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Abstract

In this paper the scattering between a wobbling kink and a wobbling antikink in the standard
φ4 model is numerically investigated. The dependence of the final velocities, wobbling amplitudes
and frequencies of the scattered kinks on the collision velocity and on the initial wobbling amplitude
is discussed. The fractal structure becomes more intricate due to the emergence of new resonance
windows and the splitting of those arising in the non-excited kink scattering. Outside this phase,
the final wobbling amplitude exhibits a linear dependence on the collision velocity whereas the final
frequency is a decreasing function. By contrast, these magnitudes are almost independent of the initial
wobbling amplitude. A theoretical analysis of this new scenario is carried out by applying the collective
coordinate method.

Resumen

En este art́ıculo el scattering entre kinks y antikinks excitados mediante el modo normal de vibración
de estas soluciones en el modelo φ4 estándar es investigado numéricamente. La dependencia de las
velocidades finales, amplitudes y frecuencias de oscilación de los kinks resultantes trás la colisión con
respecto a la velocidad y amplitud inicial es analizada. La estructura fractal presente en el diagrama
que proporciona la velocidad final frente a la velocidad inicial para kinks no excitados se vuelve ahora
más intrincada debido al surgimiento de nuevas ventanas de resonancia. Fuera de esta fase, la amplitud
final de vibración de los kinks exhibe una dependencia lineal de la velocidad de colisión mientras que
la frecuencia final es una función decreciente. Asimismo, estas magnitudes son casi independientes de
la amplitud de vibración inicial. El análisis teórico de este nuevo escenario es investigado aplicando el
método de coordenadas colectivas.

1 Introduction

Over the last fifty years, topological defects have played an essential role in explaining a wide variety
of non-linear phenomena arising in several physical contexts, including Condensed Matter [1, 2, 3, 4],
Cosmology [5, 6], Optics [7, 8, 9], Molecular systems [10, 11], Biochemistry [12], etc. This broad range of
applications underlies the fact that topological defects are solutions of nonlinear partial differential equa-
tions, which behave as extended particles in the physical substrate. Solitons and kinks are paradigmatic
examples of this type of solutions, which have been profusely studied both in Physics and Mathemat-
ics. They arise, respectively, in the sine-Gordon and φ4 field theory models, which are endowed with
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two facing properties: integrability versus non-integrability. Curiously, kink scattering in non-integrable
systems exhibits a richer behavior than the one found for integrable systems. The study of the collision
between kinks and antikinks in the φ4 model was initially addressed in the seminal references [13, 14, 15].
The complex relation between the final velocity vf of the scattered kinks and the initial collision velocity
v0 was displayed in these papers. There exist two different scattering channels: bion formation and kink
reflection. In the first case a bound state (called bion) is formed, where kink and antikink collide and
bounce back over and over emitting radiation in every impact. In the second case, kink and antikink
emerge after the impact and move away with a certain velocity vf . If the initial collision velocity v0 is
low enough, a bion is always formed while for large velocities v0 the kinks are reflected. However, the
most striking feature in this scheme is that the transition between the two previously described regimes
is characterized by a sequence of initial velocity windows with a fractal structure where the kinks collide
several times before definitely escaping, see Figure 5. The fractal nature displayed by this final velocity
versus initial velocity diagram is twofold: (a) The first two-bounce window arises approximately in the
range v0 ∈ [0.1920, 0.2029] and it is infinitely replicated by progressively narrower windows up to the
beginning of the one-bounce kink reflection regime at (approximately) v0 ≈ 0.26, see Figure 5. (b) Two-
bounce windows are surrounded by three-bounce windows, and these ones, in turn, are surrounded by
four-bounce windows, and so on. Consequently, the previously mentioned diagram displays three clearly
differentiated parts: the first one corresponds to zero velocity where the bion state is formed, the second
part approximately occurs in the interval [0.19,0.26], where the fractal structure emerges, and the third
one refers to the 1-bounce kink reflection regime characterized by a continuous increasing curve starting
at zero final velocity, which we shall call the one-bounce tail. Notice that there is no 1-bounce windows
in the fractal region.

The presence of the n-bounce windows can be explained by means of the resonant energy transfer
mechanism. As it is well known, the second order small kink fluctuation operator involves two discrete
eigenfunctions: a zero mode (which generates an infinitesimal translational movement of the kink) and
a shape mode (an infinitesimal perturbation associated with the internal vibration of the kink). The
presence of these modes is the consequence of two different evolutions: (a) the kink travels with constant
velocity and (b) the kink vibrates by changing its size. This last behavior defines the so-called wobbling
kink. The previously mentioned mechanism allows an energy exchange between the zero and shape kink
modes. For example, a kink and antikink could approach each other with initial velocity v0, collide and
bounce back. The impact could excite the shape mode, which would absorb a part of the kinetic energy.
As a consequence, a wobbling kink and a wobbling antikink would emerge after the collision and move
away. If the kinetic energy of the resulting kinks was not large enough to make the kinks escape they
would end up approaching and colliding again. The new impact would cause a redistribution of the energy
among the zero and vibrational modes. It is clear that the wobbling kinks play an important role in the
fractal structure of the n-bounce windows. In this sense, the present study is important to understand
the n-bounce scattering since after the first collision a wobbling kink and a wobbling antikink emerge
with, in general, higher amplitudes than the initial one. A part of the vibrational energy could return
to the zero mode making it possible for the kinks to move away and eventually escape. This describes a
two-bounce kink scattering event. In general, a n-bounce event arises when the resulting kinks need to
collide n times before escaping. It is worthwhile to mention that the resonant energy transfer mechanism
does not arise for the soliton scattering in the sine-Gordon model. It is assumed that the reason for
this is the lack of vibrational (shape) modes in this model. However, this mechanism and other related
phenomena are present in a large variety of one-component scalar field theory models, such as in the
double sine-Gordon model [16, 17, 18, 19, 20, 21], in deformed φ4 models [22, 23, 24, 25, 26, 27, 28], in
φ6-models [29, 30, 31, 32, 33], and in other more complex models [34, 35]. Kink dynamics has also been
analyzed in coupled two-component scalar field theory models, see [37, 38, 39, 40, 41, 42, 43, 44]. The
effect of impurities, defects or inhomogeneities on kink dynamics has been discussed in several models,
see references [45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57]. The previous description constitutes
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an heuristic explanation of the resonant energy transfer mechanism, although this phenomenon has
revealed to be more complicated than expected. It has been proved that it can be triggered by the
discrete eigenfunctions of combined kink configuration when kink and antikink are close enough and also
by quasi-normal modes [58, 59, 60]. This complexity turns the search for an analytical explanation of
this phenomenon into a very elusive problem. Indeed, the collective coordinate method was initially
introduced in [13] to explain the kink dynamics in the φ4 model and used later to explain the resonant
energy transfer mechanism in a satisfactory way. However, the presence of typographical errors in the
original paper has been proved [61]. The corrected terms were not sufficient to make the collective
coordinate approach fit the data outcome of the scattering process using the harmonic approximation.
Recent studies [62] shows that the inclusion of more terms, up to second order, in the effective Lagrangian
are necessary to make this analytical method fit with good precision the simulation data.

Other important topic in this context is the study of the evolution of the wobbling kink in the φ4-
model. This issue was initially discovered by Getmanov [63], who interpreted it as a bound state of
three non-oscillatory kinks. Some perturbation expansion schemes have been employed to explore the
properties of the wobbling kinks, see for example [64, 65, 66, 38, 50, 67]. These works show that the
amplitude a(t) of the wobbling mode at fourth order in the expansion decays. As a consequence the
wobbling kink emits radiation. When a(0) is small, the decay becomes appreciable only after long times
t ∼ |a(0)|−2, see [64, 65].

In this paper we shall investigate the scattering between wobbling kinks. We think that this analysis is
interesting for several reasons. The original kink scattering where the resonant energy transfer mechanism
was initially discovered involves the collisions of wobbling kinks after the first impact. In other words,
a n-bounce scattering process presumably includes n − 1 wobbling kink collisions. For example, in a
2-bounce event the kinks collide and a part of the kinetic energy is transferred to the vibrational mode,
such that the second collision is a wobbling kink scattering process. Indeed, this last impact causes the
more (at first sight) astonishing phenomenon, the two kinks acquire more velocity than that they initially
had in the second process. For this reason we think that the study of the wobbling kink scattering can
bring new insight in the original problem, particularly those 1-bounce events, where the amplitude and
velocity of colliding wobbling kinks can be monitored. This allows us to study the resonant energy transfer
mechanism in a more direct way. Obviously, the major part of the results displayed in this paper comes
from numerical analysis due to the previously mentioned fact that there are no satisfactory analytical
methods to study this problem. Despite of this, we shall introduce some theoretical approaches which
try to explain the numerical outcomes.

The organization of this paper is as follows: in Section 2 the theoretical background of the φ4 model
is introduced. The study of the kink and its linear stability leads us to the description of the wobbling
kinks. The kink-antikink scattering is also discussed. Section 3 is devoted to the numerical analysis of
the wobbling kink scattering. Here we shall addressed the scattering between weakly wobbling kinks and
the scattering between strongly wobbling kinks in two different subsections. The distinction underlies
the fact that the amplitude of the wobbling kinks decreases in the course of time. This effect is small
for weakly wobbling kinks. So, we can assume in our numerical experiments that the amplitude of these
kinks does not significantly change in the interval in which they are initially approaching before the
collision. In Section 4 we shall try to analytically explain some of the features found in the previous
section by using the collective coordinates method or by using the behavior of system invariants. Finally,
some conclusions are drawn in Section 5.
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2 The φ4 model: Preliminaries, notation and kink-antinkink scattering

We shall deal with the φ4 model in (1+1) dimensions, whose dynamics is governed by the action

S =

∫
d2x L(∂µφ, φ) , (1)

where the Lagrangian density L(∂µφ, φ) is of the form

L(∂µφ, φ) =
1

2
∂µφ∂

µφ− V (φ) , V (φ) =
1

2
(φ2 − 1)2 , (2)

a plot of this potential and the behaviour of the static solutions can be seen in Figure 1. The use of
dimensionless field and coordinates and Einstein summation convention is assumed in (1) and (2). The
Minkowski metric gµν has been chosen as g00 = −g11 = 1 and g12 = g21 = 0. The solutions of this model
verify the non-linear partial differential equation

∂2φ

∂t2
− ∂2φ

∂x2
= −dV

dφ
= −2φ(φ2 − 1) , (3)

which derives from the Euler-Lagrange equations associated with the functional (1). Static solutions
solve the equation

-2 -1 1 2
ϕ

1

2

3

4

V(ϕ)

Figure 1: Potential V (φ) of the φ4 model (left) in equation (2) and the 3D representation (right) of the potential
with the kink (blue line) and antikink (red line) solutions connecting the minima of the potential. One can see
that this potential has two minima M = {-1,1}, where the vacuum solutions are found to be after a spontaneous
symmetry breaking.

d2φs
dx2

=
dV

dφs
, (4)

where subindex s stands for static configuration. Static solutions with finite energy must satisfy the
boundary conditions

lim
x→∞

dφs
dx

= 0 , lim
x→∞

φ = φs . (5)

Equation (4) can be simplified to a first order ODE by multiplying both sides by dφs/dx which leads
us to

dφs
dx

= ±
√

2V + C . (6)
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To be in accordance with the boundary conditions (5) the constant of integration C must vanish. The
energy-momentum conservation laws imply that the total energy and momentum

E[φ] =

∫
dx
[1

2

(∂φ
∂t

)2
+

1

2

(∂φ
∂x

)2
+ V (φ)

]
; P [φ] = −

∫
dx

∂φ

∂t

∂φ

∂x
, (7)

are system invariants. The integrand of the total energy E[φ] is the energy density of a configuration

ε[φ(x)] =
1

2

(∂φ
∂t

)2
+

1

2

(∂φ
∂x

)2
+ V (φ) .

Trivial time- and space-independent solutions of (3) are φs = ±1. These solutions present null energy
and identify the vacua of the model, M = {−1, 1}. Non-trivial static solutions of (3) with non-null
energy are of the form

φ
(±)
K (x;x0) = ± tanh(x− x0) , (8)

which are called kink/antikink (+ /−) and connect the two elements of the set of vacua of the potential.

The kink/antikink energy density ε[φ
(±)
K (x;x0)] = sech4(x − x0) is localized around the point x = x0,

which is assumed to be the kink center (the value where the field profile vanishes). The Lorentz invariance
can be used to construct the travelling kinks/antikinks in the form

-4 -2 0 2 4

-1.0

-0.5

0.0

0.5

1.0

x

a = 0.2

a = 0.4

a = 0.6

a = 0.8

a = 1.0

Figure 2: Kink deformed by the vibrational normal mode in first excited state for different amplitudes (solid lines)
and eigenfunctions ψω2=3(x, x0) associated to first excited mode of the φ4 model (dashed lines).

φ
(±)
K (t, x;x0, v0) = ± tanh

[
x− x0 − v0t√

1− v2
0

]
. (9)

Obviously, the kink center xC for (9) moves in the real line following the expression xC = x0 + v0t, such
that v0 can be interpreted as the velocity of the kink center.

Now, in order to examine the linear stability of the solution, we consider fluctuations around the
static kink/antikink solution (8) by adding a small perturbation as

φ̃
(±)
K (t, x;x0) = φ

(±)
K (x;x0) + ψ(t, x;x0) . (10)

Expanding it up to first-order in ψ into the equation of motion (3) and using the standard separation of
variables ansatz

ψ(t, x;x0) = a eiωtψω2(x;x0) ,

one has the Schrödinger-like equation[
− d2

dx2
+ U (x)

]
ψω2(x;x0) = ω2ψω2(x;x0) , (11)
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where

U (x) =
d2V

dφ2

∣∣∣∣
φ
(±)
K

= 4− 6 sech2(x− x0) ,

is named the “stability potential”. In the φ4 model, the term that plays the role of the Hamiltonian
operator in (11) can be factorized into operators S± = − d

dx ± 2φK , a condition that is enough to
prove the linear stability of the kink solution. Equation (11) has one zero mode, an excited mode with
eigenvalue ω2 = 3 and a continuous spectrum on the threshold value ω2 = 4, whose eigenfunctions are
given by,

ψω2=0(x;x0) = sech2(x− x0) =
∂φK
∂x

,

ψω2=3(x;x0) = sinh (x− x0) sech2(x− x0) ,

ψω2=4+q2(x;x0) = eiq(x−x0)[−1− q2 + 3 tanh2(x− x0)− 3iq tanh(x− x0)] .

Figure 3: Configuration formed by a well separated kink and antikink, which are pushed together with initial
velocity v0.

This means that perturbations of the static kinks (10) are solutions of the nonlinear partial differential
equation (3) at first order in the a-expansion. In this sense, the zero mode ψω2=0 describes an infinitesimal
translation of the static kink (8), or in other words, an infinitesimal evolution of the travelling kink (9).
The shape mode ψω2=3(x;x0) describes a vibrational state of the kink/antikink whose width oscillates

with frequency ω =
√

3. For small amplitudes a, a travelling wobbling kink/antikink φ
(±)
WK is described

by the expression

φ
(±)
WK(t, x;x0, v0, ω, a) = ± tanh

[x− x0 − v0t√
1− v2

0

]
+ a eiωt sinh

[x− x0 − v0t√
1− v2

0

]
sech2

[x− x0 − v0t√
1− v2

0

]
, (12)

which is a good approximation up to first order, see Figure 2. The maximum deviation of the wobbling
kink (12) from the kink (9) takes places at the points

x
(±)
M = xC ±

√
1− v2

0 arccosh (2) , (13)

where xC is the kink center, see Figure 2. The same result applies to the antikink. We shall analyze the
evolution of the kink/antikink at these points to study the excitation of the wobbling modes in the kink
scattering processes. The deviation at these points is given by∣∣∣φWK(x

(±)
M )− φK(x

(±)
M )

∣∣∣ =
1

2
|a(t)| . (14)
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Figure 4: Bion formation (left), 1-bounce reflection (center) and 2-bounce scattering (right).

When the amplitude a is large enough, this magnitude can depend of the time variable. Indeed, it
has been proved that the amplitude a(t) of the wobbling mode at fourth order in the expansion decays
the following the expression

|a(t)|2 =
|a(0)|2

1 + ω ξI |a(0)|2t
, (15)

where ξI is a constant. When a(0) is small, the decay becomes appreciable only after a long time
t ∼ |a(0)|−2, see [64, 65].

The scattering between a kink and an antikink (whose shape eigenfunctions are unexcited, i.e. a = 0
in (12)) has been thoroughly analyzed in the physical and mathematical literature. In this case, a kink
and antikink, which are well separated, are pushed together with initial collision velocity v0. Taking into
account the spatial reflection symmetry of the system, the kink can be located at the left of the antikink
or viceversa. This configuration can be characterized by the concatenation

φ
(±)
K (t, x, x0, v0, ω, 0) ∪ φ(∓)

K (t, x,−x0,−v0, ω, 0) =

{
if x < 0, φ

(±)
K (t, x, x0, v0, ω, a)

if x ≥ 0 , φ
(∓)
K (t, x,−x0,−v0, ω, a) ,

(16)

for x0 � 0, see Figure 3. Two different scattering channels have been found in this situation:

1. Bion formation: In this case, kink and antikink approach each other, then collide and bounce back.
After the impact an exchange of energy from the translational mode to the shape and continuous
modes takes place in such a way that the kinetic energy of these two kinks is not big enough to
make them escape. Therefore, they approach each other again, collide and bounce back over and
over. This is a long living bound kink-antikink state called bion.

2. Kink reflection: Now, kink and antikink approach each other, collide and bounce back. After
the impact a redistribution of the energy among the normal modes occurs. After colliding a finite
number n of times, kink and antikink emerge and move away with final velocity vf . These processes
will be referred to as n-bounce scattering events, see Figure 4.

If we plot the final velocity of the scattered kinks as a function of the initial collision velocity v0 we
find the diagram displayed in Figure 5. Here, it is assumed that the final velocity for a Bion state is
zero. It is clear that the bion formation regime arises for low enough values of the collision velocity v0.
On the other hand, if v0 is greater than 0.25988 then kink and antikink reflect each other after colliding
once (blue curve in Figure 5). We will referred to this piece of curve as the one-bounce tail. Note that
a color code has been used in Figure 5 to specify the number of collisions that the kinks suffer before
escaping. A surprising fractal pattern turns up in the interval [0.18, 0.25988], where the bion formation
and kink reflection regimes are interlaced. The red curves (which characterize 2-bounces events) are
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v0
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0.18 0.19 0.2 0.21 0.22 0.23 0.24 0.25

0.1

0.2

1 bounce 2 bounces 3 bounces

4 bounces 5 bounces >5 bounces

a
=

0
.0

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9
0.0

0.2

0.4

0.6

0.8

1.0

Figure 5: Final velocity vf of the scattered kinks as a function of the initial collision velocity v0 of the colliding
kinks. The final velocity of a Bion is assumed to be zero. The color code is used to specify the number of bounces
suffered by the kinks before escaping. The resonance window has been zoomed and inserted in the Figure.

surrounded by green curves (which determine 3-bounces processes) and so on. Besides, this scheme is
infinitely replicated as we approach the one-bounce reflection kink regime, see zoomed area in Figure 5.

It is worthwhile to mention that after the first collision in a n-bounce scattering process the following
collisions involve wobbling kinks due to the fact that the first impact usually excites the shape mode of
the initially colliding kinks. It is difficult to monitor the velocities and amplitudes of the resulting kinks
after the first impact in an n-bounce event because the period of time between bounces is usually very
short. For this reason it seems reasonable to directly investigate the collision between wobbling kinks. In
this situation the velocity and amplitude of the colliding and scattered wobbling kinks can be monitored,
at least, in the one-bounce processes. In any case, this type of scattering events can provide us with a
lot of information about the resonant energy transfer mechanism.

3 Scattering between wobbling kinks

The goal of this paper is to analyze the scattering between wobbling kinks. In order to accomplish this
task we shall employ numerical approaches based on the discretization of the partial differential equation
(3). In the collision process between wobbling kink and wobbling antikink the energy transfer mechanism
takes place and part of energy interchanged between normal modes is released to space as radiation. When
this radiation reach the edges of the grid it is reflected back to the center of the grid if no appropiate
boundary conditions are considered and this could disrupt the interaction between the topological defects,
see Figure 6. For this reason, the numerical procedure used in this paper corresponds to an energy
conservative second-order finite difference algorithm implemented with Mur boundary conditions. The
effect of radiation in the simulation is controlled by this algorithm because the linear plane waves are
absorbed at the boundaries. As a complement to this numerical method has also been employed the
algorithm described in [68] by Kassam and Trefethen. This scheme is spectral in space and fourth
order in time and was designed to solve the numerical instabilities of the exponential time-differencing
Runge–Kutta method introduced in [69]. The initial settings for our scattering experiments are described
by two initially well separated wobbling kinks which are pushed together with initial collision velocity
v0. This situation is characterized by the concatenation

φ
(±)
WK(t, x, x0, v0, ω, a) ∪ φ(∓)

WK(t, x,−x0,−v0, ω, a) =

{
if x ≥ 0, φ

(±)
WK(t, x,−x0,−v0, ω, a) ,

if x < 0, φ
(∓)
WK(t, x, x0, v0, ω, a) ,

(17)

8



Figure 6: During the exchange of energy between normal modes of the topological defects a small amount of
energy is released as radiation to space. Without good boundary conditions, this radiation reflect back to the
center of grid and disrupt the evolution of the scattering process. A bion formation (left) and the reflection of
radiation at the edges of the grid (right) is shown above.

where x0 � 0 and

φ
(±)
WK(t, x;x0, v0, ω, a) = ± tanh

(
x− x0 − v0t√

1− v2
0

)
+ a sin(ωt) sech

(
x− x0 − v0t√

1− v2
0

)
tanh

(
x− x0 − v0t√

1− v2
0

)
,

(18)

has been chosen to comply with the initial condition φ
(±)
WK(0, x;x0, v0, ω, a) = φ

(±)
K (t, x, x0, v0), see Figure

3. The configuration (17) consists of a wobbling kink/antikink with center −x0 located at the left side
of an wobbling antikink/kink with center x0. It is clear that if x0 � 0 and a� 1 the partial differential
equation (3) is verified by (17) very approximately. The initial conditions for our problem can be derived
from (17) by simply taking t = 0, that is, φ(0, x;x0, v0, ω, a) and ∂φ

∂t (0, x;x0, v0, ω, a) define the starting
point of the numerical algorithm. Note that the configuration (17) is invariant under the spatial reflection
transformation x 7→ −x, as it is also the evolution equation (3), so all the scattering processes will preserve
this symmetry. This means that we can extract all the scattering information by analyzing the features
of only one of the scattered kinks. In particular, our numerical experiments have been carried out in
a spatial interval x ∈ [−100, 100] where the kink and the antikink centers are initially separated by a
distance d = 2x0 = 60. These kink centers have been monitored during the evolution, as well as the
number of bounces suffered by the topological defects. In the kink reflection regime this information
is used to work out the final velocity of the scattered kinks by employing a linear regression when the
kinks are far enough apart from each other. Moreover, the time interval t ∈ [0, tmax] of the simulation
depends on the initial velocity of the wobbling kink/antikink. If the initial velocity is smaller than 0.3
the tmax = 900 + 15/v, otherwise, tmax = 190 − 131/v + 85/v2. We argue that for initial velocities
bigger than 0.3 the 1-bounce reflection process are most likely to emerge then, a shorter time interval of
computation is enough to cover all the scattering process. This scheme has been performed for a range
of initial velocities v0 usually covering the interval v0 ∈ [0.1, 0.9] with initial velocity steps ∆v0 = 0.001,
which is decreased to ∆v0 = 0.00001 in the resonance range. Although, as the initial velocity approach
the end of the fractal regime, the resonance windows get narrower, see Figure 5, and even for initial
velocity steps ∆v0 � 1 is possible that some resonance windows may not appear. These data allow us
to study the dependence of the separation velocity of the scattered kinks as a function of the collision
velocity v0, which can be graphically represented by means of diagrams similar to Figure 5. Once the
position and the velocity of the kink centers have been determined the wobbling amplitude and frequency
are also estimated. To do this, the difference between the numerical profile and a non-excited traveling
kink, both of them with the same center xC and velocities vf is evaluated at the points x±M for every
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time step in the simulation. The choice of these points underlies the fact that the wobbling fluctuation
has its maximum/minimum values at the points x±M . The time series constructed in this way is analyzed
by using a fast Fourier transform algorithm.

In order to explore the dependence of the final velocity on the initial wobbling amplitude of the
colliding kinks the previously described numerical scheme has been replicated for different values of the
amplitude a considered in the initial configuration. In these numerical experiments we shall consider only
positive values of a. Negative values of a are simply related with the positive ones by adding a phase in
the argument of the oscillatory factor sin(ωt) in (18). To get a better understanding of the phenomena
associated with this type of scattering processes is convenient to distinguish two different regimes which
depend on the magnitude of the amplitude a. They are determined as follows:

1. Scattering between weakly wobbling kinks: This scenario comprises those scattering processes where
the initial amplitude a of the colliding wobbling kinks is |a| < 0.05. In these cases the amplitude
decay effect is assumed to be negligible such that the wobbling amplitude of the evolving kinks at
the time of impact is approximately equal to the initial one. It is clear that this kind of events
allows a better control on the variables of the scattering problem. The mechanisms that begin to
deform the velocity diagram with respect to the pattern found in Figure 5 when a is increased can
already be perceived in these cases. These novel behaviors will be discussed in Section 3.1.

2. Scattering between strongly wobbling kinks: It is expected that the more intense phenomena take
place when the wobbling amplitudes of the colliding kinks are relatively large. We assumed that
these cases are determined by the condition |a| ≥ 0.1. Now, the amplitude decay suffered by the
wobbling kinks in the time period lapsed between the beginning of the simulation and the kink
collision (approximately d/(2v0)) could be significant. Therefore, it is difficult to estimate the value
of the wobbling amplitude immediately before the impact, which is from our point of view the more
significant variable. Despite this fact this type of events plays an essential role in the resonance
mechanism and for this reason it will be discussed in Section 3.2. We shall analyze the dependence of
some scattering parameters on the initial wobbling amplitude of our numerical experiments taking
into account that the value of the collision amplitude will be smaller than the initial one. Obviously,
the higher the initial magnitude is the higher the collision amplitude is.

3.1 Scattering between weakly wobbling kinks

In this section, we shall consider the scattering of kinks whose initial wobbling amplitudes a are small.
As previously mentioned it is assumed that in these cases the decay of the wobbling amplitude is a
residual effect. Thus, the magnitude of the wobbling amplitude of the kinks just before colliding must
be approximately equal to the initial one. This first regime of kink scattering has been numerically
investigated in the initial wobbling amplitude range a ∈ [0, 0.05] taking an amplitude step ∆| = 0.001
for 0 ≤ |a| ≤ 0.02 and ∆a = 0.01 for a > 0.02. A characteristic velocity diagram obtained is displayed
in Figure 7, where the dependence of the final velocity vf of the scattered kinks on the initial collision
velocity v0 is graphically represented when the initial wobbling amplitude is a = 0.02. Although this
value is relatively small the diagram displayed in Figure 7 introduces novel features with respect to the
classical diagram presented in Figure 5.

It can be observed that the complexity of the fractal structure grows as the initial wobbling amplitude
a increases. A first sign of this fact is that the fractal structure interval is widened as a increases. For
example, this interval is approximately [0.155, 0.277] for the case a = 0.02 whereas it is approximately
[0.18, 0.26] for the case a = 0. A second indicator is the growth in the number of resonance windows.
Indeed, this effect is caused by a resonance window splitting mechanism, which is illustrated in Figure
8. Before examining this process it is worthwhile to bring our attention to another novel property of
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Figure 7: Final velocity vf of the scattered kinks as a function of the initial collision velocity v0 of the colliding
wobbling kinks with initial amplitude a = 0.02. The final velocity of a Bion is assumed to be zero. The color code
is used to specify the number of bounces suffered by the kinks before escaping. The resonance window has been
zoomed and inserted in the Figure.

the diagram in Figure 7: the presence of isolated 1-bounce windows in the fractal structure, which,
in turn, are surrounded by other n-bounce windows with n ≥ 2. This feature does not arise in the
classical velocity diagram with zero initial energy on the shape mode displayed in Figure 5 and its
origin seems to be produced by two different procedures. Figure 7 shows the existence of two isolated
1-bounce windows approximately in the intervals [0.246, 0.251] and [0.261, 0.272], each of them generated
by different channels. They are described as follows:

1. 1-bounce reflection tail splitting : This process is based on the oscillatory behavior of the 1-bounce
tail arising for large initial velocities and represented by blue curves in Figures 5 and 7. For a = 0
this 1-bounce tail is a monotonically increasing function, see Figure 5. However, this curve ceases to
follow that behavior and begins to oscillate as the amplitude a grows, see Figure 7. The amplitude
of these oscillations becomes bigger as the value of a grows, overall at the beginning of the 1-bounce
tail. When the amplitude a is large enough the minima of the previously mentioned oscillations can
intercept the v0-axis, reaching a zero final velocity. As a consequence an isolated 1-bounce window
arises and the gap between this window and the 1-bounce tail is filled with new n-bounce windows.
This phenomenon can be triggered repeatedly as a increases giving rise to several isolated 1-bounce
windows embedded in the resonance regime. The previously described mechanism can be visualized
in Figure 8, where the final velocity versus initial velocity diagrams have been plotted for the three
close initial amplitudes a = 0.013, a = 0.014 and a = 0.015. We can observe the formation of an
isolated 1-bounce window approximately in the interval v0 ∈ [0.26, 0.273].

2. Spontaneous emergence in the resonance phase: The other process, instead, is characterized by the
appearance of windows inside the resonance interval. In these new windows the wobbling kinks
collide only once before escaping. The explanation for this fact seems to be that the additional
energy carried by the excited kinks in these scattering events due to shape mode allows the kinks to
escape in initial velocity windows where this was not possible before. For example, the formation
of the first window of this kind happens approximately for a = 0.011 around the value v0 = 0.249.
As the value of a increases the width of these windows widens. Indeed, this first window can be
observed in Figure 8 for the initial amplitudes a = 0.013, a = 0.014 and a = 0.015. The second
window of this class arises for a = 0.030 around v0 = 0.233. From here the number of the windows
grows enormously, see Figure 9.

Figure 9 illustrates the combined effect of the previously mentioned processes of production of isolated
1-bounce reflection windows. This figure shows the evolution of the velocity diagrams associated to 1-
bounce events as the initial wobbling amplitude a increases from a = 0 (red curve) to a = 0.1 (dark
blue curve). For the sake of clarity, n-bounce processes with n ≥ 2 are not included in this graphics.
Together to the reflection tail splitting and the spontaneous emergence processes another curious behavior
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Figure 8: Velocity diagrams for the wobbling kink scattering with initial amplitudes a = 0.013, a = 0.014 and
a = 0.015 for the initial velocity interval v0 ∈ [0.2260, 0.2907]. This sequence of graphics illustrates the formation
of isolated 1-bounce windows and the 2-bounce window splitting mechanism.

is displayed in Figure 9. The oscillations of the final versus initial velocity curves for the different values
of the amplitude a have common nodes. They intersect each other at the same points (at least in a large
degree of approximation).
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Figure 9: Velocity diagram associated with 1-bounce scattering events for initial wobbling amplitudes ranging in
the interval a ∈ [0, 0.10]. This graphics illustrates the formation of isolated 1-bounce windows. For the sake of
clarity, n-bounce procesees with n ≥ 2 have not been included in this figure.

Now, let us return to the previously mentioned resonance window splitting mechanism. If we observe
Figure 8 around the initial velocity v0 = 0.24, we will witness the split of a 2-bounce window into
other two narrower 2-bounce windows. As before, the gap between these two new 2-bounce windows is
occupied by new n-bounce windows with n > 2. To emphasize the behavior of this newfangled feature
the evolution of the first 2-bounce window found in the classical velocity diagram for a = 0 (see Figure
5) as the value of the wobbling amplitude a increases is shown in Figure 10. It can be observed that
the initial 2-bounce window v0 ∈ [0.1920, 0.2028] (represented by a red curve) gives rise to three new
2-bounce windows v0 ∈ [0.1940, 0.1946], v0 ∈ [0.1990, 0.1998] and v0 ∈ [0.2039, 0.2046] (represented by
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blue curves) for a = 0.02. This process is repeated for the majority of the resonance windows as the
initial wobbling amplitude grows escalating the complexity of the fractal pattern in the resonance phase.
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Figure 10: Evolution of the first 2-bounce window found in the velocity diagram for a = 0 (red curve) as the value
of the initial wobbling amplitude increases up to a = 0.02 (dark blue curves). For the sake of clarity only 2-bounce
scattering events have been included in this graphics.

Note that the formation of isolated 1-bounce windows leads to an ambiguity in the concept of the
critical velocity vc. This term was introduced in the context of kink-antikink scattering [14, 18] and
was defined as the lowest velocity at which the 1-bounce reflection regime takes place, or alternately,
the lowest velocity at which the 1-bounce tail starts and no more bion states or more multi-bounces are
observed. These two definitions coincide when the two colliding kinks are not wobbling because there
is only one (blue) piece of 1-bounce curve, see Figure 5, but they can differ in other cases. In order to
remove this ambiguity we shall distinguish these two velocities, referring to the first one as the 1-bounce
reflection minimum escape velocity vr whereas the second one will be called 1-bounce tail minimum
escape velocity vt. Since more energy in the vibrational mode means that more energy can be released
to the translation mode in the scattering process through the resonant energy transfer mechanism, it is
expected that 1-bounce windows become more prevalent as the value of the wobbling amplitude a grows.
Consequently, it is presumed that the velocity vr is a decreasing function of the amplitude a. On the
other hand, the isolated 1-bounce window formation previously explained implies that the velocity vt
must grow as the amplitude a increases. In the transition from initial amplitude a0 = 0 to a0 = 0.014 the
escape velocity vt is observed to increase logarithmically, however, this pattern is broken by the existence
of a discontinuity due to the formation of the first isolated 1-bounce window from the reflection tail.

After discussing the features of the velocity diagram as a function of the initial amplitude a, we
shall illustrate some particular processes. In Figure 11 (left) a wobbling kink and a wobbling antikink
with collision velocity v0 = 0.285 and initial amplitude a = 0.02 approach each other, collide, bounce
back and move away with final velocity vf = 0.144805 and wobbling amplitude af = 0.175462 after the
collision. These dynamical parameters are the same for the kink and the antikink, in agreement with
spatial reflection symmetry. Once they do not collide back after the first bounce the energy stored in
the vibrational mode remains there and propagates within the kinks. The process displayed in Figure
11 (right) describes a 3-bounce event with initial velocity v0 = 0.25737 and amplitude a = 0.02. In
this case, the scattered kink and antikink travel away with velocity vf = 0.219 and wobbling amplitude
af = 0.003085. We can see the resonant energy transfer mechanism in action in these cases. In the
1-bounce event the outcome amplitude af is bigger than the initial amplitude a, which evinces an energy
transfer from the translational mode to the shape mode being the final separation velocity vf less than
the initial one v0. On the other hand, in the 3-bounce process this mechanism takes place three times
redistributing the energy between the kinetic and vibrational energy pools after every collision. Clearly,
in the first impact the shape mode gains energy at the expense of the zero mode, which finally recovers
part of that energy in the third collision allowing the kinks to escape. Note that radiation emission is
also involved in these processes.

In Figure 12 we have decided to illustrate the behavior of two extreme scattering events, which are

13



Figure 11: Scattering processes between two wobbling kinks with initial amplitude a0 = 0.02 and collision velocities
v0 = 0.25737 (left) and v0 = 0.295 (right). The final velocities and wobbling amplitudes for these events are,
respectively, vf = 0.144805, af = 0.175462 and vf = 0.219 , af = 0.003085.

near to metastable configurations. In the first process, left plot, kink and antikink approach each other
with initial velocity v0 = 0.24691 and wobbling amplitude a = 0.013, collide and bounce back. For a long
time, they apparently remain motionless at a fixed distance. In this particular simulation this situation
takes approximately 400 time units in the dimensionless coordinates introduced in Section 2. Finally,
the lumps end up approaching again to form a bion state. In the second simulation Figure 12 (right) the
kinks initially travel with velocity v0 = 0.27420 and wobbling amplitude a = 0.015; after colliding the
kink and antikink remain in a similar quasi-metastable estate which was previously described, although
in this case after the second collision the kinks are able to escape with final velocity vf = 0.147041 and
wobbling amplitude af = 0.15351. This type of scattering events are difficult to monitor because there
will always be processes whose metastable phase will last more than any simulation time. Indeed, this is
the reason for the gap in the velocity diagram introduced in Figure 8 (middle) around v0 = 0.274.

Figure 12: Scattering processes between two wobbling kinks with initial velocities and amplitudes v0 = 0.24691,
a = 0.013 (left) and v0 = 0.27420, a = 0.015 (right). In the first case a bion state is formed whereas in the second
case the scattered kinks have vf = 0.147041 and af = 0.15351.

Clearly, in the previous simulations the wobbling mode is strongly excited after the first collision.
This is a general pattern as we can observe in Figure 13, which exhibits the final wobbling amplitude
of the scattered kinks after the last collision as a function of the initial velocity v0 for two different
values of the initial wobbling amplitude a = 0.0 and a = 0.02. The analysis of these data, specially
for the 1-bounce events, can lead to a very valuable information to understand the resonant energy
transfer mechanism. 1-bounce events can be considered as elementary processes in the kink scattering
because n-bounce events can be understood as a reiteration of n+1-bounce events. The most surprising
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Figure 13: Wobbling amplitude af of the scattered kinks after the last impact as a function of the collision velocity
for the initial amplitude a = 0 (top panel) and a = 0.02 (bottom panel). The same color code employed in the
previous figures is used to specify the number of bounces suffered by the kinks before escaping.

fact is that the final amplitude for the 1-bounce processes is almost independent of the initial wobbling
amplitude of the colliding kinks. We can observe that this magnitude follows a linear dependence on v0

very approximately, which can be fitted by the expression

a(v0) = 0.084 + 0.34v0 . (19)

What is clear from Figure 13 is that all the 1-bounce events produce a strong excitation of the wobbling
mode, which in all the cases range approximately in the interval af ∈ [0.15, 0.4]. Obviously, the more
the impact velocity of the colliding kinks is, the more excited the scattered kinks become. For moderate
collision impact the final wobbling amplitude is in the range af ∈ [0.15, 0.25]. A first consequence of
this high vibrational excitation in 1-bounce scattering events for initially weakly wobbling kinks is that
the n-bounce events in this regime necessarily involve the scattering of strongly wobbling kinks in one
or several of the intermediate collision processes (at least in the second one). A second consequence is
that the direction of energy transfer in these 1-bounce events is always from the kinetic energy to the
vibrational energy. Notice that the final velocity vf of the scattered kinks in 1-bounce events displayed
in Figure 7 is always less than the initial velocity v0. The isolated 1-bounce windows found in this regime
proves that there exist some initial velocity intervals where less energy is transferred to the shape mode,
which allows the kinks keep enough kinetic energy to escape. The reverse processes must involve the
scattering between strongly wobbling kinks.

Another surprising result is given by the dependence of the wobbling frequency ωf of the scattered
kinks on the collision velocity v0. Note that the shape mode coming from the second order small kink
fluctuation operator expressed in (11) vibrates with the frequency ω =

√
3. It would seem reasonable to

assume that this frequency is kept constant at least by the time the scattered kinks are far away. Figure
14 shows this magnitude as a function of the initial velocity v0. It can be observed that the final wobbling
frequency ωf is a decreasing function on the variable v0, which goes from the value

√
3 for small values

of v0 and arrives approximately to 0.865 at v0 = 0.9 in the graphics. The previously supposed behavior
is confirmed only for values of v0 < 0.4. For greater values of v0 the scattered kinks vibrate slower. It
is difficult to provide a reason for this behavior. It could be a behavior of the wobbling kinks when they
are traveling away at high velocities or it could be caused exclusively by the impact. Recall that the
spectral analysis of the wobbling mode requires to study its evolution for a large enough lapse of time.
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Figure 14: Wobbling frequency of the scattered kinks after the last impact as a function of the collision velocity
for the initial amplitude a = 0 (top panel) and a = 0.02 (bottom panel). The same color code employed in the
previous figures is used to specify the number of bounces suffered by the kinks before escaping.

Other remarkable fact is that the two graphics in Figure 14 are almost identical, which implies that the
behavior of the final frequency is practically independent of the initial wobbling amplitude a for the cases
presented in this Section.

As previously mentioned in this Section, the scattering between strongly wobbling kinks is always
present in the resonance phenomenon because independently of the initial velocity v0 the second collision
will involve a strongly wobbling kink scattering event. For this reason the next section will be devoted
to discuss the properties of this kind of more violent events. We shall emphasize the deviations of this
new scenario from that introduced in this section.

3.2 Scattering between strongly wobbling kinks

This class of kink scattering processes are characterized by a relatively large value of the initial wobbling
amplitude, which is assumed to be |a| ≥ 0.1. In this section this regime has been analyzed for events
with an initial amplitude a in the interval a ∈ [0.1, 0.2] by taking an amplitude step ∆a = 0.01. As usual
we shall begin by examining the dependence of the final velocity vf of the scattered kinks on the initial
velocity v0. This function has been plotted in Figure 15 for the particular cases a = 0.1 and a = 0.2,
which exhibit the representative properties of this regime. The global behavior of these velocity diagrams
is similar to that described in Section 3.1, see Figure 7, although they include important differences.

First, the fractal structure becomes even more intricate than the scenario found in Section 3.1. The
interval where the resonance phenomenon takes place keeps widening as a grows. In addition to this,
when the value of a is large enough the number of isolated 1-bounce windows explodes and the sequence
of these windows forms a fractal structure clustered near the origin of the graphics, see bottom panel
in Figure 15. The initial velocities v0 around the peak of these windows can define initial velocity
intervals where the scattered kinks move faster than the colliding kinks, vf > v0. In these cases a part
of the vibrational kink energy accumulated in the shape mode is transferred to the kinetic energy, which
becomes bigger than its initial value. It can be observed that this phenomenon occurs for low initial
velocities and ceases to happen for high values (when the kinetic energy is large). For example, for
a = 0.2 the height of the windows in the resonance phase exceeds the elastic limit approximately when
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Figure 15: Final velocity vf of the scattered kinks as a function of the initial collision velocity v0 of the colliding
wobbling kinks with initial amplitudes a = 0.1 (top panel) and a = 0.2 (bottom panel). The final velocity of a
Bion is assumed to be zero. The color code is used to specify the number of bounces suffered by the kinks before
escaping. The part of the resonance window has been zoomed and inserted in the Figure.

v0 < 0.34. Obviously, as the value of the initial amplitude a increases this threshold velocity grows
because the vibrational energy becomes bigger. This scenario is a fundamental link in the chain of the
resonant energy transfer mechanism because allows relatively slow scattered wobbling kinks to escape in
a multiple bounce event in the last collision by transferring vibrational energy to the kinetic energy pool.
Figure 16 illustrates this kind of processes. In this graphics a kink and antikink with initial velocity
v0 = 0.1506 and wobbling amplitude a = 0.2 approach each other and collide only once before escaping.
As we can see, the scattered kink and antikink move away with final velocity vf = 0.246454 while its
wobbling amplitude is approximately a = 0.0215. The final outcome in this event is that the kink and
antikink are speeded up whereas its wobbling is softened.

Figure 16: Scattering between two wobbling kinks with initial amplitude a0 = 0.2 and collision velocity v0 =
0.1406. The final velocity vf of the scattered kinks is vf = 0.246454, so the kinks move faster after the collision.

Figure 12 (right) represents a 2-bounce kink scattering process, which was introduced in Section
3.1. Here, kink and antikink approach each other with initial velocity v0 = 0.2742 while vibrating with
amplitude a = 0.015. Notice, thus, that the first collision is a weakly wobbling kink scattering event.
As we know, after this first impact an important part of the kinetic energy is devoted to excite the
shape mode and emit radiation, such that the resulting kink and antikink move very slowly but vibrates
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Figure 17: Wobbling amplitude of the scattered kinks after the last impact as a function of the collision velocity
v0 for the initial amplitude a = 0.1 (top panel) and a = 0.2 (bottom panel). The same color code employed in
previous Figures is used to specify the number of bounces suffered by the kinks before escaping.

intensely. In these circumstances the attraction force between the kink and the antikink makes them
approach again. This evolution is now described by a strongly wobbling kink scattering event. The
lumps collide and bounce back, but now the resonant energy transfer mechanism is reversed and the
kink and antikink velocities are large enough to let them escape. They travel away with final velocity
vf = 0.147041 and final wobbling amplitude a = 0.153513. Figure 11 (right) represents a 3-bounce
kink scattering process, where a similar behavior takes place, although the intermediate stages are much
shorter. They finally move away with velocity vf = 0.219006 and wobbling amplitude a = 0.00308.

The behavior of the final wobbling amplitude af as a function of the initial velocity is plotted in Figure
17. The amplitude can undergo important fluctuations when the initial velocity varies, which increases
as the value of a grows. These oscillations can be observed, for example, in the 1-bounce reflection tail.
The range of the wobbling amplitudes found in these cases is similar to that described in Section 3.1 for
weakly wobbling kink scattering processes. The minima of these fluctuations can reach very low values.
In the resonance phase these oscillations are more accentuated for these 1-bounce events than in the
previous regime. Obviously, the detailed behavior of the amplitude in the resonance phase is completely
particular for every value of a due to the presence of the fractal structure.

Besides, the dependence of the final frequency ωf on the initial velocity v0 completely resembles the
result found in Section 3.1, see Figure 18. Therefore, the final frequency seems to be a magnitude almost
independent of the initial wobbling amplitude a beyond the resonance regime.

4 Collective coordinate approach

In the kink-antikink scattering the shape mode plays a fundamental role in the energy transfer mechanism
and consequently in the n-bounce kink scattering process and n-bounce windows shown in Section 3. In
this section, we focus on an analytical approach to describe the influence of the shape mode and the
initial velocity in this process.

In order to have more insight on its dynamical role on the wobbling kink-antikink interaction we
make use of the collective coordinate approach. This method has been mainly considered in the literature
to study scattering of solitons in several models [15, 53, 61, 70, 71, 62]. This approach sheds light on
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Figure 18: Wobbling frequency of the scattered kinks after the last impact as a function of the collision velocity
v0 for the initial amplitude a = 0 (top panel) and a = 0.02 (bottom panel). The same color code as in previous
figures is used to specify the number of bounces suffered by the kinks before escaping.

the dynamical evolution of the amplitude and the function that describes the separation between kink
centers. In reference [61] an ansatz field for the kink-antikink configuration is introduced in the form

φcc(x, t) = φK(ξ+)− φK̄(ξ−)− 1 +

√
3

2
a(t) [ψω2=3(ξ+)− ψω2=3(ξ−)] , (20)

with

ξ± =
x√

1− v2
0

± F (t) and Ḟ (0) =
−v0√
1− v2

0

, (21)

where a(t) is the time-dependent amplitude of the shape mode and F (t) is separation function between
the centers of the wobbling kinks. In the literature these collective coordinates have been used extensively
to simplify the analytical treatment of kink scattering. The idea behind this change of variables is to map
the evolution of the kinks through time dependent coordinates. By doing this one simplifies the partial
differential equations to ordinary differential equations. Substituting the ansatz (20) in the Lagrangian
density (2) and integrating over all the spatial coordinate we obtain an effective Langrangian in terms of
collective coordinates,

Leff (a, ȧ, F, Ḟ ) =

∫ +∞

−∞
dxL(∂µφcc, φcc)

= ε1Ḟ
2 − ε2 + ε3ȧ

2 − ε4a2 + ε5a+ ε6Ḟ
2a+ ε7Ḟ ȧ

+ ε8Ḟ
2a2 + ε9aḞ ȧ+ ε10a

3 + ε11a
4 ,

(22)

where the coefficients in (22) are given by the spatial integration of the Lagrangian density. Take into
account all these coefficients would impose considerable difficulty to compute an analytical expression for
collective coordinates. For this reason, approximations have been performed through literature, like the
harmonic approximation (in this case ε6, ..., ε11 = 0), in order to circumvent these computation issues.
In reference [61] an important contribution was given correcting the term here labeled as ε5, which was
mistakenly computed in [13]. Although, this correction was not sufficient to fit simulation data making
use of the harmonic approximation.
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In a recent study [62] it was shown that including more coefficients in the approximation of collective
coordinates produces a better fit of the analytical approach solutions with the numerical simulations
outcome. Also, the energy transfer mechanism between zero and shape mode was explained with good
precision. For this reason we shall follow the study mentioned before including all terms in (22) with the
execption of cubic and quartic terms, since we are studying cases with amplitudes a ≤ 0.2.

We compactified (22) taking an equivalent Lagrangian density written in terms of coupling functions,
a potential-like term and the canonical variables. We choose this procedure because one can see more
clearly the influence of the energy in shape mode onto the kinetic energy and vice versa. The equivalent
Langrangian density is of the form

L̄(F, ∂µF, a, ∂µa) = f(F, a)∂µF∂
µF + g(F )∂µa∂

µa+ h(F, a)∂µF∂
µa− V (F, a) , (23)

where the functions multiplying the kinetic and the potential-like terms are given in terms of ε1, ε2, ..., ε9
and the time-dependent amplitude. From the energy momentum tensor for this theory we found the
total energy (7) written as

E = f(F, a)Ḟ 2 + g(F )ȧ2 + h(F, a)Ḟ ȧ+ V (F, a) , (24)

and the center of mass of the system as

〈x〉 =

∫
xE dx∫
E dx

. (25)

Comparing (23) and (22) we obtain explicitly the coupling functions to be

f(F, a) = ε1 + ε6 a+ ε8 a
2, g(F ) = ε3 ,

h(F, a) = ε7 + ε9 a, V (F, a) = ε5 a− ε2 − ε4 a2 .
(26)

In Appendix B in [62] one can find how the integral (22) is performed to find ε1, ε2, ..., ε9 using the
method of residues, that can be extended to all coefficients. Using these expressions found there we
obtain the coupling functions in the equivalent Lagrangian (23) in the form

f(F, a) =
4

3
+ 8F coth (2F ) csch2(2F )− 4 csch2(2F )

+ a
π

2

√
3

2
[1 + 2 sech4(F )− cosh(2F ) sech4(F )]

+ a2 3

4

[28

15
+ 160F csch3(2F ) + 8F csch(2F ) + 192F csch5(2F )

− 96 coth (2F ) csch3(2F )− 16 coth (2F ) csch(2F )
]

,

(27a)

g(F ) =
1

2
[2 + 12F csch(2F ) + 24F csch3(2F )− 12 coth (2F )csch(2F )] , (27b)

h(F, a) = π

√
3

2
tanh (F ) sech2(F ) + a

3

2

[
15 csch3(2F ) + 9 csch(2F ) coth2 (2F )

+ 3 csch(2F )− 6F csch(2F ) coth (2F )− 46F coth (2F )csch3(2F )

− 2F coth3 (2F )csch(2F )
]

,

(27c)

V (F, a) = 8
[
− 2

3
+ 2F +

3

tanh (2F )
− 2

1 + 3F

tanh2 (2F )

+
4F

tanh3 (2F )

]
− 3 a2 − a 6π

√
3

2
tanh2 (F ) [tanh (F )− 1]2 .

(27d)
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Figure 19: Coupling functions in terms of the separation function F . The initial amplitude influence onto the
coupling functions is highlighted. When kink-antikink solutions are far apart from each other the coupling functions
are assumed to be constant varrying in value according to the inital amplitude.

The behavior of these coupling functions can be seen in Figure 19. Note that the energy transfer
mechanism mediated by the coupling function h(F, a) is different of zero when the solutions are about to
collide and goes to zero when the solutions are found to be at the origin where the energy is all stored
in the translational mode, that is where maximum of f(F, a) and minimum of g(F ) occurs. After the
scattering process the kinetic energy is slowly released to the vibrational mode reaching a constant value
that depends on the inital values of amplitude and velocity. It is also worthwhile to mention that the
potential-like term in (23) is negative before collision, even for large initial values of F (0), in accordance
with the attractive force acting on the kinks. This means that even if kink-antikink solution are far
apart with zero initial relative velocity to each other they are still under an attractive force that make
the kink-antikink collide after long enough time. Moreover, one can see in Figure 19 that for the greater
initial amplitude is the stronger the attractive force is.

From (23) we obtain the equations of motion for the collective parameters given by

∂µ

[
∂L̄

∂(∂µa)

]
− ∂L̄
∂a

= 0 , ∂µ

[
∂L̄

∂(∂µF )

]
− ∂L̄
∂F

= 0 , (28)

that leads, respectively, to

2 f F̈ + h ä+ Ḟ (fF Ḟ + 2 fa ȧ) + ȧ2 (ha − gF ) + VF = 0 , (29a)

2 g ä+ h F̈ + Ḟ (hF Ḟ + 2 gF ȧ− fa Ḟ ) + Va = 0 , (29b)

where fF = ∂f
∂F and fa = ∂f

∂a . We can see that these strongly coupled ordinary differential equations
preserve the total energy of the configuration over all time. In the following graphs we show some
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Figure 20: In this graph one can see the behaviour of the distance between the centers of the topological defects
F (t) as a function of time for the numerical simulation outcome (left) and the numerical solution to the collective
coordinate approach (right). A bion formation is observed in the resonance regime for intial amplitude a = 0.05
and initial velocity v = 0.224704. As in the numerical simulation the energy is slowly dissipated to space in form
of radiation.
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Figure 21: In this graph, one can see that for large initial amplitudes the scattered solutions moves away with
bigger velocity than the one before the interaction. In this scenario the final amplitude is considerable smaller the
the initial one.

numerical solutions to equations (29) for the ansatz a = a0 sin(
√

3 t) and the outcome of the numerical
simulations for the respective initial amplitude and velocity. In these results, we can see that the numerical
solutions of the collective coordinates reproduce the patterns of the simulation outcome with reasonable
approximation, see, for instance, Figure 20 that shows a bion formation in the resonance regime.

Its worthwhile to mention that at the collision point the centers of the wobbling kink and wobbling
antikink pass through each other and then bounce back in the numerical solutions for collective co-
ordinates approach. In Figure 21, we can see that for large initial amplitude, and low enough initial
velocities, the scattered topological defects moves away with final velocity bigger than the initial one. In
this case the amount of energy in the vibrational mode released to the translational mode is big enough
to make the solutions split away with great velocity. This is a new particular result of scattering between
topological defects. We argue that for initial amplitudes a > 0.2 this configuration becomes prevalent.
When the solutions approach the collision point, their speed grows exponentially in accordance with the
behaviour of the kinetic term f(F, a), that can be seen in Figure 19. In the collision point all the enery
of the configuration is stored in the kinetic term and when the solutions bounce back the energy is slowly
released to the vibrational mode.
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5 Conclusions and further comments

In this paper we have addressed the scattering between wobbling kinks in the φ4 model. In addition to
its intrinsic interest the study of these processes can give us insight into the resonant energy transfer
mechanism. We must take into account that two traveling non-excited kinks become wobbling kinks after
the first collision due to the energy exchange between the translational mode and the shape mode. In this
sense, a n-bounce scattering process can be considered as the reiteration of n 1-bounce collisions, most of
them between wobbling kinks. In this work the influence of the collision velocity and the initial wobbling
amplitude on the scattering processes have been directly investigated. The fractal structure arising in
the resonance regime of the final versus initial velocity diagram becomes more intricate as the value of
the initial wobbling amplitude of the colliding kinks increases. This growing complexity is caused by two
different mechanisms: the 1-bounce reflection tail splitting and the spontaneous emergence of resonance
windows. The first case is produced by the oscillations of the 1-bounce reflection tail when the initial
wobbling amplitude grows. When the amplitude is large enough this curve can intercept the v0-axis
creating an isolated 1-bounce window in the resonance regime. The gap between this new window and
the 1-bounce tail is filled with new n-bounces windows, with n > 1. The same phenomenon is replicated
for n-bounce windows, which are broken up into narrower new n-bounce windows and as before the gap
between them is occupied with N -bounce windows, with N > n. The second mechanism is directly
triggered by the extra energy carried by the initially excited shape mode of the wobbling kinks. New
bounce windows emerge for ever-smaller initial velocities as the value of the amplitude increases. As a
consequence, the fractal structure interval becomes larger and larger as a grows. On the other hand,
the final wobbling amplitude of the scattered kinks involve a very approximately linear dependence on
the initial velocity outside the resonance phase although some oscillations arise for large enough values
of the initial amplitude. 1-bounce events between weakly wobbling kinks always give rise to strongly
wobbling kinks moving away. On the other hand, weakly wobbling kinks can emerge from the collision
between strongly wobbling kinks only for relatively small values of the initial velocity. A surprising result
is that the frequency of the shape mode is a decreasing function of the collision velocity starting from
the natural frequency ω =

√
3 found in the linear analysis. This curve is almost independent of the value

of the initial wobbling amplitude.

It is worthwhile to mention that for strongly wobbling kink collisions there exist 1-bounce windows
where the scattered kinks will travel faster than the colliding kinks. This occurs for relatively low values
of the initial velocity. This behavior implies that the last collision in every n-bounce scattering event with
n > 1 must involve the presence of strongly wobbling kinks approaching each other at a relatively low
speed. In a multiple bounce scattering process the kinks approach each other and bounce back again and
again until the next collision velocity and wobbling amplitude fall into one of the previously mentioned
1-bounce windows. In the bion formation regime the successive collisions are not able to excite the shape
mode enough to trigger this escape manoeuvre.

The collective coordinate method introduced in Section 4 shows that the amplitude of the shape mode
plays a fundamental role in the dynamics of the wobbling kinks. The distance between the kink centers and
the wobbling amplitude constitute the independent canonical variables of the finite-dimensional effective
Lagrangian (22). The interaction is governed by coupling functions for well separated kinks that assume
constant values, which change slightly with the amplitude. The behavior of those coupling functions
reveals that when the solutions are found to be at the origin all the energy is stored in translational mode
and the attractive force between them reach approximately to zero. In a n-bounce scattering event the
energy is slowly released to vibrational mode, reaching a constant value that depends on the collision
velocity and the initial magnitude of the excited state.

The research introduced here open some possibilities for future works. The φ6 model involves a similar
resonance regime as the φ4 model although it does not present vibrational eigenstates in the second order
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small fluctuation operator. The characteristics of the scattered wobbling kinks can be analyzed to study
its influence on the resonant energy transfer mechanism. Alternatively, a twin model to the φ6 model
involving internal modes can be constructed. By doing this, we could compare the scattering processes
of the twin model with those of the standard φ6 model. In this way the role played by the shape modes
in the collision process could be examined. Moreover, many other different topological defects (kinks in
the double sine-Gordon model, deformed φ4 models, hybrid and hyperbolic models, etc) could be studied
in the new perspective presented here.
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