mg atom. The clusters are placed in a cubic supercell
with a length of 30 Å to make the interaction between pe-
riodic images negligible. Equilibrium cluster geometries are
then obtained from unconstrained conjugate-gradients struc-
tural relaxation using DFT forces. The structures were relaxed
until the force on each atom was smaller than 0.01 eV/Å. In
our previous work on pure Zn clusters7, we provided extensive
benchmark tests demonstrating the accuracy of these compu-
tational settings.

3 Results and Discussion

3.1 Homotop energetic ordering in ZnxMg20−x nanoal-
loys
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Fig. 1 Assessment of the performance of bare and
Coulomb-corrected Gupta models in predicting homotop stability.
The test is performed on ZnxMg20−x nanoalloys in the whole range
of chemical compositions. See main text for details.

Zn-Mg nanoalloys with N = 20 atoms and all possible com-
positions were studied in detail in our previous work8. We ex-
plicitly relaxed up to 500 different homotops explicitly at the
DFT level for x = 7− 13, in order to have some confidence
about the putative GM homotops. Here we take advantage
of the extensive ab initio data bank generated in our previ-
ous work to test the performance of the Coulomb-corrected-
Gupta model in predicting homotop relative energetics for se-
lected values of x, covering the whole range from dilute to
equiatomic compositions. We have conducted BH optimiza-
tions with only swap moves to sample the homotopic space
of the GM atomic skeleton in 500000 BH steps, and stored the
250 most stable homotops located by each potential, both with
and without charge-transfer corrections. In first place, we have
explicitly checked that none of the new homotops generated in
these searches is more stable than the putative GM already re-
ported. Then, in order to rank the several potentials, we have

just looked at the position that the DFT global minimum ho-
motop occupies in the list of energy-ordered homotops pre-
dicted by each potential. As we are using eleven different po-
tentials for both the bare and the Coulomb-corrected models
(see previous section), we show in figure 1 the position of the
DFT GM averaged over the 11 potentials. When the average
rank is higher than 250, we just set it to 250 when producing
this plot.

Figure 1 clearly demonstrates that the apparently small
(6%) charge transfer contribution to the binding energy pro-
duces a substantial improvement in the description of chemi-
cal order in Zn-Mg nanoalloys, and does so systematically for
all compositions. The results of this test for x = 7 are very
revealing: none of the bare Gupta potentials is able to position
the correct (DFT) homotop among the 250 most stable pre-
dicted homotops, so quite obviously the right homotop would
be missed by a BH search based on this potential; however,
the coulomb-corrected-Gupta potentials find on average the
DFT GM within their 60 most stable structures, and the best
potential does so within the 45 most stable structures. The
improvement is very significant and it is self-evident that the
chances to locate the correct GM substantially increase when
using the improved potential. For equiatomic ratio x = 10,
which is the most complicated case, the average rank of the
Coulomb-corrected model over the 11 different potentials is
120, which might be considered a high rank, but if we remem-
ber that there may be up to

(20
10

)
=184756 different homotops,

the result is quite good indeed, and we aditionally notice that
the best Coulomb-corrected potential locates the right isomer
within the 30 most stable homotops.

In summary, this test demonstrates that the improved de-
scription of chemical ordering provided by the new EP model
is transferable to all nanoalloy composition ratios, a highly
desirable feature in nanoalloy research. In the ESI†we pro-
vide additional tests carried on a 79-atom truncated octahe-
dron, that demonstrate that the improved description of chem-
ical order is transferable to cluster sizes well outside the size
range employed in the fitting procedure.

3.2 Putative Global Minimum Structures for equiatomic
nanoalloys

The putative GM structures located in this work are shown
in figures 2 and 3. We discuss the nuclear skeleton geome-
tries first. In general terms, they are quite similar to those ob-
tained for pure Zn clusters in previous works . Mg2Zn2 adopts
a tetrahedral shape, and the structures of clusters with 6 and 8
atoms are based on glueing several tetrahedral units together.
Nanoalloys in the size range N = 10− 16 are rather based
on a tri-capped trigonal prism unit (TTP) as the fundamen-
tal building block. The TTP unit is in fact the GM structure of
Zn9 . Zn5Mg5 and Zn6Mg6 display one and three adatoms, re-
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Fig. 2 Putative GM structures and approximate point group symmetries of equiatomic Zn-Mg nanoalloys with N = 4−22 atoms. Brown and
golden spheres represent Zn and Mg atoms, respectively. For some clusters, we add in brackets the point group symmetry of the corresponding
homo-atomic cluster in order to better appreciate the symmetry of the structure. More than one structure is shown in case of near-degeneracy.

spectively, on the surface of one TTP unit, while Zn7Mg7 and
Zn8Mg8 contain two TTP units that share some atoms. Up to
this size the clusters have no internal or core atoms. Nanoal-
loys with N = 18−22 atoms contain a single core atom and are
mostly based on a distorted 13-atom decahedron with adatoms
around its equatorial waist, although for Zn10Mg10 a twisted
pyramidal structure (which is the GM for both Zn20 and Mg20)
is degenerate with the distorted decahedral isomer.

Clusters in the size range N = 24−28 have two core atoms
and so display an elongated global shape. The GM structure
of Zn12Mg12 is highly symmetric, as it can be viewed as a rel-
atively small C2v distortion of a D4h structure, and displays a
series of stacked alternating Zn/Mg planar layers. The same
layers, although not so planar, can be clearly identified in the
C3v GM structure of Zn13Mg13, which is also a very symmet-
ric structure based on two interpenetrating Frank-Kasper Z16
polyhedra. Zn14Mg14 follows the same trend, although adding
two atoms appreciably distorts the structure. The nanoalloys
with N = 30,32 atoms contain three core atoms in a triangular
arrangement and an oblate shape. They are quite ordered both
structural and chemically: the shell of Zn15Mg15 is perfectly
decahedral, for example.

Clusters with N = 34,36 contain a 4-atom tetrahedral core.
Zn17Mg17 has a global tetrahedral shape which is the same as
the GM structure of Zn34 , and a highly symmetric C2v chem-
ical ordering once more based on alternating “layers” of Zn
and Mg atoms. Adding only two atoms produce a completely
amorphous structure for N = 36. Clusters with N = 38− 42
contain five core atoms forming a trigonal bi-pyramid; for

N = 44 the core has six atoms in a severely distorted trig-
onal prism configuration; finally, sizes N = 46− 50 contain
seven core atoms. Nearly all of these clusters are quite amor-
phous, the exceptions being N = 38 and N = 46. Zn19Mg19
has almost C2 symmetry and displays a clear stacking of Zn
and Mg layers. Concerning Zn23Mg23, its core is a capped
octahedron with C3v symmetry which itself displays the alter-
nating Zn/Mg chemical order. The shell is decahedral, with
a rounded shape and also quite symmetric, but core and shell
are not congruent enough to produce a high global symmetry.

We discuss chemical order trends next. There are three im-
portant factors that determine the tendency towards segrega-
tion or mixing in Zn-Mg nanoalloys: (1) the bulk cohesive en-
ergy of Mg is 12% larger than that of Zn. Assuming that the
relative strength of Mg-Mg and Zn-Zn bonds is maintained in
the nanoalloys, this factor would tend to maximize the number
of Mg-Mg bonds, and so would favor Mg@Zn segregation;
(2) interatomic distances in bulk Mg are around 30% longer
than in bulk Zn, implying a considerable size mismatch be-
tween both elements. In order to minimize bond strain, the
small element tends to segregate to the cluster core, so this
factor alone would favor Zn@Mg segregation. As the two
factors oppose each other, segregation trends are not clear and
our calculations show that already a bare Gupta potential fa-
vors mixed nanoalloys, with the mixing being quite random
in nature as in a bulk solid solution; (3) finally, charge trans-
fer effects introduce an ionic bonding component that tends
to maximize the number of Zn-Mg bonds and thus promotes
mixing. In fact, the Coulomb-corrected-Gupta potentials pre-

10 | 1–18



24  C     2v   (almost D            4h        ) 26  C     3v   (D     3h   ) 28  C     1  (C   s 30 C     s  (C   2v  ) )

32  C     1 34  C     2v   (T   d ) 36  C     1 38  C     1  (C   2 ) 40  C     1 42  C     1

44  C     1   46   C        s 46  C     1 48  C     1 50  C     1

Fig. 3 Putative GM structures and approximate point group symmetries of equiatomic Zn-Mg nanoalloys with N = 24−50 atoms. Front and
side views of the same cluster are shown for some highly symmetric structures. Rest of the caption as in Figure 2.

dict also mixed structures, but with the important addition that
the mixing is not so random in nature, as chemically ordered
nanoalloys more similar to intermetallic bulk phases are sta-
bilized compared to bare Gupta predictions. Moreover, a sig-
nificant amount of charge transfer can modify the conclusions
extracted from the other two arguments and reinforce mixing
through an “indirect” mechanism. In fact, as Mg atoms do-
nate electrons to Zn atoms, the effective size of a Zn atom in
the nanoalloy is expected to increase as compared to the same
size in a pure zinc cluster, while the size of Mg atoms will de-
crease, thus charge transfer reduces the size mismatch. Sim-
ilarly, we expect that the metallic Mg-Mg bonding is weaker
in the nanoalloy as compared to a pure Mg cluster, because
Mg atoms embedded in the nanoalloy have on average missed
one electron, and so there are less electrons available for di-
rect Mg-Mg bonding. Similarly, the metallic part of the Zn-
Zn bond strength will be enhanced in the nanoalloy through
the directional bonding expected between the acquired elec-
trons which populate the 4p orbital of Zn. These effects have
been already observed in simulations of the Laves phase of
MgZn2

36, a material displaying isotropic Mg-Mg bonding but
directional Zn-Zn bonding due to the charge transfer. The es-

sential message here is that, when the charge transfer is impor-
tant, an atom in the nanoalloy may be quite a different object
as compared to the same atom in the pure metal.

A direct visualization of figures 2 and 3 already shows that
Mg and Zn atoms are well mixed in the equiatomic nanoalloys,
and for N > 22 additionally show a tendency towards compo-
sitional layering. In order to quantify the degree of mixing,
we have evaluated the following mixing indicator for each of
the GM structures:

pmix =
NAB−Nm

AB
NM

AB−Nm
AB

, (11)

where NAB is the number of Zn-Mg bonds, evaluated as ex-
plained in the methods section. NM

AB and Nm
AB are respectively

the maximum and minimum values that NAB can take for that
particular frozen nuclear skeleton. These two last numbers are
obtained from swap-only BH runs without allowing for struc-
tural relaxation. The parameter thus defined is normalized be-
tween zero and one, with a value pmix = 1 indicating the max-
imum degree of mixing that a given nuclear skeleton allows.
The value pmix = 0 is always obtained for left-right segregated
structures, displaying an approximately flat interface separat-
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Fig. 4 The mixing parameter is shown as a function of the size of
the nanoalloy.

ing pure zinc from pure Mg sides. Figure 4 demonstrates that
many Zn-Mg nanoalloys are indeed maximally mixed, and
more in general all of them display a high degree of mixing.
It is particularly interesting that the perfect compositional lay-
ering observed in Zn12Mg12 produces a maximally mixed ho-
motop, in which any Zn-Mg swap would decrease the number
of Zn-Mg bonds. All in all, figure 4 demonstrates that NAB is
the dominant parameter determining the most stable chemical
order, even if nanoalloys with N = 6, 12 or 34 atoms are no-
table exceptions that prove the correlation between NAB and
homotop stability is not perfect.

In the following, we try to identify the secondary factors
that influence homotop stability, by focusing on finer details
of the chemical order. Nanoalloys with N < 18 have no inter-
nal atoms and so we expect that steric effects arising from size
mismatch do not significantly affect the chemical ordering. In
fact, we observe that the number of Mg-Mg bonds (NBB) is
the relevant parameter that competes with maximization of
NAB in determining the most stable homotop. Clusters with
N = 6,8,12 atoms are not maximally mixed because they be-
come stabilized by the larger cohesion of Mg-Mg bonds. For
example, the Cs isomer of Zn4Mg4 contains a pure Mg4 tetra-
hedron with external Zn adatoms; similarly, Zn6Mg6 contains
a trigonal prism unit exclusively made up of Mg atoms. In
general, we observe a higher connectivity between Mg atoms
for all the small clusters with the only exception of Zn5Mg5,
for which the GM is a maximally mixed homotop presenting
a larger number of Zn-Zn bonds. We will rationalise this ex-
ceptional size in the next sections by relating it with a larger
degree of charge transfer.

In nanoalloys with a core@shell structure we observe that
the compactness of the atomic skeleton becomes a more im-

portant factor than the number of Mg-Mg bonds, and the com-
pactness degree is mainly determined by the size mismatch.
In fact, we observe a clear systematics in the evolution of the
composition of the core as a function of size, that can be easily
interpreted in terms of the size mismatch effect. For each core
size (which is stable over a certain interval of cluster sizes)
we observe that the core starts being Zn-rich at the beginning
of the stability interval of that core size, and evolves towards
a Mg-rich core at the end of the stability interval. So, as the
core size increases, the nanoalloys fluctuate between Zn-rich
and Mg-rich core compositions. For example, Zn occupies
the single core site for N = 18 and the pyramidal isomer of
N = 20, but it is Mg that occupies the core site for the decahe-
dral isomer of N = 20 and for N = 22; the core evolves from
Zn2 to ZnMg and finally to Mg2 for sizes, N = 24,26 and 28,
respectively; for N = 34 the core is a pure Zn4 tetrahedron,
while it becomes Zn2Mg2 for N = 36, etc. There are no ex-
ceptions to this systematic rule. The reason why Zn17Mg17
is not maximally mixed, for instance, is precisely its strong
preference for a pure Zn core.

In order to demonstrate the importance of compactness ar-
guments in determining the optimal core compositions, we fo-
cus on the so-called inverted homotop, which is obtained from
each GM by a complete swap of all Zn and Mg sites. For
equiatomic nanoalloys this chemical inversion does not mod-
ify the global composition. Notice that with our definition
of the pmix parameter (implying a rigid atomic skeleton), the
inverted homotop has exactly the same value of NAB and so
the same pmix as the GM homotop, so if NAB were the only
relevant parameter, the two homotops should be degenerate.
Upon structural relaxation, however, we observe that the in-
verted homotop systematically expands, i.e. its mean square
radius increases, so it is less compact (and usually quite less
stable) than the GM homotop. We also notice that, once re-
laxed, the inverted homotop has a lower value of NAB than
the original GM homotop, as our definition of coordination
numbers is distance-dependent. We have also checked that the
mean square cluster radius increases upon modifying the core
composition in the GM structures, so we can conclude that
the optimal core composition is the one that makes the cluster
most compact. For some sizes as for N = 34, this trend com-
petes with the maximal mixing rule, producing a pure zinc
core.

There is another interesting observation extracted from this
analysis. The inverted homotop has all A-A bonds transmuted
into B-B bonds and viceversa, as compared to the GM homo-
top. While most small clusters with no core atoms tend to
prefer the homotop with maximum NBB, for the cluster with
10 atoms and for several of the bigger size nanoalloys the GM
homotop has more A-A bonds than the inverted homotop, i.e.
these clusters tend to maximize the number of Zn-Zn contacts
instead. As we will show in the next sections, these clusters
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display a higher than average amount of charge transfer, so we
can conclude that the amount of charge transfer modulates the
relative strength of Zn-Zn and Mg-Mg bonds, as suggested in
the tentative arguments provided above. Quite obviously, this
effect renders the detailed chemical ordering preferences size
dependent and so quite unpredictable.

In summary, chemical order preferences in equiatomic Zn-
Mg nanoalloys are mainly dictated by a maximization of
hetero-atomic bonds; exceptions to this rule arise whenever
a homotop exists which is significantly more compact than
the maximally mixed homotop, and size mismatch effects then
tend to determine the composition of the core. For very small
clusters, maximization of the Mg-Mg bonds seems to be a
secondary factor to consider. While maximization of Zn-Zn
bonds becomes preferred in systems with an enhanced charge
transfer. Furthermore, we observe that charge transfer effects
tend to enhance compositional layering.

To the best of our knowledge, there are no experimental
results available for Zn-Mg nanoalloys that we could use to
assess our results, which thus remain as purely theoretical pre-
dictions. Concerning the bulk limit, the equiatomic alloy is not
reported as a stable intermetallic phase37,38. However, there is
an intermetallic compound experimentally reported at close to
equiatomic composition, namely Mg21Zn25, and another one,
Mg12Zn13, has been predicted through computational thermo-
dynamics calculations of the phase diagram39, although this
last one has not been experimentally characterized. Finally,
DFT calculations for equiatomic composition40 have reported
a metastable orthorhombic phase with Pmma crystal group,
which would decompose into Mg21Zn25+Mg149Zn. It is a
very interesting finding that our GM for Zn12Mg12 can be di-
rectly obtained by relaxing a fragment of the Pmma bulk lat-
tice, so it can be considered a bulk fragment (we show in the
ESI†images of that bulk phase and of the 24-atom relevant
fragment). Similarly, Zn13Mg13 can be viewed as a fragment
of the trigonal Mg21Zn25 lattice (R3̄c symmetry), although
with a slightly different chemical ordering due to the differ-
ent composition ratio. We suggest that the interpenetrating
Z16 Frank-Kasper polyhedra in Zn13Mg13 might be a candi-
date building block for the still unassigned Mg12Zn13 crystal
phase, given the proximity in composition and also in the total
number of atoms per formula unit.

3.3 Electronic Properties

We have evaluated the vertical ionization potential (IP) and
electron affinity (EA) of all GM structures through a ∆−SCF
calculation, i.e. by explicitly calculating the cation or anion
state at the optimal geometry of the neutral cluster and taking
the appropriate difference of total energies. We have also eval-
uated the fundamental gap, defined as Egap=(IP-EA), which is
twice the chemical hardness. The numerical values of all these
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Fig. 5 The standardized vertical ionization energy, electron affinity
and fundamental gap are shown as a function of the cluster size N
(lower scale) or the number of electrons Ne (upper scale). Relevant
cluster sizes are explicitly annotated in the figure, weaker features
with a smaller size number.

quantities are shown in tabular form in the ESI†. They all dis-
play a steep slope as a function of cluster size which makes
it difficult to appreciate relevant local variations. For an op-
timal visualization, we have processed these indicators in the
following way: first, we have fitted the numerical data to cu-
bic polynomial functions in order to remove the global trend
in the size evolution; then, we have shifted the mean value
of the trendless data to zero and divided them by the stan-
dard deviation of the data set. The resulting “standardized”
data are dimensionless and are shown in figure 5. Local max-
ima in Egap identify those clusters that are more electronically
stable against both oxidation and reduction processes. A sim-
ple spherical jellium model predicts that this should occur for
metallic clusters with Ne = 8,18,20,34,40,58,68−70,92, . . .
electrons. Jellium models allowing for ellipsoidal or arbitrary
deformations in the angular shape of the confining potential
can predict additional (sub-shell) closings due to the splitting
of angular momentum multiplets in a non-spherical potential.
In discussing the results of this figure, we first notice that hav-
ing fixed the nanoalloys composition to equiatomic, and Zn
and Mg being divalent elements, the total number of valence
electrons increases in steps of 4 electrons from one cluster size
to the next, so some of the expected jellium shell closings may
not be realized in our data set.

The results in figure 5 demonstrate that equiatomic Zn-Mg
nanoalloys still conform with the jellium paradigm quite well,
but not as closely as the pure Mg and Zn clusters do, prob-
ably as a consequence of the significant charge transfer ef-
fects. The most important electron shell closings occur for
N = 4,16,20,32,46 atoms, i.e. for Ne = 8,32,40,64,92 elec-
trons, while only a hardly appreciable local maximum is ob-
served for N = 10 (20 electrons). Sizes N = 4,20 and 46 ex-
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actly coincide with spherical jellium shell closings. Signatures
of other spherical shell closings can only be partially or indi-
rectly seen: for example, there is a deep minimum in the elec-
tron affinity for Ne = 20 electrons which is one of the expected
signatures of a significant shell closing, but the corresponding
ionization energy is quite low, hence the gap is not especially
large in Zn5Mg5; although none of our clusters has exactly
34 electrons, the deep minimum in the gap for a cluster with
Ne = 36 electrons is induced by the opening of a new elec-
tron shell; a mild local maximum at N = 28 is the only visible
signature of the shell closing expected for Ne = 58 electrons,
again a value not realized in our cluster sample; finally, the
sharp decrease in the ionization energy after N = 34 is as-
sociated with the spherical shell closing expected at Ne = 70
electrons.

The enhanced electronic stability of Zn16Mg16 is due to
its marked oblate deformation, which produces a strong frag-
mentation of the 2D shell in which the levels with |M| = 2
are stabilized. Its superatomic electron configuration would
be . . .1G182D43S2. Similarly, Zn8Mg8 has a wide gap with
32 valence electrons due to its elongated shape (in fact, it is
well known that clusters with around 30 electrons are very
stable in an ellipsoidal jellium model description if they adopt
a prolate shape41,42). The prolate distortion destabilizes now
the 1F orbitals with |M| = 3 and additionally stabilizes a
lot the 2Pz orbital, producing the superatomic configuration
. . .2S21F102P2

z .
We notice that the optimal combination of a large ioniza-

tion energy together with a low electron affinity only occurs
for N = 4,32 and 46, while for all other sizes the IP and EA
contributions to the fundamental gap compete, this being the
main reason for the difficulties in detecting strongly marked
features in the size evolution of the gap. The deep IP mini-
mum obtained for the nanoalloy with Ne = 20 electrons rep-
resents the most important departure from jellium predictions,
although the point is that this cluster is not spherical at all so
purely geometric packing effects may be dominating its sta-
bility.

3.4 Cluster Stabilities

In order to analyze the size dependence of cluster stabilities,
figure 6 shows three different indicators: the cohesive en-
ergy (or binding energy per atom) is defined as Ecoh(N) =
E(Mg)+E(Zn)

2 − EN
N , where EN is the energy of the nanoalloy

with N atoms; the first-order energy difference Eevap(N) is
the dissociation energy of a ZnMg formula unit; finally, the
second-order energy difference is ∆2(N) = EN−2 + EN+2 −
2EN . The cohesive energy quantifies the total internal energy
content of a cluster and is therefore a measure of its global (or
absolute) stability. Eevap and ∆2 provide more “local” stability
measures, by comparing the energy of a cluster of size N to

4

10
20

26 40 46
34

10 18 20 26 40 46
32

10 20 26

34
40

46

Fig. 6 Size dependent stabilities of equiatomic Zn-Mg nanoalloys
are shown as a function of the total number of atoms N (lower scale)
or the total number of electrons Ne (upper scale). The upper graph
shows the cohesive energies as standardized adimensional
quantities. The middle graph shows the energy cost of evaporating
(or dissociating) a ZnMg dimer. Finally, the lower graph displays
the second-order energy differences. Clusters with enhanced
stability (or magic sizes) are explicitly annotated for each of the
stability indicators, with a number of smaller size the weaker the
corresponding feature.

that of clusters with neighboring sizes. The cohesive energies
are shown as standardized adimensional numbers in order to
make the local variations more apparent in the figure (the raw
cohesive energies are shown in the ESI†). The indicators agree
in identifying clusters with N = 4,10,20,26 and 46 atoms as
the most stable (or magic) sizes, although sizes N = 40 and (to
a lesser extent) 32− 34 also display locally enhanced stabili-
ties of secondary importance.

In our opinion, the most interesting conclusion from the
results of figure 6 is that the magic sizes are not so corre-
lated with electronic shell closings as they are in pure Zn and
Mg clusters , which we associate again to the non negligible
charge transfer effects which introduce an ionic component
into the calculation of stabilities. Only the magic numbers
N = 4,20 and 46 can be clearly correlated with electronic shell
closings. The wide electronic gap observed at N = 16 (figure
5) does not result in a specially stable cluster, and the high
ionization energy for N = 32− 34 is hardly reflected in the
corresponding thermodynamic stabilities.

On the other hand, there are very stable nanoalloys that
do not have a specially stable electronic structure (N =
10,26,34,40). Their stability must then be associated with
other factors, such as geometric packing or an special chem-
ical coordination framework. The number of Zn-Mg hetero-
bonds was the dominating factor in determining the most sta-
ble homotop for each separate cluster size, but it is not ex-
pected to affect significantly the size dependence of stabilities
as essentially all nanoalloys are well mixed (see figure 4). In
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Fig. 7 Upper graph: the root-mean-squared cluster radius, divided
by N1/3; middle graph: the total number of Zn-Zn bonds per Zn
atom; lower graph: the total number of bonds per atom. All the
indicators are shown as functions of the total number of atoms
(lower scale) or of electrons (upper scale).

searching for meaningful correlations between cluster stabil-
ities and other geometric factors, we have evaluated several
descriptors and show the most relevant ones in figure 7. The
upper graph shows the root-mean-squared cluster radius di-
vided by N1/3 as a measure of the compactness of the nanoal-
loy structures. It is expected that more compact clusters result
from a relatively stronger bonding and so can display some
correlation with stabilities43. The lower graph shows the av-
erage coordination number per atom as a global measure of
bond connectivity. Finally, the middle graph displays the av-
erage number of Zn-Zn bonds per Zn atom. We have also
analyzed the average magnitude of Bader charges as a func-
tion of size (not explicitly shown), and observed that the local
maxima in the average Zn-Zn coordination generally correlate
with cluster sizes displaying an enhanced degree of charge-
transfer, although the correlation is not perfect and the few
exceptions to it will be explained in the discussion below.

The only indicator that shows a perfect correlation with the
unexplained magic numbers is the average Zn-Zn coordina-
tion, as it displays clear local maxima for N = 10,26,34 and
40 atoms. Most of these maxima are reflected in the global
coordination (lower graph), although the feature at N = 40 is
hardly visible in this indicator. Meanwhile, the number of Mg-
Mg bonds (not explicitly shown) is not especially high at those
sizes (for some of them is even a local minimum), so the en-
hanced average coordination at those sizes clearly results from
an enhanced Zn-Zn coordination. As mentioned above, a com-
plete swap of A and B elements produces an inverted homo-
top with more Mg-Mg bonds which is significantly less stable
than the GM homotop. The upper graph shows that the clus-
ter with N = 10 atoms is also significantly more compact than
their neighbors, but this indicator does not consistently corre-

late with the other enhanced stabilities. In summary, our re-
sults demonstrate that, all the nanoalloys being similarly well
mixed, those with a significantly larger number of Zn-Zn con-
tacts are more stable. As pure Mg is more cohesive than pure
Zn, these results are an indirect demonstration of the signif-
icant strengthening of Zn-Zn bonds induced by alloying and
charge transfer.

We can thus provide a detailed explanation for each of the
magic clusters displayed in figure 6. Zn5Mg5 is very stable
despite not being an electronic shell closing because it sat-
isfies all other requirements for a high stability: it is maxi-
mally mixed and has a very compact structure based on the
tri-capped trigonal prism unit which is known to be very sta-
ble also in pure zinc clusters6,7. Additionally, the observed
compositional segregation, with Zn atoms exclusively occu-
pying sites of the trigonal prism and Mg atoms occupying all
the external capping sites, results in a larger charge transfer
contribution to the stability and in a maximization of strength-
ened Zn-Zn bonds. Zn10Mg10 does not just have a very stable
closed shell electronic structure and perfect mixing, but ad-
ditionally figure 7 shows that it satisfies as well the require-
ments of high structural compactness, bond connectivity, and
a larger than average number of Zn-Zn bonds. Zn13Mg13 can
be considered a geometric shell closing with high symmetry,
bond connectivity and a large number of Zn-Zn bonds. Here
it is worth mentioning that Zn12Mg12 is similarly compact
and is more stabilized than size N = 26 by charge transfer
effects, so size N = 24 is less stable than N = 26 only be-
cause of its significantly lower bond connectivity and smaller
number of Zn-Zn bonds. In fact, a direct visualization of
the structures in figure 3 already shows that there are several
low-coordinated atoms in Zn12Mg12, which are not present in
Zn13Mg13. Zn23Mg23 is a purely electronic magic number, as
it does not satisfy any of the identified structural criteria for
stability. The local stability for N = 40 atoms can only be due
to having a higher Zn-Zn coordination than the neighboring
sizes. Finally, N = 34 shows the most important maximum in
average Zn-Zn coordination because it has a pure zinc core,
but not a very high stability because it is significantly less
mixed (figure 4) than other clusters precisely because of the
segregation of Zn atoms to the core.

As a final stability indicator, we present in figure 8 the cal-
culated excess energies per atom, defined as:

Eexcess(N) =
1
N

E(ZnN/2MgN/2)−
1
2

E(MgN)−
1
2

E(ZnN).

(12)
The excess energy per atom quantifies the average energy gain
upon formation of the nanoalloys from the corresponding pure
clusters of the same size. Figure 8 demonstrates that alloying
is exothermic for all sizes, with a global decreasing trend so
that formation of the nanoalloy is more exothermic the bigger
the size. On top of that average trend, the size N = 26 clearly
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stands out as the one where alloying is most exothermic. The
deep minimum in excess energy strongly suggests that the spe-
cific combination of two Z16 units is very favorable and is a
serious candidate as a building unit in intermetallic bulk or-
dered phases with close to equiatomic composition which are
not characterized yet, as for example Mg12Zn13. More in de-
tail, size N = 24 produces the second most stable excess en-
ergy, and local minima occur for N = 10,18 and 38, i.e. pre-
cisely for those sizes displaying either a clear compositional
layering (N = 24,26,38), or another type of strong chemical
ordering: for N = 10, the ordering is more of a core@shell
type, with all Mg atoms occupying more external sites; in
N = 18, there is an alternance of Zn and Mg elements around
the 5-fold axis of the decahedron. From this we can conclude
that there is a driving force towards chemically ordered phases
in Zn-Mg alloys around the equiatomic composition ratio.
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Fig. 8 The excess energy per atom is displayed as a function of
cluster size N.

4 Conclusions and Summary

We have developed and presented a new EP model, called
Coulomb-corrected-Gupta potential, that should be useful in
locating global minimum structures of metallic nanoalloys
with a non-negligible degree of charge tranfer, or more in
general in simulating materials with both metallic and ionic
contributions to bonding. The new potential augments the
bare Gupta potential with an explicit ionic interaction model
containing monopolar electrostatic interactions between point
charges and atomic charging self-energies. Opposite to previ-
ous similar works that used EEM-derived charges, our ionic
model is feeded with parameterised values of Bader charges
of ab initio quality, thus ensuring reproduction by the model
of the correct charge transfer trends, at a computational cost
which is significantly lower than that needed to derive EEM
charges. The parameters of the potential are fitted to ab ini-
tio data generated for a diverse training set of cluster struc-

tures. The model is then applied to locate the GM structures
of equiatomic Zn-Mg nanoalloys with up to 50 atoms in size
within an EP-DFT approach. Our results demonstrate that the
Coulomb-corrected-Gupta potential is much superior to the
bare Gupta model in its ability to locate stable homotops, al-
lowing to conclude that charge transfer effects are essential
for a proper modeling of these materials. In the following we
enumerate the more specific conclusions extracted from our
work.

We employ an extensive testing set containing around 700
cluster configurations to quantitatively assess our potential
models. A somewhat negative conclusion from our work
is that charge transfer corrections improve the error of the
fitting by a mere 5% as compared to a bare Gupta poten-
tial. Large quantitative errors thus remain in the Coulomb-
corrected model, of around 0.4 eV/Å in forces and 0.12
eV/atom in binding energies, when compared to ab initio re-
sults. We conclude that charge transfer effects do not seem to
be the main quantitative correction in the search for a very ac-
curate potential. The ionic contribution amounts to a 6% of the
total binding energy, which is smaller than initially expected
based on the large values of Bader charges. This small con-
tribution results from the scaling down of Bader charges by
a factor of 0.28, strictly needed to reproduce the curvature of
the ab initio potential energy landscape around local minima.
Although negative, we consider this is a very interesting con-
clusion. In future work, we will try to improve the potential
model by dispensing with the Gupta description of metallic
interactions and using a neural network potential instead.

Notwithstanding the small percentage ionic contribution to
the binding energy, the new potential greatly improves the en-
ergetic ordering of homotops, allowing to locate much more
stable chemical order patterns than the bare Gupta potential,
which is the positive aspect of this work. Applicability of
our scheme to other materials will depend on the ability to
accurately parameterise Bader charges, something that we ex-
pect to be feasible in alloys with a substantial degree of charge
transfer.

The skeletal atomic structures of equiatomic Zn-Mg nanoal-
loys are generally similar to those of pure Zn clusters6,7. The
most stable chemical order is the maximally mixed one for the
majority of sizes, with the nanoalloys displaying an additional
tendency towards compositional layering. We have identified
additional factors of secondary importance that complete the
description of chemical order systematics and cluster stability:

• In very small clusters with no core atoms, maximization
of Mg-Mg bonds can compete with the dominating maxi-
mal mixing rule. So in the very small size range, we con-
clude that Mg-Mg bonds are stronger than Zn-Zn bonds,
as it is the case in the pure metals.

• Size mismatch effects control the chemical composition

16 | 1–18



of the core in core@shell clusters, and can also compete
with the maximal mixing rule. For each core size, the
core composition evolves from Zn-rich towards Mg-rich
as the cluster size increases.

• Maximization of Zn-Zn contacts (under the constraint of
maximal mixing) is observed for clusters with significant
charge transfer. In particular, those clusters with a larger
than average number of Zn-Zn bonds are found to pos-
sess enhanced thermodynamic stability, a correlation that
demonstrates that Zn-Zn bonds are significantly strength-
ened in the alloys due to the charge transfer effects.

We have compared our structural results with the avail-
able literature on the bulk Zn-Mg phase diagram. The
Zn12Mg12 nanoalloy is a fragment of the Pmma bulk lattice, a
metastable intermetallic phase predicted computationally for
the equiatomic alloy; Zn13Mg13 is a fragment of the R3̄c lat-
tice of Mg21Zn25, a stable intermetallic phase. Thus a pref-
erence for bulk-like structural and chemical orderings, includ-
ing a clear compositional layering, becomes evident already at
quite small sizes.

Both electronic and stability indicators suggest that Zn-Mg
nanoalloys conform to a jellium picture of delocalized elec-
trons to a lesser extent than pure Zn or Mg clusters do, as a
result of the ionic contribution to bonding due to the charge
transfer. Magic clusters with an enhanced stability occur for
N = 4,10,20,26,34,40,46 atoms. Only a few of them corre-
late with an electronic shell closing, while others are explained
by geometric packing and bond connectivity arguments, in
particular by the strengthening of Zn-Zn bonds upon alloying.
It is reassuring to observe that the two factors (electronic and
geometric) are important in a material displaying two different
contributions to bonding. Formation of the nanoalloy from the
pure clusters is most exothermic for N = 26. In general, the
compositional layering is associated with an enhanced excess
energy value.

The present work represents an important step towards re-
liable modeling of Zn-Mg nanoalloys, in which we are inter-
ested due to their excellent corrosion protection properties for
specific compositions such as MgZn2 or Mg2Zn11. The ob-
servation that small nanoalloys already adopt structural motifs
and chemical orderings of bulk phases suggests they might be
simple yet meaningful models for simulating chemical pro-
cesses relevant to realistic anti-corrosion materials. Similarly,
the finding that Zn-Zn bonds can be significantly strength-
ened upon alloying suggests that magnesium atoms may be
preferentially attacked by oxygen reagents, promoting surface
segregation of Mg atoms under an oxidizing atmosphere and
the formation of a magnesium-rich oxide crust, features that
have been observed experimentally1–3. Future work will fo-
cus on obtaining reliable structural and electronic data for Zn-
Mg nanoalloys with those two compositions, and on analysing

their reactivity when placed in an oxidizing environment. But
with more generality, we expect the model proposed here can
reveal itself as a useful tool for many other metallic alloys that
display significant charge transfer effects.
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