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Abstract

The main objective of this Master Degree Work is to analyze the structural and electronic properties
of small magnesium cluster anions employing computational techniques, and to reproduce and interpret
experimental measurements reported for this physical system. In a first step, we will locate the global
minimum structures of Mg−

N cluster anions wirh N = 3 − 38 atoms, by employing first-principles (ab
initio) computational techniques based on DFT (Density Functional Theory) as a method to solve the
electronic problem. Our theoretical stabilities succeed in reproducing the relative cluster abundances
measured by mass spectroscopy techniques. Finally, we report a detailed analysis of several electronic
indicators (ionization potential, band gap, density of electronic states, etc.), aimed at reproducing
experimental photoemission spectra and assessing the evolution of metallic behavior in Mg clusters
of increasing size. In general, we conclude that our theoretical results are in good agreement with
experimental measurements.

El objetivo de este Trabajo de Fin de Máster consiste en aplicar técnicas de simulación
computacional para analizar las propiedades electrónicas y estructurales de pequeños agregados
aniónicos de magnesio, intentando reproducir e interpretar f́ısicamente medidas experimentales
realizadas previamente sobre dicho sistema. Para ello, obtendremos en un primer paso las
estructuras de mı́nima enerǵıa de agregados Mg−N con N = 3 − 38 átomos, utilizando un
método de primeros principios (ab initio) basado en la Teoŕıa del Funcional de la Densidad
(DFT, por “Density Functional Theory”) para resolver el problema electrónico. Con las enerǵıas
calculadas, se consigue reproducir e interpretar las abundancias relativas de estos agregados,
medidas en espectros de masas. Finalmente, ofreceremos un análisis de diversas propiedades
electrónicas (potencial de ionización, salto de banda, densidad de estados electrónicos, etc.) con
el objetivo de estudiar el comportamiento metálico de estos agregados e interpretar espectros
foto-electrónicos publicados en trabajos previos. En general, observamos un muy buen acuerdo
con los resultados experimentales disponibles.
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I INTRODUCTION

I Introduction

Over the last decades, nanomaterials have
been one of the fastest-growing technological ar-
eas in Materials Science due to the development
of nanoscience. At this length scale, the quan-
tum mechanical effects dominate over classical
ones, causing the nanoparticles to have different
properties from those of the macroscopic world.
Moreover, those properties are strongly size-
dependent and vary drastically upon adding or
removing one atom from the nanoparticle, mak-
ing it difficult to predict its physico-chemical
behavior. Hence an understanding of the
properties of isolated (free-standing) clusters is
an essential first step towards contolled manip-
ulation of new materials and development of
technological devices for particular applications.

Atomic clusters are particles composed by
a countable number of atoms [1], ranging
from two in the diatomic molecule to several
hundred thousand atoms. In this size range,
the geometric and electronic structures are
the most fundamental properties of clusters to
control and optimize, for instance, catalytic
activities or electronic, optical and magnetic
responses; often these properties are unrelated
to those of the corresponding bulk material.

Among the systems that have attracted
substantial interest in the last years, there are
clusters of divalent metallic elements where the
two valence electrons occupy the s−orbital, and
where the next empty p−orbital is well sepa-
rated by an energy gap. In the bulk limit, these
materials are metallic, hence upon increasing
the number of atoms a transition must occur
from non-metallic to metallic bonding [2], [3]
[4], [5], [6].

In my previous work, reported as a final de-
gree project[7], we considered both neutral and
charged magnesium clusters with up to N = 21
atoms. Continuing with that line of research, in
this work we will focus on structural and elec-
tronic properties of negatively singly-charged
Mg−N clusters with N = 3 − 38 atoms. There
are at least two reasons for considering only
anions now: (1) the computational expense of

the calculations increases very fast with system
size, but most importantly (2) there are more
experimental results available for anions in the
literature.

A fundamental characteristic of these diva-
lent metal clusters is that certain sizes form
preferentially, i.e. are more abundant, in the
experimental mass spectra. Some clusters have
a higher stability than others because they
possess special numbers of electrons, known as
“magic numbers” [8].

Computer modelling is an essential tool to
perform precise simulations and understand
why selected numbers of atoms yield enhanced
stability in a cluster. Our calculations have
been performed using the first-principles
software called SIESTA (Spanish Initiative
for Electronic Simulations with Thousands
of Atoms) SIESTA; this code is used for
electronic-structure calculations and materials
modelling at the nanoscale and it is based on
the Density Functional Theory (DFT) formal-
ism[9]. It is within this theoretical framework
that the global minimum (GM) structures are
found. Our results allow studying the evolution
of both electronic and geometrical structures, as
well as the emergence of metallic behaviour, as
a function of the size of the nanoparticle. The
stability of a cluster includes contributions from
different electronic and geometric factors that
have to be investigated. Moreover, an explicit
comparison of the theoretical stability trends
with the experimental abundances determined
by mass spectrometry, and of the theoretical
electronic properties with photoemission spec-
tra, will serve to assess the accuracy of the
calculations, and so of the conclusions extracted
from them.

In particular, magnesium clusters are con-
sidered to constitute a paradigmatic system
to study the insulator-to-metal transition. As
we said above, magnesium is metallic in the
bulk limit due to the energy overlap between
the electronic bands arising from s− and p−
atomic orbitals, i.e. due to a significant s − p
hybridization. Thus, we expect that both the
s − p hybridization degree and the electron
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delocalisation increase with cluster size, and
it is a fundamentally interesting issue to know
if this evolution towards metallicity is gradual
or abrupt, and at which cluster size has the
bonding become “metallic-like” [2] [3] [4], [5],
[6]. We have focused on addressing this issue as
well as other properties of interest to the field
of nanoscience.

This work aims at offering a self-contained
exposition of the most fundamental properties
of magnesium cluster anions. To offer a thor-
ough discussion, this article is structured as
follows: in Section II, we will briefly present the
theoretical model used to describe the cluster
systems at the atomic level. In section III,
the description of the computational model
used to locate the GM structures is offered.
Section IV will be divided into four subsec-
tions: the first one (IV. 1.) reports the GM
structures of Mg−N clusters, describing how
their molecular architecture changes with the
size of the nanoparticle; secondly, in IV. 2.,
we compare our theoretical stabilities with the
abundance results measured in cluster beam
experiments; third, the IV. 3. subsection covers
the description of properties which refer to
electronic stability; next, subsection IV. 4.
adresses the evolution towards metallicity in
magnesium clusters as a function of increasing
size. Finally, the relevant conclusions that have
been reached are shown in section V, emphasiz-
ing the importance of fundamental research on
metal clusters to the world of nanotechnology.

II Theoretical model

In order to explain the theoretical framework
employed to describe our physical system, as
well as the conditions of the simulation, let
us concentrate first on the fundamental object
that governs the physical properties of a cluster
at the microscopic level, namely the quantum
hamiltonian for a system of electrons and nuclei
interacting through the Coulomb force law. In
this work we have opted for first principles or

ab initio methods to self-consistently solve the
multi-electronic non-relativistic Hamiltonian
within an independent-particle mathematical
framework. In variational methods of the type
here employed, the total energy of a Mg−N
cluster is then calculated as the expectation
value of the exact hamiltonian over a single-
determinant approximate electronic ground
state wave function. We will see in detail how
these methods provide accurate energies at a
moderate computational cost.

1 Hamiltonian

A theoretical understanding of the properties
of a material system with N = Ne + Nn

particles, including Ne electrons and Nn nuclei,
resides in its wave function Ψ. In fact, the
quantum state of the system is determined by
this wave function of 3(Ne + Nn) coordinates.
In a conservative system, the eigenfunctions
of the Hamiltonian operator are obtained
by solving the time-independent Schrödinger
equation. The set of eigenfunctions, each with
an associated eigenvalue E, are called the
“stationary states” of the system.

The resolution of that equation is an
extremely complex problem, therefore cer-
tain approximations are usually considered.
The first and most fundamental one is the
Born-Oppenheimer (also called adiabatic)
approximation, where the atomic nuclei are
considered as infinitely slow (i.e. essentially
immobile) compared to the much higher speed
of the electrons. The disparity between nuclear
and electronic velocities is due to the large
difference in mass between the two types of
particles, so this approximation can alter-
natively be stated by saying that nuclei are
infinitely massive as compared to electrons.
This allows decoupling the dynamics of nuclear
and electronic variables. Hence for each set of
(fixed) nuclear coordinates, the nuclei create
an external static potential where the electrons
move, allowing to define electronic stationary
states. The dynamics of nuclear coordinates
then evolves in the average potential created
by the continuous charge distribution of the
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electronic stationary states.

Thus, the wave function Ψ = χψ is factored
into two parts: the one corresponding to the nu-
clear problem (χ) has an explicit dependence on
nuclear coordinates only; the other one (ψ) rep-
resents an electronic stationary state, and has a
parametric dependence on nuclear coordinates
apart from the obvious explicit dependence on
electronic coordinates.

In this study, only the electronic component
will be obtained at a quantum level for each
given nuclear configuration, and we will consider
nuclei as classical point particles. Therefore,
from now on we will restrict our attention to
the so-called electronic hamiltonian, in which
the nuclear kinetic energy term is excluded:

Hψ = (T + Vext + Vnn + Vee)ψ = Eψ (1)

where H is the sum of the electronic kinetic
energy T , the electron-electron interaction
potential energy Vee, the nuclear repulsion
energy Vnn and the external potential Vext
containing the coulomb attraction between the
electrons and the frozen nuclei 1. This last
term, therefore, is the one that provides a
differentiating factor between systems, because
for each fixed value of Ne, the operators T
and Vee are universal, i.e. the same for all
multielectronic systems. The nuclear term
Vnn is a constant during the resolution of the
electronic equation, and so produces a mere
global shift of the eigenvalues. From now on
we will not explicitly include this term in the
discussion, but it should be understood that
it is always included in the calculations. Once
we have focused the problem, now the question
is how we are going to precisely solve these
equations; for this, we will use the following
ab-initio method.

1The external potential Vext term could also include
the interaction with externally applied fields.

2 Density Functional Theory

Although the approximations applied up
to this point obviously simplify the original
problem, determining the eigenvalues of the
electronic Hamiltonian equation (1) is still a
tough problem. In the following, we describe
one of the methodologies used to overcome such
problems efficiently: the Density Functional
Theory (DFT)[9], [10]. This is an ab initio
method for solving the nonrelativistic, time-
independent Schrodinger equation.

The main idea of DFT is to transform the
Schrödinger equation for the Ne electrons of
the system into a simpler variational problem,
expressed in terms of the electron density n(r)
as the fundamental variable:

n(~r) = Ne

∫
|ψ (~r, ~r2, ..., ~rNe

)|2 d~r2...d~rNe
(2)

According to DFT, any electronic prop-
erty of the system in its ground state can
be completely determined once the electron
density n(r) is known. Using n(r) instead
of the wave function, the number of spatial
variables is reduced from 3Ne to 3. Thus,
this theory significantly reduces the complex-
ity of the problem and so its computational cost.

2.1 Hohenberg-Kohn theorems

DFT is based on two theorems, first formu-
lated by Hohenberg and Kohn[10], which hold
for any system of electrons under the influence
of an external potential.

The first Hohenberg–Kohn theorem states
that the ground-state electron density uniquely
determines the corresponding external potential
(Vext) up to an additive constant. Conse-
quently, the external potential, and hence the
total energy E and even the multi-electron
wavefunction, are functionals of the electron
density n(r).
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The second Hohenberg–Kohn theorem de-
fines an important mathematical property
of the energy functional. It states that the
ground-state energy is determined by finding
the electron density which minimizes the total
energy functional. Knowing the explicit expres-
sion of this functional (E[n(~r)]) is then enough
to variationally determine the ground-state
density of the system.

Nevertheless, in order to employ the func-
tional E[n(~r)] within a variational framework,
we first require to know its explicit expres-
sion in terms of the density. Unfortunately,
although DFT shows that the functional ex-
ists, it does not provide an explicit expression
for it, nor any systematic method to calculate it.

At least some relevant terms in the Hamilto-
nian can easily be expressed as explicit function-
als of the density n(~r). The first one is the exter-
nal potential energy, describing the interaction
of the electrons with the electrostatic potential
created by the nuclei (vext(r)):

Vext[n(r)] =

∫
drvext(r)n(r) (3)

The second one is a part of the electron-electron
interaction energy Vee. In fact, this interaction
can be split into Hartree energy (VH [n(r)] ) and
so-called exchange and correlation (E0

xc[n(r)] )
energy contributions:

Vee[n(r)] = VH [n(r)] + E0
xc[n(r)] (4)

The first term in equation (4) is the Hartree en-
ergy, expressing the coulomb self-repulsion asso-
ciated with a classical continuous charge distri-
bution of density n(~r), and is known exactly:

VH [n(r)] =
1

2

∫
drdr′

n(r)n(r′)

|r− r′|
(5)

As for the second term in 4, the exchange
and correlation functional (E0

xc[n(r)]), it is
the correction to the Hartree term due to
purely quantum exchange effects and also to
many-particle correlation effects associated
with the point-like character of the electrons.
In contrast to the previous terms, the exact

explicit expressions for the functionals E0
xc[n(r)]

and T [n] are not known.

We will explain later on how one can resort
to approximate functional expressions to get
around this problem in practice, but before do-
ing that, we notice that the ground-state energy
can be obtained at least at a formal level using
implicit functionals of the density. In fact, the
energy functional can be written as:

E[n] = min < ψn|H|ψn >=

= min < ψn|T + Vee + Vext|ψn > (6)

where the expectation value of the hamilto-
nian is minimized over the subset of many-body
wavefunctions ψn that produce a given density
n(~r). Further minimizing this functional with
respect to the density n(~r) results in an exact
implicit expression for the ground-state energy
functional, and as a by-product, at the minimum
ψn would be the ground-state wavefunction as
an implicit functional of the density.

The last minimization is usually reformulated
by introducing the universal functional F [n] =
T [n] + Vee[n], which is the same for any system
with a given number of electrons (Ne):

E = min
n
{F [n] + Vext[n]} (7)

Here it is the universal functional F [n] the one
that is not known explicitly. As F [n] can itself
be written in terms of a minimization over the
subset of many-body wavefunctions that pro-
duce a density n, at least F [n] can also be known
as an implicit functional of the density. Al-
though useful for the theoretical advance of for-
mal DFT, this is not useful for practical compu-
tations.

In summary, both T and E0
xc need to be

approximated. The exchange and correlation
term is usually of the order of 1% of the total
energy, but the kinetic energy term is of the
same order of magnitude as the total energy
according to the virial theorem. It is thus essen-
tial to have a very accurate approximation for
the kinetic energy functional. Accordingly, let
us concentrate first on methods for evaluating
the electronic kinetic energy accurately.
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2.2 Kohn-Sham Method

Considering the enormous difficulties faced
when trying to derive an accurate T [n] func-
tional, Kohn and Sham [11] proposed an alterna-
tive method to accurately evaluate the electronic
kinetic energy, avoiding the need for an explicit
T [n] functional expression. They express this ki-
netic energy as a sum of two contributions[11]:

T [n] = Ts[n] + Tc[n], (8)

where Ts[n] represents the kinetic energy of a fic-
titious system of non-interacting electrons that
has the same density n as the true interacting
system. Thus, this equation essentially defines
Tc as that part of the kinetic energy due to corre-
lation effects. The important point here is that
Tc amounts to approximately 1% of the total ki-
netic energy value, and due to its meaning, is
naturally incorporated as part of a redefined ex-
change and correlation functional:

Exc[n] = Tc[n] + E0
xc[n]. (9)

On the other hand, the main Ts[n] contribu-
tion can be calculated exactly at the cost of in-
troducing an auxiliary set of monoelectronic or-
bitals ϕi (the Kohn-Sham orbitals), correspond-
ing to the independent particles of the ficti-
tious non-interacting system. Kohn and Sham
demonstrated that these orbitals satisfy the typ-
ical equations for independent electrons moving
in an effective potential veff (r). The KS equa-
tions, one for each electron i, are:

(−5
2
i

2
+ veff (r))ϕi(r) = εiϕi(r). (10)

The first term on the left side is the kinetic en-
ergy for non-interacting electrons. Nevertheless,
the set of occupied KS orbitals spans the true
interacting density:

n(r) =

N∑
i=1

|ϕi(r)|2 (11)

The KS equations are nonlinear because the
effective potential depends on the KS orbitals
ϕi, so the Ne equations must be solved in a
self-consistent process. Starting from an initial

electronic density the veff is calculated and
used to solve KS equations to get new orbitals
that determine a new density. The process
is iterated until self-consistency is achieved
when the difference between the incoming and
outgoing density is less than some convergence
threshold defined by the user.

In summary, Kohn and Sham developed an
iterative method to obtain the kinetic energy
accurately by solving a set of Schrödinger-like
equations (10) for independent particles, in-
corporating all the many-body effects into an
effective mean-field potential detailed in the
next section. Notice they did not provide an
explicit expression for the functional Ts[n], but
only an implicit one via the re-introduction
of orbitals into the theory, which certainly
increases the computational cost. Nevertheless,
nowadays is the only DFT method that can
provide accurate results for the kinetic energy
of arbitrary systems.

2.3 Effective potential

The KS approach just described allows to par-
tition the total energy functional in a different
way:

E[n] = Ts[n] + VH [n] + Vext[n] + Exc[n], (12)

where only the last term, representing around
1% of the total energy, is unknown now. There-
fore, the exchange-correlation functional must
be approximated, and we will discuss some of
the most frequently used approximation in the
next sections.

Assuming by now that we have an approxi-
mate expression for Exc[n], the general princi-
ples of DFT instruct us to minimize the energy
functional to find the ground state density of
the system, with the constraint that the total
number of electrons, Ne, is constant:

δE[n]

δn(r)
=
δTs[n]

δn(r)
+ vH(r) + vext(r) + vxc(r) = µ

(13)
µ is the Lagrange multiplier associated with

the constraint
∫
n(~r) = Ne, and has a well de-

fined physical meaning as the chemical potential
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of the electron gas. vH(r) and vxc(r) are the
Hartree and exchange-correlation potentials, re-
spectively:

vH(r) =
δVH [n]

δn(r)
=

∫
dr

n(r′)

|r− r′|
(14)

vxc(r) =
δExc[n]

δn(r)
=
δ(E0

xc[n] + Tc[n])

δn(r)
. (15)

Because of the physical meaning attached to
Ts[n], the interacting problem is seen to be
equivalent to that of independent electrons mov-
ing in the following effective potential:

veff (r) = vext(r) + vH(r) + vxc(r), (16)

We have finally reached the expression of
effective potential that we were looking for,
which is essential for iteratively solving the
KS equations. In short, we have an expression
where we know exactly Hartree’s potential (14)
but the exchange and correlation potential (15)
has to be approximated.

Notice that we have not provided the com-
plete derivation of KS equations in this section,
as we have directly used the density n(~r) as
variational parameter for brevity reasons. The
derivation would be similar to the one shown
here, but the variational functions needed to op-
timize the energy would be the KS orbitals, and
more Lagrange multipliers would be needed to
enforce normalization of each separate orbital,
as well as orthogonality between the different
orbitals. The process would be formally similar
to the derivation of Hartree-Fock equations.

2.4 Exchange and correlation
functionals

The Kohn-Sham equations (10) are exact
in principle for any electron gas under the
action of a static external potential, as no
fundamental approximations other than the
Born-Oppenheimer approximation have yet
been made. At a practical level, however, we
must approximate the unknown exchange and

correlation functional term in (9).

This functional can be naturally divided into
correlation (Ec) and exchange (Ex) contribu-
tions:

Exc[n] = Ex[n] + Ec[n]. (17)

The exchange component has a purely
quantum origin. Due to the Pauli exclusion
principle, parallel spin electrons tend to repel
each other at short distances due to their
antisymmetric spatial wave function, i.e. due
to the indistinguishability effects that impose
an antisymmetric quantum state for fermions.
Ex represents the associated decrease in the
electron-electron coulomb repulsive energy.

Unlike the exchange term, correlation effects
(Ec) also exist in the classical world. This
term reflects how the coulomb repulsion en-
ergy of the electronic system decreases due to
the correlated motion of the point-like electrons.

So both exchange and correlation effects tend
to stabilize the system by keeping electrons
apart, thus creating what is called an exchange-
correlation hole around each electron. This
“hole” represents a region of space around a
given electron where it is highly improbable to
find other electrons; in other words, each elec-
tron generates a hole of electron density around
itself.

Based on this concept, the Exc functional can
be reformulated as the energy accounting for the
attractive interaction between the electron den-
sity n and the hole density nxc:

Exc[n] =
1

2

∫
n(r)nxc(r, r

′)

| r− r’ |
drdr′ (18)

where the exchange-correlation hole density
(nxc(r, r

′)) satisfies the normalisation condition
known as the sum rule:∫

nxc (r.r′) dr′ = −1. (19)

Now that we understand a bit better the phys-
ical content of the Exc functional, let’s review
different approaches to approximate it. There
are several choices, and the goal is to choose
one that covers the requirements of our problem

6
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without being too expensive at a computational
level.

The simplest approximation is called the Local
Density Approximation (LDA). Within this ap-
proach, the contribution of each point of space
to the exchange-correlation energy exclusively
depends on the value of the electron density
at that particular point, and it is in this sense
that the approximation is termed local. The ap-
proach considers a homogeneous electron gas as
a reference system for which exact numerical re-
sults can be obtained. In a homogeneous elec-
tron gas, symmetry imposes a constant value
for the exchange-correlation energy density at
all spatial positions, which has been numerically
tabulated as a function of the (constant) density
n. Then, in a LDA calculation on a real (inho-
mogenous) system, the exchange-correlation en-
ergy density at each point ~r, where the density
is n(~r), is approximated by the energy density
of an infinite homogeneous gas with the same
density:

ELDA
xc =

∫
drn(r)exc[n(r)], (20)

where exc[n(r)] is the exchange-correlation en-
ergy per particle in a homogeneous gas of density
n = n(~r). This approximation is by definition
exact for a system with uniform density, and is
reasonable if the density is quasi-homogeneous
(i.e. if its deviations from the mean density
value are of low amplitude).

In many cases these conditions will not be
satisfied, particularly so in finite systems such
as atoms or molecules, and in surface regions
where the electron density decays exponentially
fast. As the LDA conditions are no longer
met, the approximation is not expected to be
accurate.

Another related approach is the Local Spin
Density Approximation (LSDA), where the lo-
cal character of the method is maintained, but
an extension of density functionals to spin-
polarized systems is allowed. The LSDA thus
employs two independent scalar fields to de-
scribe the total electron density: n↑(r) and n↓(r)
for the density contributed by spin-up and spin-
down electrons, respectively, and with n(r) =
n↑(r) + n↓(r). The LSDA exchange-correlation

energy is written as:

ELSDA
xc =

∫
drn(r)exc[n↑(r), n↓(r)] (21)

Nevertheless, both LSDA and LDA are not ac-
curate in problems where the system cannot be
approximated as locally homogeneous. Hence,
systems where density varies abruptly require
an improved approach. The so-called General-
ized Gradient Approximation (GGA) provides
an efficient solution by adding an explicit de-
pendence on the density gradient at each point
(5n(~r)):

EGGA
xc [n] =

∫
n(~r)exc[n(~r),5n(~r)]d~r (22)

For inhomogeneous electron densities, like
those of molecules, the GGA provides more
accurate results. Moreover, for systems with
spin polarization, the extension is simply as
direct as in LDA, and is the one that will be
applied in the simulations performed in this
work. In particular, we will employ the specific
GGA proposed in 1996 by Perdew, Burke
and Ernzerhof, called PBE functional in the
literature [10].

2.5 Pseudopotentials

In this section we describe the explicit ex-
pression for Vext employed in our calculations,
which is obtained from pseudopotential (PP)
theory.

In the exposition of DFT that we have made
up to this point, the density (n(r)) is generated
by all the electrons in the system, and the
external potential is produced exclusively by
nuclei. This type of calculation is called an
all-electron (AE) calculation in the literature,
and a common feature of AE calculations is
that they demand a huge computational cost
for large molecules. In this work, which aims to
find a good compromise between accuracy and
computational expense, we will rather use a
so-called pseudopotential approximation, which
has the virtue of being much less expensive and
almost as accurate as the AE calculations for

7
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the specific purposes of our work.

The electronic structure of an atom is quite
naturally divided into valence and core elec-
trons, and the use of all the electrons in a
molecular calculation is usually not necessary.
Core electrons occupy deep atomic orbitals
grouped in closed shells and they do not ac-
tively participate in the formation of chemical
bonding under normal circumstances. To excite
core electrons, one needs rather extreme envi-
ronmental conditions such as incident photons
with very high energies, or application of a huge
pressure, so they remain inert in almost all
situations of interest in chemistry, which makes
it reasonable not to incorporate these electrons
actively in the variational optimization. Taking
advantage of the inactive character of the
core electron states, we have implemented the
approximation of considering them part of the
external static potential Vext, i.e. to treat them
on an equal footing with the nuclei.

The great majority of atoms has more
electrons in the core than in the valence shell,
so large computational savings result when
modelling the atoms in a molecule as having
only those electrons that are directly involved
in chemical bonding. In this new outline, we
will continue to use n(~r) to refer to the density
generated by the Ne active valence electrons,
so that this “valence density” continues to inte-
grate to the total number of “valence electrons”.

The first step is, therefore, to decide which
electrons should be considered as frozen in the
core and which ones are included in the active
valence space; in our case, we will include the
1s22s22p6 electrons of magnesium into the core,
so that each magnesium atom will contribute
only two electrons (those in the valence 3s
orbital) to the valence space. This reduces the
number of KS equations to be solved from 12N
to 2N for a neutral cluster with N atoms, which
obviously amounts to substantially reduce the
computational cost.

In addition, the pseudopotential approxima-
tion reduces the computational expense for a
different reason. It is important to remember

that valence electrons can penetrate in the
core region, and the orthogonality between core
and valence orbitals imposes a complex nodal
structure to the valence wavefunctions near the
nucleus in an AE calculation. For example, in
the case of Mg the 3s orbital must be orthogonal
to the inner 2s and 1s orbitals. The oscillations
of the valence orbitals in the core region would
also increase the computational expense due
to the necessity of a very fine discrete grid to
accurately represent the valence function in
that region.

However, the 3s orbital becomes the ground
state orbital of the Mg “pseudoatom” in a pseu-
dopotential calculation, and as such it does not
have to be orthogonal to other states of lower
energy. The resulting pseudo-orbitals are then
nodeless and, as we will show, can be chosen to
be smooth functions. Pseudopotential theory
then elliminates not only the core electrons, but
also the oscillations of the valence functions in
the core region, further accelerating numerical
calculations.

Construction of pseudopotentials

The PP is generated by performing AE
calculations on a reference system, in this
case, an isolated Mg atom. Different recipes
exist to extract a pseudopotential from the AE
calculations, depending on specific auxiliary
conditions that one wants to impose on the PP.
These conditions invariably try to offer a good
compromise between accuracy and computa-
tional expense. The accuracy is determined by
the ability of the PP to describe the physical
properties of Mg in arbitrary environments
which are different from those employed in
the reference calculations, a property called
transferability. On the other hand, a PP is
computationally “cheaper” the smoother its
spatial dependence. And usually smoothness
and transferability are competing factors, i.e.
improving one of them makes the other worse,
hence the need for a compromise.

Now, let’s describe the conditions imposed
onto our pseudopotentials. First of all, the size
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of the core region is defined by the user specify-
ing a radial cutoff (rc) which sets the boundary
that separates the core (r < rc) from the valence
region (r > rc). The choice of the core radius is
one of the degrees of freedom the user has when
constructing a pseudopotential.

The first reasonable condition is that the ra-
dial pseudo-wavefunctions (with angular mo-
mentum l) generated from the PP must be iden-
tical to the AE wave function in the valence re-
gion:

RPP
l (r) = RAE

l (r) ∀r > rc (23)

Secondly, we impose the equality of the eigen-
values obtained from both calculations, either
AE or PP:

εAE
l = εPP

l (24)

In third place, let us call “pseudization re-
gion” to the core interval. In our PP method,
the pseudo-wavefunction within this region must
satisfy a norm conservation condition, resulting
in the so-called “norm-conserving pseudopoten-
tials”. In words, the charge enclosed within the
pseudization region (0 < r < rc) must be equal
for the pseudo-wavefunction and the AE wave-
function:∫ rc

0

dr|RPP
l (r)|2r2 =

∫ rc

0

dr|RAE
l (r)|2r2 (25)

This restriction ensures the correct shielding
of nuclear charge provided by the true core
electrons.

Notice that the first and third conditions
together do not completely fix yet the radial
shape of the pseudo-wavefunction inside the
core region, so this is an additional degree of
freedom left to the user. This is exploited as to
produce a smooth pseudo-wavefunction within
r < rc. Other than these purely practical
requirements, the pseudo-wavefunction in the
core region is “invented” by the user.

In our work the pseudo-wavefunction in the
core region is chosen as a smooth and nodeless
polynomial [12]. Moreover, it is enforced to be
continuous at r = rc and to have continuous
derivatives of up to sixth order at that point.
This ensures that the pseudopotential itself is
continuous, and intends to generate a smooth

PP without very high Fourier components,
which is very advantageous to reduce the
computational cost.

Once a pseudo-wavefunction satisfying con-
ditions 1 and 3 is designed for each angular
momentum channel l, it is inserted into the
corresponding KS equation, together with the
AE correct eigenvalue (to satisfy condition 2).
As the pseudo-wavefunction is nodeless, the KS
equation can be inverted to obtain the pseu-
dopotential. However, the PP obtained at this
point (called a screened pseudopotential), is not
yet ready to be used in molecular calculations,
as it still contains the screening effects of all the
electrons, including the valence ones. And we
want to describe all effects of valence electrons
explicitly in the molecular calculation.

Therefore, in a last step we must produce
the unscreened PP that will be finally used in
the molecular calculations. To unscreen the
PP, we must subtract from the screened PP
the Hartree and exchange-correlation terms
for valence electrons, as those are part of the
valence self-consistent space and so should not
be part of the external potential!

The total density can be written as the sum
of the core and valence densities:

n = nc + nv (26)

The Hartree functional is linear in the density,
so there is no problem with the unscreening pro-
cedure on that part, as

EH [n] = EH [nc] + EH [nv], (27)

one can subtract EH [nv] from the screened
PP without any problem. However, problems
may appear due to the possible non-linearity of
the exchange-correlation term. The LDA func-
tional, for example, is clearly linear, but the
GGA which we use in this work is not:

Exc[nc + nv] 6= Exc(nc) + Exc(nv). (28)

So in our calculation, if we simply subtracted
Exc[nv] from the screened PP, we would be in-
curring an error. This error becomes bigger the
more important the penetration of valence or-
bitals into the core region, i.e. when nc and nv
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2 Density Functional Theory II THEORETICAL MODEL

overlap significantly, which is precisely the case
for alkali and alkaline-earth elements as magne-
sium.

The solution is to introduce so-called non-
linear core corrections, which have the virtue of
not significantly contributing to the computa-
tional cost. In this approach, the whole Exc[n]
is subtracted from the screened PP (thus avoid-
ing the non-linearity problems), and so must be
incorporated in the molecular calculation. The
“trick” is that the core density is also pseudized
and stored. The user just has to define a
new cutoff region for core pseudization: the
pseudo-core density will be equal to the true nc
only beyond that cutoff radius, and a smooth
polynomial below the cutoff. The pseudo-core
density is frozen in the molecular calculation, as
nc does not belong to the active valence space,
so it does not increase the computational cost.
It only participates in the calculation of Exc[n]:
at each step of the Self-Consistent Field (SCF)
Method, the fixed and pseudized nc is added
to nv to get the correct exchange-correlation
energy at no additional cost.

To finish this section, we comment about
the choice of cutoff radii for the pseudo-
wavefunctions. Shorter values result in a higher
precision, but also in a harder PP (with higher
Fourier components), so in more expensive
calculations. Therefore, cutoff radii are chosen
as long as possible while compatible with a
reasonable accuracy. This is done by testing
the PP in atomic calculations on excited con-
figurations (different from the reference one)
and requiring an accuracy of at least 1 mRy in
the atomic energies. Additional transferability
tests involve PP calculations on the dimer Mg2
and on the crystalline metal, for which accurate
calculations and measurements exist that allow
to conclude if the PP is accurate.

2.6 Jellium Model

Until now, we have described an accurate
first-principles computational technique to solve
the complex many-body electronic problem. It
is often interesting, however, to check if the
ab initio results conform to the expectations
extracted from simpler phenomenological mod-

els. These last models typically invoke more
drastic approximations, and offer only a gross
description of electronic and/or atomic struc-
ture by focusing on a small subset of descriptive
variables, but they can often capture relevant
systematic trends in the average properties of
a physical system. In order to provide an in
depth analysis of our computational results, we
will compare them to the prediction of a simple
jellium model[13], which is explained in this
section.

In the ab initio description, the effect of
the ionic cores is represented by a sum of
atom-centered pseudopotentials. In the jellium
model, this is substituted by a (much simpler)
uniformly charged positive blackground called
Jellium where valence electrons move, similarly
to a system of interacting particles enclosed in
a “box”. The total jellium positive charge is
chosen so as to enforce charge neutrality for the
global system in the case of neutral clusters,
or to reproduce the total charge in the case
of cluster ions. Valence electrons, which are
considered to be completely delocalised within
the jellium, play the leading role regarding
clusters stability and their properties, while the
jellium background plays a secondary role by
defining the size and shape of the confinement
regions.

This model provides a first rough insight
into cluster properties, in particular, into the
electronic structure which is calculated using
the same DFT approximations as in the ab
initio approach. The jellium model is particu-
larly useful in metallic systems where valence
electrons are delocalized.

As in the ab initio method described earlier,
the expression of the energy (E[n]) must be con-
sidered; in this case, the external potential is re-
placed by the so-called jellium potential VJ [n] .
This potential is defined as the one produced by
the jellium background onto valence electrons.
The other terms in the energy expression are
the same as before: kinetic energy (Ts[n]), the
Hartree potential (VH [n]), and the exchange and

10



2 Density Functional Theory II THEORETICAL MODEL

correlation (Exc[n]) potential:

E[n] = Ts[n] + VJ [n] + VH [n] + Exc[n], (29)

Although this energy expression is admittedly
very simplified, it can produce quite realistic
results for physical systems that satisfy the
following conditions: (1) the valence electrons
are not tightly bound to a particular nuclear
center, but rather become delocalized and able
to move across the whole system volume; (2)
the pseudopotential strength is low enough
so that the detailed nuclear skeleton is just a
weak perturbation on top of the structureless
jellium background. A system satisfying these
conditions is called a nearly-free electron sys-
tem in condensed matter physics. Alkaline and
alkaline earth metals, for instance, tend to meet
these conditions to a large degree. However, if
electrons are much more localized in space, for
instance, in the case of transition metals with
d-electrons, these conditions are not met and so
this model would be inappropriate.

Different flavors of this jellium idea exist in
the literature, depending on the shape of the
jellium background to start with; but one can
also decide whether such jellium shape is frozen
or can self-consistently adapt to the electron
cloud. One then refers to spherical, ellipsoidal,
deformable, etc., jellium models).

The simplest spherical jellium model (SJM)
employs a spherically symmetric background of
fixed volume (the volume being determined by
the average atom density as an external parame-
ter), and for clusters of simple sp−bonded met-
als produced very satisfactory results. One of
their most outstanding predictions, verified by
experiment, was the existence of an electronic
shell structure akin to the well-known one in
atoms, which later led to coining the term “su-
peratom” to refer to those molecular systems
with an electronic structure mimicking that of
atoms. The bunching of electronic energy levels
into degenerate shells is a direct consequence of
angular momentum restrictions in quantum me-
chanics. With a fixed spherical shape, it is the
radial dependence of the jellium potential the
one that decides the energetic ordering of the
different shells.

The shell structure induces oscillations in
the evolution of stabilities with cluster size,
reminiscent of those well-known in the periodic
table of atoms. For example, when the cluster
has the precise number of electrons to complete
a shell it becomes a very stable cluster; however,
upon adding another atom, the new valence
electrons must occupy the next higher energy
levels, thereby the stability of the cluster is
reduced. Those special numbers of electrons
are called magic numbers, and typically are
Ne = 2, 8, 18, 20, 34, 40, 58, 70, 92, 138 . . . , which
correspond to the most stable clusters with a
spherical shape. At those sizes, there is a large
gap between the highest occupied molecular
orbital (HOMO) and lowest unoccupied molec-
ular orbital (LUMO).

The orbitals in the SJM are named using
a notation very similar to the one employed
for atoms, with only two differences: (1) the
use of capital instead of lowercase letters to
denote the angular momentum l and (2) that
the ordinal number “n = 1” is employed for
the first (nodeless) orbital of each angular
momentum channel. As a representative
example, the electronic configuration which
corresponds to the magic number Ne = 58
would be: 1S21P 61D102S21F 142P 61G18.
These molecular orbitals are filled up in order
of increasing energy and respecting Pauli’s
exclusion principle.

The SJM model was generalized for open-
shell systems by developing the ellipsoidal jel-
lium model (EJM), in which quadrupolar dis-
tortions (either prolate or oblate) away from a
spherical shape are considered. The EJM pre-
dicts additional (secondary) magic numbers in
between the main magic numbers of the SJM,
which are observed as well in the fine structure
of experimental mass spectra. Open-shell clus-
ters tend to distort its shape in order to fur-
ther stabilize the occupied subset of orbitals as
compared to a perfect sphere (no problem if the
unoccupied ones are destabilized as they do not
influence the energy), in agreement with general
expectations based on the Jahn-Teller theorem.

The ultimate jelllium model (UJM) allows
the shape of the positive background density to
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be self-consistently relaxed without restrictions
(other than a constant volume, of course). In
this approach, the nuclear skeleton finds the
optimal shape as desired by the distribution of
electronic charge, and one says that ions are
slaves to the electrons.

In summary, jellium methods completely
ignore the detailed atomic structure, accounting
only for the global “shape” of the cluster
and using the density of the ions as the only
external parameter to determine the volume.
Furthermore, it is used to describe the elec-
tronic structure of molecules in addition to
predicting some of their properties. As our
results will show, the jellium model provides
a very effective way to rationalize the trends
of metallic aggregates such as magnesium,
a study that otherwise would become much
more expensive due to the high level of detail
involved in this type of problem.

III Computational method

The term ab initio or first-principles is
assigned to computations derived directly from
theoretical principles, i.e. information obtained
from experimental methods is not used, apart
from intrinsic properties such as the mass or the
charge of the particles involved. In essence, they
are based on solving a fundamental equation.
In our study, we have chosen the SIESTA code
SIESTA in order to solve the KS equations
for each fixed set of nuclear coordinates. In
this section, we will briefly describe the main
computational settings employed in the SIESTA
calculations, as well as the method to locate
the most stable structure of each cluster.

The SIESTA code assumes the Borh-
Oppenheimer approximation, and treats the
nuclei as classical point-like particles moving
in the potential energy surface obtained by
solving the electronic problem. This surface,
essential for our study, is a surface of (3N − 6)
dimensions, one for each vibrational degree of
freedom of the aggregate. Our aim, in fact, is
to find the absolute minimum on this surface

for each separate cluster. However, this goal
is not so simple to achieve at ab initio level,
because there are many local minima on that
surface, and sampling the whole surface (to be
completely sure that the absolute minimum has
been found) implies a huge computational cost.

For the study of clusters at the atomic level,
some simplification is then needed to deal with
the problem at a manageable cost. Previous
research in our group has already produced a
database containing thousands of different clus-
ter structures, generated by employing simple
empirical potentials and global optimization al-
gorithms which are not part of the present work.
In this work, we have chosen to perform con-
jugate gradients optimizations on several struc-
tures extracted from that database. The con-
jugate gradients method essentially uses the ab
initio values of the atomic forces to relax the
input structure towards the nearest local mini-
mum.

The trial structures selected from the
database were chosen as those known to be
particularly stable in previous studies of Zn and
Cd aggregates. The main reason for considering
the use of these aggregates as structures to be
optimized is that both are isovalent to Mg, and
experimental results such as mass spectra or
ionisation potentials reveal a very similar size
evolution for the three different metals, thus we
expect their bonding pattern to be similar. Af-
ter having optimized different input structures
for each size, we assign the most stable one as
the putative global minimum (GM) structure.
The success of our approach will be tested by
explicit comparison with experimental results.

Let discuss next the details of the elec-
tronic part of the calculations. We employ
norm-conserving pseudopotentials, in their
Troullier-Martins form Troullier, to model the
electron-ion interaction. The pseudopotentials
have been generated under the the GGA ap-
proximation to exchange and correlation effects
and incorporate nonlinear core corrections.
Two active valence electrons per Mg atom have
been considered.

12
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SIESTA uses atomic orbitals with finite sup-
port as a basis set to expand the molecular or-
bitals. Finite support basis functions are strictly
zero beyond some cutoff radius. The same set of
atomic orbitals is centered around each Mg atom
in the cluster. The main advantage of using a
localized basis set, as compared to other usual
choices such as plane waves, is that the number
of basis functions needed to achieve good accu-
racy is relatively small, thus increasing the effi-
ciency. However, when using this “linear com-
bination of atomic orbitals” (LCAO) approach,
one has to carefully optimize the basis set due to
the lack of a systematic convergence procedure.

Our basis functions include an angular and a
radial part:

ϕ(~r) = R(r)Y m
l (θ, φ) (30)

The angular part is provided by the spherical
harmonics, which are implemented within
the SIESTA code up to angular momentum
quantum numbers of l = 4. Although in
the magnesium aton only l = 0 orbitals are
occupied, in order to increase the angular
flexibility of the basis we also include so-called
polarization orbitals, i.e. orbitals with l > 0.
The inclusion of 3p orbitals into the basis
set is essential for the correct description of
polarization sp−hybridization effects. But we
additionally include l = 2 orbitals in order to
have a very accurate basis.

The finite support radial functions (R(r)) are
generated in the SIESTA code by performing
calculations on an atom confined by an infinite
barrier potential, so that the function is exactly
zero at the box edge. As the number of radial
basis functions centered around each atom
increases, a higher radial flexibility is achieved
in the variational calculation. In this work, we
have employed a basis set of DZP (double-zeta
plus polarization) quality, amounting to two s
basis functions, six p basis functions, and 10 d
basis functions, per Mg atom.

The full details about the pseudopotential,
basis set, simulation conditions and initial
cluster geometry are provided in two input
files with the extensions .psf (pseudopotential

formatted), .fdf (flexible data format). The
psf file contains the pseudopotentials, one for
each angular momentum channel, as numerical
functions expressed in a radial grid. It also
contains the pseudized core density in case
non-linear core corrections are applied. The
file is written by the auxiliary atom code used
to generate the pseudo, and must be read by
SIESTA code.

The fdf file contains the description of the
basis set, of the initial atom coordinates, and
of all the simulation parameters. SIESTA
is a big code with many different possible
keywords, which are described at length in
the user manual; here we focus on the few
relevant parameters which are essential in
our calculations. In the fdf file, we specify,
for example, the system charge (q = −1 in
our case of magnesium cluster anions), the
chosen exchange and correlation functional
(GGA), and the simulation method (in our
case structure optimization with conjugate
gradients method). We additionally specify the
convergence criteria: we consider a structure
relaxed when all atomic forces are below 0.01
eV/Angstrom). One of the fdf files we used in
this work is attached as an example in appendix
A.

SIESTA also produces many different output
files, and we focus here on those which are most
useful for our specific goals. The converged
atomic coordinates are written to a file with
extension .xyz for direct visualization using
computer graphics applications, and also to a
.XV file with a higher numerical precision. A
file with extension .EIG contains the molec-
ular orbital eigenvalues, which we will use in
the discussion of photoemission spectra and
metallicity. Finally, in the main output file
one can find the cluster energies, which we
will use to calculate dissociation energies and
discuss cluster stabilities in connection with
experimental mass spectra.
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IV Results and Discussion

1 Putative GM structures

The putative Global Minimum structures
that emerge from our study are shown in
Figures 1-2. These results have been contrasted
with different studies provided in the bibliog-
raphy [4], but those do not cover all the sizes
that have been studied in our work. The most
complete study of anionic magnesium clusters
structures covered the range N = 2 − 22 using
gradient-corrected density functional theory[4]
and those results were successfully reproduced
in our previous studies [7]. However, for bigger
sizes, there are no previous computational
results to compare with.

Fig. 1 shows clusters with N = 3− 21 atoms.
An equilateral triangular structure is obtained
for Mg−3 . For Mg−4 , the GM structure changes
to a three dimensional form, namely a regular
tetrahedron. The growth evolution of the next
aggregates is based on different combinations
of tetrahedral units: N = 5 is formed by two
tetrahedral units sharing a face (a trigonal bi-
pyramid); N = 6 by two tetrahedral units joined
by an edge; and Mg−7 is a slightly distorted pen-
tagonal bi-pyramid, containing five tetrahedral
units.

Mg−8 adopts a deltahedral structure in the
form of a snub disphenoid or bisdisphenoid.
The GM of N = 9 is a tri-capped trigonal prism
(TTP), and it becomes a stable substrate for
the growth of the majority of anion structures
in the size range N = 10 − 15, which are based
on adding atoms to that TTP unit. Mg−15,
in particular, is obtained by gluing two TTP
units together in such a way that three atoms
are common to the two units. Mg−16 adopts a
bi-layer structure with a chiral C3 point-group
symmetry.

In the small size range N = 3 − 16, all the
atoms still belong to the cluster surface, with
N = 17 being the smallest structure that has
an internal core atom; furthermore, Mg−17 is a
compact structure with a high symmetry: its
point group is almost D4h although there is a
slight square-to-rhombus distortion that lowers

the symmetry down to C2v. Mg−18 and Mg−19 are
based on a 13-atom decahedron with adatoms
along the equatorial region; some of those
adatoms undergo a significant inwards relax-
ation. The GM structure for N = 20 displays a
chiral shell with C3 symmetry surrounding the
internal atom. The structure can be viewed as
a twisted pyramid as its global shape is clearly
pyramidal. Finally, the GM structure for Mg−21
belongs to the same decahedral family observed
for sizes N = 18− 19.

Fig. 2 shows clusters with N = 22 − 38
atoms. For sizes N = 22 and N = 23 we still
obtain GM structures with a single core atom,
and based on a distorted decahedral packing.
However, the nearly degenerate isomer of Mg−23
already has 3 core atoms organized linearly, in
this case the cluster grows by adding atoms to
the core rather than the shell.

With few exceptions, clusters with an inter-
nal dimer are clearly favored in the size range
N = 24 − 28. These clusters have an elongated
(prolate) global shape and keep growing by
accommodating new atoms at the shell. As
an interesting exception, Mg−25 has a nearly
degenerate isomer structure which contains a
single core atom, whose special stability we
ascribe to the very compact and symmetric
shell. Mg−27 and Mg−28 can be classified as filled
tubular structures. Specially interesting is the
highly symmetric C6v tube obtained for Mg−28.
The shell of this tube contains four hexagonal
rings stacked with an anti-prism sequence. The
tube misses one capping atom, so the structure
would be complete for 29 atoms and would have
D6d symmetry. The coordination polyhedron
around each of the two core atoms is the Z14
Frank-Kasper polyhedron, quite commonly
found in intermetallic alloy crystalline phases.

The perfect structure with two complete
Z14 units is not the GM structure for Mg−29,
however, because clusters in the size range
N = 29−32 prefer a core with three core atoms
in a triangular arrangement, which makes these
clusters to have an oblate global shape. The
local coordination polyhedron around each core
atoms contains 13 nearest neighbors and can

14



1 Putative GM structures IV RESULTS AND DISCUSSION

Figure 1: Putative GM structures and approximate point group symmetries of Mg−N with N = 3 − 20
[7]. Competitive isomers are also shown together with their energy difference with respect to the GM
isomer.

not be identified with any of the well-known
regular polyhedra, yet most of these clusters
maintain a high symmetry (C3v for sizes N = 30
and 31). It is also interesting that the growth
of the shell around the core is of Janus type,
i.e. completely different on the two sides of the
core triangle: on one side the growth follows
a simple hexagonal stacking, which is not a
compact packing; meanwhile, on the other side
of the triangle the growth follows and hcp-type
compact stacking. Clusters with N = 33 − 37
feature a tetrahedral 4-atom core, which equips
these clusters with a more spherical shape. The
way in which the shell grows around this core is
highly dependent on the number of atoms. In
particular, the shell of Mg−34 preserves a high

chiral C3 symmetry for the whole cluster. Clus-
ters with N = 36 − 37 atoms rather belong to
the distorted decahedral family, which has been
observed to be stable for Zn and Al clusters as
well. Finally, Mg−38 already contains five core
atoms in a trigonal bi-pyramidal arrangement,
but its shell is quite amorphous and does not
preserve any of the symmetries of the core.
This is the aggregate with the highest number
of core atoms that has been studied in this work.

The study of charged aggregates is mo-
tivated by the convenience to compare our
computational results with experimental mass
spectroscopy data. These experiments need to
employ charged clusters for mass selection of
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Figure 2: Putative GM structures and approximate point group symmetries of Mg−N with N = 22− 38.
Competitive isomers are also shown together with their energy difference with respect to the GM.

certain sizes and thus study several physical
properties as a function of the number of atoms
N . This we will do in the next subsections.

2 Mass spectrometry

All physical and chemical properties of a
metallic cluster depend on its atomic and
electronic structure. Determining its putative
GM structure is the first essential step for a
proper characterization of cluster properties at
low temperatures. In this work, we focus on
studying the energetic stability and electronic
properties of the negatively charged magnesium
aggregates. In order to achieve a direct connec-
tion between experimental and computational
results, we will consider the relative abundances
measured in mass spectroscopy experiments.
Moreover, these measurements are related to
the thermodynamic stability of the aggregates.
Before we do any comparison, we briefly de-
scribe the experimental procedure that was
used in the work that we have been taken as a

comparative reference [14].

2.1 Mass spectrometry experiments

Magnesium is an element that is usually found
in nature forming compounds with other ele-
ments. Therefore, it is necessary to use a source
that provides isolated, pure magnesium aggre-
gates. Typically, laser ablation of a solid surface
is used to generate an atomic magnesium vapour
at a very high temperature. Then, an atomic
beam of this vapour is guided into a condensa-
tion chamber, where there is a very cold and
nonreactive gas. Through collisions with the
buffer inert gas atoms, the Mg vapor is ther-
malized at a low temperature so that aggre-
gation events trigger the formation of clusters
with a certain mass distribution. The mean size
of the cluster distribution can be controlled by
tuning external parameters such as the pressure
and temperature of the buffer gas, or the length
of the collision tube. Under typical operating
conditions, the clusters grow via sequential ad-
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sorption of individual Mg atoms from the vapor
onto pre-existing cluster seeds, and coalescence
events between two formed clusters are much
less frequent. It is in the condensation cham-
ber that the equilibrium relative abundances are
settled. Briefly stated, each time a cluster ad-
sorbs a new atom, it is severely heated by an
amount proportional to the adsorption energy.
With adsorption energies around 1 eV, the heat-
ing is enough to melt the cluster and can lead
to evaporation of atoms to release the excess en-
ergy (unless collisions with the buffer atoms cool
down the cluster before an evaporation event).
As clusters of different sizes have different stabil-
ities, those sizes with an enhanced stability will
evaporate at a lower rate and thus will become
more abundant in the sample. This enhanced
stability of certain clusters can be caused either
by geometric packing of the atoms or by elec-
tronic shell effects. But either way, abundance
population of a given cluster size is directly pro-
portional to its stability.

Subsequently, the aggregates are ionized with
a laser located at the exit of the condensation
chamber, if one wants to study cluster cations;
or they become negatively charged by immers-
ing them into an electron bath, if one wants
to study cluster anions. Charging is important
because aggregates with different mass will
follow different paths in a magnetic field, so
that the desired size can be selected to study
cluster properties as a function of size.

In short, mass spectrometry is a technique
that determines the distribution of molecules of
a substance as a function of its mass, i.e. its
size. However, it is necessary that the particles
are charged so that they can be guided efficiently
by the magnetic field.

What we have explained is the operation of
a typical experimental setup. The experimental
results [14] specifically used as reference in this
work include some interesting improvements
over the typical setup. Magnesium cluster
anions were produced by magnetron sputtering
using an additional discharge ring at the end of
aggregation tube. The discharge produced by
the ring efficiently ionizes most of the neutral
clusters, except the very small ones that were
produced using a laser ablation technique.

Clusters produced in the aggregation source
and later ionized were stored in a liquid nitrogen
cooled ion trap, therefore their temperature is
estimated to be as low as 100 K.

Finally, we emphasize that this type of ex-
periments work with aggregates or molecules in
gas phase, and the low density of the gas allows
the extraction of properties corresponding to an
isolated molecule. Each of the aggregates, con-
sidered as an independent system, is “in its solid
phase” (i.e. with a well-defined geometry) at a
sufficiently low temperature.

2.2 Cluster stability indicators

The stability analysis of Mg−N clusters is
carried out with three indicators that are shown
in Figure 6: from top to bottom, these are the
binding energy, the evaporation energy and the
second energy difference, all three as a function
of cluster size.

The first measure is the cohesive energy or
binding energy per atom. This global stability
measure quantifies the stability of the aggregate
with respect to its total dissociation into atoms.

Ecohesive(N) =
(N − 1)E1 + E−1 − E

−
N

N
, (31)

where E−N is the total energy of the cluster
anion Mg−N , E1 is the energy of a Mg atom,
and E−1 that of a Mg− anion. The more stable
clusters will have higher values of cohesive
energy due to the larger energy needed to
dissociate them.

The evaporation energy is defined as the en-
ergy required to pull out an atom from the clus-
ter. This, in contrast to the previous one, is a
local stability measure, as it compares the sta-
bility of two aggregates of consecutive sizes:

Eevap(N) = (E1 + E−N−1)− E−N ,

Finally, the second energy difference com-
pares the stability of a given cluster against the
average stability of its two neighbouring sizes:
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2 Mass spectrometry IV RESULTS AND DISCUSSION

42(N) = EN+1 + EN−1 − 2EN =
Eevap(N)− Eevap(N + 1).

This parameter is considered the most reliable
one of the three magnitudes for a direct com-
parison with the relative abundances in mass
spectra, as it well captures the delicate balance
that produces the experimental abundances: in
effect, the population of a given cluster size N is
expected to increase when: (1) the Mg−N cluster
has a large evaporation energy; (2) the Mg−N+1

cluster has a low evaporation energy. A positive
value of 42(N) indicates that the population
of size N increases by evaporations from size
(N + 1) at a faster rate than it decays towards
size (N − 1). Therefore, the most abundant
sizes in the experiment should correlate with
positive values of 42(N).

The enhanced abundances of certain cluster
sizes in mass spectra can usually be explained
by two different factors: the first factor may be
a high stability due to a geometric shell closing.
These clusters have compact structures, without
structural defects such as vacancies or adatoms
in their outermost atomic shell, and with a high
average coordination number. Adding an atom
to these structures necessarily opens up a new
geometric shell, reducing their stability by the
presence of this so-called adatom, which is easily
evaporated. Similarly, removing one atom gen-
erates a vacancy defect on the outermost shell
and the atoms around the vacancy also evapo-
rate more easily due to their reduced coordina-
tion.

The second factor is operative in clusters
formed by metallic elements, which have delo-
calized electrons. These clusters tend to be very
stable at an electronic shell closing. This effect
will be elaborated later on when we discuss
electronic properties.

The theoretical results display a smooth
increasing trend for the cohesive energy. On top
of that global trend, local maxima or at least a
large negative curvature are observed at sizes
N = 9, 10, 15, 19, 20, 31, 34. Nevertheless, the
most stable sizes are not clearly observed in the
cohesive energy and it is a good idea to comple-
ment it with other indicators. The most stable

Figure 3: Stability indicators of Mg−N : the cohe-
sive energy or binding energy per atom (upper
panel), the evaporation energy (middle graph)
and the second total energy difference (lower
panel).
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aggregates against dissociation of one atom are
N = 3 − 4, 9, 15, 17, 19, 24 − 25, 27, 29 − 31 and
34. Right after these sizes, there is an abrupt
decrease in the evaporation energy. Finally,
the high and positive values of 42(N) occur
for N = 4, 9−10, 15, 17, 19−20, 25, 27, 31 and 34.

The experimental mass spectra have been
measured by the group of Bernd von Issendorff
at University of Freiburg (Germany), and are
freely available in the Thesis of Oleg Kostko[14].
Specifically, mass spectra of Mg−N anions can
be seen in page 105 of that Thesis. Par-
ticularly abundant Mg−N clusters are observed
for sizes N = 4, 9 − 10, 15, 19 − 20, 25, 27, 29
and 34, whereas deep minima corresponding
to nearly undetectable sizes occur for N =
11, 21, 26, 28, 32 and 36. Unusually interesting
are the pairs of magic numbers observed for sizes
9 − 10 and 19 − 20. In both pairs, the small-
est cluster (Mg−9 or Mg−19) is the most abundant
one, but the sharpest population decrease occurs
after Mg−10 or Mg−20.

The theoretical results reproduce the exper-
imental observations almost perfectly. More
specifically, we notice that Eevap is a more
sensitive indicator for the marked maxima in
the experimental abundances, while 42(N) is
a more sensitive indicator for the deep minima
and globally shows the best agreement with ex-
periment, reproducing in particular the “magic
pairs” 9 − 10 and 19 − 20. The two indicators
together provide a nice explanation of the exper-
imental measurements. As a concrete example
of their different sensitivities, we mention that
sizes N = 29− 31 are similarly abundant in the
experimental spectrum, but with the local max-
imum located at size N = 29. This maximum
is captured by the Eevap indicator. Meanwhile,
the 42(N) indicator has a local maximum at
size N = 31 due to the deep abundance min-
imum at size N = 32, i.e. because the sharp
abundance decrease is located at size N = 31.
It is important to realise that the experimental
abundances depend on the time that the cluster
ions spend on the ion trap, while our theoreti-
cal indicators are time-independent. It would be
possible to model the evaporation kinetics more
precisely using a statistical-mechanical master
equation approach, but this is beyond the scope

of our work. In any case, our two static indica-
tors are able to explain the experimental results
with sufficient accuracy.

The only slight disagreement occurs for sizes
N = 17 − 18. In the experimental mass spec-
tra, those two sizes are indeed very abundant
(less than Mg−19 but more than Mg−20). In the
theoretical calculations, however, only Mg−17 is
found to be very stable, so we believe the fail-
ure in our calculations occurs for Mg−18, whose
stability is underestimated. It is possible that
we have not located the most stable structure
for Mg−18, or that the level of theory employed is
not sufficiently accurate for that size.

Geometric factors clearly contribute to ex-
plain the enhanced stabilities for some sizes.
For example, the maximum at Mg−4 correlates
with a particularly compact regular tetrahedron
structure. Similarly, Mg−9 has a very compact
TTP structure that can be considered a geomet-
ric shell closing. Something similar occurs for
Mg−17 or Mg−20, which have compact geometric
shell closings without defects. Clusters with
low coordinated adatoms, such as Mg−11, tend
to be much less stable. Notwithstanding these
trends, we will see later that electronic shell
closings are also important in explaining the
magic numbers of magnesium clusters. So it is
time now to complement these results with an
analysis of electronic properties.

3 Electronic properties

Cluster abundances may be essentially deter-
mined by two factors. As we have seen until
now, geometric shell closing effects related to
very compact structures, usually geometries
that do not show uncoordinated atoms on
their surface, can explain some magic numbers.
Another important factor, as we will see in
this section, is provided by the electronic shell
closing effects that often dominate in small
clusters with delocalized valence electrons. The
specific sizes at which an electronic shell closing
occurs can be predicted using the jellium
model[13]: for instance, the spherical model
predicts magic numbers when the number
of electrons in the aggregate coincides with
Ne = 8, 18, 20, 34, 40, 58, 70, . . .. Although it
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is known that both factors contribute to the
stability of a cluster, it is not easy to deduce
if the stability is dominated by geometric
or electronic properties, which are moreover
interrelated. In most cases, only a combination
of both factors can explain the totality of magic
numbers.

We will proceed by analysing electronic sta-
bility indicators; for this purpose, the ionization
potential and the value of the band GAP of
magnesium clusters are considered.

Vertical Ionization Potential

The ionization energy is defined as the
amount of energy required to remove the least
bound electron from the cluster.

Due to the fact that the ionization process
may lead to structural changes in the cluster,
two types of ionization energies are usually de-
fined: adiabatic and vertical.

The adiabatic ionization energy includes the
effects of the structural relaxation that occurs
after electron detachment, i.e. it is defined as a
total energy difference between local minimum
configurations on the potential energy surfaces
of anion and neutral clusters, respectively, both
in their fundamental vibrational quantum state
if zero-point energy corrections are considered
(which is not our case). The adiabatic ionization
energy of a cluster anion is exactly the same as
the adiabatic electron affinity of the neutral clus-
ter. Since we have not optimized in this work
the structures of neutral magnesium clusters, we
do not have access to the adiabatic ionization
energies.

The vertical ionization energy corresponds
to the energy difference in a vertical Franck-
Condon transition, in which the neutral cluster
is left in an excited vibrational state. Due
to the very different time scales of electrons
and nuclei, this is the quantity most directly
accesible in photoemission experiments, as the
vertical process has a sizable cross section.
It is defined as the energy difference between
the anion and the neutral state, both clusters
having the optimal geometry of the anion.
Notice that it is not the same as the vertical

electron affinity of the neutral cluster, which
would be similarly defined but using the optimal
structure of the neutral state. In this work, we
have calculated the vertical ionization energies
by performing single-point calculations on the
neutral charge state at the optimal geometry of
the corresponding anion state.

The vertical ionization potential (vIP) of Mg
clusters shows variations with cluster size N
originated from the delocalized electronic shell
structure characteristic of sp metal clusters.
The electronic shell closings tend to produce
local maxima (peaks) in the vIP curves as
a function of size. These peaks are usually
followed by a sharp drop that indicates the
opening of a new electronic shell. The whole
picture is very similar to that of atoms in the
periodic table.

Figure 4: Theoretical values for the vertical ion-
ization potential are compared to experimental
results, extracted from Oleg Kostko Thesis[14]

Fig.4 shows experimental measurements
of the vIP together with our own results.
Most experimental values have been extracted
from appendix I of Oleg Kostko thesis[14],
but a few ones have been visually estimated
from the photoemission spectra reported in
appendix F of the same thesis. Due to this
visual estimation, those experimental points

20



3 Electronic properties IV RESULTS AND DISCUSSION

may have an inaccuracy of about ±0.05 eV.
Despite a small and systematic underestimation
of the experimental results, the theoretical
results reproduce the experimental trends with
an outstanding accuracy, further supporting
the whole computational approach. The
main discrepancy occurs for size N = 28,
which suggests that we have not identified
the correct global minimum for this particular
size. Other than that the agreement is very nice.

Notice that all cluster anions have an odd
number of electrons, so none of them can
exactly coincide with any of the electron shell
closings predicted by the jellium model. Rather,
there are pairs of sizes that bracket an electron
shell closing. For example, Mg−9 has 19 valence
electrons, and thus is one electron short of the
shell closing expected to occur for a system with
20 electrons. Nevertheless, the close proximity
of the shell closing induces a local maximum
in the vIP. Mg−10 has 21 valence electrons, so
its outermost valence electron (i.e. the HOMO
orbital) opens a new electronic shell, hence the
sharp vIP drop at that size. Similarly, the large
drops after sizes N = 19 and N = 34 correspond
to spherical electron shell closings at 40 and
70 electrons, respectively. There are secondary
local maxima at N = 12, 14, 16, 24. The one for
Mg−16 coincides with the spherical shell closing
at Ne = 34 electrons, the others with subshell
closings present in ellipsoidal jellium models, for
example at Ne = 30 electrons which correlates
with the local vIP maximum of Mg−14. There is
a spherical shell closing predicted for Ne = 58
electrons, which is seen only in the experimental
results as a local maximum for Mg−28, precisely
because this is a size that we fail to assign.

We know that for some sizes geometric
factors significantly contribute to explain the
enhanced stability. Comparing the vIP results
against previous stability indicators of figure
3, we observe that the main vIP maxima at
N = 9, 19, and 34 correlate with high positive
values of ∆2, so the stability of those clusters
has a strong electronic shell closing component.
On the contrary, we observe an intriguing
regularity for some of the secondary vIP max-
ima: they are shifted by exactly one size from

the local stability maxima. For example, the
vIP displays local maxima at N = 24, 26 and
less important maxima at N = 14, 16, while
local maxima in ∆2 occur for N = 25, 27 or
N = 15, 17 respectively. This implies that
electronic and geometric effects are competing
in those size ranges, with geometric effects
being slightly dominant on the thermodynamic
stability.

Band gap

Continuing with the electronic study, the so-
called “band gap” parameter is now analyzed.
Within the context of photoemission experi-
ments on anions, it is defined as the energy
difference between the two uppermost occupied
states of the anion. As the HOMO of the anion
would be unoccupied in the neutral cluster, this
parameter loosely corresponds with the HOMO-
LUMO gap of the neutral system. However, it is
important to realize that the two quantities are
not exactly the same: the HOMO-LUMO gap
of the neutral cluster should be evaluated at the
optimal geometry of the neutral system, while
the parameter we quote is evaluated at the op-
timal geometry of the anion. The following plot
shows the variation of the band gap as a func-
tion of the size N . The experimental points have
been once more estimated from visual inspec-
tion of the photoemission spectra, and continue
to be accurate only within ±0.05 eV, but this is
enough to discern the main trends. For example,
due to line broadening, it is difficult to distin-
guish two energetically close-lying states in the
spectra as they may fall under the envelope of a
single peak. In those cases we have just set the
experimental band gap equal to 0.1 eV.

The figure clearly displays the overall trend of
the band gap to gradually shrink as cluster size
gets bigger, expected on general grounds for a
metallic system. This trend is visible both in
experimental and theoretical results. But su-
perimposed to this global trend, there is a series
of band gap re-openings that mainly occur at
the electron shell closings of the neutral system.
They remind us that a definitive establishment
of a metallic phase (with zero gap) will only oc-
cur at much bigger sizes than studied here.
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Figure 5: The value of the band gap of magne-
sium clusters versus cluster size N . Green dots
represent experimentally measured values of the
band gap by Oleg Kostko[14] and red symbols
are our theoretical data.

Our theoretical data are in very good agree-
ment with the experimental data obtained by
Kostko[14]. In particular, we reproduce the
first significant band gap closing occurring
for Mg−18 and Mg−19, identified in the exper-
imental paper as the smallest Mg particles
displaying metallicity. Additionally, there
are substantial band gap drops after clusters
with Ne = 8, (14), 20, (26), (30), 34, 40 and 70
electrons, all of them agreeing with jellium
predictions (those in between parenthesis corre-
spond to ellipsoidal predictions, the remaining
ones to spherical shell closings). A peculiarity
of Mg clusters is the band gap maximum for
Mg28, with 56 electrons, as the spherical jellium
model predicts this should occur for Ne = 58
electrons. It seems that in this local range
of sizes geometric effects dominate, because
Mg29 does not have a spherical shape, but
it rather displays a marked oblate distortion,
hence it is not strange that it does not display a
large gap. Meanwhile, Mg28 is strongly prolate
so the large band gap might be associated
with a subshell closing induced by preferential
occupation of superatomic orbitals with low
absolute values of the quantum number M ,
as these are preferentially oriented along the
symmetry axis. A tentative valence configu-
ration of 1G102D6 would explain the subshell
closing, though a more detailed analysis of the

electron density of states of Mg28 is needed to
extract firm conclusions, which is left for future
studies. That our calculations do reproduce the
maximum at N = 28 suggests that the geom-
etry of Mg−28 is strongly prolate indeed, even
if we have not located the correct GM structure.

In conclusion, magnesium clusters clearly
exhibit a shrinking gap for small clusters,
which closes at certain sizes, with recurrent
re-openings at marked electronic shell clos-
ings. Thus, magnesium clusters exhibit a
relatively early transition from nonmetallic
to metallic, but this zero-gap phase can not
be considered definitively established. We try
to analyze in more depth this gradual evolu-
tion towards a metallic state in the next section.

4 Emergence of Metallic Be-
haviour

Clusters of divalent metallic elements such as
the alkaline-earths have become a playground
for an analysis of the nonmetal-to-metal transi-
tion. In effect, a Mg atom has a non-degenerate
ground state, with a fully occupied 3s shell and
a fully unoccupied 3p shell, while bulk Mg is a
metallic material with a finite density of states
at the Fermi level. As the number of atoms
increases, magnesium clusters must transition
from a relatively weak bonding between two
electronic density distributions rather localized
around closed-shell atoms in the dimer, towards
a metallic state with delocalized electrons. It is
a fundamentally interesting issue to understand
how and when this transition occurs.

The following figure shows, in a schematic
way employed in many textbooks, the overall
evolution of the electronic structure as a func-
tion of system size for magnesium clusters:

The figure illustrates how the molecular
orbitals generated from the 3s and 3p atomic
orbitals gradually generate the continuous
bands of the bulk metal. The overlap between
the atomic orbitals increases with size n,
both due to a larger number of contacts and
also to stronger bonds, and the band width
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Figure 6

is proportional to the overlap, so the bands
widen with size as well. At some point, the
completely filled lower-energy band and empty
higher-energy band have widened enough to
close the gap between them, and the system
becomes metallic in the usual sense employed
in condensed-matter physics. Before that
point, the system would be classified as an
insulator or, if the gap is sufficiently small,
semiconductor at most. As demonstrated by
the experimental works of Freiburg group[14],
such a strict closing of the gap can only occur
for very large systems, of almost macroscopic
scale. Under such a strict definition, none of
the clusters here studied could be considered
metallic.

Before proceeding, it is important to em-
phasize that schematic diagrams like this one
can produce some confusion if taken too lit-
erally. In particular, one should not conclude
that the lower-energy band is an “s-band” and
the higher-energy band is a “p-band”. If only
s−orbitals were to contribute to the occupied
molecular orbitals of small neutral Mg clusters,
the “s-band” would be fully occupied, and so all
bonding and anti-bonding states derived from
the 3s orbitals, leading to no net bonding or
at most a very weak bonding via dispersion
(or van der Waals) interactions, more typical
of rare gases. The point is that substantial
sp−hybridization occurs even in the Mg2 dimer

due to polarization effects and to the fact that
the sp−excitation energy in a Mg atom is much
smaller than the ps−excitation energy in rare
gases. Thus, both bands in the plot should be
considered as sp−bands, with the lower one hav-
ing more contribution from the 3s−orbitals, the
higher one having more contribution from the
3p−orbitals. Having understood this point, the
general picture offered in the figure is equally
valid for cluster anions.

It is quite an obvious assertion that the zero-
gap condition is incompatible with a system of
delocalized electrons (fermions) that is confined
to a finite volume of nanometric dimensions.
Even the paradigmatic simplest quantum model
of metals (the jellium model) develops sizable
gaps between highly degenerate electronic shells
when confined to a small spherical region, due to
general angular momentum conservation restric-
tions, yet it remains true that the electrons are
delocalized across the whole cluster volume. As
the zero-gap metallicity criterion is thus impos-
sible to realize in small nanoparticles, we con-
sider more sensible to focus on all other rele-
vant attributes of metallicity, such as electron
delocalization or (in the case of alkaline-earths)
the extent of sp−hybridization, and qualify a
nanoparticle as “metallic” (or as metallic as it
can possibly be) if it satisfies those alternative
criteria. This we will analyze in the next sub-
section.

Density of states

In this section, we will analyze the electronic
density of states (DOS) of a few magnesium
clusters to see if they are compatible with
the predictions of the jellium model. We will
consider an agreement with jellium model pre-
dictions as an indirect proof that the electrons
are delocalized over the cluster volume. A
more detailed analysis would involve an explicit
visualization and discussion of the molecular
orbitals and a characterization of the topology
of the electron density scalar field, which is
however beyond the expected scope of this
TFM work. We will also study the degree of
sp−hybridization, which is expected to increase
with the cluster size, as a complementary
indicator for the gradual evolution towards bulk
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metallic properties.

In order to plot the DOS of a given cluster,
we just need the Kohn-Sham eigenvalues, which
SIESTA code always outputs to a file with
extension .EIG. The code can also provide
with .DOS and .PDOS files, if asked for them
in the input file. The .DOS file contains the
density of states in a way that emulates a true
experimental measurement (from example from
photoemission spectroscopy) by centering a
gaussian, of width decided by the user, around
each eigenvalue to simulate line broadening.
We have decided to apply a broadening of 0.1
eV. The .PDOS file contains more detailed
information, namely the contribution of each
atomic orbital (basis function) to the total
DOS, so that the separate contribution of
s− and p−orbitals can be obtained and the
degree of sp−hybridization revealed. The DOS
provided by SIESTA is normalized so that its
integral up to the Fermi level gives the total
number of electrons, thus the area under each
peak directly provides the number of electrons
contributing to that peak. These figures will
be analyzed and we will check if computational
results are compatible with the predictions of
the jellium models.

As stated before, the peaks in the DOS
represent eigenvalues, so if several eigenvalues
are degenerate because of the symmetries of the
cluster, they will contribute to a single peak.
If two eigenvalues are nearly-degenerate, their
energies are very close and they can contribute
to a single peak depending on the broadening
employed. In any case, the area below the peak
will always allow us to know the number of
electrons it contains.

We mention in passing that a detailed com-
parison of the theoretical DOS of Mg cluster
anions with the photoemission spectra available
in Kotko Thesis is one of the most accurate
methods for cluster structure assessment. This
is so because each different isomer has its own
DOS pattern, so that the DOS is an ideal
structural fingerprint. This type of analysis
would be the natural continuation of our work
in future research, but it implies too extensive

additional work to include it here.

We will be content here with considering a
few specific sizes for the neutral charge state,
since the aim of this section is to understand
whether the results obtained are compatible
with the predictions of jellium models and, for
this purpose, it is not necessary to show the
results for all sizes. Moreover, considering the
neutral state simplifies the analysis because the
neutral Mg clusters have no spin polarization,
thus producing DOS curves with sharper
features for an easier analysis.

As explained in the theoretical section, the
notation used to designate molecular orbitals
in the spherical jellium model is similar to the
one used in atoms, with the difference that
capital letters are used instead of lower-case
letters and that there are no restrictions on
the “principal quantum number” as it is not
associated with any observable, and it is used
just to distinguish shells with the same angular
momentum. The usual Aufbau filling scheme
provided by the spherical jellium model is:
1S21P 61D102S21F 142P 61G182D103S21H22 . . ..
As in atoms, this is the order observed in most
cases, but there may be aggregates with a dif-
ferent filling order since it depends on the shape
of the effective radial potential. Moreover, no
cluster can have full spherical rotational sym-
metry even if it has an approximately spherical
shape: being formed by a discrete number of
point-like nuclei, it will just have one of the
point group symmetries. So we do not have
to expect all of the essential degeneracies of a
sphere; the essential degeneracies will be rather
given by the dimensionalities of the irreducible
representations of the given point group. But
overall it turns out that the spherical jellium
pattern of levels is quite well followed if the
cluster “shape” is close to spherical. We will use
the same notation even for clusters that deviate
from sphericity. In these clusters there will be
additional fragmentation of angular momentum
shells produced by the specific cluster shape.

We will focus on the shell closures and the
filling order, as well as the degeneracy break-
ing resulting from a non-spherical shape of the
aggregate. Indeed, we know that the magic
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numbers of the spherical model occur for Ne =
2, 8, 18, 20, 34, 40, 58, 70, . . ., but in cases where
the splitting within a layer is large enough, new
gaps and consequently new magic numbers can
be generated, as in ellipsoidal jellium models.

In the next figure we show the DOS of MgN
clusters for N = 4, 17, 20, 35. This way we have
a representative selection of sizes covering very
small, intermediate size, and the larger sizes ad-
dressed in this work. We have explicitly anno-
tated jellium labels on top of each peak or group
of peaks.

We will first focus on a discussion of sizes N =
4, 20 and 35. This is just because these clusters
are approximately spherical at the quadrupolar
level (i.e. their three principal inertia moments
are quite similar). Meanwhile, Mg17 is quite
flattened and so has a sizable deviation from
sphericity, of oblate character.

The first graph of DOS in fig7 corresponds
to the Mg4 aggregate, which contains 8 valence
electrons, and it perfectly agrees with the ex-
pected jellium configuration: The lowest-energy
peak corresponds to a filled 1S2 shell, while the
second one integrates to six electrons and so cor-
responds to the filled 1P 6 electronic shell. There
is a wide HOMO-LUMO gap of around 2 eV as
expected from a spherical shell closing configura-
tion. The Td point symmetry group of this clus-
ter maintains the exact degeneracy within the
1P shell. The next peaks are above the Fermi
level and so unoccupied. The first one corre-
sponds to the 2S orbital, and the other two rep-
resent the 1D, which is fragmented under the
tetrahedral symmetry of the nuclear potential.
It is interesting to notice that the 2S orbital is
more stable than 1D, most probably due to the
small size of the cluster and the fact that the
1D orbital can be localized on a region external
to the cluster, while the 2S orbital has at least
some weight on the internal region.

Figure 8 shows the DOS of Mg20 in its top
part. Although this cluster has only C3 symme-
try, its global shape is also tetrahedral, and so
quite spherical at the quadrupolar level as ex-
pected for a system with 40 valence electrons
(we remind the reader that Ne = 40 is one
of the electronic shell closings in the spherical
jellium model). Agreeing with this model, the
DOS shows a fair gap at the Fermi level. More-

over, the whole DOS displays a nice match to
jellium expectations. The lowest-energy peak
corresponds again to 1S2 shell. The next peak
to 1P 6. We notice here that the C3 group at
most admits doubly-degenerate irreducible rep-
resentations, so the 1Px, 1Py, 1Pz orbitals do
not have exactly the same energy in the .EIG
file. Nevertheless the cluster shape is spherical
enough so that the three levels contribute to a
single, slightly wider peak with the employed
line broadening employed. The next two peaks
correspond to 1D10, split approximately into
two levels containing 6 and 4 electrons. Next
peak, 2S2, is very close to the 1D peak but
now following the usual jellium ordering. The
next broader band contains 20 electrons and
must be associated with 1F 142P 6 shells. The
1F and 2P orbitals seem to overlap in energies
and it is not possible without further analysis
to identify which of those bunched peaks are
the 1F and which ones are the 2P , but since
the cluster shape has a slightly oblate charac-
ter, we are quite confident that the HOMO is
the 2Pz orbital, if we agree to call z−axis to
the symmetry axis of the inertia ellipsoid. This
is because in an oblate object the 2Pz orbital
overlaps less efficiently with the jellium posi-
tive background, which destabilizes that orbital
compared to 2Px, 2Py.

Next, we briefly mention that Mg35 also con-
forms to the electronic shell closing predicted at
70 electrons by the spherical jellium model, al-
though the HOMO-LUMO gap is smaller due to
the global trend of the gap to decrease with in-
creasing size of the cluster. The several bands,
in order of increasing energy, correspond to 1S2,
1P 6, 1D102S2, 1F 142P 6, 1G183S22D10. As be-
fore, 1F and 2P shells overlap in energy space,
and now also the 1G, 2D and 3S shells over-
lap, so in particular the spherical shell closing
expected at an electron count of 58 is only in-
cipient. In summary, we can conclude that Mg
clusters with an approximately spherical shape
well conform to jellium expectations, as a result
of delocalization of the valence electrons.

Finally we consider Mg17 as an example
of a non-spherical cluster, with a significant
oblate character. The first thing we notice is
that Ne = 34 is a spherical shell closing, i.e.
the electrons would like the cluster to adopt
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Figure 7: The density of states of Mg4 and Mg17 (red lines) and the separate contributions of s−orbitals
(purple) and p−orbitals (blue) are shown. Also, the Fermi energy (EF ) is shown with a vertical line.
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Figure 8: Same information as in the previous figure, but for Mg20 and Mg35 clusters.
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V CONCLUSIONS AND SUMMARY

a spherical shape. Failing to observe so is a
demonstration that purely geometric packing
effects are here dominating over (or at least
competing with) electronic shell effects. In fact,
the gap at the Fermi level is narrower than
expected, and with the broadening employed in
plotting the DOS turns into an incipient pseudo
gap. Moreover, and although not visible in the
figure, the LUMO peak contains four electrons
and then there is a sizable gap separating the
LUMO from the next peak, so this structure
produces a gap at 38 electrons instead of 40
electrons. The oblate distortion is large enough
to push the 2Pz orbital to high energies and
open a gap between 2Px, 2Py (the LUMO) and
2Pz, an example of a subshell closing.

Nevertheless, Mg17 follows quite well jellium
predictions if we account for the effects of the
oblate distortion as we have just done, and
these effects are, as expected, not so important
for the inner orbitals as they don’t sample so
much the cluster shell region. 1S2 is the first
peak. The next two ones correspond to the
1P 6 shell, fragmented into 4+2 electrons as
corresponds to an oblate distortion. Notice
that the splitting is still large even for such an
inner shell, although not so large as for the 2P
shell. Next two peaks are the 1D10 shell, split
into 4+4+2 electrons although the last 4+2 fall
into a single peak with the broadening. 2S2 is
the next small peak, and the next peaks, as for
Mg20, contain a mixture of 1F and 2P orbitals
that we cannot separate.

Concerning the partial density of states con-
tributed by the 3s and 3p atomic orbitals, a gen-
eral finding for all cluster sizes is that the deeper
molecular orbitals are predominantly formed
by 3s orbitals, but the percentage contribu-
tion of the 3p atomic orbitals raises with en-
ergy, so the HOMO always has an apprecia-
ble contribution from 3p atomic orbitals, even
in the very small Mg4 cluster, demonstrating
that sp−hybridization is an important contrib-
utor to the stability of Mg clusters much before
the gap is closed. If we focus now on the percent-
age 3p−contribution to the HOMO, we see that
it increases from approximately 33% in Mg4 to
55% in Mg17, 66% in Mg20 and finally 70% in

Mg35. This is already of the same order of mag-
nitude as the 3p−contribution at the Fermi level
of bulk hcp magnesium[15]. In fact it is a little
bit larger than the bulk limit value but we have
to keep in mind that the cluster structures are
still very far from being hcp-like. In any case, it
seems that the degree of sp−hybridization is al-
ready bulk-like even in relatively small Mg clus-
ters, irrespective of the finite gap at the Fermi
level.

V Conclusions and sum-
mary

Putative GM structures of Mg−N with
N = 22 − 38 atoms have been reported, thus
completing our previous study on the smaller
sizes N = 3 − 21 which was the subject of
my TFG work. The complete set of results,
including all sizes, has been shown here in order
to better appreciate the size-dependent trends.
In order to achieve a direct connection between
experimental and computational results, we
have compared our computational results with
experimental data, in particular, with the
experimental measurements by the group of
Bernd von Issendorff.

Firstly, the cluster abundances of the ex-
perimental mass spectral data have been
compared with three stability indicators:
Ecohesive(N), Eevap(N), and 42(N). These
indicators together provide a nice explanation
of the experimental measurements and repro-
duce the experimental observations almost
perfectly: we observed enhanced stabilities
for sizes N = 4, 9 − 10, 15, 19 − 20, 25, 27, 29
and 34, whereas deep minima correspond-
ing to nearly undetectable sizes occurred for
N = 11, 21, 26, 28, 32 and 36. Eevap is a more
sensitive indicator for the marked maxima in
the experimental abundances, while 42(N) is
a more sensitive indicator for the deep minima
and globally shows the best agreement with
experiment.

Geometric and electronic factors contribute
to the stability of the clusters, but only a
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combination of both factors can explain the
totality of magic numbers. As expected for
small clusters with delocalized valence electrons,
electronic shell closing effects are important in
explaining the most marked magic numbers of
magnesium clusters.

The vertical ionization potential and the vari-
ation of the band gap results are in very good
agreement with the experimental data obtained
by Kostko. The vIP exhibits variations with
cluster size N originated from the delocalized
electronic shell structure characteristic of sp
metal clusters. The main discrepancy occurs
for size N = 28, which suggests that we have
not identified the correct global minimum for
this particular size. For the band gap, there are
substantial band gap drops after clusters with
Ne = 8, 14, 20, 26, 30, 34, 40 and 70 electrons,
all of them agreeing with jellium predictions.
The first significant band gap closing occurs for
Mg−18 and Mg−19, identified in the experimental
paper as the smallest size displaying metallicity.
So, the studied magnesium clusters clearly
exhibit a shrinking gap even for relatively small
clusters, which closes at certain sizes, with
recurrent re-openings at marked electronic shell
closings.

We have additionally checked that our
computational results are compatible with the
predictions of the jellium models by analyzing
the electronic density of states of MgN . We
focus on the shell closures and the filling order
of clusters for N = 4, 17, 20, 35 atoms. Taking
Mg35 as a representative example, it conforms
to the electronic shell closing predicted at
70 electrons by the spherical jellium model,
although its HOMO-LUMO gap is relatively
narrow due to the global trend of the gap to
decrease with increasing size of the cluster. Fi-
nally, we also show the partial density of states
contributed by the 3s and 3p atomic orbitals
and we demonstrate that sp−hybridization is
an important contributor to the stability of Mg
clusters much before the gap is closed.

In summary, we consider this study to be a
significant advance and contribution to the clus-
ter field, because it has successfully explained

the fundamental properties of Mg aggregates
with precision and it has also obtained results
capable of reproducing the experimental data
as it improves and extends over the previous
ones.
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