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Introduction

A basic exercise of Calculus is to prove that for any f : D ⊂ R × RN → RN ,
continuous, the Cauchy problem

ẋ = f(t, x), x(t0) = x0 , (0.1)

is equivalent to the integral problem

x(t) = x0 +

∫ t

t0

f
(
s, x(s)

)
ds. (0.2)

However, it is straightforward to notice that, due to Lebesgue theory, the formula
in (0.2) is meaningful for a broader class of functions than just the continuous
ones. In other words, given I ⊂ R so that t0 ∈ I, if one looks for a function
x : I ⊂ R → RN , not necessarily continuously differentiable, satisfying (0.2)
in its interval of definition, then one can relax the assumptions on f to the
sole local integrability. The Greek and cosmopolitan mathematician Constantin
Carathéodory proved in [15] that under the assumptions

• f is Borel measurable,

• for every compact set K ⊂ RN there exists a real-valued functionmK ∈ L1
loc

such that for almost every t ∈ R, one has

|f(t, x)| ≤ mK(t) for all x ∈ K,

• for almost every t ∈ R, f(t, ·) is continuous,

any problem like (0.1) admits a solution in an extended sense, that is, an abso-
lutely continuous function defined on an interval I ⊂ R containing t0, so that
(0.1) holds almost everywhere in I or, equivalently, (0.2) holds for all t ∈ I.

Such a class of differential problems has been named after Carathéodory, and
contributed to enlarge the field of applicability of differential equations in both
theoretical and applied studies. As a matter of fact, the development of a coherent
mathematical theory of differential equations with discontinuous right-hand side
has been, in some sense, pushed forward by its many applications including,
for example, numerous problems in automatic control, mechanics and electrical
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2 Introduction

engineering, where the prevalent use of switches, relays or digital inputs, is not
only customary but, in some cases, also necessary to reach optimal results (see
for example Bressan and Piccoli [11], Brogliato [12], Clarke [19]).

The aim of this work is to apply tools of non-autonomous dynamical sys-
tems to Carathéodory differential equations, and, in particular, to successfully
define a continuous skew-product flow in order to study the qualitative behavior
of the solutions. The idea of skew-product flow dates back to the groundbreaking
work of Bebutov [7], and it has become a fundamental tool in the study of non-
autonomous ordinary differential equations. In order to retrieve a group structure
on the evolution of a non-autonomous system (immediate for autonomous sys-
tems, where one can build a flow using the solutions), the idea is to jointly track
the solution and the evolution of the vector field in time. If these two components
are continuous with respect to time, initial vector field and initial data, then the
obtained map defines a continuous skew-product flow.

The study of the topologies of continuity for a skew-product flow generated
by a Carathéodory differential equations is a classical question which was ini-
tially posed by Miller and Sell [41, 42], and then treated by Artstein [3, 4, 5],
Heunis [30], Neustadt [43], Opial [45], Sell [52, 53], among many others. Since
then, strong and weak Lploc topologies have been employed to investigate non-
autonomous linear differential equations (see Bodin and Sacker [10], Chow and
Leiva [20] and Siegmund [55] among others) but, despite its potential interest,
the classic theory has not been conveniently developed in the field of non-linear
differential equations.

We start this work by harmonizing most of the results contained in Longo
et al. [38, 39], and building on top of them, in order to fill some gaps in the
original theory, improve its applicability, and allow a more exhaustive analysis
of the qualitative behavior of the solutions. In particular, we define new metric
topologies and new locally convex vector spaces where the flow map defined by
the time-translation is proved to be continuous, and deduce theorems of contin-
uous dependence with respect to the variation of initial data for the solutions of
differential problems whose vector fields belong to such spaces. Hence, we ob-
tain the continuity of the skew-product flow composed of the base flow of time
translations on the hull of a vector field, and by the solutions of the respective
differential problem.

A key ingredient to achieve such results is the thorough study of the so-called
m-bounds and l-bounds of a Carathéodory function f , i.e. the families of positive
locally integrable functions which respectively serve as a bound for the modulus
of f and a Lipschitz coefficient for f on the compact subsets of RN . In fact, the
analysis of the m-bounds and l-bounds allows us to obtain additional topological
information. For example, we provide the requisites for the relative compactness
of subsets of Lipschitz Carathéodory functions and clarify the conditions (rather
weak indeed) under which the (strong or weak) topologies considered in our work,
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and previously in the literature, coincide. Such results are particularly impor-
tant, not only because they make the whole theory more homogeneous, but also
because, wherever applicable, they improve and/or simplify the usable mathe-
matical tools. Indeed, in the first case we obtain, for example, the existence of an
invariant ergodic measure for the base flow and thus the possibility of applying
results from ergodic theory, whereas in the second case we are allowed to handle
the easiest among all the possible topologies, that is, the ones which involve the
pointwise convergence. Interestingly, most of the known applications in science
and engineering include assumptions which are stronger than the ones for which
such results hold.

As a further evidence of the importance of the results of continuity for the
skew-product flow, we include a range of theoretical applications. We are able to
define two types of linearized skew-product flows, and to obtain the differentia-
bility of the solutions with respect to initial data also for some systems which are
not continuously differentiable in the variable x, and thus do not admit a clas-
sic variational equation. Additionally, we propagate the exponential dichotomy
of a system, as well as the structure of the corresponding Sacker-Sell spectrum,
over the trajectories of such linearized flows. We also include a result of exis-
tence of solutions for specific Carathéodory differential equations whose vector
field is possibly discontinuous in the variable x and, as such, is not covered by
Carathéodory’s theorem. The used approach is completely independent of Filip-
pov theory and relies on Carathéodory’s theory and continuity of the solutions
with respect to the variation of the vector field.

Furthermore, as a consequence of the previous results, a range of dynamical
scenarios is opened in which it is possible to combine techniques of continuous
skew-product flows, processes and random dynamical systems (see Arnold [2],
Aulbach and Wanner [6], Berger and Siegmund [9], Caraballo and Han [13], Car-
valho et al. [16], Johnson et al. [34], Kloeden and Rasmussen [36], Sell [53], Shen
and Yi [54] and the references therein). Particularly, by thoroughly calibrating
the contemporary use of processes and skew-product formalisms, we provide con-
ditions under which the existence of particular bounded absorbing sets for the
process defined by a suitable Carathéodory vector field f , allows to deduce the
existence of bounded pullback attractors for the processes with vector field be-
longing to either the alpha-limit set, the omega-limit set, or the whole hull of f .
Under appropriate assumptions, these theorems also provide the existence of a
pullback or a global attractor for the induced skew-product semiflow.

As a final theoretical contribution, we aim to set the path for a generalization
of the obtained results to Carathéodory delay differential equations of the type

ẋ = f
(
t, x(t), x(t− τ)

)
. (0.3)

Such a problem has the additional intrinsic difficulty of being infinite dimen-
sional due to the fact that the phase space is C([−τ, 0],RN), i.e. the space of
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continuous functions mapping [−τ, 0] to RN . Nevertheless, the specific type of
delay differential equation in (0.3), together with the fact that f is defined on a
finite dimensional space, allow to use some of the already cited techniques and
arguments to extend, to some degree and with the unavoidable discrepancies, the
theory developed for Carathéodory ODEs to this class of problems. Particularly,
we show how to construct a continuous skew-product semiflow from (0.3), again,
with respect to several (strong and weak) metric topologies. It is interesting to
point out that, despite being a very peculiar class of delay differential problems,
equations like (0.3) are widely and successfully used in engineering and applied
sciences to modelize many phenomena in which the past affects the future.

Throughout the work, we provide three motivational examples taken from
actual models in mechanics (K. Popp and P. Stelter [47]), control theory (Fabbri
et al. [25]) and mathematical biology (Rasmussen et al. [50]), and apply some of
the obtained results to them. The exposition on such examples is not intended to
be exhaustive but to show the wide range of applicability of the results contained
in this work.

The theory of Carathéodory differential equations embraces almost one cen-
tury of mathematical results. From a dynamical systems point of view, it also
includes studies of stability, numerical analysis and bifurcation theory (see for ex-
ample Filippov [26], Osinenko et al [46], Pötzsche and Rasmussen [49], Pötszche
[48]). We believe that the topological framework and results contained in this
work could be applied also in these directions.

The thesis is structured as follows. In Chapter 1 we set the notation and
introduce basic notions and results which serve as preliminary content for the
rest of the work. Particularly, the chapter is divided in two sections respectively
dealing with Carathéodory ordinary differential equations and the formalism em-
ployed in the study of non-autonomous dynamical systems together with a brief
summary on the exponential dichotomy and on the dichotomy spectrum. We also
include a short description of a simple modelization of a violin string through a
Carathéodory differential system.

Chapter 2 is devoted to the topological framework on which is based most of
the rest of the following chapters. First, we introduce the spaces of Carathéodory
functions. Together with the classical spaces of Lipschitz Carathéodory (LC)
and Strong Carathéodory (SC) functions, we consider two new classes of spaces
accounting for Carathéodory functions which are possibly discontinuous in the
variable x, namely, the Θ-Carathéodory (ΘC) and weak Θ-Carathéodory (WΘC)
functions. The symbol Θ stands for a set of moduli of continuity which identify a
numerable quantity of compact sets of continuous functions on which the elements
in ΘC, or respectively WΘC, are asked to behave “nicely”, that is, somehow
continuously in L1

loc. The problem of identification of functions in such spaces is
also discussed.
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Afterwards, we will define several strong and weak metric topologies of integral
type with whom we endow each one of the previously introduced spaces. Among
such topologies, a key role will be played by the two new classes of topologies TΘ

and σΘ. In particular, the sequences in (ΘC, TΘ) and (WΘC, σΘ) will be asked
to converge (strongly or weakly, respectively) uniformly on the compact sets of
continuous functions determined by Θ.

Hence, we focus on the so-called m-bounds and l-bounds of a Carathéodory
function or set of functions. In particular, after introducing the notions of Lploc-
boundedness and L1

loc-equicontinuity and relating them to Carathéodory func-
tions through their m-bounds and/or l-bounds, we show that such properties
are inherited by limit functions through the considered topologies and deduce
topological results on three important classes of problems: the equivalence of the
topologies on suitable subsets, the compactness in LC and the continuity of the
time-translations in ΘC and WΘC.

In Chapter 3, we address the core problem of defining a continuous skew-
product flow starting from a Carathéodory ordinary differential equations of the
type

ẋ = f(t, x), x(0) = x0 ,

and from Carathéodory systems of triangular type as{
ẋ = f(t, x), x(0) = x0 ,

ẏ = F (t, x) y + h(t, x), y(0) = y0 ,
(0.4)

where the function f(·, ·) ∈ LC admits either L1
loc-equicontinuous m-bounds or

Lploc-bounded l-bounds, and F (·, ·) and h(·, ·) are taken in either WΘC or ΘC, so
that the problem is well-posed. In particular, notice that Θ will be determined
either thanks to the assumption of L1

loc-equicontinuity for the m-bounds of f or
by the solutions of ẋ = f(t, x) when f is in a compact subset of LC.

The triangular system in (0.4) assumes particular relevance if f has continuous
partial derivatives with respect to x, F = Jxf ∈ SC, i.e. F is the Jacobian of f
with respect to x and it is a strong Carathéodory function, and h = 0, that is,
the second equation in (0.4) is the variational equation of the first one. Under
the assumptions of the theorems for the continuity of the induced skew-product
flow, we prove the existence of a linearized skew-product flow (with respect to the
topology TΘ) and a σ-linearized skew-product flow (with respect to the topology
σΘ), both composed of the base flow on the hull of (f, Jxf) (with respect to
either TΘ or σΘ) and of the solutions of the respective differential equations. In
particular, we show that the solutions of Carathéodory differential equations are
differentiable with respect to initial data even in some cases in which the vector
field (in the hull of f) does not have continuous partial derivative with respect
to x.
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Moreover, we look into the exponential dichotomy and the dichotomy spec-
trum of the linear system in such linearized skew-product flows and how it prop-
agates thanks to the continuous skew-product flow.

The chapter ends with a section of applications. We start with a theoretical
result; a theorem of existence of solutions for differential problems whose vector
fields are in WΘC, i.e. not necessarily continuous in the space variable. The
underlying condition is that such vector fields are limit, in the topology σΘ, of
sequences in SC with L1

loc-equicontinuous m-bounds. Secondly, we study the im-
pact of the developed theory on a problem of digitization for non-autonomous
control systems, and on a non-autonomous and non-linear Carathéodory com-
partmental system.

Chapter 4 deals with pullback and global attractors for Carathéodory ODEs
(whose solutions are defined up to +∞) and for the relative continuous skew-
product flow generated thanks to the results in the previous chapter. After pro-
viding all the basic definitions and results, we proceed to show how a continuous
skew-product flow can be used to infer the existence of an attractor for a set of
limit systems. In particular, starting from specific properties on the solutions of
an initial problem ẋ = f(t, x), we show how it is possible to obtain the existence
of a bounded pullback attractor for the processes induced by systems whose vec-
tor field is either in the alpha limit set of f , in the omega limit set of f , or in the
whole hull of f . Additionally, we give a result of existence of pullback and global
attractors for the whole skew-product flow.

Furthermore, we provide sufficient conditions under which the previous results
can be applied. In fact, several types of attractors, both for the induced process
and the induced skew-product flow, are obtained through comparison results
in which the size of the solutions of a Carathéodory differential system ẋ =

f(t, x) is firstly compared to the size of the solutions of a scalar Carathéodory
linear equation and then also to the size of the solutions of a system of linear
Carathéodory equations.

Chapter 5 aims to highlight how the theory developed for Carathéodory ODEs
can be extended to Carathéodory delay differential equations with constant delay
like (0.3). After providing basic preliminaries on Carathéodory delay differential
equations with constant delay, we introduce new strong and weak topologies
which exhibit a hybrid behavior with respect to the ones presented in Chapter
2. The term hybrid means that, while still asking for a convergence of L1

loc type,
we will possibly treat the first N components of the spatial variable (representing
the current state in a delay differential equation) in a different way from the last
N ones (representing the history of the state). Furthermore, we show how such
topologies relate to the ones in Chapter 2 and how to apply or develop, in this
new context, some of the previously obtained topological results.

Finally, we prove the continuity of the skew-product semiflow induced by
problems of the type (0.3) when LC is endowed with either two topologies from
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the first part of the work, or the new hybrid topologies (and suitable hypothesis
are assumed on f). As a result, we leave everything ready to develop, wherever
it is possible, results analogous to the ones contained in Chapters 3 and 4, but
for Carathéodory delay differential equations with constant delay.





Chapter 1

Preliminaries

In this chapter we provide basic definitions and results about Carathéodory dif-
ferential equations and non-autonomous dynamics. In fact, although the work
contains several different topics, as follows we will only include those results and
definitions which apply to the whole dissertation or that would break the reading
flow if included in the text later. As regards the rest of preliminary notions, we
will keep them as close as possible to (or anyway recall them next to) the actual
point in which they are used.

Let us start by setting some notation. In the following, we will denote by
RN the N -dimensional euclidean space with norm | · |, by measRN the Lebesgue
measure on RN , and by Br the closed ball of RN centered at the origin and
with radius r. Notice also that, in some cases in which there is no possibility of
misunderstanding, the symbols 0 and 1 will represent the N -dimensional vectors
composed of zeros and ones, respectively. When N = 1, we will simply write R
and the symbol R+ will denote the set of positive real numbers. Moreover, for
any interval I ⊆ R and any W ⊆ RN , we will use the following notation

C(I,W ): space of continuous functions from I to W endowed with the
norm ‖ · ‖∞.

CC(R): space of real-valued continuous functions with compact support in
R, endowed with the norm ‖ · ‖∞. When we want to restrict to the positive
continuous functions with compact support in R, we will write C+

C (R).

Lp(I,RN), 1 ≤ p <∞: space of measurable functions from I to RN whose
norm is in the Lebesgue space Lp(I).

Lploc(RN), 1 ≤ p <∞: the space of all functions x(·) of R into RN such that
for every compact interval I ⊂ R, x(·) belongs to Lp

(
I,RN

)
. When N = 1,

we will simply write Lploc.

The chapter is structured as follows. In Section 1.1 we present classic defini-
tions and results on Carathéodory ordinary differential equations together with a

9



10 1. Preliminaries

motivational example of stick-slip vibration through a Carathéodory modelization
of a violin string.

On the other hand, Section 1.2 contains basic notions of non-autonomous
dynamics as, for example, the definitions of process, skew-product flow and hull
of a function, and of exponential dichotomy and dichotomy spectrum.

1.1 Carathéodory differential equations

In this section, we outline the classic results for initial value problems of the type

ẋ = f(t, x), x(0) = x0, (1.1)

where x is in RN , and the dependence on t in the right-hand side is possibly just
measurable. Particularly, after giving a proper definition of solution for a Cauchy
Problem of Carathéodory type, we also provide the statements for the theorems
of existence and uniqueness of the solution and continuous variation with respect
to initial data. Since such results are classic, their proof are not included in
this work and can be found in many textbooks as, for example, Coddington and
Levinson [21].

A notion of solution for (1.1) is needed.

Definition 1.1 (Solution for a Carathéodory problem). An absolutely continuous
function x(·) : I ⊂ R→ RN such that

• 0 ∈ I and x(0) = x0, and

• d

dt
x(t) = f

(
t, x(t)

)
for a.e. t ∈ I

is said to be a solution (in an extended sense) for (1.1).

If x(·) : I ⊂ R→ RN is a solution for (1.1), one can also write the equivalent
integral problem

x(t) = x0 +

∫ t

0

f
(
s, x(s)

)
ds .

Carathéodory proved that such an integral problem admits a solution if the right-
hand side satisfies the conditions which have been named after him.

A function f : R× RN → RM satisfies Carathéodory conditions if

• f is Borel measurable,

• for every compact set K ⊂ RN there is a real-valued function mK(·) ∈ L1
loc

such that for almost every t ∈ R, one has

|f(t, x)| ≤ mK(t) for all x ∈ K.
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• for almost every t ∈ R, f(t, ·) is continuous.

Later on, we will refer to the function m(·) as an m-bound for f on K.
As folllows, we state a theorem of existence and uniqueness of the solution

for a Cauchy Problem of Carathéodory type. As one may expect, some kind of
Lipschitz continuity in the variable x is necessary. We will refer to the function
l(·), which acts as a Lipschitz coefficient for f , as an l-bound for f . The notation,
used within this statement will be used in the rest of the work.

Theorem 1.2. Let f : R × RN → RN satisfy Carathéodory conditions and also
be locally Lipschitz continuous, i.e. for every compact set K ⊂ RN there exists a
real-valued function lK(·) ∈ L1

loc such that for almost every t ∈ R one has

|f(t, x)− f(t, y)| ≤ lK(t)|x− y| for all x, y ∈ K.

Then, for any x0 ∈ RN there exists a maximal interval If,x0 = (af,x0 , bf,x0) and a
unique continuous function x(·, f, x0) defined on If,x0 which is the solution of the
Cauchy Problem

ẋ = f(t, x) , x(0) = x0 .

In particular, if af,x0 > −∞ (resp. bf,x0 <∞), then |x(t, f, x0)| → ∞ as t ↓ af,x0

(resp. as t ↑ bf,x0).

A proof of 1.2 can be found in [21, Theorem 1.1, p.43, Theorem 1.2, p.45 and
Theorem 2.2, p.49].

Moreover, a theorem of continuous dependence of the solutions with respect
to the initial conditions holds true, too (see [21, Theorems 4.2 and 4.3, p.59]).

Theorem 1.3. Let f : R × RN → RN satisfy Carathéodory conditions and also
be locally Lipschitz continuous in x for each fixed t ∈ R. Then, there exists a
δ > 0 such that for any (τ, ξ) ∈ R× RN , if

|τ − t0|+ |ξ − x0| < δ,

then all the solutions x(·, τ, ξ) of

ẋ = f(t, x) , x(τ) = ξ .

exist over some interval [a, b] ⊂ If,t0,x0. Moreover, as (τ, ξ) → (t0, x0), one has
that

x(·, τ, ξ)→ x(·, t0, x0) ,

uniformly on [a, b].

Example 1.4. Stick–slip vibration is a phenomenon occurring in physics and
reality when two bodies A and B are in contact through a surface and one of
them, namely A, is subject to an elastic constraint whereas the other, call it B,
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(a) (b)

Figure 1.1: Examples of stick–slip vibration in a bow-rubbed string (a) and in a
mechanical model (b).

can be moved in a direction which is parallel to such contact surface. Due to
static friction, when the body B starts to move, the body A will move integrally
till the elastic force will balance the friction and the body A will begin to slide
back to its original position. At this point the process reiterates.

An interesting example of this phenomenon is given by bowed string instru-
ments where the sound is produced when the strings are rubbed by a bow (see
Figure 1.1a). In this case, A would be represented by one of the strings, while B
is the bow.

An equivalent mechanical example is portrayed in Figure 1.1b, where a body
is connected to a wall through a spring and it is positioned on top of a belt that
can move longitudinally. For more information, see [47]. The system is governed
by the following equation

mẍ = Fk + Ff

where Fk represents the force due to the spring and Ff the one due to the friction.
In full generality such forces can depend explicitly on time and/or on the state
in a possibly nonlinear way. That is

Fk = −k(t, x)x and |Ff | ≤ µ(t, ẋ)|F |,

where k(·, ·) represents the coefficient of elasticity of the spring, µ(·, ·) the coeffi-
cient of static friction and F the gravitational force.

In fact, in this work we are interested in those cases in which the functions
k(·, ·) and µ(·, ·) are not necessarily continuous on time. Just to go back to the
example of bowed string instruments, the elasticity of the string can be abruptly
changed by the player anytime he suddenly presses it with his fingers to play
a different note. If k(·, ·) and µ(·, ·) satisfies the Carathéodory conditions, this
problem can be treated within the framework of this work.
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1.2 Basic notions of non-autonomous dynamics

1.2.1 Processes and skew product flows

When dealing with autonomous differential equations, it is well known that the
behavior of the solutions depends on the elapsed time more than the initial and
the final time. However, in non-autonomous dynamics, both the initial and the
final time are crucial to understand the behavior of the solutions of a dynamical
system. As follows, we introduce the two formalisms used in non-autonomous
dynamics that allow to take into account this double dependence on time and
that will be used in the rest of the work.

Definition 1.5 (Process). A process on a metric space (X, d) is a family of
continuous maps {S(t, s) | t ≥ s} ⊂ C(X) satisfying

• S(t, t)x = x for every t ∈ R and x ∈ X.

• S(t, s) = S(t, r)S(r, s), for every t ≥ r ≥ s.

• (t, s, x) 7→ S(t, s)x is continuous for every t ≥ s and x ∈ X.

A process can be induced by a non-autonomous differential equation if one
assumes that, for any r ∈ R and any x0 ∈ RN , the initial value problem ẋ =

f(t, x), x(r) = x0 has a unique solution x(·, f, r, x0) defined on [r,∞). In fact,
one can pose

Sf (t+ r, r)x0 = x(t+ r, f, r, x0),

where t ≥ 0 and r ∈ R and easily check that the properties in Definition 1.5 are
satisfied.

Before giving the definition of skew-product flow, let us clarify what one means
by a continuous flow.

Definition 1.6 (Continuous flow). Consider a metric space (E, d). A continuous
flow on E is a continuous group action of the additive group of real numbers on
E, that is, a continuous map θ : R × E → E such that for all ω ∈ E and all
s, t ∈ R one has

θ(0, ω) = ω and θ(t+ s, ω) = θ
(
t, θ(s, ω)

)
.

Definition 1.7 (Skew-product flow). Let (X, d1) and (E, d2) be metric spaces,
and consider two continuous applications θ : R×E → E and ϕ : R×E×X → X.
The pair (θ, ϕ) : R×E ×X → E ×X is called a continuous skew-product flow if

• θ is a continuous flow.

• For any ω ∈ E and x ∈ X one has

ϕ(0, ω, x) = x (Initial value condition).
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• For any ω ∈ E, x ∈ X and t, s ∈ R one has

ϕ(t+ s, ω, x) = ϕ
(
t, θ(s, ω), ϕ(s, ω, x)

)
(Cocycle property).

Particularly, if X is a Banach space and ϕ is linear in x, then (θ, ϕ) is called a
linear skew-product flow. Moreover, if ϕ is defined only on R+ × E × X, then
(θ, ϕ) is called a continuous skew-product semiflow. Additionally, if φ is defined
on a subset U of R × E × X (resp. R+ × E × X), then (θ, ϕ) is called a local
continuous skew-product flow (resp. semiflow).

Remark 1.8. A skew-product flow is in fact a flow on E × X as stated in
Definition 1.6. The term skew-product is referred to the fact that it is composed
of two components so that the first affects the second one but the opposite is not
true.

Before seeing how a non-autonomous differential equation can induce a (local)
continuous skew product flow (or semiflow) we introduce the notion of time-
translation and hull of a function.

Definition 1.9 (Time-translation). Consider a Banach space X and a function
f : R×X → X. We call time-translation at time t of f , the function

ft : R×X → X, (s, x) 7→ ft(s, x) = f(s+ t, x).

Definition 1.10 (Hull of a function). Let (E, d) be a metric space of functions
mapping R × X onto X, where X is a metric space, and let T be the topology
induced by the metric. If f ∈ E, and for any t ∈ R also ft ∈ E, where ft is the
time translation at time t of f (see Definition 1.9), then we call the hull of f with
respect to (E, T ), the metric subspace of (E, T ) defined by

Hull(E,T )(f) =
(
cls(E,T ){ft | t ∈ R}, T

)
,

where, cls(E,T )(A) represents the closure in (E, T ) of the set A and T is the
induced topology.

Consider a differential equation ẋ = f(t, x), where f belongs to a suitable
metric space (E, d) of functions mapping R×X to X, and let T be the topology
induced by the metric. For any x0 ∈ X and g ∈ Hull(E,T )(f), let x(·, g, x0) be the
unique solution at time t of the initial value problem ẋ = g(t, x), x(0) = x0 and
let Ig,x0 be its maximal interval of definition. Define

U =
⋃

g∈Hull(E,T )(f) ,
x∈X

{(t, g, x) | t ∈ Ig,x} .

If the maps
θ : R× Hull(E,T )(f)→ Hull(E,T )(f), (t, g) 7→ gt,
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and
ϕ : U ⊂ R× Hull(E,T )(f)×X → X, (t, g, x0) 7→ x(t, g, x0)

are continuous, then (θ, ϕ) is a local continuous skew-product flow induced by the
differential equation ẋ = f(t, x). Notice in particular that for a linear differential
problem one obtains a continuous linear skew-product flow.

Remark 1.11. Notice that the problem of giving sufficient conditions for the
continuity of θ and ϕ in the case of a Carathéodory differential equation is one
of the core problems of this work and the actual content of most of Chapter 3.

Example 1.12. As follows, we aim to present a classic and well-studied case of
skew-product flow induced by a non-autonomous ordinary differential equation.
Specifically, consider

ẋ = f(t, x),

with f ∈ C(R × RN ,RN) and such that for any compact set K ⊂ RN there is a
constant lK > 0 for which the following inequality holds

|f(t, x1)− f(t, x2)| ≤ lK |x1 − x2| for all x1, x2 ∈ K and t ∈ R. (1.2)

Let us endow the space C(R×RN ,RN) with the compact-open topology Tco,
i.e. the topology of uniform convergence on the compact subsets of R×RN . It is
well-known that (C(R × RN ,RN), Tco) is a complete metric space and it is easy
to prove that the application

θ : R× C(R× RN ,RN)→ C(R× RN ,RN), (t, g) 7→ gt, (1.3)

is a continuous flow. Moreover, it is also straightforward to see that the hull of f
in (C(R× RN ,RN), Tco), as constructed in Definition 1.10, satisfies

Hull(C(R×RN ,RN ),Tco)(f) ⊂ C(R× RN ,RN),

and that (1.2) also holds for any function g ∈ Hull(C(R×RN ,RN ),Tco)(f). As a
consequence, for every (t0, x0) ∈ R× RN there exists precisely one solution for

ẋ = g(t, x), g ∈ Hull(C(R×RN ,RN ),Tco)(f). (1.4)

By simplicity, assume that all the solutions of any problem like (1.4) are defined
on the whole real line. Thanks to [53, Theorem IV.3, p.62], one has that the map

Π: R× Hull(C(R×RN ,RN ),Tco)(f)× RN → Hull(C(R×RN ,RN ),Tco)(f)× RN

(t, g, x0) 7→
(
gt, x(t, g, x0)

) (1.5)

defines a continuous skew-product flow on R×Hull(C(R×RN ,RN ),Tco)(f). Addition-
ally the following result holds true.

Theorem 1.13. Consider f ∈ C(R × RN ,RN). The following statements are
equivalent.

(i) f is uniformly continuous and bounded in R × K for every compact set
K ⊂ RN ;

(ii) Hull(C(R×RN ,RN ),Tco)(f) is compact.
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1.2.2 Exponential dichotomy and dichotomy spectrum

Consider a linear continuous skew-product flow on E × RN , where E is a metric
space, i.e.

Ψ: R× E × RN → E × RN

(t, ω, y0) 7→
(
θ(t, ω),Φ(t, ω) y0

)
,

(1.6)

where Φ(t, ω) denotes the fundamental matrix solution of the linear differential
problem

ẏ = A
(
θ(t, ω)

)
y, (1.7)

with A
(
θ(·, ω)

)
∈ L1

loc(RN×N) for any ω ∈ E so to have existence and uniqueness
of the solutions, and Φ(0, ω) = IN .

Definition 1.14 (Exponential dichotomy). Let I be one of the half-lines (−∞, 0],
[0,∞) or the real line R and let ∆ be a subset of E. We say that the linear skew-
product flow (1.6), has exponential dichotomy on I over the set ∆ if there are a
continuous family of projections P : ∆ → L(RN ,RN), ω 7→ P (ω), and constants
K ≥ 1 and α > 0, such that for every s, t ∈ I and every ω ∈ ∆∥∥Φ(t, ω)P (ω) Φ−1(s, ω)

∥∥ ≤ K e−α (t−s) if t ≥ s,∥∥Φ(t, ω)
(
IN − P (ω)

)
Φ−1(s, ω)

∥∥ ≤ K eα (t−s) if t ≤ s.

When ∆ reduces to a point ω, we say that the corresponding system ẏ = A(θtω) y,
has exponential dichotomy on I. If I = R we will simply say that the linear skew-
product flow (resp. the system) has exponential dichotomy.

We recall the definition of dichotomy spectrum, or Sacker-Sell spectrum for a
non-autonomous linear ODE and for a linear skew-product flow.

Definition 1.15 (Dichotomy spectrum and resolvent set over a trajectory). Let
ω ∈ E be fixed. The dichotomy spectrum of ẏ = A

(
θ(t, ω)

)
y, which will be

denoted by Σ(ω), is the set of γ ∈ R such that ẏ =
[
A
(
θ(t, ω)

)
− γ IN

]
y does

not have exponential dichotomy. The resolvent set is ρ(ω) = R \ Σ(ω).

Such notion can be generalized to a family of non-autonomous linear systems
generated by the elements of a subset of the set E.

Definition 1.16 (Dichotomy spectrum for a linear skew-product flow). Let ∆ be
a subset of E. The dichotomy spectrum of the linear skew-product flow (1.6) over
∆, denoted by Σ(∆) is the set of γ ∈ R such that the family ẏ =

[
A
(
θ(t, ω)

)
−

γ IN
]
y does not have exponential dichotomy over ∆.

When ∆ is an invariantly connected compact invariant set of E, Sacker and
Sell [51, Theorem 2 p.334] proved that Σ(∆) is the union of 0 ≤ k ≤ N compact
intervals

Σ(∆) = [a1, b1] ∪ · · · ∪ [ak, bk] ,
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where 1 ≤ k ≤ N and a1 ≤ b1 < a2 ≤ b2 < · · · ≤ ak ≤ bk.
When dealing with invariant sets which are not necessarily compact, Sieg-

mund’s approach in [55], for linear skew-product flows induced by measurable
linear differential systems, turns out to be very useful to study the dichotomy
spectrum Σ(ω) and the respective decomposition of R × RN in spectral mani-
folds.

In order to properly introduce it, let us give the definition of linear integral
manifold and of γ+ and γ−-quasibounded functions, together with some addi-
tional notions and properties.

Definition 1.17 (Linear integral manifold). A nonempty set W ⊂ R× RN is a
linear integral manifold of (1.7) if

(i) it is invariant, i.e. (τ, y) ∈ W ⇒
(
t,Φ(t, ω) Φ−1(τ, ω)y

)
∈ W for all t ∈ R.

(ii) For every τ ∈ R the fiberW(τ) = {y ∈ RN | (τ, y) ∈ W} is a linear subspace
of RN .

Because of the invariance, the fibers of a linear integral manifold have constant
dimension. Moreover, it is easy to prove that R × RN and R × {0} are always
linear integral manifolds for any system like (1.7). Notice also that a linear
integral manifold is a topological manifold in R×RN and a vector bundle on R.
In particular, if W1 and W2 are linear integral manifolds of (1.7), then also the
intersection and the sum

W1 ∩W2 := {(τ, y) ∈ R× RN | y ∈ W1(τ) ∩W2(τ)}
W1 +W2 := {(τ, y) ∈ R× RN | y ∈ W1(τ) +W2(τ)}

are linear integral manifolds of (1.7). Specifically, a sum W1 + · · · + Wn of
linear integral manifolds is said to be a Whitney-sum W1 ⊕ · · · ⊕ Wn if for any
i = 1, . . . , n− 1 one has

(
W1 + · · ·+Wi

)
∩Wi+1 = R× {0}.

On the other hand, we can describe the exponential growth of a continuous
function through the following definition.

Definition 1.18 (γ+-quasibounded and γ−-quasibounded functions). Consider
γ ∈ R. A continuous function f : R→ RN is

• γ+-quasibounded if supt≥0 |f(t)|e−γt <∞,

• γ−-quasibounded if supt≤0 |f(t)|e−γt <∞.

In particular, one can prove that for any γ ∈ R, the sets

Sγ := {(τ, y) ∈ R× RN | Φ(·, ω)Φ−1(τ, ω) y is γ+-quasibounded},
Uγ := {(τ, y) ∈ R× RN | Φ(·, ω)Φ−1(τ, ω) y is γ−-quasibounded}

are linear integral manifolds of (1.7). Then, we can finally state the following
spectral theorem (see [55, Spectral Theorem p.249] for the proof).
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Theorem 1.19. The dichotomy spectrum Σ(ω) of (1.7) is the disjoint union of
k closed intervals (called spectral intervals) where 0 ≤ k ≤ N . That is, Σ(ω) is
empty, it is the whole R, or there exists k ∈ N, with 1 ≤ k ≤ N − 1, such that

Σ(ω) = I1 ∪ [a2, b2] ∪ · · · ∪ [ak−1, bk−1] ∪ Ik ,

where I1 is either [a1, b1] or (−∞, b1], Ik is either [ak, bk] or [ak,∞), and a1 ≤
b1 < a2 ≤ b2 < · · · ≤ ak ≤ bk. Moreover, choose

γ0 ∈ ρ(ω) with (−∞, γ0) ⊂ ρ(ω) if possible,

otherwise, define Uγ0 := R× RN and Sγ0 := R× {0}; choose

γn ∈ ρ(ω) with (γn,∞) ⊂ ρ(ω) if possible,

otherwise, define Uγn := R× {0} and Sγn := R× RN . Then, the sets

W0 = Sγ0 and Wk = Uγk ,

are linear integral manifolds for (1.7). Additionally, for k ≥ 2 choose any γi ∈
ρ(ω) with

bi ≤ γi ≤ ai+1 for i = 1, . . . , k − 1.

Then, for every i = 1, . . . , k − 1, the intersection

Wi = Uγi−1
∩ Sγi ,

is a linear integral manifolds for (1.7) with dimWi ≥ 1. The linear integral man-
ifolds Wi, with i = 0 . . . , k are called spectral manifolds and they are independent
of the choice of γi. Furthermore

R× RN =W0 ⊕ · · · ⊕Wk+1.

The following result is also important because it gives sufficient condition
for which the dichotomy spectrum in Theorem 1.19 reduces to the Sacker-Sell’s
spectrum (see [55, Theorem 3.1 p.253] for the proof).

Theorem 1.20. The following statements are equivalent

(i) The system ẏ = A
(
θ(t, ω)

)
y has bounded growth, i.e. there exist constants

K ≥ 1 and α ≥ 0 such that

‖Φ(t, ω) Φ−1(s, ω)‖ ≤ K eα |t−s| for t, s ∈ R;

(ii) The system ẏ = A
(
θ(t, ω)

)
y has a nonempty and compact dichotomy spec-

trum
Σ(ω) = [a1, b1] ∪ · · · ∪ [ak, bk] with 1 ≤ k ≤ N,

and the spectral manifolds W0 and Wk+1 are trivial, i.e.

R× RN =W1 ⊕ · · · ⊕Wk.



Chapter 2

Spaces and Topologies

This chapter deals with the introduction of the topological spaces and notions
that will be used for most of the rest of the work.

In Section 2.1 we will present all the spaces that will be used for the study of
Carathéodory ordinary differential equations. Together with the classical spaces
of Lipschitz Carathéodory and Strong Carathéodory functions, we introduce two
more spaces accounting for Carathéodory functions which are possibly discontin-
uous in the variable x and that will play an important role in the rest of the work.
The problem of identification of functions differing only on a negligible set is also
discussed.

In Section 2.2 we endow the spaces presented in Section 2.1 with suitable
metric topologies and we also present a first technical lemma which makes the
space WΘC(RM) easier to be used.

In Section 2.3 we look deeper into the so-called m-bounds and l-bounds
of a Carathéodory function or set of functions. We introduce the notions of
Lploc-boundedness and L

1
loc-equicontinuity and relate them to a Carathéodory func-

tion or set of functions through the m-bounds and/or l-bounds.
In Sections 2.4 to 2.7 we develop some applications of the Lploc-boundedness

and L1
loc-equicontinuity for Carathéodory functions that will be useful in the fol-

lowing chapters.

2.1 Spaces

Consider 1 ≤ p < ∞ and denote by Cp
(
RM
)
(or simply Cp when M = N), the

set of functions f : R× RN → RM satisfying

(C1) f is Borel measurable and

(C2) for every compact setK ⊂ RN there exists a real-valued functionmK ∈ Lploc,
called m-bound in the following, such that for almost every t ∈ R, one has

|f(t, x)| ≤ mK(t) for all x ∈ K.

19
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The assumptions (C1) and (C2) are called Carathéodory conditions from the
name of the Greek mathematician Constantin Carathéodory who proved the ex-
istence of solutions for ordinary differential equations whose vector fields satisfy
such conditions together with the continuity in the variable x for almost every
t ∈ R. As follows, we introduce the sets of Carathéodory functions which are
used in this work.

Definition 2.1 (Lipschitz Carathéodory functions). A function f : R × RN →
RM is said to be Lipschitz Carathéodory for 1 ≤ p < ∞, and we will write
f ∈ LCp(RM) (or simply f ∈ LCp when M = N), if it satisfies (C1), (C2) and

(L) for every compact set K ⊂ RN there exists a real-valued function lK ∈ Lploc
such that for almost every t ∈ R one has

|f(t, x)− f(t, y)| ≤ lK(t)|x− y| for all x, y ∈ K. (2.1)

In particular, for any compact set K ⊂ RN , we refer to the optimal m-bound and
the optimal l-bound of f as to

mK(t) = sup
x∈K
|f(t, x)| and lK(t) = sup

x,y∈K
x 6=y

|f(t, x)− f(t, y)|
|x− y|

, (2.2)

respectively. Clearly, for any compact set K ⊂ RN the suprema in (2.2) can be
taken for a countable dense subset of K leading to the same actual definition,
which guarantees that the functions defined in (2.2) are measurable.

Definition 2.2 (Strong Carathéodory functions). A function f : R×RN → RM

is said to be strong Carathéodory for 1 ≤ p <∞, and we will write f ∈ SCp(RM)

(or simply f ∈ SCp when M = N), if it satisfies (C1), (C2) and

(S) for almost every t ∈ R, the function f(t, ·) is continuous.

The optimal m-bound for a strong Carathéodory function on any compact set
K ⊂ RN , is defined exactly as in equation (2.2).

Functions which are not necessarily continuous in the second variable are also
considered. First, we set some notation.

Definition 2.3 (Suitable set of moduli of continuity). We call a suitable set of
moduli of continuity, any countable set of non-decreasing continuous functions

Θ =
{
θIj ∈ C(R+,R+) | j ∈ N, I = [q1, q2], q1, q2 ∈ Q

}
such that θIj (0) = 0 for every θIj ∈ Θ, and with the relation of partial order
given by

θI1j1 ≤ θI2j2 whenever I1 ⊆ I2 and j1 ≤ j2 .
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Now we introduce the family of sets ΘCp(RM) and WΘCp(RM), where Θ is a
suitable set of moduli of continuity.

Definition 2.4 (Θ-Carathéodory and weak Θ-Carathéodory functions). Let Θ

be a suitable set of moduli of continuity as in Definition 2.3, and KIj the compact
set of functions in C(I, Bj) which admit θIj as a modulus of continuity.

• We say that a function f : R × RN → RM is Θ-Carathéodory for 1 ≤ p < ∞
and write f ∈ ΘCp(RM) (or simply f ∈ ΘCp when M = N), if f satisfies
(C1), (C2), and

(T) for each j ∈ N and I = [q1, q2], q1, q2 ∈ Q, if
(
xn(·)

)
n∈N is a sequence in

KIj uniformly converging to x(·) ∈ KIj , then

lim
n→∞

∫
I

∣∣f(t, xn(t)
)
− f

(
t, x(t)

)∣∣pdt = 0.

• We say that a function f : R × RN → RM is weak Θ-Carathéodory, and write
f ∈WΘC(RM) (or simply f ∈WΘC when M = N), if f satisfies (C1), (C2)
and

(W) for each j ∈ N and I = [q1, q2], q1, q2 ∈ Q, if
(
xn(·)

)
n∈N is a sequence in

KIj uniformly converging to x(·) ∈ KIj , then

lim
n→∞

∫
I

f
(
t, xn(t)

)
dt =

∫
I

f
(
t, x(t)

)
dt.

Remark 2.5. As regards Definitions 2.1, 2.2 and 2.4, when p = 1, we will omit
the number 1 from the notation. For example, we will simply write LC instead
of LC1.

As a first topological result we give a characterization of the functions in
ΘCp

(
RM
)
and in WΘCp

(
RM
)
.

Theorem 2.6. Let f be a function in Cp
(
RM
)
.

(i) If there exists a sequence (fn)n∈N in ΘC
(
RM
)
such that for every KIj , as in

Definition 2.4, one has

lim
n→∞

sup
y(·)∈KIj

∫
I

∣∣fn(t, y(t)
)
− f

(
t, y(t)

)∣∣pdt = 0 , (2.3)

then f ∈ ΘC
(
RM
)
.

(ii) If there exists a sequence (fn)n∈N in WΘC
(
RM
)
such that for every KIj , as

in Definition 2.4, one has

lim
n→∞

sup
y(·)∈KIj

∣∣∣∣ ∫
I

[
fn
(
t, y(t)

)
− f

(
t, y(t)

)]
dt

∣∣∣∣ = 0 ,

then f ∈WΘC
(
RM
)
.
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Proof. (i). Since condition (C1) and (C2) are satisfied by hypothesis, we only
need to prove condition (T). Consider I = [q1, q2], q1, q2 ∈ Q, j ∈ N, and let
(xk(·))k∈N be a sequence in KIj converging uniformly to some x(·) ∈ KIj . Thanks
to equation (2.3), for a fixed ε > 0 there exists n0 ∈ N such that,

sup
y(·)∈KIj

[∫
I

∣∣fn0

(
t, y(t)

)
− f

(
t, y(t)

)∣∣pdt]1/p

<
ε

2
.

Therefore, we have that∥∥f(·, xk(·))−f(·, x(·)
)∥∥

p
≤
∥∥f(·, xk(·))− fn0

(
·, xk(·)

)∥∥
p

+
∥∥fn0

(
·, xk(·)

)
− fn0

(
·, x(·)

)∥∥
p

+
∥∥f(·, x(·)

)
− fn0

(
·, x(·)

)∥∥
p

≤ ε +
∥∥fn0

(
·, xk(·)

)
− fn0

(
·, x(·)

)∥∥
p
.

(2.4)

Then, recalling that fn0 ∈ ΘC
(
RM
)
, from (T) and (2.4), we conclude that

lim
k→∞

∫
I

∣∣f(t, xk(t))− f(t, x(t)
)∣∣pdt = 0 ,

and condition (T) holds for f .

(ii). Analogous reasonings lead to the thesis also for WΘC
(
RM
)
.

Remark 2.7. We identify the functions which lay in the same set and only
differ on a negligible subset of R1+N . The constraint about belonging to the
same set is crucial. Otherwise, a function in SCp(RM) could in fact be identi-
fied with a function which is not in SCp(RM). Furthermore, such a rule implies
that LCp(RM) ⊂ SCp(RM) and ΘCp(RM) ⊆ WΘC(RM) but SCp(RM) is not
included in ΘCp(RM). Nevertheless, a continuous injection (which is not a bijec-
tion) of SCp(RM) in ΘCp(RM) is straightforward. Thus, the following chain can
be sketched

LCp
(
RM
)
⊂ SCp

(
RM
)
↪→ ΘCp

(
RM
)
⊆WΘC(RM) , (2.5)

where Θ is any suitable set of moduli of continuity. In particular, for any function
f ∈ WΘC(RM), we will say that f ∈ SCp(RM) (resp. f ∈ LCp(RM)) if f is a
representative of an equivalence class in WΘC(RM) in which there is at least one
function that belongs to SCp(RM) (resp. LCp(RM)). On the other hand, the
equivalence class in WΘC(RM) of a function f ∈ SCp(RM), contains elements
which do not belong to the equivalence class in SCp(RM) of f .

The following results characterizes the process of identification in the sets
WΘC(RM) and ΘCp(RM), and, as a consequence, implies that WΘC(RM) and
ΘCp(RM) are metric spaces when endowed with the topologies defined at the
beginning of the following section.
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Proposition 2.8. Let f, g ∈WΘC
(
RM
)
(resp. f, g ∈ ΘCp

(
RM
)
) coincide almost

everywhere in R× RN . Then, for any KIj as in Definition 2.4, we have that

x(·) ∈ KIj ⇒ f
(
t, x(t)

)
= g
(
t, x(t)

)
for a.e. t ∈ I . (2.6)

Proof. Consider f, g ∈WΘC
(
RM
)
, and the Borel set V ⊂ R× RN , such that

f(t, x) = g(t, x) ∀ (t, x) ∈ V and measR1+N

(
R1+N \ V

)
= 0 .

Fix j ∈ N, I = [q1, q2], q1, q2 ∈ Q, and x(·) ∈ KIj , and consider the set

E =
{

(t, ε) ∈ I ×B1 ⊂ R1+N |
(
t, x(t) + ε

)
∈ V

}
.

Moreover, for any t ∈ I denote by Et and by Vt, the sections in t of E and V ,
respectively, i.e.

Et = {ε ∈ B1 | (t, ε) ∈ E} and Vt = {x ∈ RN | (t, x) ∈ V } .

Now, for a given t ∈ I one has

x(t) + (B1 \ Et) ⊂ Bj+1 \ Vt .

Therefore, measRN (B1 \ Et) = 0 for almost every t ∈ I. Then, applying Fubini’s
theorem twice, one has

measR(I) ·measRN (B1) = measR1+N (E) =

∫
RN

measR(Eε) dε ,

where Eε denotes the section of E for any fixed ε ∈ B1, i.e.

Eε = {t ∈ I | (t, ε) ∈ E} .

Therefore, we have that measR(Eε) = measR(I) for almost every ε ∈ B1. Now,
let (εn)n∈N ⊂ B1 be such that

εn
n→∞−−−→ 0 and measR(Eεn) = measR(I) ∀ n ∈ N .

Then, for any n ∈ N, called xn(t) = x(t) + εn, one has that xn(·) ∈ KIj+1, and
f
(
t, xn(t)

)
= g
(
t, xn(t)

)
for all t ∈ I. Then,∣∣∣∣ ∫

I

[
f
(
t, x(t)

)
− g
(
t, x(t)

)]
dt

∣∣∣∣ ≤ ∣∣∣∣ ∫
I

[
f
(
t, x(t)

)
− f

(
t, xn(t)

)]
dt

∣∣∣∣
+

∣∣∣∣ ∫
I

[
f
(
t, xn(t)

)
− g
(
t, xn(t)

)]
dt

∣∣∣∣+

∣∣∣∣ ∫
I

[
g
(
t, xn(t)

)
− g
(
t, x(t)

)
] dt

∣∣∣∣
=

∣∣∣∣ ∫
I

[
f
(
t, x(t)

)
− f

(
t, xn(t)

)]
dt

∣∣∣∣+

∣∣∣∣ ∫
I

[
g
(
t, xn(t)

)
− g
(
t, x(t)

)
] dt

∣∣∣∣
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and the terms on the right-hand side go to zero as n→∞ because f, g ∈
WΘC

(
RM
)
. In other words, we have that for any j ∈ N, I = [q1, q2], q1, q2 ∈ Q

x(·) ∈ KIj ⇒
∫
I

f
(
t, x(t)

)
dt =

∫
I

g
(
t, x(t)

)
dt. (2.7)

However, as a first step to obtain (2.6), we would need that for every t ∈ I and
h > 0 so that t+ h ∈ I one has∫ t+h

t

f
(
t, x(t)

)
dt =

∫ t+h

t

g
(
t, x(t)

)
dt, (2.8)

which can not be directly deduced from (2.7), nor reasoning as to obtain (2.7)
because if a function x(·) belongs to the set KIj , and we take p1, p2 ∈ Q such that
J = [p1, p2] ⊂ I, then x(·) does not necessarily belong to KJj . In fact, due to the
relation of partial order in a set of moduli of continuity (see Definition 2.3), it
might happen that for any t ∈ R\{0} one has θJj (t) < θIj (t), where θJj (·) and θIj (·)
are the moduli of continuity on KJj and KIj , respectively, and that θJj (·) is not a
modulus of continuity for the restriction of x(·) to the interval J . Nevertheless,
we can proceed as follows: fix p1, p2 ∈ Q such that q1 ≤ p1 < p2 ≤ q2 and consider
the function x̂ : I → RN defined by

x̂(t) =


x(p1) if t ∈ [q1, p1],

x(t) if t ∈ [p1, p2],

x(p2) if t ∈ [p2, q2].

(2.9)

Clearly, x̂(·) is still a function in KIj . Then, using the linearity of the integral and
the triangular inequality, one has∣∣∣∣ ∫ p2

p1

[
f
(
t, x(t)

)
− g
(
t, x(t)

)]
dt

∣∣∣∣ ≤ ∣∣∣∣ ∫ q2

q1

[
f
(
t, x̂(t)

)
− g
(
t, x̂(t)

)]
dt

∣∣∣∣+
+

∣∣∣∣ ∫ p1

q1

[
f
(
t, x(p1)

)
− g
(
t, x(p1)

)]
dt

∣∣∣∣+

∣∣∣∣ ∫ q2

p2

[
f
(
t, x(p2)

)
− g
(
t, x(p2)

)]
dt

∣∣∣∣,
and each one of the three integrals on the right-hand side is equal to zero due to
(2.7) applied to x̂(p1) ∈ KIj , x(·) ∈ K[q1,p1]

j and x(p2) ∈ K[p2,q2]
j , respectively. In

particular, we obtain (2.8) for any t ∈ I and h > 0 so that t + h ∈ I, thanks to
the continuity of the integral with respect to the interval of integration.

Thus, dividing both the sides in (2.8) by h, and taking the limit as h→ 0 (see
N. Dunford and J.T. Schwartz [24, Corollary III.12.7, p.216]) one obtains that

f
(
t, x(t)

)
= g
(
t, x(t)

)
for a.e. t ∈ R.

If f, g ∈ ΘCp
(
RM
)
, and p > 1, one has the thesis recalling that Lploc ⊂ L1

loc.
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2.2 Topologies

We endow the previously introduced sets with suitable topologies. As a rule,
when inducing a topology on a subspace we will denote the induced topology
with the same symbol which denotes the topology on the original space.

The space WΘC(RM) will be endowed with the following weak topology.

Definition 2.9 (Topology σΘ). Let Θ be a suitable set of moduli of continuity
as in Definition 2.3. We call σΘ the topology on WΘC(RM) generated by the
family of seminorms

pI, j(f) = sup
x(·)∈KIj

∣∣∣∣ ∫
I

f
(
t, x(t)

)
dt

∣∣∣∣ , f ∈WΘC(RM) ,

with I = [q1, q2], q1, q2 ∈ Q, j ∈ N, and KIj as in Definition 2.4. The space(
WΘC(RM), σΘ

)
is a locally convex metric space.

The topology σΘ can also be induced on the spaces ΘC
(
RM
)
, SC

(
RM
)
and

LC
(
RM
)
. Moreover, the space ΘCp

(
RM
)
will be endowed with the following

strong topology.

Definition 2.10 (Topology TΘ). Let Θ be a suitable set of moduli of continuity
as in Definition 2.3. We call TΘ the topology on ΘCp

(
RM
)
generated by the

family of seminorms

pI, j(f) = sup
x(·)∈KIj

[∫
I

∣∣f(t, x(t)
)∣∣pdt]1/p

, f ∈ ΘC
(
RM
)
,

with I = [q1, q2], q1, q2 ∈ Q, j ∈ N, and KIj as in Definition 2.4. The space(
ΘCp

(
RM
)
, TΘ

)
is a locally convex metric space.

Remark 2.11. Notice that, according to the previous definition, one actually
has a different topology TΘ = TΘ(p) for any 1 ≤ p < ∞. However, in order to
keep the notation simple, we will simply write TΘ since in each case it is always
clear which p we are using because it is specified in the notation of the space (e.g.(
ΘCp

(
RM
)
, TΘ

)
). The same reasoning also applies to the rest of the topologies

that we will define in this chapter.

Besides the already introduced topologies σΘ and TΘ, on the set SCp
(
RM
)

we also consider the following three topologies which have been previously used
in the literature.

Definition 2.12 (Topology TB). We call TB the topology onSCp
(
RM
)
generated

by the family of seminorms

pI, j(f) = sup
x(·)∈C(I,Bj)

[∫
I

∣∣f(t, x(t)
)∣∣pdt]1/p

, f ∈ SCp
(
RM
)
,

where I = [q1, q2], q1, q2 ∈ Q and j ∈ N.
(
SCp

(
RM
)
, TB

)
is a locally convex

metric space.
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Definition 2.13 (Topologies TD and σD). Let D be a countable and dense subset
of RN .

• We call TD the topology on SCp
(
RM
)
generated by the family of seminorms

pI, xj(f) =

[∫
I

|f(t, xj)|pdt
]1/p

,

for f ∈ SCp
(
RM
)
, xj ∈ D, I = [q1, q2], q1, q2 ∈ Q.

• We call σD the topology on SC(RM) generated by the family of seminorms

pI, x(f) =

∣∣∣∣ ∫
I

f(t, x) dt

∣∣∣∣ ,
for f ∈ SC(RM), x ∈ D, I = [q1, q2], q1, q2 ∈ Q.(

SCp
(
RM
)
, TD

)
and

(
SC(RM), σD

)
are locally convex metric spaces.

Notice that, as well as SCp
(
RM
)
, also LCp

(
RM
)
can be endowed with all the

previous topologies and the following chains of order hold when all the previous
topologies are considered in either SCp

(
RM
)
or LCp

(
RM
)
:

σD ≤ TD ≤ TΘ ≤ TB and σD ≤ σΘ ≤ TΘ. (2.10)

We conclude this section with a technical lemma on
(
WΘC(RM), σΘ

)
. As

one may notice, both the property (W) in Definition 2.4 and the way the topol-
ogy σΘ is defined in Definition 2.9, require that the interval on which we take
the integral coincides with the domain of the functions over which we take the
supremum. However, in many cases we will need to consider the integral on a
smaller subinterval that we can not directly control with the integral on the whole
interval due to the employed weak formulation. Nevertheless, playing with the
functions in the compact sets KJj (on the line of what we already did in the proof
of Proposition 2.8), we are still able to achieve the properties we need, as shown
in the technical lemma below.

Lemma 2.14. Let Θ be a suitable set of moduli of continuity as in Definition 2.3,
and for each j ∈ N and I = [q1, q2], q1, q2 ∈ Q, let KIj be the compact set in
C(I, Bj) defined as in Definition 2.4.

(i) Let f be a function of WΘC(RM). For each j ∈ N and I = [q1, q2], q1, q2 ∈ Q,
if
(
xn(·)

)
n∈N is a sequence in KIj uniformly converging to x(·) ∈ KIj , then

lim
n→∞

∫ p2

p1

f
(
t, xn(t)

)
dt =

∫ p2

p1

f
(
t, x(t)

)
dt ,

whenever p1, p2 ∈ Q and q1 ≤ p1 < p2 ≤ q2.
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(ii) Let (gn)n∈N be a sequence in WΘC(RM) converging to g in
(
WΘC(RM), σΘ

)
.

Then, for any I = [q1, q2], q1, q2 ∈ Q and j ∈ N one has

lim
n→∞

sup
x(·)∈KIj

∣∣∣∣∫ p2

p1

[
gn
(
t, x(t)

)
− g
(
t, x(t)

)]
dt

∣∣∣∣ = 0

whenever p1, p2 ∈ Q and q1 ≤ p1 < p2 ≤ q2.

Proof. (i). Consider I = [q1, q2], with q1, q2 ∈ Q, and a sequence
(
xn(·)

)
n∈N in

KIj uniformly converging to a function x(·) ∈ KIj . For every n ∈ N, consider the
function x̂n : I → Bj defined by

x̂n(t) =


xn(p1) if t ∈ [q1, p1],

xn(t) if t ∈ [p1, p2],

xn(p2) if t ∈ [p2, q2].

Notice that for all n ∈ N one can write∫ p2

p1

f
(
t, xn(t)

)
dt =

∫ q2

q1

f
(
t, x̂n(t)

)
dt−

∫ p1

q1

f
(
t, xn(p1)

)
dt−

∫ q2

p2

f
(
s, xn(p2)

)
dt.

(2.11)
The sequence

(
x̂n(·)

)
n∈N is in KIj and converges uniformly to the function x̂ : I →

RN which coincides with x(·) on [p1, p2], and it has constant value x(p1) and
x(p2) on [q1, p1] and [p2, q2], respectively. In particular, notice that

(
xn(p1)

)
n∈N

is a sequence in K[q1,p1]
j and

(
xn(p2)

)
n∈N is a sequence in K[p2,q2]

j , since both are
sequences of constants bounded by j, and they respectively converge to the con-
stant functions given by x(p1) ∈ K[q1,p1]

j and x(p2) ∈ K[p2,q2]
j . Therefore, statement

(i) follows from (2.11) and (W).

(ii). Consider a sequence (gn)n∈N in WΘC(RM) converging to a function g in(
WΘC(RM), σΘ

)
, a function x(·) ∈ KIj , where I = [q1, q2], q1, q2 ∈ Q, and let

p1, p2 be elements of Q such that q1 ≤ p1 < p2 ≤ q2. Consider the function
x̂ : I → RN defined as in (2.9).

Clearly, x̂ is still a function in KIj . Recalling how x̂ has been defined in the
previous formula, using the linearity of the integral and the triangular inequality,
one has∣∣∣∣ ∫ p2

p1

[
gn
(
t, x(t)

)
− g
(
t, x(t)

)]
dt

∣∣∣∣ ≤ ∣∣∣∣ ∫ q2

q1

[
gn
(
t, x̂(t)

)
− g
(
t, x̂(t)

)]
dt

∣∣∣∣+
+

∣∣∣∣ ∫ p1

q1

[
gn
(
t, x(p1)

)
− g
(
t, x(p1)

)]
dt

∣∣∣∣+

∣∣∣∣ ∫ q2

p2

[
gn
(
t, x(p2)

)
− g
(
t, x(p2)

)]
dt

∣∣∣∣.
Moreover, since any constant function bounded by j belongs to KJj for any interval
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J ⊂ R with rational extrema, then from the previous inequality we can deduce∣∣∣∣ ∫ p2

p1

[
gn
(
t, x(t)

)
− g
(
t, x(t)

)]
dt

∣∣∣∣ ≤ sup
x(·)∈KIj

∣∣∣∣ ∫ q2

q1

[
gn
(
t, x(t)

)
− g
(
t, x(t)

)]
dt

∣∣∣∣
+ sup

x(·)∈K[q1,p1]
j

∣∣∣∣ ∫ p1

q1

[
gn
(
t, x(t)

)
− g
(
t, x(t)

)]
dt

∣∣∣∣
+ sup

x(·)∈K[p2,q2]
j

∣∣∣∣ ∫ q2

p2

[
gn
(
t, x(t)

)
− g
(
t, x(t)

)]
dt

∣∣∣∣
and the right-hand side of the previous inequality goes to zero as n→∞ since
(gn)n∈N converges to g in

(
WΘC(RM), σΘ

)
. In particular notice that such limit

is uniform in x(·) ∈ KIj and thus one obtains the thesis.

Remark 2.15. Notice that properties (i) and (ii) of Lemma 2.14 are trivially
true for any strong topology. Indeed, the modulus inside the integral allows us
to control any integral with one on a bigger interval in which we are sure to have
the convergence.

2.3 The m-bounds and the l -bounds

This section is devoted to a deeper understanding of the m-bounds and l-bounds
of a Carathéodory function or set of functions. Interestingly, the role of these
locally integrable functions goes far beyond the existence and uniqueness of solu-
tions for Carathéodory differential problems as stated in Theorem 1.2. However,
in order to proceed in the development of the theory, we need to give a bit of
structure to them in a way that different Carathéodory functions can be related
to each other through their m-bounds and l-bounds. To the aim, we introduce
the notions of L1

loc-equicontinuity and Lploc-boundedness and subsequently relate
them to Carathéodory functions through their m-bounds and l-bounds.

Definition 2.16 (Lploc-boundedness). A subset S of positive functions in Lploc,
with 1 ≤ p <∞ is bounded if for every r > 0 the following inequality holds

sup
m∈S

∫ r

−r
mp(t) dt <∞ .

In such a case we will say that S is Lploc-bounded.

Definition 2.17 (L1
loc-equicontinuity). A set S of positive functions in L1

loc is
L1
loc-equicontinuous if for any r > 0 and for any ε > 0 there exists a δ = δ(r, ε) > 0

such that, for any −r ≤ s ≤ t ≤ r, we have

t− s < δ ⇒ sup
m∈S

∫ t

s

m(u) du < ε .
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Remark 2.18. According to the previous definitions, the L1
loc-equicontinuity im-

plies the L1
loc-boundedness. On the other hand, if p > 1, then, thanks to Hölder

inequality one immediately obtains that the Lploc-boundedness implies the L1
loc-

equicontinuity.

As follows, we aim to give a characterization of the L1
loc-equicontinuous subsets

of positive functions in L1
loc through the relative compactness of the associated set

of positive absolutely continuous measures. In order to proceed, we need to set
some notation and give some statements of classic results of measure theory. By
M+ we denote the set of locally finite, positive and regular Borel measures on R.
Recall that a measure µ ∈M+ is said to be continuous if µ(t) = 0 for any t ∈ R.
Additionally, we denote byM+

ac the set of measures µ ∈M+ such that for every
r ∈ R+ the restriction of µ to the interval [−r, r] is absolutely continuous with
respect to the Lebesgue measure, i.e. such that, for any Lebesgue measurable set
A ⊂ R, one has

measR(A) = 0 ⇒ µ(A) = 0,

where measR represents the Lebesgue measure on R. By the Lebesgue-Radon-
Nikodým theorem, if µ ∈ M+

ac, then, there exists f ∈ L1
loc such that for any

measurable set A in R, one has

µ(A) =

∫
A

f(t) dmeasR(t) =

∫
A

f(t) dt. (2.12)

If a measure µ ∈ M+ is not absolutely continuous with respect to the Lebesgue
measure, then it is said to be singular. In particular, we will denote byM+

sc the set
of singular continuous measures, i.e. positive and regular Borel measures which
are continuous and singular with respect to the Lebesgue measure, and byM+

pd,
the set of purely discontinuous measures, i.e. positive and regular Borel measures
with support on a countable subset of R. The set M+ can be decomposed as
M+ =M+

ac⊕M+
sc⊕M+

pd (see Hewitt and Stromberg [31, Theorem 19.61, p.337]).
We endowM+ with the following topology.

Definition 2.19 (Vague topology). We say that a sequence (µn)n∈N of measures
inM+ vaguely converges to µ ∈M+, and write µn

σ̃−→ µ, if and only if

lim
n→∞

∫
R
φ(s) dµn(s) =

∫
R
φ(s) dµ(s) for all φ ∈ C+

C (R).

We will denote such a topological space by (M+, σ̃).

As shown in Kallenberg [35, Theorem 15.7.7, p.170], (M+, σ̃) is a Polish
space, i.e. it is separable and completely metrizable. Moreover, the following
propositions hold true (see [35, Theorems 15.7.5, p.170 and 15.7.2, p.169]).

Proposition 2.20. Any subset M ⊂ M+ is relatively compact in the vague
topology if and only if supµ∈M µ(B) <∞ for any bounded Borel set B.
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Remark 2.21. As a consequence of the previous proposition, if S is a subset
of L1

loc, and M ⊂ M+
ac is the set of positive absolutely continuous measures

whose densities are the functions in S, then S is L1
loc-bounded if and only if M is

relatively compact in the vague topology.

Proposition 2.22. Given a sequence (µn)n∈N of measures inM+ converging to
some measure µ ∈ M+ in the vague topology σ̃, for every s, t ∈ R, with s ≤ t,
one has

(a) µ([s, t]) ≥ lim supn→∞ µn([s, t]), and

(b) µ([s, t]) ≤ lim infn→∞ µn([s− δ, t+ δ]) for every δ > 0.

We are now ready to give a characterization of the L1
loc-equicontinuity for

subsets of positive functions in L1
loc.

Theorem 2.23. Let S ⊂ L1
loc be a set of positive functions and let M ⊂M+

ac be
the set of absolutely continuous measures whose densities are the functions of S.
Then, the following statements are equivalent.

(i) S is L1
loc-equicontinuous.

(ii) M is relatively compact in (M+, σ̃) and cls(M+,σ̃)(M) ⊂M+
ac ⊕M+

sc.

Proof. (i) ⇒ (ii). One immediately has that M is relatively compact thanks to
Remark 2.18 and Remark 2.21. Let us prove that cls(M+,σ̃)(M) ⊂ M+

ac ⊕M+
sc.

Let µ be a measure in cls(M+,σ̃)(M) and (µn)n∈N be a sequence in M converging
to µ. We have that fixed ε > 0 there exists a δ > 0 such that, due to (i), for
every n ∈ N we have

µn([s, t]) < ε whenever t− s < δ.

Now consider −r ≤ s ≤ t ≤ r and t− s < δ/2. Then, from Proposition 2.22(b),
one has that

µ([s, t]) ≤ lim inf
n→∞

µn([s− δ/4, t+ δ/4]) ≤ ε ,

which means that µ has a continuous variation on t and s. Therefore, it can not
have a purely discontinuous component which means that µ ∈M+

ac ⊕M+
sc.

(ii) ⇒ (i). Assume on the contrary that S is not L1
loc-equicontinuous. There-

fore, there exist r > 0 and ε > 0 such that for any n ∈ N there is a function
mn(·) ∈ S and an interval [sn, tn] ⊂ [−r, r] with tn − sn < 1/n, such that∫ tn

sn

mn(u) du > ε.

Firstly notice that, since the sequences (sn)n∈N and (tn)n∈N take values in the
compact set [−r, r] and tn− sn → 0 as n→∞, then there exists τ ∈ [−r, r] such
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that, up to a subsequence sn → τ and tn → τ as n→∞. Now, let us consider the
sequence (µn)n∈N of absolutely continuous measure in M such that for any n ∈ N
the function mn(·) is the density of the measure µn. By (ii), (µn)n∈N vaguely
converges, up to a subsequence, to a measure µ ∈ M+

ac ⊕M+
sc. Then, for the

given ε, there exists a δ > 0 such that

µ([τ − δ, τ + δ]) < ε. (2.13)

Moreover, there exists n0 ∈ N such that [sn, tn] ⊂ [τ − δ, τ + δ] for all n > n0.
However, from Proposition 2.22(a) we have that

µ([τ − δ, τ + δ]) ≥ lim sup
n→∞

µn([τ − δ, τ + δ]) ≥ lim sup
n→∞

µn([sn, tn]) > ε,

which contradicts (2.13). Therefore, we deduce that S is L1
loc-equicontinuous,

which concludes the proof.

At follows, we extend the notions of Lploc-boundedness and L
1
loc-equicontinuity

given in Definitions 2.16 and 2.17, respectively, to sets of Carathéodory functions
through their m-bounds and/or l-bounds. A special attention will be paid to
the set of the time translations of a function, because it plays a key role in the
construction of its hull (see Definition 1.10), and consequently in the continuity of
a skew-product flow induced by a non-autonomous ordinary differential equation.

Definition 2.24 (L1
loc-boundedness and L1

loc-equicontinuity for Carathéodory
functions). Consider 1 ≤ p <∞. We say that

(i) a set E ⊂ Cp(RM) has Lploc-bounded (resp. L1
loc-equicontinuous) m-bounds,

if for any j ∈ N there exists a set Sj ⊂ Lploc of m-bounds of the functions of
E on Bj, such that Sj is Lploc-bounded (resp. L1

loc-equicontinuous);

(ii) a function f ∈ Cp(RM) has Lploc-bounded (resp. L1
loc-equicontinuous) m-

bounds if the set {ft | t ∈ R} has Lploc-bounded (resp. L1
loc-equicontinuous)

m-bounds;

(iii) a set E ⊂ LCp(RM) has Lploc-bounded (resp. L1
loc-equicontinuous) l -bounds,

if for any j ∈ N, the set Sj ⊂ Lploc, made up of the optimal l-bounds on Bj

of the functions in E, is Lploc-bounded (resp. L1
loc-equicontinuous);

(iv) a function f ∈ LCp(RM) has Lploc-bounded (resp. L1
loc-equicontinuous) l-

bounds if the set {ft | t ∈ R} has Lploc-bounded (resp. L1
loc-equicontinuous)

l-bounds.

Remark 2.25. Notice that (ii) and (iv) in Definition 2.24 are well-posed. In
fact, if f ∈ Cp(RM), then for any t ∈ R one has that ft(·, ·) = f(t+ ·, ·) is Borel-
measurable and, for any j ∈ N, if x ∈ Bj ⊂ RN , then for almost every s ∈ R one
has

|ft(s, x)| = |f(t+ s, x)| ≤ mj(t+ s) = mj
t(s), (2.14)
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where mj(·) ∈ Lploc is an m-bound for f on Bj. As a consequence for any j ∈ N,
the function ft has an m-bound on Bj. Therefore, ft satisfies (C1) and (C2) and
thus ft ∈ Cp(RM). Furthermore, if f ∈ LCp(RM), one has that, for any j ∈ N, if
x, y ∈ Bj ⊂ RN , then for almost every s ∈ R one has

|ft(s, x)− ft(s, y)| = |f(s+ t, x)− ft(s+ t, y)| ≤ lj(t+ s)|x− y| = ljt (s)|x− y|,

where lj(·) ∈ Lploc is the optimal l-bound for f on Bj. As a consequence for any
j ∈ N, the function ft has an l-bound on Bj and thus, it also satisfies (L) in
Definition 2.1 and thus ft ∈ LCp(RM).

2.4 Topological closure

As a first application of the notions introduced in Definition 2.24, we aim to
investigate if such properties can be extended to the limit functions once we
take the closure in a suitable topological space. The possibility of maintaining
properties on the m-bounds and/or on the l-bounds through the limits is actually
crucial because it allows to treat the closure of sets as “homogeneous” (with
respect to a specific property), as we will see in the following sections. Just
to cite two essential applications, for a converging sequence in a set with Lploc
bounded l-bounds we will be able to deduce the existence and uniqueness of
solutions for the induced limit differential problem or that, within a closed set
with L1

loc-equicontinuous m-bounds, all the solutions of the respective differential
problems share the same moduli of continuity.

The following three cases are of interest for the rest of our work.

(a) The closure of any subset of SC or LC with respect to any of the introduced
topologies.

(b) The closure of any subset of SCp or LCp, with p ≥ 1, with respect to any
of the introduced strong topologies.

(c) The closure of any subset of ΘC or WΘC respectively endowed with the
topologies TΘ and σΘ.

Notice that in case (b), only the subcase p = 1 lays within the scope of (a).
Furthermore, case (c) does not fall within any of the other two cases because
the closure is taken with respect to either, the strong topology TΘ or the weak
topology σΘ, but in larger spaces than in case (a).

Proposition 2.26. Let T be any of the topologies introduced in Section 2.2.

(i) If E ⊂ SC
(
RM
)
(resp. E ⊂ LC

(
RM
)
) admits L1

loc-bounded m-bounds
(resp. L1

loc-bounded l-bounds) then cls(SC(RM ),T )(E) has L1
loc-bounded m-

bounds (resp. cls(SC(RM ),T )(E) ⊂ LC(RM) and it has L1
loc-bounded l-bounds).
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(ii) If E ⊂ SC
(
RM
)
(resp. E ⊂ LC

(
RM
)
) admits L1

loc-equicontinuous m-
bounds (resp. L1

loc-equicontinuous l-bounds), then cls(SCp(RM ),T )(E) has L1
loc-

equicontinuous m-bounds (resp. cls(SC(RM ),T )(E) ⊂ LC(RM) and it has L1
loc-

equicontinuous l-bounds).

(iii) If f ∈ SC
(
RM
)
(resp. f ∈ LC

(
RM
)
) admits L1

loc-bounded m-bounds (resp.
L1
loc-bounded l-bounds) then any g ∈ Hull(SC(RM ),T )(f) has L1

loc-bounded
m-bounds (resp. L1

loc-bounded l-bounds).

(iv) If f ∈ SC
(
RM
)
(resp. f ∈ LC

(
RM
)
) admits L1

loc-equicontinuous m-bounds
(resp. L1

loc-equicontinuous l-bounds), then any g ∈ Hull(SC(RM ),T )(f) has
L1
loc-equicontinuous m-bounds (resp. L1

loc-equicontinuous l-bounds).

Proof. By (2.10), if we prove the result for the topology σD, we have it for all the
other topologies.

(i). Let us firstly reason for the m-bounds and, in order to simplify the nota-
tion, let E denote the set cls(SC(RM ),σD)(E). As we are applying the topological
closure in (SC(RM), σD), we already know that each function in E admits an
optimal m-bound. However, without any additional information, it is difficult to
say whether the optimal m-bounds of the limit functions allow us to preserve the
property of L1

loc-boundedness in E or not. The idea then, is that, for each function
f ∈ E\E, we consider a sequence (fn)n∈N in E converging to f with respect to σD,
and we build an m-bound for f starting from the optimal m-bounds of (fn)n∈N.
In such a way, the obtained m-bound encloses some additional information which
allows us to prove L1

loc-boundedness for E. Notice that, for any function f and
j ∈ N, if this kind of property is true for a generic m-bound for f on Bj, then it
is also true for the optimal m-bound for f on Bj (see Definition 2.1).

Fix j ∈ N and, for any n ∈ N, let mj
n be the optimal m-bound for fn on

Bj and µjn ∈ M+ be the positive absolutely continuous measure (with respect
to the Lebesgue measure) with density mj

n(·). By hypothesis, the set {mj
n(·) |

n ∈ N} is L1
loc-bounded. Hence, due to Remark 2.21, the sequence of induced

measures (µjn)n∈N, is relatively compact in (M+, σ̃) and thus vaguely converges,
up to a subsequence, to a measure µj ∈M+. Moreover, by Lebesgue-Besicovitch
differentiation theorem (see Ambrosio et al. [1, Theorem 2.22, p.54]), there exists
mj(·) ∈ L1

loc such that

mj(t) = lim
h→0

µj([t, t+ h])

h
, for a.e. t ∈ R , (2.15)

and mj(·) is the density of the absolutely continuous part of the Radon-Nikodým
decomposition of µj in each compact interval. We claim thatmj(·) is anm-bound
for f on Bj. Let us firstly fix x ∈ D ∩ Bj, and take t, h ∈ Q, with h > 0, and
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φ ∈ C+
C (R) such that φ ≡ 1 in [t, t+ h]. Then, we have∣∣∣∣1h
∫ t+h

t

f(s, x) ds

∣∣∣∣ = lim
n→∞

∣∣∣∣1h
∫ t+h

t

fn(s, x) ds

∣∣∣∣ ≤ lim
n→∞

1

h

∫ t+h

t

mj
n(s) ds

≤ lim
n→∞

1

h

∫
R
φ(s) dµjn(s) =

1

h

∫
R
φ(s) dµj(s) .

Moreover, thanks to the regularity of µj, one has

µj([t, t+ h]) = inf

{∫
R
φ(s) dµj(s)

∣∣∣ φ ∈ C+
C (R), φ ≡ 1 in [t, t+ h]

}
.

Therefore, gathering the previous two formulas, we obtain∣∣∣∣1h
∫ t+h

t

f(s, x) ds

∣∣∣∣ ≤ µj([t, t+ h])

h
. (2.16)

Now, consider t, h ∈ R, with h > 0, and let (sn)n∈N and (tn)n∈N be two sequences
in Q such that, as n→∞, sn ↓ t and tn ↑ t+ h, respectively. By (2.16), applied
on the intervals [sn, tn], and noticing that µj([sn, tn)] ≤ µj([t, t + h]) for every
n ∈ N, one can write∣∣∣∣ 1

h

∫ tn

sn

f(s, x) ds

∣∣∣∣ ≤ µj([t, t+ h])

h
, for all n ∈ N . (2.17)

Hence, passing to the limit as n→∞ and using the continuity of the integral, one
obtains (2.16) for every t, h ∈ R with h > 0. Now, as h → 0 (see [24, Corollary
III.12.7, p.216]) and using (2.15), we obtain that for almost every t ∈ R,

|f(t, x)| ≤ mj(t) , (2.18)

for the fixed x ∈ D∩Bj. For every fixed x ∈ D∩Bj let us now denote by R(x) the
subset of R such that measR(R\R(x)) = 0 and (2.18) holds for all t ∈ R(x). Such
a set clearly depends on x ∈ D ∩ Bj. However, since D is numerable, by simply
intersecting all the possible R(x), with x ∈ D ∩ Bj, (there is only a numerable
quantity of them), one can obtain a set R0 ⊂ R of full measure for which (2.18)
holds for any x ∈ D∩Bj. Finally, by the continuity of f(t, ·), we obtain the result
for almost every t ∈ R for all x ∈ Bj, and mj provides an m-bound for f in Bj,
as claimed.

Now, we prove that E admits L1
loc-bounded m-bounds. For each f ∈ E

and any j ∈ N, let mj
f be either, the optimal m-bound of f on Bj if f ∈ E,

or the m-bound given by (2.15), i.e. the absolutely continuous part of a limit
measure, if f ∈ E \E. Moreover, for each f ∈ E, let (fn)n∈N be a sequence in E
converging to f with respect to σD. Consider j ∈ N, r > 0 and φ ∈ C+

C such that
suppφ ⊂ [−r − 1, r + 1] and φ ≡ 1 in [−r, r], then, we have∫ r

−r
mj
f (t) dt ≤

∫
R
φ(t)mj

f (t) dt ≤ lim
n→∞

∫
R
φ(t)mj

fn
(t) dt

≤ sup
g∈E

∫ r+1

−r−1

mj
g(t) dt <∞ ,

(2.19)
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where the last inequality comes from the assumption of L1
loc-boundedness for the

m-bounds of E. Hence, taking the superior on f ∈ E in the previous chain of
inequalities, we obtain

sup
f∈E

∫ r

−r
mj
f (t) dt <∞ .

Therefore, E admits L1
loc-bounded m-bounds, which concludes this part of the

proof.
Now, consider E ⊂ LC

(
RM
)
with L1

loc-bounded l-bounds. Reasoning as in
the first part of the proof, we have that the sequence of absolutely continuous
measures with densities (ljn(t))n∈N vaguely converges, up to a subsequence, to
a positive measure whose absolutely continuous part has density lj(·) ∈ L1

loc.
Additionally, for any x, y ∈ D ∩Bj with x 6= y the following inequality holds

|f(t, x)− f(t, y)| ≤ lj(t) |x− y| for a.e. t ∈ R . (2.20)

Notice that the set R(x, y) ⊂ R of total measure for which (2.20) holds, depends
on x and y. However, since D is numerable, again, by intersecting all the possible
R(x, y) (there is only a numerable quantity of them), one can obtain a set R0 ⊂ R
of full measure for which (2.20) holds for any x, y ∈ D ∩Bj. An extension of the
previous inequality to the entire Bj is thus achieved thanks to the continuity of f
with respect to the variable x. Therefore, f ∈ LCp

(
RM
)
and thus E ⊂ LC(RM).

Finally, reasoning exactly as in (2.19), one obtains that E has L1
loc-bounded l-

bounds.
(ii). Again, let us firstly work on the m-bounds. For each f ∈ E and any

j ∈ N let mj
f be either, the optimal m-bound of f on Bj if f ∈ E, or the m-

bound given by (2.15) if f ∈ E \E, i.e. the absolutely continuous part of a limit
measure. Moreover, for each f ∈ E let (fn)n∈N be a sequence in E converging to
f with respect to σD. By the L1

loc-equicontinuity of the m-bounds, we have that
for each j ∈ N, and r, ε > 0 there exists δ = δ(r, ε) > 0 such that

for all t, s ∈ [−r, r] : 0 < t− s < δ ⇒ sup
f∈E

∫ t

s

mj
f (u) du < ε.

Moreover, consider t, s ∈ [−r, r] with s < t and t− s < δ/3 and φ ∈ C+
C such that

suppφ ⊂ [s− δ/3, t+ δ/3] and φ ≡ 1 in [s, t]. Then, we have∫ t

s

mj
f (u) du ≤

∫
R
φ(u)mj

f (u) du ≤ lim
n→∞

∫
R
φ(u)mj

fn
(u) du

≤ sup
g∈E

∫ t+δ/3

s−δ/3
mj
g(u) du < ε .

Hence, taking the superior on f ∈ E in the previous chain of inequalities, we
obtain

sup
f∈E

∫ t

s

mj
f (u) du < ε.
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Therefore, E admits L1
loc-equicontinuous m-bounds. The result for the l-bounds

can be obtained by analogous reasoning.

(iii) and (iv) are a direct consequence of (i) and (ii), respectively.

Proposition 2.27. Let T be any of the strong topologies introduced in Section 2.2
and 1 ≤ p <∞.

(i) If E ⊂ SCp
(
RM
)
(resp. E ⊂ LCp

(
RM
)
) admits Lploc-bounded m-bounds

(resp. Lploc-bounded l-bounds) then cls(SCp(RM ),T )(E) has Lploc-bounded m-
bounds (resp. cls(SC(RM ),T )(E) ⊂ LC(RM) and it has Lploc-bounded l-bounds).

(ii) If E ⊂ SCp
(
RM
)
(resp. E ⊂ LCp

(
RM
)
) admits L1

loc-equicontinuous m-
bounds (resp. L1

loc-equicontinuous l-bounds), then cls(SCp(RM ),T )(E) has L1
loc-

equicontinuous m-bounds (resp. cls(SC(RM ),T )(E) ⊂ LC(RM) and it has L1
loc-

equicontinuous l-bounds).

(iii) If f ∈ SCp
(
RM
)
(resp. f ∈ LCp

(
RM
)
) has Lploc-bounded m-bounds (resp.

Lploc-bounded l-bounds) then any g ∈ Hull(SCp(RM ),T )(f) has Lploc-bounded
m-bounds (resp. Lploc-bounded l-bounds).

(iv) If f ∈ SCp
(
RM
)
(resp. f ∈ LCp

(
RM
)
) has L1

loc-equicontinuous m-bounds
(resp. L1

loc-equicontinuous l-bounds), then any g ∈ Hull(SCp(RM ),T )(f) has
L1
loc-equicontinuous m-bounds (resp. L1

loc-equicontinuous l-bounds).

Proof. For all the four statements (i) to (iv), the case p = 1 is included in
Proposition 2.26. Now, consider p > 1 and let us work for the case of the
m-bounds in (i). In particular we can apply the same reasoning used in the
proof of Proposition 2.26 recalling that Lploc ⊂ L1

loc, and we only need to prove
that the function mj(·) ∈ L1

loc, provided by (2.15), is also in Lploc. By hypothesis
{mj

n(·) | n ∈ N} is Lploc-bounded and, by Alaoglu-Bourbaki theorem, for every
r > 0 the closed balls of Lp([−r, r]) are relatively compact in the weak topol-
ogy σ

(
Lp([−r, r]), Lq([−r, r])

)
. Therefore, if

(
mj
in

(·)
)
n∈N is a weakly convergent

subsequence of
(
mj
n(·)
)
n∈N with limit m∗(·) ∈ Lp([−r, r]), then the sequence of

induced measures (µjin)n∈N vaguely converges to the absolutely continuous mea-
sure whose density is m∗(·) in [−r, r]. Hence, since Equation (2.15) holds, m∗(·)
has to coincide with mj(·) in [−r, r].

The same reasoning applies to the l-bounds and to the rest of the cases in (ii),
whereas (iii) and (iv) are a direct consequence of (i) and (ii), respectively.

The resulted presented so far, involve the spaces SCp(RM) and LCp(RM).
At this point we would like to address the analogous problem in the space
(WΘC(RM), σΘ). In other words, we aim to show that the existence of L1

loc-
bounded or L1

loc-equicontinuous m-bounds (respectively l-bounds) for a set E ⊂
WΘC

(
RM
)
(resp. E ⊂ LC

(
RM
)
) is inherited by all the elements of the closure
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of E with respect to σΘ (see Definition 2.4). A special case is the one in which
E is the set of the time translations of a function and, there, a problem arises.
As shown in Remark 2.25, if a function f belongs to either SCp(RM), LCp(RM)

or ΘCp(RM), then any time-translation of f (see Definition 1.9) also belongs to
the same set. Nevertheless, the same result is not so obvious for WΘC(RM) and
thus, before proceeding, we include a proof of this fact.

Lemma 2.28. Let Θ be a suitable set of moduli of continuity as in Definition 2.3.
If t ∈ R and f ∈WΘC(RM), then ft ∈WΘC(RM).

Proof. Notice that for any fixed f ∈ WΘC(RM) and t ∈ R, the function ft
trivially satisfies (C1) and (C2). In order to prove that condition (W) of Defini-
tion 2.4 holds, consider j ∈ N, I = [q1, q2], q1, q2 ∈ Q, and a sequence

(
xn(·)

)
n∈N

in KIj converging uniformly to x(·) ∈ KIj . Then, one has that

lim
n→∞

∣∣∣∣ ∫
I

[
ft
(
s, xn(s)

)
− ft

(
s, x(s)

)]
ds

∣∣∣∣
= lim

n→∞

∣∣∣∣∫
I

[
f
(
s+ t, xn(s)

)
− f

(
s+ t, x(s)

)]
ds

∣∣∣∣
= lim

n→∞

∣∣∣∣∫
I+t

[
f
(
u, xn(u− t)

)
− f

(
u, x(u− t)

)]
du

∣∣∣∣ .
(2.21)

Considering an interval J with rational extrema such that I ∪ (I+ t) ⊂ J and, up
to an extension by constants to J , the functions xn(· − t) and x(· − t) are in KJj .
If t ∈ Q we immediately obtain the thesis thanks to Lemma 2.14(i). If t ∈ R \Q,
fix ε > 0 and let δ1, δ2 > 0 be such that∫ q1+t

q1+t−δ1
mj
f (u) du <

ε

4
and

∫ q2+t+δ2

q2+t

mj
f (u) du <

ε

4
,

where mj
f (·) is the m-bound of f on Bj. The previous inequalities hold because

of the continuity of the integral. Thus, denoted by δ = min{δ1, δ2}, consider
p1 ∈ [q1 + t − δ, q1 + t] ∩ Q and p2 ∈ [q2 + t, q2 + t + δ] ∩ Q. Starting from the
last step of the chain of equalities in (2.21), one has

lim
n→∞

∣∣∣∣ ∫ q2+t

q1+t

[
f
(
u, xn(u− t)

)
− f

(
u, x(u− t)

)]
du

∣∣∣∣
≤ lim

n→∞

∣∣∣∣∫ p2

p1

[
f
(
u, xn(u− t)

)
− f

(
u, x(u− t)

)]
du

∣∣∣∣
+ 2

∫ q1+t

p1

mj
f (u) du+ 2

∫ p2

q2+t

mj
f (u) du

≤ lim
n→∞

∣∣∣∣∫ p2

p1

[
f
(
u, xn(u− t)

)
− f

(
u, x(u− t)

)]
du

∣∣∣∣+ ε .

Therefore, we obtain the thesis, thanks to Lemma 2.14(i), putting together the
previous chain of inequalities and (2.21).
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Thanks to the previous lemma, now we can safely proceed to the following
theorem, whose proof, however, contains an additional difficulty compared to the
ones of Theorems 2.26 and 2.27, due to the fact that the functions in WΘC(RM)

are possibly discontinuous in the variable x. In fact, recall that the idea of
the proofs of Theorems 2.26 and 2.27 is to construct an m-bound or an l-bound
(satisfying the required property in any of the cases) on R×D where D is a dense
and countable subset of RN , and then extend it to the whole RN through the
continuity in the variable x. Clearly, such argument will not work in WΘC(RM).
The idea, then, is to change the limit function for a new one which coincides with
the first one almost everywhere, satisfies the required property on the m-bounds
or l-bounds on R× RN and it is still in WΘC(RM).

Proposition 2.29. Let Θ be a suitable set of moduli of continuity as in Defini-
tion 2.3 and σΘ the topology defined in Definition 2.4.

(i) If E ⊂ WΘC(RM) (resp. E ⊂ LC(RM)) admits L1
loc-equicontinuous m-

bounds (resp. L1
loc-equicontinuous l-bounds), then cls(WΘC(RM ),σΘ)(E) has

L1
loc-equicontinuous m-bounds (resp. cls(WΘC(RM ),σΘ)(E) ⊂ LC(RM) and it

has L1
loc-equicontinuous l-bounds).

(ii) If E ⊂ WΘC(RM) (resp. E ⊂ LC(RM)) admits L1
loc-bounded m-bounds

(resp. L1
loc-bounded l-bounds) then cls(WΘC(RM ),σΘ)(E) has L1

loc-bounded
m-bounds (resp. cls(WΘC(RM ),σΘ)(E) ⊂ LC(RM) and it has L1

loc-bounded
l-bounds).

(iii) If f ∈ WΘC(RM) (resp. f ∈ LC(RM)) has L1
loc-equicontinuous m-bounds

(resp. L1
loc-equicontinuous l-bounds), then any g ∈ Hull(WΘC(RM ),σΘ)(f) has

L1
loc-equicontinuous m-bounds (resp. L1

loc-equicontinuous l-bounds).

(iv) If f ∈ WΘC(RM) (resp. f ∈ LC(RM)) has L1
loc-bounded m-bounds (resp.

L1
loc-bounded l-bounds) then any g ∈ Hull(WΘC(RM ),σΘ)(f) has L1

loc-bounded
m-bounds (resp. L1

loc-bounded l-bounds).

Proof. Consider E ⊂WΘC(RM) with L1
loc-equicontinuous m-bounds, that is, for

every j ∈ N there is a family of m-bounds for E, namely

Sj = {mj
f (·) | f ∈ E, m

j
f (·) m-bound for f on Bj},

satisfying the condition in Definition 2.17. By simplicity and without loss of
generality, we will also assume that for every j ∈ N, mj

f (t) ≤ mj+1
f (t) for almost

every t ∈ R. Let us denote by E = cls(WΘC(RM ),σΘ)(E), and, for any f ∈ E, let
(fn)n∈N be a sequence in E converging to f in

(
WΘC(RM), σΘ

)
.

Fixed j ∈ N and reasoning as in the first part of the proof of Proposition 2.26,
we can find an m-bound for f on Bj, i.e. a function mj(·) ∈ L1

loc such that for
almost every t ∈ R one has that

|f(t, x)| ≤ mj(t) . (2.22)
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for almost every x ∈ Bj. Therefore, we look for a new function f ∗ ∈WΘC(RM)

that coincides with f almost everywhere (in other words, f and f ∗ are in fact
representatives of the same element in WΘC(RM)) and such that for almost every
t ∈ R, the function f ∗ satisfies an inequality of the type (2.22) for all x ∈ Bj. Let
us consider the function f ∗ : R × RN → RM defined as follows: for every t ∈ R
we set

f ∗(t, x) =

{
f(t, x) if x ∈ Bi \Bi−1 and |f(t, x)| ≤ mi+1(t), i ∈ N,
0 otherwise ,

(2.23)

where 0 represents the null vector of RN . The function f ∗ is Borel measurable
and coincides with f almost everywhere. Furthermore, we have that for each
j ∈ N and for every t ∈ R, f ∗ satisfies

|f ∗(t, x)| ≤ mj+1(t) , (2.24)

for all x ∈ Bj. Thus, f ∗ satisfies (C1) and (C2). Therefore, to prove that f
and f ∗ are representatives of the same element in WΘC(RM), we only need to
prove that f ∗ satisfies (W) in Definition 2.4. In order to do that, we firstly show
that for any I = [q1, q2], q1, q2 ∈ Q, if x(·) ∈ KIj , then f ∗

(
t, x(t)

)
= f

(
t, x(t)

)
for

almost every t ∈ I. Let x(·) ∈ KIj and reason locally. Consider t0 ∈ I and assume
that i ≤ |x(t0)| < i+1 for some i ∈ N. Then, by the continuity of x(·), there exist
δ > 0, such that |x(t)| ∈ (i−1, i+1] for every t ∈ It0 = [t0−δ, t0 +δ]∩I. Let x̃(·)
be the continuous function defined on I which coincides with x(·) on It0 and it is
its extension by constants on I \ It0 . Trivially, x̃(·) ∈ KIj and ‖x̃(·)‖L∞(I) ≤ i+ 1.
Hence, for every t ∈ I ∩ Q and for every h ∈ Q, with h > 0 and t + h ∈ I,
considered φ ∈ C+

C (R) such that φ ≡ 1 in [t, t + h] and using Lemma 2.14, we
have that∣∣∣∣ 1

h

∫ t+h

t

f
(
s, x̃(s)

)
ds

∣∣∣∣ = lim
n→∞

∣∣∣∣ 1

h

∫ t+h

t

fn
(
s, x̃(s)

)
ds

∣∣∣∣ ≤ lim
n→∞

1

h

∫ t+h

t

mi+1
fn

(s) ds

≤ lim
n→∞

1

h

∫
R
φ(s)mi+1

fn
(s) ds =

1

h

∫
R
φ(s) dµi+1(s) .

Reasoning as in (2.17), one can prove that the previous inequality actually holds
for any t ∈ I and h > 0 such that t+h ∈ I. Thus, taking the limit as h→ 0, and
reasoning as before, we obtain that

∣∣f(t, x̃(t)
)∣∣ ≤ mi+1(t) for almost every t ∈ I.

In particular, for almost every t ∈ It0 ,∣∣f(t, x(t)
)∣∣ ≤ mi+1(t)

and recalling how f ∗ is defined in (2.23), we have that f ∗
(
t, x(t)

)
= f

(
t, x(t)

)
for almost every t ∈ It0 . Thanks to the compactness of I, we can repeat such an
argument a finite number of times and deduce that actually

f ∗
(
t, x(t)

)
= f

(
t, x(t)

)
for a.e. t ∈ I.
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As a consequence, one can prove condition (W) of Definition 2.4 for f ∗ as folllows:
consider

(
xn(·)

)
n∈N in KIj uniformly converging to x(·) ∈ KIj , then

lim
n→∞

∫
I

f ∗
(
t, xn(t)

)
dt = lim

n→∞

∫
I

f
(
t, xn(t)

)
dt

=

∫
I

f
(
t, x(t)

)
dt =

∫
I

f ∗
(
t, x(t)

)
dt.

Therefore, f and f ∗ are two representatives of the same element of WΘC(RM),
because both are in WΘC(RM) and only differ from each other on a negligible
subset of R× RN .

Finally, we prove that E admits L1
loc-equicontinuous m-bounds. For each

f ∈ E and any j ∈ N, let mj
f be either, the m-bound of f in Sj if f ∈ E, or the

m-bound given by (2.24) if f ∈ E \ E, i.e. the absolutely continuous part of a
limit measure.

Consider j ∈ N, r, ε > 0 and let δ = δ(r, ε) > 0 be the one given by the
L1
loc-equicontinuity of Sj+1. If t, s ∈ [−r, r] with s < t, t − s < δ/3, and φ ∈ C+

C

is such that suppφ ⊂ [s− δ/3, t+ δ/3] and φ ≡ 1 in [s, t]. Then, we have∫ t

s

mj
f (u) du ≤

∫
R
φ(u)mj

f (u) du ≤ lim
n→∞

∫
R
φ(u)mj+1

fn
(u) du

≤ sup
g∈E

∫ t+δ/3

s−δ/3
mj+1
g (u) du < ε ,

and thus, taking the superior over the functions in E in the previous expression,
one gets

sup
f∈E

∫ t

s

mj
f (u) du < ε .

Therefore, E admits L1
loc-equicontinuous m-bounds. Analogous reasonings apply

to the remaining cases in (i) and (ii), whereas (iii) and (iv) are a direct conse-
quence of (i) and (ii), respectively.

Remark 2.30. Notice that, since ΘC(RM) ⊂WΘC(RM) and σΘ < TΘ, then the
previous result can be directly applied in particular to the space

(
ΘC(RM), TΘ

)
.

For p > 1 one extend the result to
(
ΘCp(RM), TΘ

)
reasoning as in the proof of

Proposition 2.27.

2.5 Equivalence of the topologies

As we have noticed before, all the introduced topologies can be induced on
LCp(RM). As follows, we show that, given a subset E of LCp(RM) (resp. LC(RM))

with Lploc-bounded (resp. L1
loc-bounded) l-bounds, all the introduced strong topo-

logies (resp. weak topologies) coincide on E. Remarkably, such a rather weak
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assumption on the l-bounds allows to deduce such an important result for both,
strong and weak topologies. A direct consequence is that, on such sets, one can
simply use the topologies TD and σD, respectively, to take the actual limits, but
still change from one topology to another when it is required. Notice also that
in many applications such assumption is trivially satisfied as, for example, when
the l-bounds of a set E are taken constant and bounded.

Theorem 2.31. Let E be a set in LCp
(
RM
)
with Lploc-bounded l-bounds, then

(E, T1) = (E, T2) and cls(SCp(RM ),T1)(E) = cls(SCp(RM ),T2)(E) ,

where T1 and T2 are any of the previously introduced strong topologies.

Proof. From Proposition 2.27 we know that cls(SCp(RM ),T )(E) ⊂ LCp for any
strong topology T among the ones presented in Section 2.2. Moreover, due
to relation (2.10), it suffices to prove that if (fn)n∈N is a sequence of elements
of E converging to some f in

(
LCp

(
RM
)
, TD

)
, then (fn)n∈N converges to f in(

LCp
(
RM
)
, TB

)
. Fix a compact interval I = [q1, q2], with q1, q2 ∈ Q, j ∈ N

and, for any n ∈ N, let ljn(·) ∈ Lploc be the optimal l-bound of fn on Bj (see
Definition 2.1). By assumption, there exists ρ > 0 such that

sup
n∈N

∫
I

(
ljn(s)

)p
ds < ρ <∞ .

Now, fix ε > 0 and consider δ = ε/(3ρ1/p). Since Bj ⊂ RN is compact, and D is
dense in RN , there exist x1, . . . xν ∈ D such that Bj ⊂

⋃ν
i=1Bδ(xi), where Bδ(x)

denotes the closed ball of RN of radius δ centered at x ∈ RN . For i = 1, . . . , ν,
let us consider continuous functions φi : RN → [0, 1] such that

supp(φi) ⊂ Bδ(xi) and
ν∑
i=1

φi(x) = 1 ∀x ∈ Bj , (2.25)

and define the functions

f ∗n(t, x) =
ν∑
i=1

φi(x) fn(t, xi) and f ∗(t, x) =
ν∑
i=1

φi(x) f(t, xi) . (2.26)

Then, for any x(·) ∈ C(I, Bj) we have that

∥∥fn(·, x(·)
)
− f

(
·, x(·)

)∥∥
p
≤
∥∥fn(·, x(·)

)
− f ∗n

(
·, x(·)

)∥∥
p

+
∥∥f ∗n(·, x(·)

)
− f ∗

(
·, x(·)

)∥∥
p

+
∥∥f ∗(·, x(·)

)
− f

(
·, x(·)

)∥∥
p
. (2.27)

Let us separately analyze each element in the sum on the right-hand side of
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equation (2.27). As regards the first one, we have that

∥∥fn(·, x(·)
)
− f ∗n

(
·, x(·)

)∥∥p
p

=

∫
I

∣∣∣ ν∑
i=1

φi
(
x(t)

) [
fn
(
t, x(t)

)
− fn(t, xi)

] ∣∣∣pdt
≤
∫
I

( ν∑
i=1

φi
(
x(t)

)
ljn(t) |x(t)− xi|

)p
dt

≤
∫
I

( ν∑
i=1

φi
(
x(t)

)
ljn(t) δ

)p
dt

=
1

ρ

(ε
3

)p ∫
I

(
ljn(t)

)p
dt ≤

(ε
3

)p
.

(2.28)

As regards the third element of the sum in (2.27), recall that, due to the Propo-
sition 2.27, the l-bound l̄j(·) ∈ Lploc on Bj for f satisfies∫

I

(
l̄j(s)

)p
ds < ρ .

Therefore, reasoning as in (2.28), we obtain that∥∥f ∗(·, x(·)
)
− f

(
·, x(·)

)∥∥
p
≤ ε

3
, (2.29)

and notice that both, (2.28) and (2.29), are independent of x(·) ∈ C(I, Bj).
Finally, since (fn)n∈N converges to f in

(
LCp

(
RM
)
, TD

)
, consider n big enough

so that
‖fn(·, xi)− f(·, xi)‖p < ε/(3 ν), for any i = 1, . . . , ν .

Then, from the expressions (2.26) and the fact that φi(x) ≤ 1 for each x ∈ RN

we deduce that

∥∥f ∗n(·, x(·)
)
− f ∗

(
·, x(·)

)∥∥
p
≤

ν∑
i=1

‖fn(·, xi)− f(·, xi)‖p ≤
ε

3
. (2.30)

Gathering together (2.28), (2.29) and (2.30), we obtain the result.

When dealing with a function in LCp
(
RM
)
with Lploc-bounded l-bounds, the

previous theorem provides, as a corollary, a condition of equivalence of the hulls
with respect to the introduced strong topologies.

Corollary 2.32. Let f be a function in LCp
(
RM
)
with Lploc-bounded l-bounds,

then
Hull(SCp(RM ),T1)(f) = Hull(SCp(RM ),T2)(f) ,

where T1 and T2 are any of the previously introduced strong topologies.

A result similar to Theorem 2.31 can be obtained for weak topologies.
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Theorem 2.33. Let E be a set in LC(RM) with L1
loc-bounded l-bounds, Θ be any

suitable set of moduli of continuity as in Definition 2.3 and D any dense and
countable subset of RN . Then

(E, σD) = (E, σΘ) and cls(SC(RM ),σD)(E) = cls(SC(RM ),σΘ)(E) .

Proof. Fix D, dense and countable subset of RN , and Θ, suitable set of moduli
of continuity as in Definition 2.3. Thanks to Proposition 2.26, we know that
cls(SC(RM ),σD)(E) ⊂ LC(RM). We will complete the proof in two steps.

Step 1. Consider a set E1 with L1
loc-bounded m-bounds and L1

loc-bounded
l-bounds. Let (fn)n∈N be a sequence of elements of E1 converging to some f in(
LC(RM), σD

)
. We shall prove that (fn)n∈N converges to f in

(
LC(RM), σΘ

)
. Fix

a compact interval I = [q1, q2], with q1, q2 ∈ Q, j ∈ N and, for any n ∈ N, let
mj
n(·), ljn(·) ∈ L1

loc be respectively the optimal m-bound and the optimal l-bound
of fn on Bj. By the L1

loc-boundedness of the l-bounds, there is a ρ > 0 such that

sup
n∈N

∫
I

ljn(s) ds < ρ <∞ .

Fix ε > 0 and consider δ = ε/3ρ. Since Bj ⊂ RN is compact, and D is dense in
RN , there exist x1, . . . xν ∈ D such that Bj ⊂

⋃ν
i=1Bδ(xi), where Bδ(x) denotes

the closed ball of RN of radius δ centered at x ∈ RN . For i = 1, . . . , ν, let us
consider the continuous functions φi : RN → [0, 1], and the functions

f ∗n : R× RN → RM , n ∈ N, and f ∗ : R× RN → RM ,

defined exactly as in (2.25) and (2.26), respectively. Denoted by KIj the compact
subset of C(I, Bj) admitting θIj ∈ Θ as a modulus of continuity, one has that for
any x(·) ∈ KIj∣∣∣∣ ∫

I

[
fn
(
t, x(t)

)
− f

(
t, x(t)

)]
dt

∣∣∣∣ ≤ ∣∣∣∣ ∫
I

[
fn
(
t, x(t)

)
− f ∗n

(
t, x(t)

)]
dt

∣∣∣∣
+

∣∣∣∣ ∫
I

[
f ∗n
(
t, x(t)

)
− f ∗

(
t, x(t)

)]
dt

∣∣∣∣+

∣∣∣∣ ∫
I

[
f ∗
(
t, x(t)

)
− f

(
t, x(t)

)]
dt

∣∣∣∣ . (2.31)

Let us separately analyze each element in the sum on the right-hand side of
equation (2.31). As regards the first one, we have that∣∣∣∣ ∫

I

[
fn
(
t, x(t)

)
− f ∗n

(
t, x(t)

)]
dt

∣∣∣∣
=

∣∣∣∣ ∫
I

ν∑
i=1

φi
(
x(t)

) [
fn
(
t, x(t)

)
− fn(t, xi)

]
dt

∣∣∣∣
≤
∫
I

ν∑
i=1

φi
(
x(t)

)
ljn(t) |x(t)− xi| dt

≤
∫
I

ν∑
i=1

φi
(
x(t)

)
ljn(t) δ dt =

ε

3ρ

∫
I

ljn(t) dt ≤ ε

3
.

(2.32)
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Similar reasonings apply to the third element of the sum in (2.31): in particular,
recall that, due to Proposition 2.26, the l-bound for f on Bj, namely l̄j(·) ∈ L1

loc,
satisfies ∫

I

l̄j(s) ds < ρ <∞.

Finally, let us deal with the remaining integral in (2.31). By the uniform conti-
nuity of the functions φi(·) on Bj, and recalling that all x(·) ∈ KIj share the same
modulus of continuity, we have that for the given ε > 0 there exists δ > 0 such
that for all i ∈ {1, . . . , ν} one has

∀ s, t ∈ I, ∀x(·) ∈ KIj : |s− t| < δ ⇒
∣∣φi(x(s)

)
− φi

(
x(t)

)∣∣ < ε

9 νρm
,

where
ρm := max

{∫
I

mj(t) dt, sup
n∈N

∫
I

mj
n(t) dt

}
<∞ ,

and mj(·) ∈ L1
loc denotes the optimal m-bound for f on Bj whose existence is

guaranteed by Proposition 2.26. In particular, the constant ρm is well defined
thanks to the L1

loc-boundedness of the m-bounds of the functions in E1. Thus,
let us consider a δ-partition of I, i.e. τ1, . . . , τη ∈ I ∩Q such that I = [τ1, τη] and
0 < τk+1 − τk < δ, for any k = 1, . . . , η − 1, and a function

φ̄i : KIj → L∞(I,R) defined by φ̄i
(
x(t)

)
=

η∑
k=1

φi
(
x(τk)

)
χ(τk,τk+1](t)

Notice that, for any x(·) ∈ KIj and any i = 1, . . . , ν one has

‖φi
(
x(·)

)
− φ̄i

(
x(·)

)
‖L∞(I) <

ε

9 νρm
,

Now, we can write∣∣∣∣ ∫
I

[
f ∗n
(
t, x(t)

)
− f ∗

(
t, x(t)

)]
dt

∣∣∣∣
≤

ν∑
i=1

∣∣∣∣ ∫
I

φi
(
x(t)

) [
fn
(
t, xi

)
− f(t, xi)

]
dt

∣∣∣∣
≤

ν∑
i=1

∣∣∣∣ ∫
I

φ̄i
(
x(t)

) [
fn
(
t, xi

)
− f(t, xi)

]
dt

∣∣∣∣+
+

ν∑
i=1

∫
I

∣∣fn(t, xi)∣∣ ∣∣φi(x(t)
)
− φ̄i

(
x(t)

)∣∣ dt+
+

ν∑
i=1

∫
I

∣∣f(t, xi)∣∣ ∣∣φ̄i(x(t)
)
− φi

(
x(t)

)∣∣ dt
≤

ν∑
i=1

[ η∑
k=1

φi
(
x(τk)

) ∣∣∣∣∫ τk+1

τk

[
fn
(
t, xi

)
− f(t, xi)

]
dt

∣∣∣∣+
+ 2 ρm‖φi

(
x(·)

)
− φ̄i

(
x(·)

)
‖L∞(I)

]
.

(2.33)
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By the convergence of (fn)n∈N to f in
(
LC(RM), σD

)
and considering that we are

only using a finite number of points xi, with i = 1, . . . , ν, there exists n0 ∈ N
such that, if n > n0, then for all i = 1, . . . , ν and for all k = 1, . . . , η one has∣∣∣∣∫ τk+1

τk

[
fn
(
t, xi

)
− f(t, xi)

]
dt

∣∣∣∣ < ε

9 ν η
.

Thus, for n > n0, (2.33) becomes∣∣∣∣ ∫
I

[
f ∗n
(
t, x(t)

)
− f ∗

(
t, x(t)

)]
dt

∣∣∣∣ < ε

9
+

2 νρmε

9 νρm
=
ε

3
. (2.34)

From (2.31), (2.32) and (2.34) we obtain that the sequence (fn)n∈N converges to f
in
(
LC(RM), σΘ

)
. Consequently, the topologies of type σD and σΘ are equivalent

on E1.
Step 2. Now, consider E as in the assumptions, i.e. E ⊂ LC(RM) with (just)

L1
loc-bounded l-bounds, and, again, let (fn)n∈N be a sequence of elements of E

converging to some f in
(
LC(RM), σD

)
. We shall prove that (fn)n∈N converges to

f in
(
LC(RM), σΘ

)
. In particular consider x0 ∈ B1 ∩D and define the functions

h(t, x) = f(t, x)− f(t, x0) and hn(t, x) = fn(t, x)− fn(t, x0), ∀n ∈ N.

Notice that the set {hn | n ∈ N} ∪ {h} has L1
loc-bounded m-bounds. Indeed, for

any j ∈ N, considered x ∈ Bj one has that for any n ∈ N

|hn(t, x)| = |fn(t, x)− fn(t, x0)| ≤ ljn(t) |x− x0| ≤ (j + 1) ljn(t) for a.e. t ∈ R,

where ljn(·) ∈ L1
loc is the optimal l-bound for fn on Bj. Additionally, one can

repeat analogous arguments for the function h obtaining

|h(t, x)| ≤ (j + 1) lj(t) for a.e. t ∈ R,

where lj(·) ∈ L1
loc is the optimal l-bound for f on Bj. Thus, the L1

loc-boundedness
of the l-bounds for the set E gives L1

loc-bounded m-bounds for {hn | n ∈ N}∪{h}.
Moreover, we have that the same set has also L1

loc-bounded l-bounds. Indeed, for
any j ∈ N, considered x, y ∈ Bj one has that for every n ∈ N

|hn(t, x)− hn(t, y)| = |fn(t, x)− fn(t, y)| ≤ ljn(t) |x− y| for a.e. t ∈ R,

and one can repeat analogous arguments for the function h obtaining

|h(t, x)− h(t, y)| ≤ lj(t) |x− y| for a.e. t ∈ R.

Therefore, from the L1
loc-boundedness of the l-bounds for the set E one has that

{hn | n ∈ N} ∪ {h} also has L1
loc-bounded l-bounds. Finally notice that (hn)n∈N

converges to h in
(
LC(RM), σD

)
. Indeed, for each x ∈ D and for each interval

I = [q1, q2], with q1, q2 ∈ Q we have∣∣∣∣ ∫
I

[hn(t, x)− h(t, x)]dt

∣∣∣∣ ≤ ∣∣∣∣ ∫
I

[fn(t, x)− f(t, x)]dt

∣∣∣∣+

∣∣∣∣ ∫
I

[f(t, x0)− fn(t, x0)]dt

∣∣∣∣
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and since (fn)n∈N converges to f in
(
LC(RM), σD

)
, then the integrals on the

right-hand side of the previous inequality go to zero as n→∞. Therefore, the
assumptions of step 1 apply to the set E1 = {hn | n ∈ N}∪ {h} and thus one has
that (hn)n∈N converges to h in

(
LC(RM), σΘ

)
. Hence, for each interval I = [q1, q2],

with q1, q2 ∈ Q and for each j ∈ N one has

sup
x(·)∈KIj

∣∣∣∣ ∫
I

[fn
(
t, x(t)

)
− f

(
t, x(t)

)
] dt

∣∣∣∣
≤ sup

x(·)∈KIj

∣∣∣∣ ∫
I

[hn
(
t, x(t)

)
− h
(
t, x(t)

)
] dt

∣∣∣∣+

∣∣∣∣ ∫
I

[fn
(
t, x0

)
− f

(
t, x0

)
] dt

∣∣∣∣,
and the right-hand side goes to zero as n→∞ because (hn)n∈N converges to h in(
LC(RM), σΘ

)
and (fn)n∈N converges to f in

(
LC(RM), σD

)
, which implies that

(fn)n∈N converges to f in
(
LC(RM), σΘ

)
and, as a consequence, all the topologies

of type σD and σΘ coincide on E.

Thanks to the previous theorem, if one has a function f in LCp
(
RM
)
with

L1
loc-bounded l-bounds, then one has the equivalence of the hulls of f with respect

to the introduced weak topologies.

Corollary 2.34. Let f be a function in LC
(
RM
)
with L1

loc-bounded l-bounds, Θ

be any suitable set of moduli of continuity as in Definition 2.3 and D any dense
and countable subset of RN . Then,

Hull(SC(RM ),σD)(f) = Hull(SC(RM ),σΘ)(f).

2.6 Relative compactness in LCp

The notion of compactness together with the continuity of the flow generated by
a dynamical system allow to infer important information on the system and its
behavior. As an example, thanks to Krylov–Bogoljubov theorem, a compact hull
implies the existence of an invariant measure for the base flow and allows to use
tools of ergodic theory in the study of the solutions. Therefore, it seems natural
to us to look into the conditions that characterize the relatively compact subsets
of the space LCp

(
RM
)
.

In this section, we firstly address the relative compactness in LCp
(
RM
)
with

respect to the strong topologies introduced in Section 2.2 and then recall the
results in the literature for the weak topologies in LC

(
RM
)
.

2.6.1 Strong topologies

A characterization of compactness in Lploc
(
RM
)
, when 1 ≤ p <∞, has been given

in [52, Theorem 1 p.133], where it is proved that E ⊂ Lploc
(
RM
)
is relatively

compact if and only if both the following conditions hold:
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(i) for every compact interval I ⊂ R there exists a constant c = c(I) such that[∫
I

|f(t)|pdt
]1/p

≤ c, for every f ∈ E , (2.35)

(ii) and for every ε > 0 and for every compact interval I ⊂ R there exists a
δ = δ(ε, I) > 0 such that

|τ | ≤ δ ⇒
[∫

I

|f(t+ τ)− f(t)|pdt
]1/p

≤ ε for every f ∈ E. (2.36)

A sufficient condition for the relative compactness of a set E in (LCp
(
RM
)
, TB)

is also given in the same reference. Next, we characterize such a compactness
under the assumption that the set E admits Lploc-bounded l-bounds.

Theorem 2.35. Let E ⊂ LCp
(
RM
)
admit Lploc-bounded l-bounds, T be any of

the strong topologies introduced in Section 2.2, and D be a countable dense subset
of RN . The following statements are equivalent.

(i) The space (E, T ) is relatively compact.

(ii) For any fixed x ∈ D the set {fx(·) = f(·, x) | f ∈ E} is relatively compact
in Lploc

(
RM
)
.

Proof. Firstly, recall that, since E has Lploc-bounded l-bounds, then all the strong
topologies introduced in Section 2.2 are equivalent thanks to Theorem 2.31, and
thus we will work with (E, TD). (i) ⇒ (ii) is straightforward.

(ii) ⇒ (i). Consider a sequence (fn)n∈N in E , fix j ∈ N and, for any n ∈ N,
let ljn(·) be the optimal l-bound for fn on Bj. Moreover, let Dj be the set D∩Bj.
By hypothesis, for any x ∈ Dj the set {fn(·, x) | n ∈ N} is relatively compact in
Lploc; as a consequence, there exists a function fx(·) ∈ Lploc(RM) such that, up to
a subsequence

fn(·, x)
n→∞−−−→ fx(·), in Lploc(R

M)

and thus also almost everywhere. Recalling that D is countable and using a
diagonal argument, we obtain a subsequence of (fn)n∈N, which we keep denoting
with the same indexes, such that

fn(t, x)
n→∞−−−→ f(t, x) for a.e. t ∈ R, ∀ x ∈ Dj ,

where for every x ∈ Dj, f(t, x) = fx(t). Moreover, by assumption, the set {ljn(·) |
n ∈ N} is bounded in Lploc and thus, reasoning as in the proofs of Proposition 2.26
and 2.27, we obtain a function lj(·) ∈ Lploc such that for any x, y ∈ Dj the following
inequality holds

|f(t, x)− f(t, y)| ≤ lj(t) |x− y| for a.e. t ∈ R .
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A continuous extension of f to the entire ball Bj is given by

f(t, x) = lim
n→∞

f(t, xn) whenever x ∈ Bj, (xn)n∈N in Dj, and xn → x .

The definition is well-posed; indeed if (xn)n∈N and (yn)n∈N are sequences in Dj

such that xn → x and yn → x, then

|f(t, xn)− f(t, yn)| ≤ lj(t) |xn − yn| for a.e. t ∈ R ,

and the right-hand side goes to zero as n → ∞, for almost every t ∈ R. It
is straightforward to prove that lj(·) keeps being a Lipschitz coefficient for the
function f defined on the whole ball Bj. Eventually, we check the properties (C1)
and (C2). For every j, n ∈ N, define

Fn(t, x) = n

∫ t+1/n

t

f(s, x) ds and Ljn(t) = n

∫ t+1/n

t

lj(s) ds .

Notice that for any n ∈ N one has that Ljn(·) is continuous, and, for any x ∈ RN ,
also Fn(·, x) is continuous. Moreover, for any t ∈ R we also have

|Fn(t, x1)− Fn(t, x2)| ≤ n

∫ t+1/n

t

|f(s, x1)− f(s, x2)| ds

≤ |x1 − x2|n
∫ t+1/n

t

lj(s) ds = Ljn(t) |x1 − x2| ,
(2.37)

for all n ∈ N and x1, x2 ∈ Bj. In fact, for any n ∈ N the function Fn(·, ·) is jointly
continuous. To see that, consider tk → t and xk → x as k →∞, and j ∈ N such
that |xk| < j for all k ∈ N. Then, using the triangular inequality, (2.37) and the
m-bound of fn on Bj, we have that

|Fn(tk, xk)− Fn(t, x)| ≤ |Fn(tk, xk)− Fn(tk, x)|+ |Fn(tk, x)− Fn(t, x)|

≤ Ljn(tk) |xk − x|+ n

∫
Ik

mj
fn

(t) dt,

where Ik is either [tk, t] or [t, tk]. Hence, by the continuity of Lebesgue integral,
one has that the right-hand side of the previous chain of inequalities goes to zero
as k →∞, and thus Fn(·, ·) is jointly continuous. Notice also that there exists a
Borel set R0 ⊂ R, with measR(R \R0) = 0 such that,

Fn(t, x)
n→∞−−−→ f(t, x) and Ljn(t)

n→∞−−−→ lj(t) , (2.38)

for every (t, x) ∈ R0×D and for every j ∈ N. However, the convergence in (2.38)
can be extended to R0×RN . Consider x ∈ RN , (xi)i∈N ⊂ D converging to x and
fix i ∈ N. Then, for any t ∈ R0 one has

|Fn(t, x)− f(t, x)| ≤ |Fn(t, x)− Fn(t, xi)|
+ |Fn(t, xi)− f(t, xi)|+ |f(t, xi)− f(t, x)|

≤ Ljn(t) |x− xi|+ |Fn(t, xi)− f(t, xi)|+ lj(t) |x− xi|.
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Therefore, from (2.38) and taking the limit as n→∞, and from the arbitrariness
of i ∈ N we obtain the result. Hence, fχR0×RN is a Borel function, i.e. it
satisfies (C1). Finally, let us fix x0 ∈ B1, and assume without loss of generality
that |f(t, x0)| <∞. For every x ∈ Bj, we have that

|f(t, x)| ≤ |f(t, x0)|+ lj(t) |x− x0| =: mj
f (t) ,

for a.e. t ∈ R. Thus, f admits m-bounds, i.e. f satisfies (C2). As a con-
sequence, (fn)n∈N converges to f in (LCp

(
RM
)
, TD), which in turn implies f ∈

cls(LCp(RM ),TD)(E), and cls(LCp(RM ),TD)(E) is compact in (LCp
(
RM
)
, TD), which con-

cludes the proof.

As a corollary of Theorem 2.35 and of the conditions given in (2.35) and (2.36),
we obtain a characterization of the compactness of Hull(LCp(RM ),T )(f) when f ∈
LCp admits Lploc-bounded l-bounds.

Corollary 2.36. Let f ∈ LCp
(
RM
)
admit Lploc-bounded l-bounds, T be any of

the previously introduced strong topologies, and D be a countable dense subset of
RN . The following statements are equivalent.

(i) Hull(LCp(RM ),T )(f) is compact.

(ii) For every x ∈ D the map R → Lploc
(
RM
)
, t 7→ ft(·, x) is bounded and

uniformly continuous.

Proof. (i) ⇒ (ii). If Hull(LCp(RM ),T )(f) is compact, then from Theorem 2.35(i) we
have that for every x ∈ D the set

Hx = {g(·, x) | g ∈ Hull(LCp(RM ),T )(f)} is relatively compact in Lploc
(
RM
)
.

Since for every x ∈ D one has {ft(·, x) | t ∈ R} ⊂ Hx, then one also has
that {ft(·, x) | t ∈ R} is relatively compact in Lploc

(
RM
)
. As a consequence the

conditions given in (2.35) and (2.36) hold true for {ft(·, x) | t ∈ R}. Particularly,
for every x ∈ D the map

R→ Lploc
(
RM
)
, t 7→ ft(·, x)

is bounded in Lploc thanks to (2.35). Therefore, in order to complete the proof, we
only need to check the uniform continuity in Lploc. Fix x ∈ D, I ⊂ R and ε > 0,
and let δ = δ(x, ε, I) > 0 be the one given in (2.36). Now, consider 0 ≤ τ < δ

and t ∈ R. Noticing that the condition in (2.36) is uniform on the functions in
{ft(·, x) | t ∈ R}, one has[∫

I

|ft+τ (s, x)− ft(s, x)|p ds
]1/p

≤ sup
t∈R

[∫
I

| (ft)τ (s, x)− ft(s, x)|p ds
]1/p

< ε,

which concludes this part of the proof.



50 2. Spaces and Topologies

(ii)⇒ (i). One immediately has that for every x ∈ D, the conditions given in
(2.35) and (2.36) hold true for {ft(·, x) | t ∈ R} and hence

{ft(·, x) | t ∈ R} is relatively compact in Lploc
(
RM
)
.

Therefore, from Theorem 2.35, we have that {ft | t ∈ R} is relatively compact in
LCp

(
RM
)
, and thus Hull(LCp(RM ),T )(f) is compact.

2.6.2 Weak Topologies

The problem of compactness in LC
(
RM
)
with respect to a weak topology has

been investigated in [3] and [4]. In order to recall the results contained in such
papers, let us introduce the notion of uniformly integrable m-bounds in L1

loc for
a Carathéodory function.

Definition 2.37 (Uniformly integrable m-bounds in L1
loc). A set E ⊂ C(RM) has

uniformly integrable m-bounds in L1
loc, if for any j ∈ N there exists a set Sj ⊂ L1

loc

of m-bounds of the functions of E on Bj, such that for every r > 0 one has that
the set {m|[−r,r] : [−r, r]→ R+ | m(·) ∈ Sj} is uniformly integrable in [−r, r], i.e.
for any r > 0 and ε > 0 there exists a δ = δ(r, ε) > 0 such that

∀A ⊂ [−r, r] : measR(A) < δ ⇒ sup
m∈Sj

∫
A

m(t) dt < ε.

We say that a function f ∈ C
(
RM
)
has uniformly integrable m-bounds in L1

loc if
the set of the time translation of f namely {ft | t ∈ R} has uniformly integrable
m-bounds in L1

loc.

Remark 2.38. Notice that the uniform integrability of the m-bounds in L1
loc

implies the L1
loc-equicontinuity of the m-bounds. Moreover, as we have seen in

Remark 2.18, if p > 1, then the Lploc-boundedness implies the L1
loc-equicontinuity.

However, something a little bit stronger is true. Indeed, as an easy application of
Hölder inequality, one has that, for p > 1, the Lploc-boundedness implies the uni-
form integrability of the m-bounds in L1

loc (and thus also the L1
loc-equicontinuity).

In [3] one can find a result of compactness for subsets in LC
(
RM
)
with uni-

formly integrable m-bounds in L1
loc and L1

loc-bounded l-bounds. In particular, the
compactness is achieved with respect to the topology (see Proposition 2.4 in the
same reference) which is characterized as follows: a sequence (fn)n∈N in LC

(
RM
)

converges to some f ∈ LC
(
RM
)
if for every x ∈ RN and every t ∈ R one has

lim
n→∞

∫ t

0

fn(s, x) ds =

∫ t

0

f(s, x) ds. (2.39)

However, such a topology is stronger than σD and weaker than σΘ (both presented
in Section 2.2) for any D dense and numerable subset of RN , and for any Θ
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suitable set of moduli of continuity. Therefore, from the proof of Theorem 2.33,
one can easily deduce that the topology characterized in (2.39) coincides with any
σD and any σΘ on any subset of LC

(
RM
)
with L1

loc-bounded l-bounds and L1
loc-

equicontinuous m-bounds. For the sake of completeness, we include a proof of
such a result now updated to any of the weak topologies presented in Section 2.2.

Theorem 2.39. Let E be a subset of LC
(
RM
)
with uniformly integrable m-

bounds in L1
loc and L1

loc-bounded l-bounds. Then, cls(LC(RM ),σ)(E) is compact in(
LC
(
RM
)
, σ
)
, where σ is either σD, σΘ or the topology characterized in (2.39).

Proof. As a consequence of Theorem 2.33 we have that all the cited topologies
coincide on E and thus we will use the topology σD for our reasoning. Moreover,
in order to simplify the notation, let us write E in place of cls(LC(RM ),σD)(E).
Consider a sequence (fn)n∈N in E. For each x ∈ D and r > 0, the sequence(
fn(·, x)

)
n∈N of functions with domain in [−r, r] is dominated by the uniformly

integrable sequence
(
mj
fn

(·)
)
n∈N, where j ∈ N is chosen so that |x| ≤ j. Therefore,

from Corollary IV.8.11 in [24], one has that the sequence
(
fn(·, x)

)
n∈N converges,

up to a subsequence, to some f(·, x) ∈ L1([−r, r],RM) for the weak topology
σ(L1([−r, r],RM), L∞([−r, r],RM)) that is, for any φ ∈ L∞([−r, r],RM) one has∫ r

−r
fn(t, x)φ(t) dt

n→∞−−−→
∫ r

−r
f(t, x)φ(t) dt.

Notice that for each x ∈ D and subsequently enlarging the interval [−r, r], one
can extend f(·, x) to the whole R and thus obtain f(·, x) ∈ L1

loc(RM). By a
standard diagonal process, one can find a subsequence, that we keep denoting
with the same indexes, such that

(
fn(·, x)

)
n∈N converges weakly to f(·, x) for all

x ∈ D and in any interval I ⊂ R and thus such that∫
I

fn(t, x) dt
n→∞−−−→

∫
I

f(t, x) dt ∀ x ∈ D ∩Bj .

Moreover, by assumption the set {ljn(·) | n ∈ N} is bounded in L1
loc and thus,

reasoning as in the proof of Propositions 2.26, we obtain a function lj(·) ∈ L1
loc

such that for any x, y ∈ D ∩Bj the following inequality holds

|f(t, x)− f(t, y)| ≤ lj(t) |x− y| for a.e. t ∈ R .

A continuous extension of f to the entire ball Bj is given by

f(t, x) = lim
n→∞

f(t, xn) whenever x ∈ Bj, (xn)n∈N in Dj, and xn → x .

The definition is well-posed; indeed if (xn)n∈N and (yn)n∈N are sequences in Dj

such that xn → x and yn → x, then

|f(t, xn)− f(t, yn)| ≤ lj(t) |xn − yn| for a.e. t ∈ R ,
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and the right-hand side goes to zero as n → ∞, for almost every t ∈ R. It is
straightforward to prove that lj(·) keeps being a Lipschitz coefficient for the f
defined on the whole ball Bj.

Finally, reasoning as in the last part of the proof of Theorem 2.35, one can
prove that f satisfies (C1) and (C2). As a consequence one has that (fn)n∈N
converges to f in (LC(RM), σD), which in turn implies f ∈ E, and E is compact
in (LC(RM), σD).

One may pose the question whether the uniform integrability of the m-bounds
in L1

loc is the weakest property which still allows to obtain the compactness of
subsets of LC

(
RM
)
. A thorough look at the proof should make clear why the

L1
loc-equicontinuity of the m-bounds is not sufficient. Roughly speaking, taken

a sequence of absolutely continuous measures with L1
loc-equicontinuous densities,

and assuming that such sequence converges in the vague topology to a measure µ,
we are not able to tell whether µ is absolutely continuous or not. In other words,
we might end up with a limit problem which can not be formulated in terms of
an ordinary differential equation. As a matter of fact, it is shown in [4] that a
subset of LC

(
RM
)
with L1

loc-equicontinuousm-bounds and L1
loc-bounded l-bounds

is precompact with respect to the topology characterized in (2.39) (and thus also
with respect to any σD and any σΘ as a consequence of Theorem 2.33) and,
by identifying functions in LC

(
RM
)
with their respective differential equations,

it admits a compactification in the space of Kurzweil equations. Such topic,
although interesting and worthwhile, falls beyond the scope of this work, and
thus will not be covered. We recommend [4] for further details.

2.7 Continuity of the time translations

This section contains the first step to build a continuous skew product flow for
differential equations of Carathéodory type. In particular, we present two the-
orems providing sufficient conditions to obtain continuity of the base flow, i.e.
continuity of the time-translations (see Definition 1.9), in

(
ΘCp

(
RM
)
, TΘ

)
and(

WΘC
(
RM
)
, σΘ

)
, respectively.

Theorem 2.40. Let Θ be a suitable set of moduli of continuity as in Defini-
tion 2.3. The map

R×ΘCp
(
RM
)
→ ΘCp

(
RM
)
, (t, f) 7→ ft ,

defines a continuous flow on
(
ΘCp

(
RM
)
, TΘ

)
.

Proof. We separately deal with the continuity with respect to f and with respect
to t, and eventually gather them together. Let (fn)n∈N be a sequence in ΘCp

(
RM
)

converging to some f in
(
ΘCp

(
RM
)
, TΘ

)
. We prove that

(fn)t
n→∞−−−→ ft, in

(
ΘCp

(
RM
)
, TΘ

)
,
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uniformly for t in a compact interval. Consider I = [p1, p2] and J = [q1, q2] such
that p1, p2, q1, q2 ∈ Q, 0 ∈ J and fix t ∈ J . Moreover, for any j ∈ N consider KIj
and KI+Jj as in Definition 2.4. Notice that x(·) ∈ KIj implies x(· − t) ∈ KI+Jj up
to a suitable extension by constants of the function x(· − t) in I + J . Then

lim
n→∞

sup
x(·)∈KIj

∫
I

∣∣(fn)t
(
s, x(s

)
)− ft

(
s, x(s)

)∣∣pds
= lim

n→∞
sup

x(·)∈KIj

∫
I+t

∣∣fn(r, x(r − t)
)
− f

(
r, x(r − t)

)∣∣pdr
≤ lim

n→∞
sup

x(·)∈KI+Jj

∫
I+J

∣∣fn(r, x(r)
)
− f

(
r, x(r)

)∣∣pdr = 0 .

(2.40)

Next, we prove the continuity with respect to the first variable; in other words,
the map t 7→ ft of R into

(
ΘCp

(
RM
)
, TΘ

)
is continuous. Consider f ∈ ΘCp

(
RM
)
,

I = [a, b] where a, b ∈ Q and t ∈ R fixed. We aim to prove that for any compact
set KIj , as in Definition 2.4, we have that

lim
τ→0

sup
x(·)∈KIj

∫
I

∣∣ft+τ(s, x(s)
)
− ft

(
s, x(s)

)∣∣pds = 0 . (2.41)

Firstly, let us fix x(·) ∈ KIj and prove that if τn → 0 as n→∞ then

lim
n→∞

∫
I

∣∣ft+τn(s, x(s)
)
− ft

(
s, x(s)

)∣∣pds = 0 . (2.42)

Notice that ft
(
·, x(·)

)
∈ Lp

(
I,RM

)
and consider the operator

Tτ : Lp
(
I,RM

)
→ Lp

(
R,RM

)
, such that g(·) 7→ Tτg(·),

where Tτg(·) is defined by

Tτg(s) =

{
g(s+ τ) , if s+ τ ∈ I

0 , otherwise.

By the continuity of translations in Lp(I), see Castillo and Rafeiro [17, Theorem
3.58], we have that, if |τn| → 0 as n→∞, then for a given ε > 0 there exists
δ > 0 such that

sup
|τn|<δ

∥∥Tτnft(·, x(·)
)
− ft

(
·, x(·)

)∥∥
p
≤ ε.

Now, for any n ∈ N, define an = max{a, a − τn} and bn = min{b, b − τn}, and
consider n0 ∈ N so that for any n > n0 we have |τn| < δ. Therefore, for any
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n > n0 the following chain of inequalities holds true∥∥ft+τn(·, x(·)
)
− ft

(
·, x(·)

)∥∥
p

≤
∥∥Tτnft(·, x(·)

)
− ft

(
·, x(·)

)∥∥
p

+
∥∥ft+τn(·, x(·)

)
− Tτnft

(
·, x(·)

)∥∥
p

≤ ε+
∥∥ft+τn(·, x(·)

)
− Tτnft

(
·, x(·)

)∥∥
p

≤ ε+

[ ∫ bn

an

∣∣ft(s+ τn, x(s)
)
− ft

(
s+ τn, x(s+ τn)

)∣∣pds]1/p

+

[∫ an

a

∣∣ft(s+ τn, x(s)
)∣∣pds]1/p

+

[ ∫ b

bn

∣∣ft(s+ τn, x(s)
)∣∣pds]1/p

≤ ε+

[ ∫ bn+τn

an+τn

∣∣ft(u, x(u− τn)
)
− ft

(
u, x(u)

)∣∣pdu]1/p

+

[∫ an+τn

a+τn

∣∣ft(u, x(u− τn)
)∣∣pdu]1/p

+

[ ∫ b+τn

bn+τn

∣∣ft(u, x(u− τn)
)∣∣pdu]1/p

= ε+ I1 + I2 + I3 ,

As regards I1, notice that, up to extending the functions x(·) and
(
x(· − τn)

)
n∈N

by constants to an interval J containing I + [−δ, δ] we have that

I1 ≤
[∫

J

∣∣ft(u, x(u− τn)
)
− ft

(
u, x(u)

)∣∣pdu]1/p

,

and the integral on the right-hand side goes to zero as n→∞, due to the fact
that f ∈ ΘCp

(
RM
)
and ‖x(·−τn)−x(·)‖∞ → 0 in J as n→∞. As regards I2, let

mj be an m-bound of f on Bj and notice that the following chain of inequalities
holds

I2 ≤
[ ∫ a

a−|τn|

∣∣ft(u, x(u− τn)
)∣∣pdu]1/p

≤
[ ∫ a

a−|τn|

(
mj
t(u)

)p
du

]1/p

, (2.43)

and the integral on the right-hand side of equation (2.43) goes to zero as n→∞,
thanks to the absolute continuity of the Lebesgue integral. Similar reasonings
apply to I3. Therefore, for any fixed t ∈ R and x(·) ∈ KIj we obtain the limit in
(2.42). Next we check that such a convergence is uniform in KIj . Otherwise there
would exist an ε > 0, a sequence

(
xn(·)

)
n∈N in KIj , and a sequence (τn)n∈N in R

converging to 0, such that[∫
I

∣∣ft+τn(s, xn(s)
)
− ft

(
s, xn(s)

)∣∣pds]1/p

> ε, ∀ n ∈ N .

However, being KIj compact, there exists a subsequence of
(
xn(·)

)
n∈N, which we

keep denoting with the same indexes, converging uniformly in I to some x(·) ∈ KIj
as n→∞. From (2.42), there exists n0 ∈ N such that, if n > n0, then∥∥ft+τn(·, x(·)

)
− ft

(
·, x(·)

)∥∥
p
<
ε

4
. (2.44)
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Moreover, since ft ∈ ΘCp
(
RM
)
and

(
xn(·)

)
n∈N converges uniformly to x(·), there

exists n1 ∈ N such that, if n > n1, then∥∥ft(·, x(·)
)
− ft

(
·, xn(·)

)∥∥
p
<
ε

4
. (2.45)

Then, for n > max{n0, n1}, we have that

ε <
∥∥ft+τn(·, xn(·)

)
− ft

(
·, xn(·)

)∥∥
p

≤
∥∥ft+τn(·, xn(·)

)
− ft+τn

(
·, x(·)

)∥∥
p

+
∥∥ft+τn(·, x(·)

)
− ft

(
·, x(·)

)∥∥
p

+
∥∥ft(·, x(·)

)
− ft

(
·, xn(·)

)∥∥
p

= A1 + ε/4 + ε/4 .

(2.46)

Finally, notice that

A1 =

[∫
I+τn

∣∣ft(u, xn(u− τn)
)
− ft

(
u, x(u− τn)

)∣∣pdu]1/p

≤
[∫

J

∣∣ft(u, xn(u− τn)
)
− ft

(
u, x(u− τn)

)∣∣pdu]1/p

<
ε

4
,

(2.47)

for n greater than some n2 ∈ N since, once again, ft ∈ ΘCp
(
RM
)
and

(
xn(·)

)
n∈N

converges uniformly to x(·). Gathering (2.46), (2.44), (2.45) and (2.47) we get a
contradiction, which implies the uniform limit in (2.41).

In order to conclude the proof, we check the joint continuity. Consider
(fn)n∈N ⊂ ΘCp

(
RM
)
converging to some f in

(
ΘCp

(
RM
)
, TΘ

)
and (tn)n∈N ⊂ R

converging to some t ∈ R. Fixed j ∈ N, I = [q1, q2], with q1, q2 ∈ Q, and KIj as in
Definition 2.4, recalling that the limit in (2.40) is uniform for t in compact sets,
we have that

lim
n→∞

sup
x(·)∈KIj

[∫
I

∣∣(fn)tn
(
s, x(s)

)
− ft

(
s, x(s)

)∣∣pds]1/p

≤ lim
n→∞

sup
x(·)∈KIj

[∫
I

∣∣(fn)tn
(
s, x(s)

)
− ftn

(
s, x(s)

)∣∣pds]1/p

+ lim
n→∞

sup
x(·)∈KIj

[∫
I

∣∣ftn(s, x(s)
)
− ft

(
s, x(s)

)∣∣pds]1/p

= 0 ,

which ends the proof.

Remark 2.41. The continuity of the time translation map in
(
SCp

(
RM
)
, TD

)
can be easily proved using the same arguments of the proof of Theorem 2.40.
Therefore, the proof is omitted. Furthermore, the continuity in

(
SCp

(
RM
)
, TB

)
is stated in [53, p.53] and the proof can be derived by the one given in [41,
Lemma II.1 p.24] for

(
LCp

(
RM
)
, TB

)
.
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As a corollary of what we have seen so far in the section, we deduce a first
theorem of continuity of the translations on the hull of a Carathéodory function.

Corollary 2.42. Let (E, T ) be any of the following topological spaces (or any
topological subspace of them):(

ΘC(RM), TΘ

)
,
(
SCp

(
RM
)
, TD

)
and

(
SCp

(
RM
)
, TB

)
.

Then, considered f ∈ E, the map

R× Hull(E,T )(f)→ Hull(E,T )(f) , (t, g) 7→ gt ,

defines a continuous flow on Hull(E,T )(f).

Next, the continuity of the time-translations in the space
(
WΘC(RM), σΘ

)
is

proved. Notice that a key difference arises with respect to Theorem 2.40. Indeed,
while trying to accomplish the same result in a larger space and with a weaker
topology, we are forced to assume L1

loc-equicontinuity of the m-bounds.

Theorem 2.43. Let Θ be a suitable set of moduli of continuity as in Defini-
tion 2.3 and consider the space

(
WΘC(RM), σΘ

)
. If E ⊂WΘC(RM) admit L1

loc-
equicontinuous m-bounds, then, denoted by E = cls(WΘC(RM ),σΘ)(E), one has that
the map

R× E →WΘC(RM) , (t, f) 7→ ft ,

is continuous.

Proof. Firstly, notice that the map is well-defined thanks to Lemma 2.28. Let
(fn)n∈N be a sequence in E converging to f in

(
WΘC(RM), σΘ

)
and (tn)n∈N a

sequence in R converging to t ∈ R. We want to prove that for every I = [q1, q2],
q1, q2 ∈ Q, and every j ∈ N one has that

lim
n→∞

sup
x(·)∈KIj

∣∣∣∣ ∫
I

[
fn
(
tn + s, x(s)

)
− f

(
t+ s, x(s)

)]
ds

∣∣∣∣ = 0 , (2.48)

where KIj is as in Definition 2.4. Let us fix ε > 0, j ∈ N, and I = [q1, q2],
q1, q2 ∈ Q and consider an interval [r1, r2] such that, for every n ∈ N, one has
[q1 + tn, q2 + tn] ⊂ [r1, r2]. Since E admits L1

loc-equicontinuous m-bounds, and
thanks to Proposition 2.29, one has that there exists δ > 0 such that

sup
g∈E

∫ τ2

τ1

mj
g(u) du < ε/6 ,

whenever τ1, τ2 ∈ [r1, r2] and 0 ≤ τ2− τ1 < δ. Consider p1(t), p2(t) ∈ Q such that
q1 + t < p1(t) < p2(t) < q2 + t and

p1(t)− q1 − t < δ and q2 + t− p2(t) < δ .
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Notice also that, since tn → t, then there exists n0 ∈ N such that for every n > n0

one has that q1 + tn < p1(t) < p2(t) < q2 + tn and

p1(t)− q1 − tn < δ and q2 + tn − p2(t) < δ .

Then, for every n > n0 one has that

sup
x(·)∈KIj

∣∣∣∣ ∫
I

[
fn
(
tn + s, x(s)

)
− f

(
t+ s, x(s)

)]
ds

∣∣∣∣
= sup

x(·)∈KIj

∣∣∣∣ ∫ q2+tn

q1+tn

fn
(
u, x(u− tn)

)
du−

∫ q2+t

q1+t

f
(
u, x(u− t)

)
du

∣∣∣∣
≤ sup

x(·)∈KIj

∣∣∣∣ ∫ p2(t)

p1(t)

[
fn
(
u, x(u− tn)

)
− f

(
u, x(u− t)

)]
du

∣∣∣∣+
4ε

6

≤ sup
x(·)∈KIj

∣∣∣∣ ∫ p2(t)

p1(t)

[
fn
(
u, x(u− tn)

)
− f

(
u, x(u− tn)

)]
du

∣∣∣∣+
+ sup

x(·)∈KIj

∣∣∣∣ ∫ p2(t)

p1(t)

[
f
(
u, x(u− tn)

)
− f

(
u, x(u− t)

)]
du

∣∣∣∣+
2ε

3

= Pn +Rn +
2ε

3
.

(2.49)

If we take an interval J with rational extremes so that I ∪ [p1(t), p2(t)] ⊂ J , then,
up to a suitable extension by constants to J , the functions yn(·) = x(· − tn)

belong to KJj and we deduce that

lim
n→∞

Pn ≤ lim
n→∞

sup
y(·)∈KJj

∣∣∣∣ ∫ p2(t)

p1(t)

[
fn
(
u, y(u)

)
− f

(
u, y(u)

)]
du

∣∣∣∣ = 0

because (fn)n∈N converges to f in
(
WΘC(RM), σΘ

)
and Lemma 2.14(ii) can be

applied.
Analogously, recalling that f ∈WΘC(RM) satisfies (W), from Lemma 2.14(i)

we deduce that limn→∞Rn = 0. Therefore, gathering together the results on Pn
and Rn, and by the arbitrariness of ε, from (2.49) we obtain (2.48) which ends
the proof.

Remark 2.44. The continuity of the time translation map in (SC(RM), σD) can
be easily deduced from the proof of the previous theorem.

As a corollary of the previous theorem, one has that the map defined by the
time-translations is a continuous flow on the hull of a function in WΘC(RM) with
L1
loc-equicontinuous m-bounds.

Corollary 2.45. Let f ∈WΘC(RM) admit L1
loc-equicontinuous m-bounds. Then,

the map

R× Hull(WΘC(RM ),σΘ)(f)→ Hull(WΘC(RM ),σΘ)(f) , (t, g) 7→ gt , (2.50)

defines a continuous flow on Hull(WΘC(RM ),σΘ)(f).
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Proof. The result is a direct consequence of Theorem 2.43. In particular, fixed
t ∈ R and a sequence (fτn)n∈N of time translations of f converging to g ∈
Hull(WΘC(RM ),σΘ)(f), due to (2.48), one has

lim
n→∞

sup
x(·)∈KIj

∣∣∣∣ ∫
I

[
fτn
(
t+ s, x(s)

)
− g
(
t+ s, x(s)

)]
ds

∣∣∣∣ = 0,

and thus gt ∈ Hull(WΘC(RM ),σΘ)(f) for all t ∈ R, which implies that the map
in (2.50) is well-posed. The continuity is then a direct consequence of Theo-
rem 2.43.



Chapter 3

Continuity of the flow for
Carathéodory ODEs

In this chapter, we address the problem of defining a continuous skew-product
flow for Carathéodory ordinary differential equations of the type

ẋ = f(t, x), x(0) = x0 , (3.1)

and Carathéodory systems of triangular type as{
ẋ = f(t, x), x(0) = x0 ,

ẏ = F (t, x) y + h(t, x), y(0) = y0 ,
(3.2)

where the function f(·, ·) is Lipschitz Carathéodory, and F (·, ·) and h(·, ·) are
taken either in WΘC or in ΘCp, so that the problem is well-posed. Due to the
the variety of topologies presented in Section 2.2 and of assumptions on the m-
bounds and/or l-bounds presented in Section 2.3, one may find several results of
continuity for the induced skew-product flow.

In Section 3.1 we provide the optimal ones in terms of the strength of the
used topologies, and of the assumptions on the initial vector field. As follows, we
portray the scheme of assumptions in the three cases (the notation is simplified
neglecting the dimension of the image space).

Case 1: f ∈ (LC, σΘ) with L1
loc-equicontinuous m-bounds,

F ∈ (WΘC, σΘ) with L1
loc-equicontinuous m-bounds,

h ∈ (WΘC, σΘ) with L1
loc-equicontinuous m-bounds.

Case 2: f ∈ (LCp, TΘ) with L1
loc-equicontinuous m-bounds,

F ∈ (ΘCp, TΘ), h ∈ (ΘCp, TΘ).

Case 3: f ∈ (LCp, TD) with Lploc-bounded l-bounds,
F ∈ (ΘCp, TΘ), h ∈ (ΘCp, TΘ).

59
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A trade between the strength of the used topologies and the assumptions on
the functions f , F , and h, arises. With few assumptions on the initial vector
fields, it will be necessary to use a stronger topology and vice versa.

The last sections of the chapter deal with applications of the continuity of the
skew product flow. Particularly, in Section 3.2 we treat the case in which f is
continuously differentiable with respect to x and the second equation in (3.2) is
the variational equation of the first one, that is, F = Jxf is a strong Carathéodory
function and h = 0. Applying the results contained in Section 3.1 we are able to
construct two types of linearized skew-product flows depending on the topology
used, either TΘ or σΘ. We conclude the section with an example portraying the
atypical case in which it is possible (thanks to the continuity of the skew-product
flow) to obtain the differentiability of the solutions with respect to initial data
for a system which is not continuously differentiable in the variable x, and thus,
it does not admit the classic variational equation.

In Section 3.3 we show how to propagate the exponential dichotomy of a
linearized system through the trajectories of the linearized skew-product flows.

Section 3.4 contains a further theoretical result and two examples. Specifically,
thanks to the continuity of the time translations in (WΘC, σΘ) given in Theorem
2.43 and thanks to the theorems of continuity of the solutions with respect to the
variation of initial data and vector field in Section 3.1, we are able to prove to
existence of solutions for differential problem whose vector field is a function in
WΘC which is the limit, with respect to the topology σΘ, of a sequence in SC.

Furthermore, we notice that the assumptions used in [25] to obtain stability
results for an abstract digitization scheme in control theory, are such that Theo-
rem 2.31 applies, and thus the integral-like topology used in such work coincide
with any of the strong topologies considered in Chapter 2. Additionally, we high-
light how some of the results contained in such paper can be read in view of the
theory developed in this work.

Finally, inspired by [50], where a study of a triangular system composed of a
non-autonomous linear compartmental system and an induced mean-age system
is accomplished, we construct a triangular system for a Carathéodory non-linear
compartmental system and point out how a continuous skew-product flow can be
obtained if any of the theorems in Section 3.1 applies.

3.1 Continuity of the flow

This section contains several results of continuity for skew-product flows gen-
erated by either, a single Carathéodory system with vector field in LCp or, by
triangular systems composed of a nonlinear system with vector field in LCp and
a linear system with vector field in WΘC or ΘCp. The joint role of m-bounds
and l-bounds in proving the continuous variation of ODEs’ solutions with respect
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to initial conditions, has been investigated in [3, 4] when weak topologies are
involved. However, later on we show how assumptions on the sole m-bounds,
or the sole l-bounds, can still be sufficient to prove the continuous variation of
ODEs solutions when weak topologies are used. Furthermore, we show how such
topological properties turn out to be useful in order to prove the continuity when
the strong topologies are employed and which differences arise. We state the
following theorem as a corollary of Theorem 1.2 to set some notation.

Corollary 3.1. Let Θ be a suitable set of moduli of continuity as in Definition 2.3.
For any f ∈ LC, F ∈WΘC

(
RN×N), h ∈WΘC, and x0, y0 ∈ RN , there exists a

unique solution of the Cauchy problem{
ẋ = f(t, x), x(0) = x0 ,

ẏ = F (t, x) y + h(t, x), y(0) = y0 ,

which will be denoted by
(
x(·, f, x0), y(·, f, F, h, x0, y0)

)
, and whose maximal in-

terval of definition coincides with the interval If,x0 provided by Theorem 1.2.

The suitable set of moduli of continuity Θ used to determine the sets WΘC

and/or ΘCp, assumes particular relevance when one wants to prove the continuity
of the solutions with respect to the variation of initial conditions and thus the
existence of a continuous skew-product flow. In the first two theorems of continu-
ity of the flow presented in this section, the set Θ will be constructed, as follows,
using the m-bounds of the vector fields defining our initial systems.

Definition 3.2 (Moduli of continuity given by them-bounds). Let E ⊂ LC admit
L1
loc-equicontinuous m-bounds. For any j ∈ N and for any interval I = [q1, q2],

q1, q2 ∈ Q, define

θIj (s) := sup
t∈I,f∈E

∫ t+s

t

mj
f (u) du , s ≥ 0,

where, for any f ∈ E, the function mj
f (·) ∈ L1

loc denotes the optimal m-bounds
of f on Bj. Notice that, since E admits L1

loc-equicontinuous m-bounds, then
Θ = {θIj (·) | I = [q1, q2], q1, q2 ∈ Q, j ∈ N} defines a suitable set of moduli of
continuity (see Definition 2.3).

Remark 3.3. If f ∈ LC has L1
loc-equicontinuous m-bounds we similarly define

for any j ∈ N,

θj(s) := sup
t∈R

∫ t+s

t

mj(u) du , s ≥ 0,

where mj(·) is the optimal m-bound for f on Bj. Here again, notice that, thanks
to the L1

loc-equicontinuity of the m-bounds of f , one has that Θ = {θj(·) | j ∈ N}
defines a suitable set of moduli of continuity (see Definition 2.3).
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Theorem 3.4. Consider E ⊂ LC with L1
loc-equicontinuous m-bounds and let Θ be

the countable set of moduli of continuity in Definition 3.2. Additionally, consider
B ⊂ WΘC

(
RN×N) and C ⊂ WΘC, both with L1

loc-equicontinuous m-bounds.
With the notation of Theorem 1.2 and Corollary 3.1,

(i) if (fn)n∈N in E converges to f in (LC, σΘ) and (x0,n)n∈N in RN converges
to x0 ∈ RN , then

x(·, fn, x0,n)
n→∞−−−→ x(·, f, x0)

uniformly in any [T1, T2] ⊂ If,x0;

(ii) in addition, if (Fn)n∈N in B converges to F in
(
WΘC

(
RN×N), σΘ

)
, (hn)n∈N

in C converges to h in (WΘC, σΘ), and (y0,n)n∈N in RN converges to y0 ∈
RN , then

y(·, fn, Fn, hn, x0,n, y0,n)
n→∞−−−→ y(·, f, F, h, x0, y0)

uniformly in any [T1, T2] ⊂ If,x0.

Proof. (i) We will prove the uniform convergence of
(
x(·, fn, x0,n)

)
n∈N to x(·, f, x0)

in [0, T ] for any 0 < T < bf,x0 . The case af,x0 < T < 0 is analogous. Denote

0 < ρ = 1 + max
{

(|x0,n|)n∈N, ‖x(·, f, x0)‖L∞([0,T ])

}
, (3.3)

and define

zn(t) =

{
x(t, fn, x0,n), if 0 ≤ t < Tn,

x(Tn, fn, x0,n), if Tn ≤ t ≤ T .
(3.4)

where Tn = sup{t ∈ [0, T ] | |x(s, fn, x0,n)| ≤ ρ, ∀ s ∈ [0, t]}. Notice that by (3.3)
and by the continuity of

(
x(·, fn, x0,n)

)
n∈N, we have that Tn > 0 for any n ∈ N.

In particular notice that
(
zn(·)

)
n∈N is uniformly bounded. Moreover, consider

j ∈ N so that ρ < j and let
(
mn(·)

)
n∈N =

(
mj
fn

(·)
)
n∈N be the sequence of optimal

m-bounds of (fn)n∈N on Bj. If t1, t2 ∈ [0, Tn), t1 < t2, then

|zn(t1)− zn(t2)| ≤
∫ t2

t1

∣∣fn(s, zn(s)
)∣∣ ds ≤ ∫ t2

t1

mn(s) ds . (3.5)

Fixed ε > 0, since E admits L1
loc-equicontinuous m-bounds, there exists δ =

δ(T, ε) > 0 such that, if 0 ≤ t1 ≤ t2 < Tn, then the right-hand side in (3.5)
is smaller than ε whenever t2 − t1 < δ. Notice that, in fact, the inequality
|zn(t1)−zn(t2)| < ε is true on the whole interval [0, T ] whenever t2−t1 < δ because
in [Tn, T ] the difference on the left-hand side of equation (3.5) is zero. Thus,
the sequence (zn(·))n∈N is equicontinuous. Then, Ascoli-Arzelá’s theorem implies
that, up to a subsequence,

(
zn(·)

)
n∈N converges uniformly to some continuous



3.1 Continuity of the flow 63

function z : [0, T ] → RN . In order to conclude the proof, we prove that z(·) ≡
x(·, f, x0) in [0, T ]. Define

T0 = sup{t ∈ [0, T ] | |z(s)| < ρ− 1/2 ∀ s ∈ [0, t]} , (3.6)

and notice that T0 > 0 because (x0,n)n∈N converges to x0 and z(·) is continuous.
Since zn(·) converges uniformly to z(·) in [0, T ], then there exists n0 ∈ N such
that if n > n0, then

|zn(t)| < ρ− 1/4 ∀ t ∈ [0, T0] .

Therefore, for any t ∈ [0, T0] and for any n > n0 one has zn(t) = x(t, fn, x0,n) and
thus

zn(t) = x0,n +

∫ t

0

fn
(
s, zn(s)

)
ds , t ∈ [0, T0] , n > n0 . (3.7)

Since we already know that zn(·) converges uniformly to z(·) in [0, T0], if we prove
that for any t ∈ [0, T0] one has

lim
n→∞

∫ t

0

fn
(
s, zn(s)

)
ds =

∫ t

0

f
(
s, z(s)

)
ds, (3.8)

then, passing to the limit as n→∞ in (3.7), we would have that z(·) is a solution
of the limit problem ẋ = f(t, x), x(0) = x0 in [0, T0]. Let us fix t ∈ [0, T0]∩Q and
consider the compact set K = {zn(·) | n ∈ N} ∪ {z(·)} ⊂ C

(
[0, t],RN

)
. Notice

that K ⊂ K[0,t]
j for the previously identified j ∈ N and thus one has∣∣∣∣ ∫ t

0

[
fn
(
s, zn(s)

)
− f

(
s, z(s)

)]
ds

∣∣∣∣
≤
∣∣∣∣ ∫ t

0

[
fn
(
s, zn(s)

)
− f

(
s, zn(s)

)]
ds

∣∣∣∣+

∣∣∣∣ ∫ t

0

[
f
(
s, zn(s)

)
− f

(
s, z(s)

)]
ds

∣∣∣∣
≤ sup

y(·)∈K[0,t]
j

∣∣∣∣ ∫ t

0

[
fn
(
s, y(s)

)
− f

(
s, y(s)

)]
ds

∣∣∣∣+

∫ t

0

ljf (s)|zn(s)− z(s)| ds,

where ljf (·) ∈ L1
loc is the optimal l-bound for f on Bj. The right-hand side of the

previous chain of inequalities goes to zero as n→∞ because (fn)n∈N converges
to f in σΘ, and (zn(·))n∈N converges uniformly to z(·) in [0, T ]. Hence, from (3.7),
(3.8) and recalling that (x0,n)n∈N converges to x0 as n→∞, one has

z(t) = x0 +

∫ t

0

f
(
s, z(s)

)
ds for t ∈ [0, T0] ∩Q . (3.9)

As a matter of fact, the equality holds on the whole interval [0, T0]. Indeed, for
any t ∈ [0, T0], if (qn)n∈N is a sequence in Q such that qn ↑ t as n→∞, then,
using (3.9) one has∣∣∣∣z(t)− z0 −

∫ t

0

f
(
s, z(s)

)
ds

∣∣∣∣ ≤ |z(t)− z(qn)|+
∣∣∣∣ ∫ t

qn

f
(
s, z(s)

)
ds

∣∣∣∣
≤ |z(t)− z(qn)|+

∫ t

qn

mj
f (s) ds,
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where mj
f (·) ∈ L1

loc is the optimal m-bound for f on Bj. Thus, one obtains
(3.9) for all t ∈ [0, T0] due to the continuity of z(·) and of the Lebesgue integral.
Therefore, z(·) coincides with x(·, f, x0) on [0, T0]. The only thing left to end the
proof is to prove that T0 = T . Assume, on the contrary, that T0 < T . Then, by
(3.6) and by the continuity of z(·), one would have

|z(T0)| = |x(T0, f, x0)| = ρ− 1/2,

which contradicts (3.3). Hence, T0 = T , as claimed, and thus for any t ∈ [0, T ]

we have that x(t, f, x0) = z(t) and x(t, fn, x0,n) = zn(t) for any n ∈ N, which
concludes the proof of (i).

(ii) In order to simplify the notation, let us denote by xn(·) = x(·, fn, x0,n),
yn(·) = y(·, fn, Fn, hn, x0,n, y0,n), x(·) = x(·, f, x0), and y(·) = y(·, f, F, h, x0, y0).
From (i) we have the continuous dependence in the first component and also
that there exists ρ > 0 such that for every n ∈ N the following inequality holds:
‖xn(·)‖L∞([0,T ]) < ρ <∞. Consider j ∈ N such that j > ρ, and for any n ∈ N let
mj
Fn

andmj
hn

respectively denote them-bounds on Bj for Fn and hn satisfying the
assumptions of L1

loc-equicontinuity. We will prove that, for every 0 < T < bf,x0 ,
one has

‖yn(·)− y(·)‖L∞([0,T ])
n→∞−−−→ 0 .

For every n ∈ N define the function gn : R× RN → RN by

gn(t, y) =

{
Fn
(
t, xn(t)

)
y + hn

(
t, xn(t)

)
, if 0 ≤ t ≤ T ,

0 otherwise ,

and similarly define g : R× RN → RN by

g(t, y) =

{
F
(
t, x(t)

)
y + h

(
t, x(t)

)
, if 0 ≤ t ≤ T ,

0 otherwise .

It is easy to check that such functions are in LC. Furthermore, notice that the
solutions of the Cauchy problems{

ẏ = g(t, y)

y(0) = y0
and

{
ẏ = gn(t, y)

y(0) = y0,n
for n ∈ N, (3.10)

coincide on [0, T ] with y(·) and yn(·), for n ∈ N, respectively.
For almost every t ∈ R and every y ∈ RN , and up to rescaling mj

Fn
(·) using

the equivalence of the norms on the space of matrices RN×N , one has that

|gn(t, y)| ≤ mj
Fn

(t) |y|+mj
hn

(t) and |g(t, y)| ≤ mj
F (t) |y|+mj

h(t) . (3.11)

Then, from the assumptions on B ⊂ WΘC
(
RN×N) and C ⊂ WΘC and from

Proposition 2.29, we have that the set {gn | n ∈ N}∪{g} has L1
loc-equicontinuous
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m-bounds and thus a specific suitable set of moduli of continuity Θ̃ can be defined
as in Definition 3.2. Therefore, if we were able to prove that gn

n→∞−−−→ g in
(LC, σΘ̃), we would have that the assumptions of part (i) would be satisfied by
the systems in (3.10) and thus, by the fact that the solutions of such systems
respectively coincide with y(·) and yn(·), for n ∈ N, on [0, T ], we would obtain
the thesis. However, fixed any dense and numerable subset D of RN , we can
use the equivalence of the topologies and employ the topology σD instead of σΘ̃.
Indeed, for almost every t ∈ R and every y1, y2 ∈ RN , one has that

|gn(t, y1)− gn(t, y2)| ≤ mj
Fn

(t) |y1 − y2| and |g(t, y1)− g(t, y2)| ≤ mj
F (t) |y1 − y2|.

Hence, once again from the assumptions on B ⊂WΘC
(
RN×N) and from Proposi-

tion 2.29, we have that the set {gn | n ∈ N}∪{g} has L1
loc-equicontinuous l-bounds

and thus, by Remark 2.18 and Theorem 2.33, the topology σΘ̃ coincide with σD
on the set {gn | n ∈ N}∪{g}. Therefore, in order to finish the proof we only need
to check that gn

n→∞−−−→ g in (LC, σD), i.e. that for any I = [q1, q2], with q1, q2 ∈ Q,
and y ∈ D one has

lim
n→∞

∣∣∣∣ ∫
I

[gn(t, y)− g(t, y)] dt

∣∣∣∣ = 0. (3.12)

Denote by IT the interval I ∩ [0, T ]. Recalling that the functions (gn)n∈N and g
are zero outside the interval [0, T ], if IT = ∅, then (3.12) trivially holds true. If
T /∈ I or if T ∈ I ∩Q, then the interval IT has endpoints in Q and one has∣∣∣∣ ∫

I

[gn(t, y)− g(t, y)] dt

∣∣∣∣
≤
∣∣∣∣ ∫

IT

[
Fn
(
t, xn(t)

)
− F

(
t, x(t)

)]
y dt

∣∣∣∣+

∣∣∣∣ ∫
IT

[
hn
(
t, xn(t)

)
− h
(
t, x(t)

)]
dt

∣∣∣∣
≤ |y|

∣∣∣∣ ∫
IT

[
Fn
(
t, xn(t)

)
− F

(
t, xn(t)

)]
dt

∣∣∣∣+ |y|
∣∣∣∣ ∫

IT

[
F
(
t, xn(t)

)
− F

(
t, x(t)

)]
dt

∣∣∣∣
+

∣∣∣∣ ∫
IT

[
hn
(
t, xn(t)

)
− h
(
t, xn(t)

)]
dt

∣∣∣∣+

∣∣∣∣ ∫
IT

[
h
(
t, xn(t)

)
− h
(
t, x(t)

)]
dt

∣∣∣∣
≤ sup
z(·)∈KITj

[
|y|
∣∣∣∣∫
IT

[
Fn
(
t, z(t)

)
−F

(
t, z(t)

)]
dt

∣∣∣∣+

∣∣∣∣∫
IT

[
hn
(
t, z(t)

)
−h
(
t, z(t)

)]
dt

∣∣∣∣ ]

+ |y|
∣∣∣∣ ∫

IT

[
F
(
t, xn(t)

)
− F

(
t, x(t)

)]
dt

∣∣∣∣+

∣∣∣∣ ∫
IT

[
h
(
t, xn(t)

)
− h
(
t, x(t)

)]
dt

∣∣∣∣.
In the last step of the previous chain of inequalities, the first two integrals go to
zero as n→∞ because, by assumption, Fn

n→∞−−−→ F in
(
WΘC

(
RN×N), σΘ

)
and

hn
n→∞−−−→ h in (WΘC, σΘ), whereas the last two integrals go to zero as n→∞,

because F ∈ WΘC
(
RN×N), h ∈ WΘC, and

(
xn(·)

)
n∈N converges uniformly to

x(·) on [0, T ] (see Definition 2.4).

The only remaining case is for T ∈ I but T /∈ Q. Then, fixed ε > 0 and k ∈ N
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consider q ∈ I ∩Q such that

sup
G∈{gn|n∈N}∪{g}

∫ T

q

mk
G(t) dt < ε, (3.13)

where, for any G ∈ {gn | n ∈ N} ∪ {g}, mk
G(·) ∈ L1

loc is the optimal m-bound
for G on Bk, and the previous inequality holds true since {gn | n ∈ N} ∪ {g}
has L1

loc-equicontinuous m-bounds (due to (3.11) and Proposition 2.29). Then,
considering k ∈ N such that |y| < k, we obtain∣∣∣∣ ∫

I

[gn(t, y)− g(t, y)] dt

∣∣∣∣ ≤ 2 ε+ k sup
z(·)∈KI∩[0,q]

j

∣∣∣∣ ∫
I∩[0,q]

[
Fn
(
t, z(t)

)
− F

(
t, z(t)

)]
dt

∣∣∣∣
+ sup
z(·)∈KI∩[0,q]

j

∣∣∣∣ ∫
I∩[0,q]

[
hn
(
t, z(t)

)
− h
(
t, z(t)

)]
dt

∣∣∣∣
+ |y|

∣∣∣∣ ∫
I∩[0,q]

[
F
(
t, xn(t)

)
− F

(
t, x(t)

)]
dt

∣∣∣∣
+

∣∣∣∣ ∫
I∩[0,q]

[
h
(
t, xn(t)

)
− h
(
t, x(t)

)]
dt

∣∣∣∣ .
And again, from the fact that Fn

n→∞−−−→ F in
(
WΘC

(
RN×N), σΘ

)
and hn

n→∞−−−→ h

in (WΘC, σΘ), and since F ∈WΘC
(
RN×N), h ∈WΘC, and

(
xn(·)

)
n∈N converges

uniformly to x(·) on [0, T ], and from the arbitrariness of ε, we have that the right-
hand side of the previous inequality goes to zero as n→∞. Hence, gn

n→∞−−−→ g in
(LC, σD) and thus also in (LC, σΘ̃). As a consequence, the assumptions of part (i)
are now satisfied by the systems in (3.10) whose solutions respectively coincide
on [0, T ] with y(·) and yn(·), for n ∈ N, and thus we obtain the thesis.

Consider f ∈ LC, a suitable set of moduli of continuity Θ = (θj)j∈N, and
the family of differential equations ẋ = g(t, x), where g ∈ Hull(LC,σΘ)(f). With
the notation introduced in Theorem 1.2, let us denote by U1 the subset of R ×
Hull(LC,σΘ)(f)× RN given by

U1 =
⋃

g∈Hull(LC,σΘ)(f) ,

x∈RN

{(t, g, x) | t ∈ Ig,x} .

Analogously, let f ∈ LC, F ∈ WΘC(RN×N) and h ∈ WΘC, where Θ = (θj)j∈N
is a suitable set of moduli of continuity, and consider the family of differential
equations of the type (3.2) for

(g,G, k) ∈ H = Hull(LC×WΘC×WΘC,σΘ×σΘ×σΘ)(f, F, h),

where the hull is constructed as in Definition 1.10. Then, we denote by U2 the
subset of R×H× RN× RN given by

U2 =
⋃

(g,G,k)∈H ,
x0∈RN

{(t, g, G, k, x0, y0) | t ∈ Ig,x0 , y0 ∈ Rn} .
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With the previous notation we can state the following theorem.

Theorem 3.5. Let the functions f ∈ LC, F ∈WΘC(RN×N) and h ∈WΘC have
L1
loc-equicontinuous m-bounds, where Θ = (θj)j∈N is the suitable set of moduly of

continuity given by the m-bounds of f as shown in Remark 3.3.

(i) The set U1 is open in R× Hull(LC,σΘ)(f)× RN and the map

Π: U1 ⊂ R× Hull(LC,σΘ)(f)× RN → Hull(LC,σΘ)(f)× RN

(t, g, x0) 7→
(
gt, x(t, g, x0)

)
defines a local continuous skew-product flow on Hull(LC,σΘ)(f)× RN .

(ii) The set U2 is open in R×H× RN × RN and the map

Ψ: U2 ⊂ R×H× RN× RN → H× RN× RN

(t, g, G, k, x0, y0) 7→
(
gt, Gt, kt, x(t, g, x0), y(t, g, G, k, x0, y0)

)
defines a local continuous skew-product flow on H× RN× RN .

Proof. (i) Firstly, notice that the property of group and of identity at time zero
are trivially satisfied, and the continuity in the first component of the image is
given by Corollary 2.45.

As regards the second component, it is enough to show that the assumptions
of Theorem 3.4 apply to E = Hull(LC,TΘ)(f). To the aim, we check that the
set of moduli of continuity given by the m-bounds of f as in Remark 3.3, also
turns out to be the set of moduli of continuity given by the m-bounds of the
functions in Hull(LC,TΘ)(f) as in Definition 3.2. Thus, fix j ∈ N and consider
g ∈ Hull(LC,σΘ)(f) and a sequence (τn)n∈N in R such that fτn

n→∞−−−→ g. Moreover,
denote by mj(·) = mj

f (·) the optimal m-bound for f on Bj; as shown in (2.14),
one has that for every n ∈ N, the optimal m-bound of the τn-time translation of
f is the τn-time translation of the optimal m-bound of f , that is

∀n ∈ N : mj
fτn

(·) = mj
τn(·).

Reasoning as in the first part of the proof of Proposition 2.26 we have that the
sequence of absolutely continuous measures with densities

(
mj
τn(·)

)
n∈N vaguely

converges, up to a subsequence, to a positive measure whose absolutely continuous
part has density mj

g(·) ∈ L1
loc, and mj

g(·) is an m-bound for g on Bj. Furthermore,
for any t ∈ R, h > 0 and δ > 0, one can consider a function φ ∈ C+

C such that
suppφ ⊂ [t− δ, t+ h+ δ] and φ ≡ 1 in [t, t+ h] and write∫ t+h

t

mj
g(u) du ≤

∫
R
φ(u)mj

g(u) du = lim
n→∞

∫
R
φ(u)mj

τn(u) du ≤ sup
τ∈R

∫ t+h+δ

t−δ
mj
τ (u) du,

and thus, by the arbitrariness on δ we get∫ t+h

t

mj
g(u) du ≤ sup

τ∈R

∫ t+h

t

mj
τ (u) du ≤ θj(h).
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Then, the sets of moduli of continuity coincide, as stated, and applying Theo-
rem 3.4 we obtain the result.

(ii) Analogous reasonings apply to this case.

The following theorem addresses the same problem, i.e. the continuity of the
skew product semiflow, but the strong topology TΘ is employed. Particularly, in
the following theorem, the triangular problem is considered in a smaller space
with a stronger topology (with respect to Theorem 3.4) but no assumptions on
the m-bounds of the functions defining the vector field of the linear problem, are
necessary anymore.

Theorem 3.6. Consider E ⊂ LCp with L1
loc-equicontinuous m-bounds and let Θ

be the countable set of moduli of continuity in Definition 3.2. With the notation
of Theorem 1.2 and Corollary 3.1,

(i) if (fn)n∈N in E converges to f in (LCp, TΘ) and (x0,n)n∈N in RN converges
to x0 ∈ RN , then

x(·, fn, x0,n)
n→∞−−−→ x(·, f, x0)

uniformly in any [T1, T2] ⊂ If,x0;

(ii) moreover, if (Fn)n∈N in ΘCp
(
RN×N) converges to F in

(
ΘCp

(
RN×N), TΘ

)
,

(hn)n∈N in ΘCp converges to h in (ΘCp, TΘ), and (y0,n)n∈N in RN converges
to y0 ∈ RN , then

y(·, fn, Fn, hn, x0,n, y0,n)
n→∞−−−→ y(·, f, F, h, x0, y0)

uniformly in any [T1, T2] ⊂ If,x0.

Proof. (i) Notice that for any 1 ≤ p < ∞ if fn
n→∞−−−→ f in (LCp, TΘ), then it

also converges in (LC, σΘ). Therefore, a careful look at the proof of Theorem 3.4
shows that (i) of such theorem applies.

(ii) The continuous dependence in the first component is given by part (i).
Let us simplify the notation, as follows

xn(·) = x(·, fn, x0,n) , yn(·) = y(·, fn, Fn, hn, x0,n, y0,n) ,

x(·) = x(·, f, x0) , and y(·) = y(·, f, F, h, x0, y0).

From part (i) we already have that
(
xn(·)

)
n∈N converges uniformly to x(·) on the

compact subsets of If,x0 . Moreover, call F̃n(t) = Fn(t, xn(t)), F̃ (t) = F (t, x(t)),
h̃n(t) = hn(t, xn(t)) and h̃(t) = h(t, x(t)). If we prove that (F̃n(·))n∈N and
h̃n(·))n∈N converge in Lploc to F̃ (·) and h̃(·) respectively, then we have the thesis
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applying Lemma IV.9 in [53] to the linear case. Therefore, let us fix an interval
I ⊂ R. Then,∥∥F̃n(·)− F̃ (·)

∥∥
p

=
∥∥Fn(·, xn(·)

)
− F

(
·, x(·)

)∥∥
p

≤
∥∥Fn(·, xn(·)

)
− F

(
·, xn(·)

)∥∥
p

+
∥∥F(·, xn(·)

)
− F

(
·, x(·)

)∥∥
p

≤ sup
ξ∈KIj

∥∥Fn(·, ξ(·))− F(·, ξ(·))∥∥p +
∥∥F(·, xn(·)

)
− F

(
·, x(·)

)∥∥
p

where j ∈ N is chosen so that j > max{‖x(·)‖L∞(I), (‖xn(·)‖L∞(I))n∈N}. The
right-hand side of the previous inequality goes to zero as n→∞ because (Fn)n∈N
converges to F in

(
ΘCp

(
RN×N), TΘ

)
, and F satisfies (T). Analogous reasonings

apply to the sequence (h̃n(·))n∈N. Therefore, we have the required Lploc conver-
gences and thus uniform convergence of the solutions of the nonhomogeneus linear
equation.

Let f ∈ LCp, Θ = (θj)j∈N be a suitable set of moduli of continuity and
consider the family of differential equations ẋ = g(t, x), where g ∈ Hull(LCp,TΘ)(f).
With the notation introduced in Theorem 1.2, let us denote by U1 the subset of
R× Hull(LCp,TΘ)(f)× RN given by

U1 =
⋃

g∈Hull(LCp,TΘ)(f) ,

x∈RN

{(t, g, x) | t ∈ Ig,x} .

Let f ∈ LCp, F ∈ ΘC(RN×N), h ∈ ΘC and consider the family of differential
equations of type (3.2) for

(g,G, k) ∈ H = Hull(LCp×ΘC×ΘC,TΘ×TΘ×TΘ)(f, F, h),

where the hull is constructed as in Definition 1.10. Denote by U2 the subset of
R×H× RN× RN given by

U2 =
⋃

(g,G,k)∈H ,
x0∈RN

{(t, g, G, k, x0, y0) | t ∈ Ig,x0 , y0 ∈ Rn} .

With the previous notation we can state the following theorem.

Theorem 3.7. Let f ∈ LCp have L1
loc-equicontinuous m-bounds and let Θ =

(θj)j∈N be the suitable set of moduli of continuity given by the m-bounds as shown
in Remark 3.3.

(i) The set U1 is open in Hull(LCp,TΘ)(f)× RN and the map

Φ1 : U1 ⊂ R× Hull(LCp,TΘ)(f)× RN → Hull(LCp,TΘ)(f)× RN

(t, g, x0) 7→
(
gt, x(t, g, x0)

)
,

defines a local continuous skew-product flow on Hull(LCp,TΘ)(f)× RN .



70 3. Continuity of the flow for Carathéodory ODEs

(ii) The set U2 is open in R×H× RN × RN and the map

Φ2 : U2 ⊂ R×H× RN× RN → H× RN× RN

(t, g, G, k, x0, y0) 7→
(
gt, Gt, kt, x(t, g, x0), y(t, g, G, k, x0, y0)

)
,

defines a local continuous skew-product flow on H× RN× RN .

Proof. The proof is a consequence of Corollary 2.42 and Theorem 3.6, reasoning
as in the proof of Theorem 3.5.

Finally, we provide two results of continuity of the solutions for Carathéodory
differential systems whose vector fields are in a set E ⊂ LCp with Lploc-bounded
l-bounds. Thanks to Theorem 2.31, we have that all the strong topologies in-
troduced in Section 2.2 coincide on E. In particular, if C ⊂ E is compact (and
recall that the problem of compactness in LC has been studied in Section 2.6),
then the solutions of the differential equations of type (3.1), whose vector fields
belong to C, determine a suitable set of moduli of continuity which will be used
to obtain the continuity of the solutions of the second equation in the triangular
system. Notice that no assumptions on the m-bounds are required.

Theorem 3.8. Consider E ⊂ LCp with Lploc-bounded l-bounds.

(i) If (fn)n∈N in E converges to f in (LCp, TD) and (x0,n)n∈N in RN converges
to x0 ∈ RN , then

x(·, fn, x0,n)
n→∞−−−→ x(·, f, x0)

uniformly in any [T1, T2] ⊂ If,x0.

(ii) Let C ⊂ E be compact with respect to TD and, for any interval I = [q1, q2] ⊂
R, with q1, q2 ∈ Q, and any j ∈ N, define

CI
j =

x : J → Bj

∣∣∣∣∣∣∣
J ⊂ I interval, and
∃ f ∈ C such that ∀ s, t ∈ J

x(t) = x(s) +
∫ t
s
f(u, x(u)) du

 . (3.14)

Then, each of the sets CI
j is equicontinuous and, denoted by θIj its modulus

of continuity, the set

Θ =

{
θIj ∈ C(R+,R+)

∣∣∣∣∣ I = [q1, q2] ⊂ R, with q1, q2 ∈ Q, j ∈ N,
θIj modulus of continuity of CI

j

}
,

is a suitable set of moduli of continuity.
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(iii) Let C ⊂ E be compact with respect to TD and Θ be the suitable set of moduli
of continuity given by (ii). If (fn)n∈N in C converges to f in (LCp, TD),
(Fn)n∈N in ΘCp

(
RN×N) converges to F in

(
ΘCp

(
RN×N), TΘ

)
, (hn)n∈N in

ΘCp converges to h in (ΘCp, TΘ), and (x0,n, y0,n)n∈N in RN× RN converges
to (x0, y0) ∈ RN× RN , then(
x(·, fn, x0,n), y(·, fn, Fn, hn, x0,n, y0,n)

)
→
(
x(·, f, x0), y(·, f, F, h, x0, y0)

)
as n→∞, uniformly in any [T1, T2] ⊂ If,x0.

Proof. (i) Since E has Lploc-bounded l-bounds, by Theorem 2.31 the convergence
in (LCp, TD) implies the convergence in (LCp, TB). The proof closely follows the
one given in Theorem 3.4, whose notation is hereby inherited. In particular,
we focus on the interval 0 < T < bf,x0 , since analogous reasonings apply for
af,x0 < T < 0.

After setting the constant ρ as in (3.3), and after defining the sequence of
functions

(
zn(·)

)
n∈N in C([0, T ],RN) as in (3.4), we notice that

(
zn(·)

)
n∈N is

uniformly bounded and for any n ∈ N one also has

|zn(t1)− zn(t2)| ≤
∫ t2

t1

∣∣fn(s, zn(s)
)∣∣ ds

≤
∫ t2

t1

∣∣fn(s, zn(s)
)
− f

(
s, zn(s)

)∣∣ ds+

∫ t2

t1

∣∣f(s, zn(s)
)∣∣ ds

≤
∫ t2

t1

∣∣fn(s, zn(s)
)
− f

(
s, zn(s)

)∣∣ ds+

∫ t2

t1

mj
f (s) ds ,

(3.15)

where mj
f (·) ∈ Lploc is the optimal m-bound for f on Bj. Fixed ε > 0, due to

the convergence of (fn)n∈N to f in (LCp, TB), and recalling that {zk | k ∈ N} is
a bounded set of continuous functions, we have that there exists an n0 ∈ N such
that

n > n0 ⇒ sup
k∈N

∫ t2

t1

∣∣fn(s, zk(s))− f(s, zk(s))∣∣ ds < ε . (3.16)

On the other side, by the absolute continuity of the integral, there exists δ > 0

such that if 0 < t2 − t1 < δ, then∫ t2

t1

∣∣fn(s, zn(s)
)
− f

(
s, zn(s)

)∣∣ ds < ε ∀n = 1, . . . , n0 , (3.17)

and also ∫ t2

t1

mj
f (s) ds < ε . (3.18)

Gathering the inequalities (3.15), (3.16), (3.17) and (3.18), we obtain a common
modulus of continuity for all the functions in {zi | i ∈ N}. Therefore, thanks to
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Ascoli-Arzelà’s Theorem, we have that, up to a subsequence,
(
zn(·)

)
n∈N converges

uniformly in [0, T ] to a continuous function z(·). At his point, it is possible to
prove that z(·) coincide with x(·, f, x0) on [0, T ] following the same arguments of
Theorem 3.4, with the only exception that the equality in (3.8) will be guaranteed
by the convergence in the strong topology TB, once one notice that {zi(·) | i ∈
N} ∪ {z(·)} is a bounded set.

(ii) Let us fix ε > 0, I = [q1, q2] ⊂ R, with q1, q2 ∈ Q, and j ∈ N, and consider
the following seminorm defined on E

pj(f) = sup
z∈C(I,Bj)

∫
I

∣∣f(t, z(t))∣∣ dt, f ∈ E .

Moreover, for any f̃ ∈ C, denote by U j
ε/2(f̃) the following set

U j
ε/2(f̃) =

{
f ∈ E | pj

(
f − f̃

)
≤ ε/2

}
.

Therefore, by the compactness of C, there exist ν ∈ N and f1, . . . , fν ∈ C such
that

C ⊂
ν⋃
i=1

U j
ε/2(fi) .

For any i = 1, . . . , ν, denote by mi(·) the m-bound of fi on Bj and notice that
there exists δ > 0 such that, if s, t ∈ I and 0 ≤ t− s < δ, then∫ t

s

mi(u) du ≤ ε

2
, ∀ i = 1, . . . , ν .

Now, consider x : J → Bj, with x(·) ∈ CI
j and possibly extend it by constants

to the whole interval I. Also, by the definition of CI
j in (3.14), x(·) determines

f ∈ C such that

x(t) = x(s) +

∫ t

s

f
(
u, x(u)

)
du, for every s, t ∈ J.

Moreover, up to a reordering of the functions f1, . . . , fν whose ε/2-neighborhoods
provide a covering of C, assume that pj(f − f1) ≤ ε/2. Then, for any s, t ∈ J
with 0 ≤ t− s < δ we have

|x(t)− x(s)| ≤
∫ t

s

∣∣f(u, x(u)
)∣∣ du

=

∫ t

s

∣∣f(u, x(u)
)
− f1

(
u, x(u)

)∣∣ du+

∫ t

s

m1(u) du

≤ pj(f − f1) +

∫ t

s

m1(u) du ≤ ε .

Hence, from the arbitrariness of x(·) ∈ CI
j , one has that the set CI

j is equicontin-
uous.
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(iii) The proof of this part is the same as the one of part (ii) of Theorem 3.6
with the exception that now Θ is no more determined by the m-bounds of the
functions in E but as in the statement. Notice that everything is consistent,
since for any I = [q1, q2] ⊂ R, with q1, q2 ∈ Q, and for any j ∈ N, we have that
CI
j ⊂ KIj , where the functions in CI

j are possibly extended by constants to the
whole interval I, as before.

Next, we state the result of continuity of the skew-product flow for the topol-
ogy TD. Notice that, in analogy with Theorem 3.7, we provide a result for both
systems like (3.1) and like (3.2) in the respective hulls. However, a major dif-
ference in the assumptions of the second case occurs, that is, Hull(LCp,TD)(f) is
required to be compact, due to the fact that Theorem 3.8(iii) is used to ob-
tain the result. Incidentally, recall that a characterization of compactness of
Hull(LCp,TD)(f) is given in Corollary 2.36.

As before, let us set some notation first. Considered f ∈ LCp, let us denote
by U1 the subset of R× Hull(LCp,TD)(f)× RN given by

U1 =
⋃

g∈Hull(LCp,TD)(f)

x0∈RN

{(t, g, x0) | t ∈ Ig,x0}.

Moreover, considered a suitable set of moduli of continuity Θ = (θj)j∈N, and the
functions F ∈ ΘC

(
RN×N) and h ∈ ΘC, let us denote by H the set given by

H = Hull(LCp×ΘC×ΘC,TD×TΘ×TΘ)(f, F, h),

and by U2 ⊆ R×H× RN× RN , the set given by

U2 =
⋃

(g,G,k)∈H
x0∈RN

{(t, g, G, k, x0, y0) | t ∈ Ig,x0 , y0 ∈ R} .

Theorem 3.9. Let f ∈ LCp have Lploc-bounded l-bounds.

(i) The set U1 is open in R× Hull(LCp,TD)(f)× RN and the map

Φ1 : U1 ⊂ R× Hull(LCp,TD)(f)× RN → Hull(LCp,TD)(f)× RN ,

(t, g, x0) 7→
(
gt, x(t, g, x0)

)
,

defines a local continuous skew-product flow on Hull(LCp,TD)(f)× RN .

(ii) Furthermore, if Hull(LCp,TD)(f) is compact, Θ is the suitable set of moduli
of continuity given by Theorem 3.8(ii), F ∈ ΘC

(
RN×N), and h ∈ ΘC, then

the set U2 is open in R×H× RN× RN , and the map

Φ2 : U2 ⊂ R×H× RN× RN → H× RN× RN

(t, g, G, k, x0, y0) 7→
(
gt, Gt, kt, x(t, g, x0), y(t, g, G, k, x0, y0)

)
,

defines a local continuous skew-product flow on H× RN× RN .
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Proof. The property of group and of identity at time zero are trivially satisfied.
Moreover, the continuity in the base flows in (i) and (ii) are a direct consequence of
Corollary 2.42, while the continuity of the solutions is given by Theorem 3.8.

3.2 Linearized skew-product flows

In Section 3.1, triangular systems composed of a nonlinear system with vector field
in LC and a linear system with vector field inWΘC or ΘC were treated. This kind
of systems assume additional relevance when the linear system is the variational
equation of the non-linear one. In particular, (depending on the assumptions on
f and on its Jacobian with respect to x) the previous theorems allow to deduce
two different types of skew-product flow and to prove the differentiability of the
solutions of the non-linear equations with respect to the initial data also in some
cases in which the vector field is not differentiable with respect to x, and thus
does not admit a classic variational equation. Such results motivate the definition
of linearized skew-product flows that we will introduce at the end of the section.

The classic theory of Carathéodory ODEs provides the differentiability of the
solutions with respect to the initial conditions when the respective vector fields
are continuously differentiable with respect to x (see Kurzweil [37] and Bressan
and Piccoli [11]). In order to set some notation and for the sake of completeness
we include a proof of such a result.

Theorem 3.10. Let f ∈ LC be continuously differentiable with respect to x for
a.e. t ∈ R and denote by Jxf ∈ SCp

(
RN×N) the Jacobian of f with respect to x.

If x(·, f, x0) and y(·, f, Jxf, x0, y0) are respectively the solutions of the Cauchy
Problems {

ẋ = f(t, x)

x(0) = x0

and

{
ẏ = Jxf

(
t, x(t, f, x0)

)
y

y(0) = y0

defined on any compact interval [T0, T1] included in the maximal interval of defi-
nition If,x0, then we have that

lim
ε→0+

∣∣∣∣x(t, f, x0 + εy0)− x(t, f, x0)

ε
− y(t, f, Jxf, x0, y0)

∣∣∣∣ = 0 ,

uniformly for t ∈ [T0, T1] and y0 ∈ B1.

Proof. Let us simplify the notation, denoting by x(·, x0) = x(·, f, x0), and by
y(·, x0, y0) = y(·, f, Jxf, x0, y0) and consider the case t ∈ [0, T1]; all the other
cases can be worked out analogously. By definition of solution, we have that

x(t, x0 + εy0)− x(t, x0)

ε
= y0 +

1

ε

∫ t

0

[
f
(
s, x(s, x0 + εy0)

)
− f
(
s, x(s, x0)

)]
ds

= y0 +

∫ t

0

(∫ 1

0

Jxf
(
s, ξε(s, α)

)
dα

)
x(s, x0 + εy0)− x(s, x0)

ε
ds,
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where
ξε(s, α) = x(s, x0) + α [x(s, x0 + εy0)− x(s, x0)]

is determined by the fundamental theorem of calculus. Furthermore, by definition

y(t, x0, y0) = y0 +

∫ t

0

Jxf
(
s, x(s, x0)

)
y(s, x0, y0) ds . (3.19)

Therefore, if 0 ≤ t ≤ T1 one has∣∣∣∣x(t, x0 + εy0)− x(t, x0)

ε
− y(t, x0, y0)

∣∣∣∣
≤
∫ t

0

∣∣∣∣(∫ 1

0

Jxf
(
s, ξε(s, α)

)
dα

)[
x(s, x0 + εy0)− x(s, x0)

ε
− y(s, x0, y0)

]∣∣∣∣ ds
+

∫ t

0

∣∣∣∣ [∫ 1

0

(
Jxf
(
s, ξε(s, α)

)
− Jxf

(
s, x(s, x0)

))
dα

]
y(s, x0, y0)

∣∣∣∣ ds . (3.20)

Let us denote by ηε(t, x0, y0) the following integral∫ t

0

∣∣∣∣ [∫ 1

0

(
Jxf
(
s, ξε(s, α)

)
− Jxf

(
s, x(s, x0)

))
dα

]
y(s, x0, y0)

∣∣∣∣ ds . (3.21)

Next, we prove that ηε(t, x0, y0) goes to zero as ε → 0 uniformly in y0 ∈ B1 and
t ∈ [0, T1]. Firstly, let us fix x0 ∈ RN and consider j ∈ N so that ‖x(·, x0)‖∞ < j

and also ‖ξε(·, α)‖∞ < j in [0, T1] for every ε ≤ 1 and every α ∈ [0, 1]. From
(3.19), one has

|y(t, x0, y0)| ≤ |y0|+
∫ t

0

mj(s)|y(s, x0, y0)| ds,

where, up to a rescaling due to the equivalence of the norms in RN×N ,mj(·) ∈ L1
loc

denotes the optimal m-bound for Jxf on Bj. Therefore, using Grönwall Lemma
one has

|y(t, x0, y0)| ≤ |y0| exp

(∫ t

0

mj(s) ds

)
≤ |y0| exp

(∫ T1

0

mj(s) ds

)
.

As a consequence, the solutions y(·, x0, y0) are uniformly bounded for y0 ∈ B1 and
t ∈ [0, T1]. Moreover, notice that ξε(s, α)

ε→0−−→ x(s, x0) uniformly in α ∈ [0, 1],
y0 ∈ B1 and s ∈ [0, T1] and, since Jxf ∈ SCp(RN×N), one also has that for almost
every s ∈ [0, T1]

Jxf
(
s, ξε(s, α)

) ε→0−−→ Jxf
(
s, x(s, x0)

)
uniformly in α ∈ [0, 1]. Now, recalling that we have taken j ∈ N so that
‖x(·, x0)‖∞ < j and also ‖ξε(·, α)‖∞ < j for every ε ≤ 1 and every α ∈ [0, 1],
then we have that∣∣∣∣∫ 1

0

(
Jxf
(
s, ξε(s, α)

)
− Jxf

(
s, x(s, x0)

))
dα

∣∣∣∣ ≤ 2mj(s) (3.22)
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Therefore, applying Lebesgue theorem of dominated convergence one obtains that
limε→0 ηε(T1, x0, y0) = 0 uniformly in y0 ∈ B1, and recalling how ηε(·, x0, y0) is
defined in (3.21) one has

lim
ε→0

ηε(t, x0, y0) = 0, uniformly in y0 ∈ B1 and t ∈ [0, T1]. (3.23)

Now, reasoning as for (3.22), we have∫ 1

0

‖Jxf(s, ξε(s, α))‖ dα ≤ mj(s),

that, together with (3.20), provides∣∣∣∣x(t, x0 + εy0)− x(t, x0)

ε
− y(t, x0, y0)

∣∣∣∣
≤ ηε(t, x0, y0) +

∫ t

0

mj(s)

∣∣∣∣x(s, x0 + εy0)− x(s, x0)

ε
− y(s, x0, y0)

∣∣∣∣ ds ,
and applying Gronwall’s inequality we get∣∣∣∣x(t, x0 + εy0)− x(t, x0)

ε
− y(t, x0, y0)

∣∣∣∣
≤ ηε(t, x0, y0) +

∫ t

0

ηε(s, x0, y0)mj(s) exp

(∫ t

s

mj(r) dr

)
ds

≤ ηε(t, x0, y0) + c

∫ T1

0

ηε(s, x0, y0)mj(s)ds ,

(3.24)

where the positive constant c satisfies c ≥ exp
(∫ T1

0
mj(r) dr

)
. Notice that, as

ε→ 0, the right-hand side of (3.24) vanishes uniformly for t ∈ [0, T1] and y0 ∈ B1,
due to (3.23). As a consequence one has

lim
ε→0+

x(t, f, x0 + εy0)− x(t, f, x0)

ε
= y(t, f, Jxf, x0, y0) , (3.25)

uniformly in t ∈ [0, T1] and y0 ∈ B1, which ends the proof.

Remark 3.11. As follows, we provide conditions that allow to extend such con-
clusions to the solutions x(·, g, x0) and y(·, g, G, x0, y0) of any pair of Cauchy
Problems of the type{

ẋ = g(t, x)

x(0) = x0

and

{
ẏ = G

(
t, x(t, g, x0)

)
y

y(0) = y0

(3.26)

where g ∈ LC and G is either in ΘC or in WΘC and in any case the pair (g,G)

is the limit, in a suitable topology, of a sequence (fn, Jxfn)n∈N for which the
variational equation is well-defined in the classical sense. Notice that g may
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possibly not admit continuous partial derivatives with respect to x and thus G is
possibly not the Jacobian of g with respect to the variable x. However, we will
still prove that

∂x(t, g, x0)

∂x0

· y0 = y(t, g, G, x0, y0) ,

for all t in the maximal interval of definition Ig,x0 of x(t, g, x0) and y(t, g, G, x0, y0).

Theorem 3.12. Consider E1 ⊂ LCp with L1
loc-equicontinuous m-bounds, assume

that all the functions in E1 are continuously differentiable with respect to x for
a.e. t ∈ R and, for any f ∈ E1, assume that Jxf ∈ SCp(RN×N). Let Θ be the
suitable set of moduli of continuity given by the m-bounds of the functions in E1

as in Definition 3.2, and consider

E = cls(LCp×ΘCp,TΘ×TΘ){(f, Jxf) | f ∈ E1} .

For any (g,G) ∈ E, and following the notation of Remark 3.11, if x(t, g, x0) and
y(t, g, G, x0, y0) are the solutions of the Cauchy Problems in (3.26) defined for
t ∈ [T0, T1] ⊂ Ig,x0, then we have that

lim
ε→0+

∣∣∣∣x(t, g, x0 + εy0)− x(t, g, x0)

ε
− y(t, g, G, x0, y0)

∣∣∣∣ = 0 , (3.27)

uniformly for t ∈ [T0, T1] and y0 ∈ B1.

Proof. For any f ∈ E1 we have that (3.27) holds with g = f and G = Jxf thanks
to Theorem 3.10.

Now, consider (g,G) ∈ E and let (fn)n∈N be a sequence of functions in E1

such that (fn, Jxfn)n∈N converges to (g,G) in
(
LCp × ΘCp(RN×N), TΘ × TΘ).

From (3.25), we have that for any n ∈ N, and for any x1, x2 ∈ RN such that
|x1 − x2| ≤ 1, the following equality holds for every t ∈ Ifn,x1 ∩ Ifn,x2

x(t, fn, x1)−x(t, fn, x2) =

∫ 1

0

y
(
t, fn, Jxfn, α x1 + (1−α)x2, x1−x2

)
dα . (3.28)

Then, if [T0, T1] ⊂ Ig,x0 , thanks to Theorem 3.6, we have that the application

[T0, T1]× C ×B → RN× RN , (t, h,H, x̂, ŷ) 7→
(
x(t, h, x̂), y(t, h,H, x̂, ŷ)

)
,

is uniformly continuous and bounded, where

C =
{

(fn, Jxfn)
∣∣ n ∈ N

}
∪
{

(g,G)
}
,

B =
{

(x̂, ŷ) ∈ RN× RN
∣∣ |x̂− x0| ≤ 1, ŷ ∈ B1

}
.

(3.29)

Thus, we have that, as n→∞, equation (3.28) becomes

x(t, g, x1)− x(t, g, x2) =

∫ 1

0

y
(
t, g, G, α x1 + (1− α)x2, x1 − x2

)
dα . (3.30)
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Eventually, if in (3.30) we consider x2 = x0 and x1 = x0 + εy0, where ε ≤ 1 and
y0 ∈ B1, and noticing that, due to the linearity of y(t, g, G, x0 + αεy0, y0) with
respect to the initial data y0

1

ε
y(t, g, G, x0 + αεy0, εy0) = y(t, g, G, x0 + αεy0, y0),

then, we deduce that∣∣∣∣x(t, g, x0 + εy0)− x(t, g, x0)

ε
− y(t, g, G, x0, y0)

∣∣∣∣
=

∣∣∣∣1ε
∫ 1

0

y(t, g, G, x0 + αεy0, εy0) dα− y(t, g, G, x0, y0)

∣∣∣∣
≤
∫ 1

0

|y(t, g, G, x0 + αεy0, y0)− y(t, g, G, x0, y0)| dα .

Then, applying Theorem 3.6 once again, when ε → 0, and reasoning as before,
we obtain the thesis.

As follows, we present an analogous result for the weak topology σΘ used in
Theorem 3.4. However, a stricter assumption on the m-bounds of the Jacobian
of f has to be assumed.

Theorem 3.13. Consider E1 ⊂ LC with L1
loc-equicontinuous m-bounds, assume

that all the functions in E1 are continuously differentiable with respect to x for a.e.
t ∈ R and, assume that {Jxf | f ∈ E1} ⊂ SC(RN×N) has L1

loc-equicontinuous
m-bounds. Let Θ be the suitable set of moduli of continuity given by the m-bounds
of the functions in E1 as in Definition 3.2 and consider

E = cls(LC×WΘC,σΘ×σΘ){(f, Jxf) | f ∈ E1} .

For any (g,G) ∈ E, and following the notation of Remark 3.11, if x(t, g, x0) and
y(t, g, G, x0, y0) are the solutions of the Cauchy Problems in (3.26) defined for
t ∈ [T0, T1] ⊂ Ig,x0, then we have that

lim
ε→0+

∣∣∣∣x(t, g, x0 + εy0)− x(t, g, x0)

ε
− y(t, g, G, x0, y0)

∣∣∣∣ = 0 ,

uniformly for t ∈ [T0, T1] and y0 ∈ B1.

Proof. The proof follows the same arguments of the one of Theorem 3.12, except
for the fact that now (g,G) ∈ E is such that there exists a sequence (fn)n∈N in
E1 so that

(fn, Jxfn)
n→∞−−−→ (g,G) in (LC×WΘC(RN×N), σΘ × σΘ).

Then, because of the L1
loc-equicontinuity of the m-bounds of E1 and of {Jxf |

f ∈ E1}, we can apply Theorem 3.4 and obtain that for any [T0, T1] ⊂ Ig,x0 , the
application

[T0, T1]× C ×B → RN× RN , (t, h,H, x̂, ŷ) 7→
(
x(t, h, x̂), y(t, h,H, x̂, ŷ)

)
,
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is uniformly continuous and bounded, where C and B are the sets in (3.29).
The rest of the proof is the same as the one of Theorem 3.12.

As a consequence of the previous theorems, it makes sense to name linearized
and σ-linearized the skew-product flows obtained in Theorem 3.7(ii) and Theo-
rem 3.5(ii), respectively, when f is continuously differentiable with respect to x
for a.e. t ∈ R, F = Jxf , and h = 0. Particularly, we give the following definition.

Definition 3.14 (Linearized and σ-linearized skew-product flows). Let f ∈ LC

be continuously differentiable with respect to x for a.e. t ∈ R and with L1
loc-

equicontinuous m-bounds. Let Θ be defined as in Remark 3.3 and denote by
Jxf ∈ SC

(
RN×N) the Jacobian of f with respect to the coordinates x.

• If HT = Hull(LC×ΘC,TΘ×TΘ)(f, Jxf) and UT is the subset of R × HT × RN× RN

given by
UT =

⋃
(g,G)∈HT
x0∈RN

{
(t, g, G, x0, y0) | t ∈ Ig,x0 , y0 ∈ RN

}
,

then we call a linearized skew-product flow the map

ΨT : UT ⊂ R×HT × RN× RN → HT × RN× RN

(t, g, G, x0, y0) 7→
(
gt, Gt, x(t, g, x0), y(t, g, G, x0, y0)

)
,

• If Hσ = Hull(LC×WΘC,σΘ×σΘ)(f, Jxf), where Jxf has L1
loc-equicontinuous m-

bounds, and if Uσ is the subset of R×Hσ × RN× RN given by

Uσ =
⋃

(g,G)∈Hσ
x0∈RN

{
(t, g, G, x0, y0) | t ∈ Ig,x0 , y0 ∈ RN

}
,

then, we call a σ-linearized skew-product flow the map

Ψσ : Uσ ⊂ R×Hσ × RN× RN → Hσ × RN× RN

(t, g, G, x0, y0) 7→
(
gt, Gt, x(t, g, x0), y(t, g, G, x0, y0)

)
,

Next we give a simple example, for N = 1, exhibiting the phenomenon cited
in Remark 3.11. That is a limit problem for which the variational equation is not
defined but, thanks to the continuity of the skew-product flow, it is still possible
to obtain the differentiability of the solutions with respect to initial data.

Example 3.15. Consider the continuous function H : R→ R such that H(t) = 0

if t < 0 and, for any n ∈ N, H(t) is defined in the interval [4n, 4n+ 4] as follows:

H(t) =



(1 + n)(t− 4n), if t ∈ I1
n =

[
4n, 4n+ 1

n+1

]
,

1, if t ∈ I2
n =

[
4n+ 1

n+1
, 4n+ 2− 1

n+1

]
,

−(1 + n)(t− 4n− 2), if t ∈ I3
n =

[
4n+ 2− 1

n+1
, 4n+ 2 + 1

n+1

]
,

−1, if t ∈ I4
n =

[
4n+ 2 + 1

n+1
, 4n+ 4− 1

n+1

]
,

(1 + n)(t− 4n− 4), if t ∈ I5
n =

[
4n+ 4− 1

n+1
, 4n+ 4

]
.



80 3. Continuity of the flow for Carathéodory ODEs

0

1

1

-2 2 4 6 8 10 12

-1

-

1

0

Figure 3.1: The function H(t).
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Figure 3.2: The function H(t).

Notice that, by construction (see also Figure 3.1), one has that for any n ∈ N∫ 4n+4

4n

H(s) ds = 0, (3.31)

and as n→∞ the measures of I1
n, I3

n and I5
n go to zero, whereas the measures of

I2
n and I4

n go to 2. Thus, if we consider the sequence of translations of H given
by
(
H4k(·)

)
k∈N, we have that

H4k(t)
k→∞−−−→ H(t) =


0, if t = 4n,

1, if t ∈ (4n, 4n+ 2),

0, if t = 4n+ 2,

−1, if t ∈ (4n+ 2, 4n+ 4),

n ∈ Z , ∀ t ∈ R .

Notice that H(·) is a Borel function because of being a pointwise limit of contin-
uous functions. Now consider the function h : R→ R defined by

h(t) =

∫ t

0

H(s) ds .

Clearly h ∈ C1(R) since for all t ∈ R we have that h′(t) = H(t) and thus we
also have that |h′(t)| ≤ 1; consequently, h has Lipschitz constant equal to 1.
Moreover, |h(t)| ≤ 2 for any t ∈ R; indeed, thanks to (3.31), for each t ∈ R there
exists n0 ∈ N such that

|h(t)| =
∣∣∣∣∫ t

4n0

H(s) ds

∣∣∣∣ ≤ 2.

Therefore, cls{hτ (·) | τ ∈ R} is compact in C(R) endowed with the compact
open topology and

(
h4k(·)

)
k∈N converges uniformly on compact sets, up to a
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subsequence, to some bounded and Lipschitz function h. Notice that

h4k(t) = h(t+ 4k) =

∫ t+4k

0

H(s) ds =

∫ t

−4k

H(u+ 4k) du

=

∫ 0

−4k

H4k(u) du+

∫ t

0

H4k(u) du =

∫ t

0

H4k(u) du ,

where the last equality is due to (3.31). Therefore, if in the previous chain of
equalities we pass to the limit as k →∞ and use Lebesgue Theorem of dominated
convergence, we have that

h(t) =

∫ t

0

H(s) ds.

Now, consider the functions f ∈ LCp and F ∈ SCp defined by

f(t, x) = h
(
t+

x

3

)
and F (t, x) =

1

3
H
(
t+

x

3

)
.

Since we already showed that for all t ∈ R one has |h(t)| ≤ 2 and |h′(t)| ≤ 1, then
we have that f has a bounded m-bound, m = 2, and a bounded l-bound, l = 1,
and they hold for all x ∈ R. As a first consequence, from Remark 3.3, we have the
common modulus of continuity θ(t) = 2t. Then, consider Hull(LCp×ΘC,Tθ×Tθ)(f, F ),
where, according to the notation used since the beginning of the section, we may
write F = Jxf .

Now, let us consider the following family of differential systems whose vector
fields are in the Hull(LCp×ΘCp,Tθ×Tθ)(f, F ),{

ẋ = f4k(t, x)

ẏ = F4k

(
t, x(t)

)
y

k ∈ N . (3.32)

One can easily check that, for any k ∈ N, the second differential equation in (3.32)
is the variational equation of the first one, evaluated along the solution x(t) of
the first equation. Moreover, since h4k(t)

k→∞−−−→ h(t) uniformly on compact sets,
then f4k(t, x)

k→∞−−−→ g(t, x) in TD, where g(t, x) = h (t+ x/3). Actually, since f
has a bounded l-bound, then it satisfies the hypothesis of Corollary 2.32, and
thus the convergence f4k(t, x)→ g(t, x) holds for any of the considered topologies
and in particular in Tθ. Furthermore, we claim that F4k → G in Tθ, where
G(t, x) = (1/3)H (t+ x/3). Indeed, for any compact interval I ⊂ R, any j ∈ N,
and any z(·) ∈ C(I, Bj) with θ(t) = 2t as modulus of continuity, we have∫

I

∣∣F4k

(
t, z(t)

)
−G

(
t, z(t)

)∣∣pdt
=

1

3p

∫
I

∣∣∣∣H4k

(
t+

z(t)

3

)
−H

(
t+

z(t)

3

)∣∣∣∣p dt
≤ 31−p

∫
I

∣∣∣∣H4k

(
t+

z(t)

3

)
−H

(
t+

z(t)

3

)∣∣∣∣p ∣∣∣∣1 +
z′(t)

3

∣∣∣∣ dt
≤ 1

3p

∫
I+[−j/3,j/3]

∣∣H4k (s)−H (s)
∣∣p ds ,
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where, in the first inequality, z′(t) is the derivative almost everywhere of z(t),
whose existence is granted by the fact that z(t) is Lipschitz, and we use the fact
that 1/3 ≤ |1 + z′(t)/3| for almost every t ∈ I. Moreover, the theorem of change
of variables for the measurable case (see [31, Corollary 20.5, p.344]) has been used
in the last inequality. Therefore, since (H4k(s))k∈N converges almost everywhere
to H(s), the Lebesgue theorem of dominated convergence gives us the result.
Finally, notice that G(t, x) is a Borel function. Hence, thanks to Theorem 2.6,
we have that G ∈ ΘCp.

In order to conclude that we are in front of a non trivial case of linearized skew
product flow, we only need to check that G /∈ SCp, that is, G does not satisfy (S),
and G does not coincide almost everywhere with a function inSCp. Firstly, notice
that for each fixed t ∈ R there is a numerable quantity of discontinuities in the
variable x. In fact, given x0 ∈ R such that t + x0/3 = 4n for some n ∈ N, we
have that

lim
x→x−0

G(t, x) =
1

3
and lim

x→x+
0

G(t, x) = −1

3
.

Therefore, for each t ∈ R the function G is not continuous in the variable x and
thus in particular it does not satisfy (S). Furthermore, the set{

(t, x) ∈ R2 | lim
z→x−

G(t, z) 6= lim
z→x+

G(t, z)
}

is not negligible and thus it is not possible to change G in a subset of R2 of
measure zero so that it coincides with a function in SCp.

3.3 Exponential dichotomy and dichotomy spec-
trum

In this section we look more deeply into the properties of the linearized skew-
product flows introduced at the end of last section. In particular, we investigate
the behavior of the solutions of the linear system when it has exponential di-
chotomy and study its dichotomy spectrum. Firstly, let us state some assump-
tions and simplify the notation.

Let H be either HT or Hσ as defined in Definition 3.14, and assume that for
each (g,G) ∈ H. the solutions of{

ẋ = g(t, x) , x(0) = x0 ,

ẏ = G(t, x) y , y(0) = y0 ,

are globally defined or, equivalently, x(·, g, x0) is globally defined. As a conse-
quence, the linearized skew-product flow is defined on the whole R×H×RN×RN .
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Moreover, denoting by Ω = H×RN , any of the continuous skew-product flows
in Definition 3.14 can be read as a continuous linear skew-product flow

Ψ: R× Ω× RN → Ω× RN

(t, ω, y0) 7→
(
ωt, y(t, ω, y0)

)
,

(3.33)

where the flow on the base R × Ω → Ω, (t, ω) 7→ ωt is defined, for each ω =

(g,G, x0), by ωt =
(
gt, Gt, x(t, g, x0)

)
. Additionally, consider the function A :

Ω→ RN×N defined as follows

A(ω) =

 lim
h→0

1

h

∫ h

0

G
(
s, x(s, g, x0)

)
ds if the limit exists

0 otherwise.

Notice that, in fact,

A(ωt) = G
(
t, x(t, g, x0)

)
for a.e. t ∈ R. (3.34)

Indeed, fixed ωt =
(
gt, Gt, x(t, g, x0)

)
, one has

lim
h→0

1

h

∫ h

0

Gt

(
s, x
(
s, gt, x(t, g, x0)

))
ds = lim

h→0

1

h

∫ h

0

G
(
s+ t, x(s+ t, g, x0)

)
ds

= lim
h→0

1

h

∫ t+h

t

G
(
u, x(u, g, x0)

)
du = G(t, x(t, g, x0)) for a.e. t ∈ R,

where the last step in the previous chain of equalities is due to Corollary III.12.7
in [24], which implies (3.34).

Then, the family of systems ẏ = G(t, x(t, g, x0)) y, with ω = (g,G, x0) ∈ Ω,
can be written as follows

ẏ = A(ωt) y , ω ∈ Ω . (3.35)

Thus, if Φ(t, ω) denotes the fundamental matrix solution of the system corre-
sponding to ω with Φ(0, ω) = IN , we have that y(t, ω, y0) = Φ(t, ω) y0.

Let us recall that the linear skew-product flow (3.33), or that the family
(3.35), has exponential dichotomy on I over the set ∆, if the linear skew-product
flow (3.33) satisfies the conditions given in Definition 1.14, i.e. there are a contin-
uous family of projections P : ∆→ L(RN ,RN), ω 7→ P (ω), and constants K ≥ 1

and α > 0, such that for every s, t ∈ I and every ω ∈ ∆ one has∥∥Φ(t, ω)P (ω) Φ−1(s, ω)
∥∥ ≤ K e−α (t−s) if t ≥ s,∥∥Φ(t, ω)

(
IN − P (ω)

)
Φ−1(s, ω)

∥∥ ≤ K eα (t−s) if t ≤ s.
(3.36)

In particular, when ∆ reduces to a point ω = (f,G, x0), it is said that the
corresponding system ẏ = A(ωt) y, i.e. ẏ = G(t, x(t, g, x0) y has exponential
dichotomy on I.
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Definition 3.16. The set A(ω) will denote the alpha limit set of a point ω =

(g,G, x0) ∈ Ω, that is, ω̂ = (ĝ, Ĝ, x̂0) ∈ A(ω) if there is a sequence (tn)n∈N in R
such that tn ↓ −∞ and ω̂ = limn→∞ ωtn in the corresponding product topology,
i.e. (ĝ, Ĝ, x̂0) = limn→∞(gtn , Gtn , x(tn, g, x0)).

Analogously ω̂ = (ĝ, Ĝ, x̂0) belongs to the omega limit set O(ω) if there is a
sequence (tn)n∈N in R such that tn ↑ ∞ and ω̂ = limn→∞ ωtn , i.e. (ĝ, Ĝ, x̂0) =

limn→∞(gtn , Gtn , x(tn, g, x0)). Finally, H(ω) will denote the closure in Ω of the set
{ωt = (gt, Gt, x(t, g, x0)) | t ∈ R} for the corresponding product topology on Ω.

The next result shows how the exponential dichotomy of a particular system
can be transferred to the exponential dichotomy of the skew-product flow over
its alpha limit set, its omega limit set or its hull.

Proposition 3.17. Let ω = (g,G, x0) ∈ Ω.

(i) If the linear system ẏ = A(ωt) y has exponential dichotomy on (−∞, 0],
then the skew-product flow (3.33) has exponential dichotomy over the alpha
limit set A(ω) ⊂ Ω.

(ii) If the linear system ẏ = A(ωt) y has exponential dichotomy on [0,∞), then
the skew-product flow (3.33) has exponential dichotomy over the omega limit
set O(ω) ⊂ Ω.

(iii) If the linear system ẏ = A(ωt) y has exponential dichotomy, then the skew-
product flow (3.33) has exponential dichotomy over the hull H(ω) ⊂ Ω.

Proof. (i) Let P (ω) be the projection corresponding to the exponential dichotomy
on (−∞, 0] for the system ẏ = A(ωt) y and define the family of projections

P (ωr) = Φ(r, ω)P (ω) Φ−1(r, ω) for each r ≤ 0 . (3.37)

Then, one has∥∥Φ(t, ωr)P (ωr) Φ−1(s, ωr)
∥∥ =

∥∥Φ(t, ωr) Φ(r, ω)P (ω) Φ−1(r, ω) Φ−1(s, ωr)
∥∥

=
∥∥Φ(t+ r, ω)P (ω) Φ−1(s+ r, ω)

∥∥ and∥∥Φ(t, ωr) (IN − P (ωr)) Φ−1(s, ωr)
∥∥

=
∥∥Φ(t, ωr) Φ−1(s, ωr)− Φ(t, ωr) Φ(r, ω)P (ω) Φ−1(r, ω) Φ−1(s, ωr)

∥∥
=
∥∥Φ(t, ωr) Φ(r, ω) Φ−1(r, ω) Φ−1(s, ωr)− Φ(t+ r, ω)P (ω) Φ−1(s+ r, ω)

∥∥
=
∥∥Φ(t+ r, ω) (IN − P (ω)) Φ−1(s+ r, ω)

∥∥ .
Consequently, one has∥∥Φ(t, ωr)P (ωr) Φ−1(s, ωr)

∥∥ ≤ K e−α (t−s) if s ≤ t ≤ −r,∥∥Φ(t, ωr)
(
IN − P (ωr)

)
Φ−1(s, ωr)

∥∥ ≤ K eα (t−s) if t ≤ s ≤ −r.
(3.38)
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Next we take ω̂ ∈ A(ω) with ω̂ = limn→∞ ωrn for a sequence rn ↓−∞. From (3.37)
and (3.36), we deduce that ‖P (ωr)‖ ≤ K for every r ≤ 0 and hence, the sequence
of projections

(
P (ωrn)

)
n∈N admits a subsequence converging to a projection P (ω̂),

whose uniqueness is guaranteed by Proposition 1.56 in [34]. From this fact, (3.38)
and the continuity of the flow on the base Ω, we deduce that ẏ = A(ω̂t) y admits
exponential dichotomy with projection P (ω̂), that is∥∥Φ(t, ω̂)P (ω̂) Φ−1(s, ω̂)

∥∥ ≤ K e−α (t−s) if t ≥ s∥∥Φ(t, ω̂)
(
IN − P (ω̂)

)
Φ−1(s, ω̂)

∥∥ ≤ K eα (t−s) if t ≤ s.
(3.39)

In order to conclude the proof, we show the continuity of

P : A(ω)→ L(RN ,RN), ω̂ 7→ P (ω̂).

To the aim, consider a sequence (ω̂n)n∈N in A(ω) converging to some ω̂ ∈ A(ω)

and let us prove that
(
P (ω̂n)

)
n∈N converges to P (ω̂). As before, from (3.39),

with t = s, one has that for all n ∈ N: ‖P (ω̂n)‖ ≤ K and thus, it converges, up
to a subsequence, to a projection P̂ , and again, from (3.39) for each n ∈ N, the
continuity of the flow on the base Ω and the uniqueness of the projection, we have
that P̂ = P (ω̂). Then, one has the exponential dichotomy of the skew-product
flow (3.33) over A(ω), as stated in (i).

The proofs of (ii) and (iii) are omitted because analogous.

Before proceeding, recall that taken ∆ ⊂ Ω, the dichotomy spectrum of the
linear skew-product flow (3.33) over ∆, denoted by Σ(∆), is the set of γ ∈ R
such that the family ẏ =

(
A(θtω)−γ IN

)
y does not have exponential dichotomy

over ∆. As a consequence of the previous theorem we can relate the spectrum of
ω ∈ Ω to the spectrum of its hull.

Remark 3.18. Considered two subsets ∆1 and ∆2 of Ω such that ∆1 ⊂ ∆2,
and recalling Definition 1.15, one has that Σ(∆1) ⊂ Σ(∆2). Therefore, since in
particular {ω} ⊂ H(ω), we have that Σ(ω) ⊂ Σ

(
H(ω)

)
. However, by Proposi-

tion 3.17(iii), we actually have that

Σ(ω) = Σ
(
A(ω)

)
= Σ

(
O(ω)

)
= Σ

(
H(ω)

)
,

which in turn implies that for any ω1 ∈ H(ω) one has

Σ(ω1) ⊂ Σ
(
H(ω)

)
= Σ(ω).

As we have already noticed in Section 1.2.2, Sacker and Sell [51] proved that,
if ∆ is an invariantly connected compact invariant set of Ω, then Σ(∆) is the
union of k compact intervals

Σ(∆) = [a1, b1] ∪ · · · ∪ [ak, bk] ,
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where 1 ≤ k ≤ N and a1 ≤ b1 < a2 ≤ b2 < · · · ≤ ak ≤ bk.

However, from Proposition 3.17 we deduce that Σ(ω) = Σ
(
H(ω)

)
but H(ω)

is not necessarily compact. Yet, we can look into the dichotomy spectrum in-
troduced by Siegmund in [55] for a single system. In particular, due to The-
orem 1.20, a linear system ẏ = A(ωt) y keeps having a spectrum like Σ(ω) =

[a1, b1]∪· · ·∪ [ak, bk] if and only if it has bounded growth, i.e. there exist constants
K ≥ 1 and α ≥ 0 such that

‖Φ(t, ω) Φ−1(s, ω)‖ ≤ K eα |t−s| for t, s ∈ R.

Moreover, in such a case the spectral manifoldsW0 andWk+1 (see Theorem 1.19)
are trivial, i.e. R× RN =W1 ⊕ · · · ⊕Wk.

We finish this section looking into conditions under which Carathéodory sys-
tems have bounded growth and thus the dichotomy spectrum Σ(ω) = Σ

(
H(ω)

)
is a finite number of compact intervals as in the Sacker-Sell dichotomy spectrum.

Proposition 3.19. Let ω = (g,G, x0) ∈ Ω fixed. Assume that G has L1
loc-

bounded m-bounds and that x(·, g, x0) is bounded. Then the system ẏ = A(ωt) y

has bounded growth and Σ(ω) = [a1, b1] ∪ · · · ∪ [ak, bk].

Proof. Using the notation introduced in Theorem 1.2, let Ig,x0 be the interval of
definition of x(·, g, x0) and let j ∈ N be such that ‖x(·, g, x0)‖L∞(Ig,x0 ) ≤ j. If mj

is an m-bound of G on Bj satisfying the assumption of L1
loc-boundedness, then

there is a positive constant α such that

sup
s∈R

∫ 1

0

mj(r + s) dr ≤ α . (3.40)

Consider s, t ∈ Ig,x0 and assume that s ≤ t, the other case being analogous.
Notice that Φ(t, ω) Φ−1(s, ω) y0 = y(t, ω, s, y0). Then

|y(t, ω, s, y0)| ≤ |y0|+
∫ t

s

‖G(u, x(u, g, x0))‖ |y(u, ω, s, y0)| du ,

and Gronwall inequality provides

|y(t, ω, s, y0)| ≤ |y0| exp

(∫ t

s

‖G(u, x(u, g, x0))‖ du
)

= |y0| exp

(∫ t−s

0

‖Gs(r, x(r + s, g, x0))‖ dr
)
.

(3.41)

Using the equivalence of the 2-norm and the matrix norm, and up to rescaling
mj(·) by a constant, we deduce that

‖Gs(r, x(r + t, g, x0)‖ ≤ mj(r + s) .
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Then, from (3.41), and using (3.40) on a finite covering of the interval [0, t− s]
with subintervals of unit length, we can conclude that

|y(t, ω, s, y0)| ≤ K eα (t−s)|y0|

for an appropriate constant K ≥ 1, which ends the proof.

Recall that Ω is defined as either HT × RN or Hσ × RN , where Hσ and HT
are defined in Definition 3.14. Notice that in the case in which Ω = HT × RN

both the assumptions of Proposition 3.19 are necessary, whereas if Ω = Hσ×RN ,
then the L1

loc-boundedness for the m-bounds of G is already implied by the L1
loc-

equicontinuity for the m-bounds of Jxf thanks to Proposition 2.29.

3.4 More applications

We conclude the chapter presenting a theoretical application of the continuity
results contained in Section 3.1, and examples from control theory and compart-
mental dynamical systems.

3.4.1 Existence of solutions for a differential problem in
WΘC

As follows we give a theorem of existence of the solutions for differential prob-
lems whose vector fields are in WΘC, i.e. not necessarily continuous in the space
variables either. The underlying condition is that such vector fields are limit of
sequences in SC with L1

loc-equicontinuous m-bounds in the topology σΘ (or any
stronger topology of course), where Θ is the suitable set of moduli of continu-
ity given by the m-bounds as in Definition 3.2. Notice that this approach has
some similarities with the work on discontinuous autonomous systems by Dieci
et al. [23].

Theorem 3.20. Let (fn)n∈N be a sequence in SC with L1
loc-equicontinuous m-

bounds and Θ be the suitable set of moduli of continuity given by the m-bounds
as in Definition 3.2. Assume that (fn)n∈N converges to some f in (WΘC, σΘ)

and that (x0,n)n∈N is a sequence in RN converging to x0 ∈ RN . Then, denoting
by xn(·) a solution, in the sense of Definition 1.1, for the differential problem
ẋ = fn(t, x) defined on the maximal interval (an, bn) and such that 0 ∈ (an, bn)

and xn(0) = x0,n, we have

(i) lim supn→∞ an = a∗ < 0, and lim infn→∞ bn = b∗ > 0.

(ii) There exist a∗ < a < b < b∗ and a continuous function x(·) such that, up to
a subsequence,

xn(·) n→∞−−−→ x(·)

uniformly on the compact subsets of (a, b).
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(iii) For every s, t ∈ (a, b), the function x(·) satisfies

x(t) = x(s) +

∫ t

s

f
(
u, x(u)

)
du .

Proof. Firstly, we aim to prove that b∗ > 0. Assume, on the contrary, that
lim infn→∞ bn = 0, that is, up to a subsequence, (bn)n∈N converges to 0. Moreover,
consider the following constant

0 < ρ = 1 + max
{
|x0,n| | n ∈ N

}
, (3.42)

and, for every n ∈ N, set

Tn = sup{t ∈ [0, bn) | |xn(s)| ≤ ρ ∀ s ∈ [0, t]}. (3.43)

Since, for every n ∈ N, one has 0 ≤ Tn ≤ bn by construction, and since (bn)n∈N
converges to 0 by assumption, then one has that

lim
n→∞

Tn = 0. (3.44)

Consider j ∈ N so that ρ < j and let
(
mn(·)

)
n∈N =

(
mj
fn

(·)
)
n∈N be the sequence of

optimal m-bounds of (fn)n∈N on Bj. Fixed 0 < ε < 1, by the L1
loc-equicontinuity

of the m-bounds of the sequence (fn)n∈N, there exists δ > 0 such that

0 ≤ t < δ ⇒ sup
n∈N

∫ t

0

mj
n(s) ds < ε. (3.45)

However, by (3.44), one has that there exists n0 ∈ N such that if n > n0 then
Tn < δ and thus, by definition of solution, and using (3.45) and (3.42), one has

|xn(Tn)| ≤ |xn(0)|+
∫ Tn

0

mj
n(s) ds ≤ ρ− 1 + ε < ρ , (3.46)

which is a contradiction due to the fact that for every n ∈ N, |xn(Tn)| = ρ thanks
to the continuity of xn(·) and (3.43). Therefore, one has that that lim infn→∞ bn =

b∗ > 0. Analogous reasonings holds for a∗, which concludes part (i).
As regards (ii) and (iii), we prove the existence of x(·) in [0, b). Analogous

arguments leads to the result in the interval (a, 0]. Consider the constant ρ defined
in (3.42), and define zn : [0,∞)→ RN by

zn(t) =

{
xn(t), if 0 ≤ t < Tn

xn(Tn), if Tn < +∞ and Tn ≤ t,

where, for every n ∈ N, Tn is the one defined in (3.43). Notice that by (3.42) and
by the continuity of the functions xn(·), n ∈ N, we have that Tn > 0 for any n ∈ N.
In particular, notice that

(
zn(·)

)
n∈N is uniformly bounded. For the fixed j ∈ N



3.4 More applications 89

such that ρ < j, and recalling that we denoted by
(
mn(·)

)
n∈N =

(
mj
fn

(·)
)
n∈N, the

sequence of optimal m-bounds of (fn)n∈N on Bj, we have that, if t1, t2 ∈ [0, Tn),
and t1 < t2, then

|zn(t1)− zn(t2)| ≤
∫ t2

t1

∣∣fn(s, zn(s)
)∣∣ ds ≤ ∫ t2

t1

mn(s) ds . (3.47)

Fixed ε > 0, since {fn | n ∈ N} admits L1
loc-equicontinuousm-bounds, there exists

δ = δ(ε) > 0 such that, if 0 ≤ t1 ≤ t2 < Tn, and t2 − t1 < δ, then the right-hand
side in (3.47) is smaller than ε. In fact, the inequality |zn(t1)−zn(t2)| < ε is always
true in [0, b∗) whenever t2 − t1 < δ because in [Tn, b

∗) the difference on the left-
hand side of (3.47) is zero. Thus, the sequence

(
zn(·)

)
n∈N is equicontinuous. Then,

Ascoli-Arzelá’s theorem implies that, up to a subsequence,
(
zn(·)

)
n∈N converges

uniformly to some continuous function x : I → RN in any compact interval
I ⊂ [0, b∗). In this way it is possible to define x(·) on the whole [0, b∗). Moreover,
set

b = sup{t ∈ [0, b∗) | |x(s)| < ρ− 1/2 ∀ s ∈ [0, t]} ,

and notice that b > 0 because (x0,n)n∈N converges to x0, x(·) is continuous
and (3.42) holds. Since zn(·) converges uniformly to x(·) in any compact interval
[0, b1], with b1 < b then there exists n0 ∈ N such that if n > n0, then

|zn(t)| < ρ− 1/4 ∀ t ∈ [0, b1] .

Therefore, for any t ∈ [0, b1] and for any n > n0 one has zn(t) = xn(t) and thus

zn(t) = x0,n +

∫ t

0

fn
(
s, zn(s)

)
ds , t ∈ [0, b1] , n > n0 . (3.48)

Since we already know that zn(·) converges uniformly to x(·) in [0, b1], if we prove
that for any t ∈ [0, b1] one has

lim
n→∞

∫ t

0

fn
(
s, zn(s)

)
ds =

∫ t

0

f
(
s, x(s)

)
ds, (3.49)

then, passing to the limit as n→∞ in (3.48), we would have that x(·) is a solution
of the limit problem ẋ = f(t, x), x(0) = x0 in [0, b1]. Let us fix t ∈ [0, b1]∩Q and
consider the compact set K = {zn(·) | n ∈ N} ∪ {x(·)} ⊂ C

(
[0, t],RN

)
. Notice

that K ⊂ K[0,t]
j for the previously identified j ∈ N and thus one has∣∣∣∣ ∫ t

0

[
fn
(
s, zn(s)

)
− f

(
s, x(s)

)]
ds

∣∣∣∣
≤
∣∣∣∣ ∫ t

0

[
fn
(
s, zn(s)

)
− f

(
s, zn(s)

)]
ds

∣∣∣∣+

∣∣∣∣ ∫ t

0

[
f
(
s, zn(s)

)
− f

(
s, x(s)

)]
ds

∣∣∣∣
≤ sup
y(·)∈K[0,t]

j

∣∣∣∣∫ t

0

[
fn
(
s, y(s)

)
− f

(
s, y(s)

)]
ds

∣∣∣∣+

∣∣∣∣∫ t

0

[
f
(
s, zn(s)

)
− f

(
s, x(s)

)]
ds

∣∣∣∣.



90 3. Continuity of the flow for Carathéodory ODEs

Now, in the last step of the previous chain of inequalities, the first integral goes
to zero as n→∞ because, by assumption, (fn)n∈N converges to f in σΘ, and
the second integral goes to zero as n→∞ because f ∈ WΘC and (zn(·))n∈N
converges uniformly to x(·) in [0, b1] (see (W) in Definition 2.4). Hence, from
(3.48), (3.49) and recalling that (x0,n)n∈N converges to x0 as n→∞ one has

x(t) = x0 +

∫ t

0

f
(
s, x(s)

)
ds for t ∈ [0, b1] ∩Q . (3.50)

As a matter of fact, the equality holds on the whole interval [0, b1]. Indeed, for
any t ∈ [0, b1], if (qn)n∈N is a sequence in Q such that qn ↑ t as n→∞, then,
using (3.50) one has∣∣∣∣x(t)− x0 −

∫ t

0

f
(
s, x(s)

)
ds

∣∣∣∣ ≤ |x(t)− x(qn)|+
∣∣∣∣ ∫ t

qn

f
(
s, x(s)

)
ds

∣∣∣∣
≤ |x(t)− x(qn)|+

∫ t

qn

mj
f (s) ds,

where mj
f (·) ∈ L1

loc is an m-bound for f on Bj. Thus, one obtains (3.50) for all
t ∈ [0, b1] due to the continuity of x(·) and of the Lebesgue integral.

Therefore, recalling that zn(·) = xn(·) in [0, b1], we have that (xn(·))n∈N con-
verges uniformly to x(·) in [0, b1] (which finishes part (ii)), and also that x(·) is
an absolutely continuous function solving the Carathéodory initial value problem
ẋ = f(t, x), x(0) = x0, with f ∈WΘC (which finishes part (iii)). Notice that such
a problem and its integral solution are well-defined thanks to Proposition 2.6.

Remark 3.21. A concrete example of a differential equation in WΘC for which
we can provide a solution through the application of Theorem 3.20 is given by

ẋ = G(t, x), with F4n
n→∞−−−→ G in (WΘC, σΘ), and F ⊂ LC,

where F and G are the functions defined in Example 3.15 and Θ = {2t}. Notice
that in Example 3.15, we proved that (F4n)n∈N converges to G in (ΘC, TΘ) and
thus it also converges in (WΘC, σΘ).

3.4.2 Digitization of a non-autonomous control system

As follows, we show how some of the results contained in this thesis can be applied
to study the digitization of non-autonomous control system like

ẋ = f(t, x, u),

where f : U ⊂ R × RN × RM → RN is continuous and sufficiently regular.
Particularly, any digitization method of a control system consists of a systematic
way of constructing differential problems of the type

ẋ = f δ(t, x, u) , with t ∈ R, x ∈ RN , u ∈ RM ,
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where f δ is a Borel function which is piece-wise constant with respect to the
variable t, and approximates f in some sense that will be made clear later.

The interest of the digitization of a non-autonomous control system resides in
its applications in real science. For example, digitization is useful for the inves-
tigation of numerically approximated control systems or in those cases in which
one has to “sample” a vector field in a systematic way during an experiment. The
importance of proving the robustness of some stability properties under a digiti-
zation method, is thus obvious. Further applications in problems of engineering
or control theory can be found in L. Grüne [27] and D. Nešić et al. [40].
Let f : R× R2N → RN be such that, for any j ∈ N,

• f is bounded and uniformly continuous in R×Bj and

• there exist constants mj > 0 and lj > 0 such that

|f(t, x, u)| ≤ mj, and |f(t, x, u)− f(t, y, v)| ≤ lj|(x, u)− (y, v)|, (3.51)

for all t ∈ R and (x, u), (y, v) ∈ Bj ⊂ RN+M .

We will consider the following digitization method: let δ be a positive number,
for every k ∈ Z denote by Ik the interval [kδ, (k + 1)δ], and define the function
f δ : U ⊂ R× RN × RM → RN , by

f δ(t, x, u) =
1

δ

∑
k∈Z

χIk(t)

∫ (k+1)δ

kδ

f(s, x, u) ds , (3.52)

where χI(·) is the characteristic function of the interval I ⊂ R. The function f δ

is piece-wise continuous with respect to t. Additionally, for every ε > 0 there
exists a δ > 0 such that for all s, t ∈ R and (x1, u1), (x2, u2) ∈ Bj,

|t− s|+ |(x1 − x2, u1 − u2)| < 2δ ⇒ |f(t, x1, u1)− f(s, x2, u2)| < ε,

because for any j ∈ N we have that f is uniformly continuous in R × Bj by
assumption. Therefore, taken (x1, u1), (x2, u2) ∈ Bj with |(x1 − x2, u1 − u2)| < δ

one has

|f(t, x1, u1)− f δ(t, x2, u2)| ≤ 1

δ

∑
k∈Z

χIk(t)

∫ (k+1)δ

kδ

|f(t, x1, u1)− f(s, x2, u2)| ds < ε.

Thus, one has that for any j ∈ N and ε > 0, there exists δ = δ(j, ε) > 0 such that

‖f − f δ‖L∞(R×Bj) < ε (3.53)

We claim that for any δ > 0, f δ ∈ LCp. Firstly, notice that f δ is Borel. Moreover,
one has that for all t ∈ R and (x, u) ∈ Bj ⊂ RN+M

|f δ(t, x, u)| ≤ 1

δ

∑
k∈Z

χIk(t)

∫
Ik

|f(s, x, u)| ds ≤ mj
∑
k∈Z

χIk(t) δ
1

δ
= mj, (3.54)
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and, for all t ∈ R and (x, u), (y, v) ∈ Bj ⊂ RN+M ,

|f δ(t, x, u)− f δ(t, y, v)| ≤ 1

δ

∑
k∈Z

χIk(t)

∫
Ik

|f(s, x, u)− f(s, y, v)| ds

≤ lj|(x, u)− (y, v)|
∑
k∈Z

χIk(t) δ
1

δ

= lj|(x, u)− (y, v)| .

(3.55)

As a consequence, f δ has the same m-bound and l-bound of f on Bj (due to the
assumptions on f and the chosen digitization method), and thus f δ ∈ LCp.

Now, let us consider E ⊂ LCp(RN) composed of the functions which, for
each j ∈ N, admit mj and lj as an m-bound and an l-bound, respectively, on
Bj ⊂ RN × RM . Notice that, trivially, E has L1

loc-bounded m-bounds and L1
loc-

bounded l-bounds. Consequently, reasoning as in the proof of Theorem 2.26, we
obtain that E is closed and, thanks to Theorem 2.31, all the considered strong
topologies coincide on E.

Furthermore, for any g ∈ E one has that also gt ∈ E for all t ∈ R, and that
due to (3.51), (3.54) and (3.55), f, f δ ∈ E for all δ > 0. Therefore, if T is any of
the considered strong topologies, one has

Hull(LC,T )(f) ⊂ E, and Hull(LC,T )(f
δ) ⊂ E. (3.56)

In fact, (3.56) is true also for the metric topology TUP on LC used in [25]. TUP is
induced by the following family of seminorms

pr,j(g) = sup
(x,u)∈Bj

[∫ r

−r
|g(t, x, u)|pdt

]1/p

, with r, j ∈ N and g ∈ LC,

and define the metric

d(g1, g2) =
∑
j∈N

1

2j

(∑
r∈N

1

2r
pr,j(g1 − g2)

1 + pr,j(g1 − g2)

)
. (3.57)

Notice that TUP can be seen as a topology TΘ with the trivial set of moduli of
continuity Θ0 = {0}. In particular, for any dense and countable set D ⊂ RN+M

and for any suitable set of moduli of continuity Θ, one has that

TD ≤ TUP ≤ TΘ ≤ TB,

and thus, thanks to the L1
loc-boundedness of the l-bounds of E, TUP coincides

with the other topologies on E.

Actually, we can say a little bit more about the hull of f . Let us consider
Hull(f) with respect to the compact-open topology. Since f is bounded and
uniformly continuous on R×K, where K is any compact subset of RN+M , then
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Hull(f) is compact (see Example 1.12 and specifically Theorem 1.13), and thus it
coincides with Hull(LCp,T )(f), where T is any of the considered strong topologies.
In other words we have

Hull(f) = Hull(LC,T )(f) ⊂ E, where T ∈ {TD, TUP , TΘ, TB}.

Furthermore, because of the previous reasonings we have that

∀h ∈ Hull(f) : hδ ∈ E, for any δ > 0,

and thus also

Hull(h) ⊂ Hull(f) ⊂ E, and Hull(LC,T )(h
δ) ⊂ E.

We recall the following theorem from [25], that can now be proved as an easy
consequence of Theorem 2.35.

Theorem 3.22. Let f : R×RN → RN be bounded and uniformly continuous on
R×Bj for each j ∈ N and such that f is uniformly Lipschitz continuous on each
Bj, with j ∈ N, that is, it satisfies (3.51). If for any h ∈ Hull(f) and any δ > 0

we denote by hδ the digitization of h through the method in (3.52), then the set

Gδ0 =
⋃

h∈Hull(f),

0<δ<δ0

Hull(LC,T )(h
δ),

is relatively compact in
(
LC(RN), T

)
, where T is any of the considered strong

topologies. Furthermore,

lim
δ→0

dist
(

cls(LC,T )(Gδ), Hull(f)
)

= 0,

where dist(A,B) is the Hausdorff distance between two nonempty sets A,B in(
LC(RN), d

)
(with d(·, ·) defined as in (3.57)) i.e.

dist(A,B) := max{d(A,B), d(B,A)} and d(A,B) := sup
a∈A

inf
b∈B

d(a, b).

In [25], such result is preliminary to prove the persistence under digitization
of the properties of local null controllability and local feedback controllability of
a non-autonomous control system. Clearly, such robustness is also based on the
continuous variation of the solutions with respect to the the vector fields, and in
particular Theorem 3.8 can be applied.

3.4.3 Carathéodory compartmental systems

A compartmental system is a mathematical modelization of a real phenomenon
characterized by conservation laws (e.g. mass, energy, fluid) in which there are
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Figure 3.3: Example of a compartmental model

particles entering into a network of compartments (also called pools), travelling
through them and evetually leaving the system.

The compartments are assumed to be kinetically homogeneous, that is, the
material entering any compartment is instantaneously mixed with the material
which is already inside that compartment. Moreover, they can represent actual
containers, as for example in pharmacokinetics where they are identified with the
organs of the body, or abstract sets of elements sharing the same properties, as
for example in epidemiology where susceptible, infected and recovered people are
considered as different compartments.

Further applications include models in biology, chemistry, demography, ecol-
ogy, economic systems, epidemiology, hydrology, large-scale systems, pharma-
cokinetics, queuing systems, social dynamics, stochastic systems (whose state
variables represent probabilities), structural vibration systems, telecommunica-
tions systems, transportation systems etc (see Haddad et al [28], Jacquez [32],
Jacquez and Simon [33] and the references therein).

As follows, one finds a non-autonomous non-linear modelization for a com-
partmental system. Consider B : I×(R+)N → RN×N and s : I×(R+)N → (R+)N ,
and the system

ẋ = B(t, x)x+ s(t, x) (3.58)

such that for all t ∈ I, x ∈ (R+)N one has

1) bii(t, x) < 0 ∀i = 1, . . . , N ;

2) bij(t, x) ≥ 0 ∀i 6= j;

3)
∑

i bij(t, x) ≤ 0 ∀j = 1, . . . , N .

The entries of the matrix-valued function B represent the rate of particles
moving from one compartment to the other. In this formulation such rates de-
pends on the time t and on the vector of the amount of particles in each of the
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compartment of the system, namely x. For every i ∈ {1, . . . , N}, the entry bii
represents the rate of particles leaving box i. Assumption 1) implies that there is
no creation of matter inside the compartments. For any i 6= j the entry bij(t, x)

represents the rate of particles going from box j to box i. As a consequence, for
any i 6= j the entry bij(t, x) is required to be positive (see assumption 2). For
every j ∈ {1, . . . , N}, the sum over the entries of the column j gives the rate
of particles that leave the system from box j. Therefore, assumption 3) implies
that there is no accumulation of matter inside the compartments. Finally, for
any i ∈ {1, . . . , N}, si(t, x) represents the rate of particles entering the system
from the external environment directly into box i. As an example, consider the
simple compartmental system depicted in Picture 3.3. Then, we would write the
compartmental matrix and the input vector using the mentioned rules, as follows,

B(t, x) =

−2− cos(t) 1
1+x1

1
2

2 + cos(t) −5− 1
1+x1

2

0 0 −2− 1
2

 and s(t, x) =

 0

0
1+sin(t)

1+x3

 . (3.59)

More in general, B(·, ·, ·) and s(·, ·) can be Lipschitz Carathéodory functions.
Such assumption allows to take into account those real phenomena in which the
rate of flow or the input flow may possibly change discontinuously in time. For
example, in (3.59), one can change the third component in the input vector s(t, x)

by

s3(t, x) =
1 + sgn

(
sin(t)

)
1 + x3

,

where sgn(·) denotes the sign function.
Key notions for the modelization of compartmental systems are the mean age

of the system, i.e. the mean over the age of the particles inside the system at any
given time, and the transit time, i.e. the mean age of mass leaving the system
at any instant of time. The following formula has been suggested in [50] for the
mean age of each compartment in a non-autonomous compartmental system

āi(t) =

∫ +∞
0

a pi(a, t) da∫ +∞
0

pi(a, t) da
for all i ∈ {1, . . . , d},

where pi(a, t) is the density function of age a for the mass in pool i at time t.
Following the same reasonings used in [50], one can use McKendrick–Von Förster
PDE

∂pi
∂t

+
∂pi
∂a

=
d∑
j=1

bij(t, x) pj

with boundary condition pi(0, t) = si(t) to obtain the following ordinary differ-
ential equation describing the evolution of the mean ages of any pool.

˙̄ai(t) = 1 +

∑d
j=1

[
bij(t, x)xj(t)

(
āj(t)− āi(t)

)
− āi(t) si(t, x)

]
xi(t)

.
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Consequently, given a solution x(t) of (3.58), one may write the linear problem

˙̄a = A
(
t, x(t)

)
ā+ (1, . . . , 1)T ,

where A
(
t, x(t)

)
is given by

X(t)−1


−s1(t, x)−

∑
j 6=1 b1j(t, x)xj(t) b12(t, x)x2(t) b1d(t, x)xd(t)

b21(t, x)x1(t) −s2(t, x)−
∑
j 6=1 b2j(t, x)xj(t) b2d(t, x)xd(t)

...
...

. . .
...

bd1(t, x)x1(t) bd2(t, x)x2(t) −sd(t, x)−
∑
j 6=d bdj(t, x)xj(t)


with X(t) = diag

(
x1(t), . . . , xd(t)

)
for all t ∈ I. As a consequence one obtains

the system of skew product type made of the following Carathéodory ordinary
differential equations {

ẋ = B(t, x)x+ s(t, x)
˙̄a = A

(
t, x(t)

)
ā+ (1, . . . , 1)T .

(3.60)

A continuous skew-product flow can be obtained for the triangular system (3.60)
thanks to any of the Theorems 3.5, 3.7 or 3.9, whenever B(·, ·), and s(·, ·) satisfy
the relative assumptions.



Chapter 4

Pullback and global attractors for
Carathéodory ODEs

This chapter deals with pullback and global attractors for Carathéodory ODEs
whose solutions are assumed to be defined up to +∞. If the notion of forward at-
traction is transversely known in dynamical systems for the study of the long-time
qualitative behavior of the solutions, the pullback attraction is instead specific of
non-autonomous dynamics. In some sense, since the behavior of the trajectories
of an autonomous dynamical system only depends on the elapsed time t − t0,
looking at what happens as t → ∞ for a fixed t0 ∈ R, is the same as pulling
t0 → −∞ for a fixed t ∈ R. On the contrary, for a non-autonomous dynamical
system these two approaches give back different type of attractions. Specifically,
we refer to pullback attraction whenever we fix a time t ∈ R and pull the initial
data x0 back to −∞ to see the behavior of the corresponding trajectory at time t.

It is known that pullback and forward attraction are not related. In particular,
a non-autonomous dynamical system can have a forward attractor without having
any pullback attractor and vice versa. Moreover, such notions can be scaled up to
the whole skew-product semiflow induced for such a kind of differential equation.
We recommend Caraballo and Han [13] and Carvalho et al. [16] for a detailed
dissertation.

The chapter is structured as follows. In Section 4.1, we include all the initial
definition and results which are useful in the rest of the chapter.

In Section 4.2, we show how a continuous skew-product flow can be used to
infer the existence of an attractor for a set of limit systems. In particular, starting
from specific properties on the solutions of an initial problem ẋ = f(t, x), we show
how it is possible to obtain the existence of a bounded pullback attractor for the
processes induced by systems with vector field in either the alpha limit set of f ,
the omega limit set of f , or the whole hull of f . Additionally, we conclude the
section with a result of existence of pullback and global attractors for the whole
skew-product flow.

97
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In Section 4.3, we provide sufficient conditions to apply the results of the pre-
vious section. In fact, several types of attractors, both for the induced process
and the induced skew-product flow, are obtained. Before that, some known com-
parison results for Carathéodory ODEs are recalled. In Subsection 4.3.1 the size
of the solutions of a Carathéodory differential system ẋ = f(t, x) is compared
with the size of the solutions of a scalar linear equation, while in Subsection 4.3.2
a comparison with a system of linear Carathéodory equations is given.

4.1 Preliminary definitions and results

The different types of ultimately bounded character of the solutions are subse-
quently defined in terms of the process associated to the corresponding dynamical
system. Recall that a process can be induced by a non-autonomous differen-
tial equation if one assumes that for any r ∈ R and any x0 ∈ RN , the initial
value problem ẋ = f(t, x), x(r) = x0 has a unique solution x(·, f, r, x0) defined
on [r,∞). In fact, one can pose

Sf (t+ r, r)x0 = x(t+ r, f, r, x0) = x(t, fr, x0) , (4.1)

where t ≥ 0 and r ∈ R, and easily check that the properties in Definition 1.5 are
satisfied. In this chapter, anytime we consider a process induced by a differential
equation, we implicitly assume that the relative solutions are defined up to +∞.

Definition 4.1 (Uniformly ultimately bounded solutions). Consider f ∈ LC.
The solutions of ẋ = f(t, x) are said to be

• uniformly ultimately bounded if there is a positive constant c > 0 such that for
every d > 0 there is a time T (d) > 0 satisfying

|Sf (t+ r, r)x0| ≤ c for every r ∈ R, t ≥ T (d) and |x0| ≤ d ;

• uniformly ultimately bounded on [τ,∞) if there is a positive constant c(τ) such
that for every d > 0 there is a time T (τ, d) > 0 such that

|Sf (t+ r, r)x0| ≤ c(τ) , (4.2)

whenever r ≥ τ , t ≥ T (τ, d) and |x0| ≤ d.

The definition of pullback attractor for a process is also hereby recalled.

Definition 4.2 (Pullback attractor for a process). Consider a process S(·, ·) (see
Definition 1.5) defined on RN . A family of subsets A(·) = {A(t) | t ∈ R} of RN

is said to be a pullback attractor for the process S(·, ·) if

(i) A(t) is compact for each t ∈ R ;
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(ii) A(·) is invariant, that is, S(t, s)A(s) = A(t) for all t ≥ s ;

(iii) for each t ∈ R, A(t) pullback attracts bounded sets at time t, i.e. for any
bounded set B ⊂ RN one has

lim
s→−∞

dist(S(t, s)B,A(t)) = 0 ,

where dist(A,B) is the Hausdorff semi-distance between two nonempty sets
A, B ⊂ RN i.e. dist(A,B) := supx∈A infy∈B d(x, y).

(iv) A is the minimal family of closed sets with property (iii).

The pullback attractor is said to be bounded in the past (resp. bounded) if for all
τ > 0 one has that

⋃
t≤τ A(t) (resp.

⋃
t∈RA(t)) is bounded.

The following characterizations of the bounded and bounded in the past pull-
back attractors for Sf (·, ·) are given in Theorem 1.17 and Corollary 1.18 of Car-
valho et al. [16].

Proposition 4.3. Let A(·) be a pullback attractor for the process Sf (·, ·) induced
by ẋ = f(t, x) with solutions denoted by x(·). Then

(i) A(t) = {x(t) | x(·) is a backward bounded solution} if A(·) is bounded in
the past, and

(ii) A(t) = {x(t) | x(·) is a global bounded solution} if A(·) is bounded.

The notion of pullback absorbing family will also be necessary.

Definition 4.4 (Pullback absorbing sets). Let S(·, ·) be a process (see Defini-
tion 1.5) defined on RN . A family of nonempty bounded sets {B(t) ⊂ RN | t ∈ R}
pullback absorbs bounded sets, if for every t ∈ R and every bounded subset D of
RN there exists a time T (t,D) > 0 such that

S(t, t− s)D ⊂ B(t) for every s ≥ T (t,D) .

We also say that {B(t) ⊂ RN | t ∈ R} is a pullback bounded absorbing family. If
for all t ∈ R one has B(t) ≡ B ⊂ RN we will say that B is a pullback absorbing
set.

Definition 4.5 (Pullback strongly bounded dissipative process). A process S(·, ·)
(see Definition 1.5) is pullback strongly bounded dissipative on (−∞, τ ] if there
exists a family {B(t) ⊂ RN | t ∈ R} of pullback bounded absorbing sets such
that for every bounded subset D ⊂ RN , there is a time T (τ,D) > 0 so that

S(t, t− s)D ⊂ B(τ) for every t ≤ τ and s ≥ T (τ,D) . (4.3)
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Remark 4.6. In the finite dimensional case, the existence of a pullback bounded
absorbing family ensures the existence of a pullback attractor (see, e.g., [16]
and [36]). If in addition the family satisfies (4.3), then the pullback attractor
{A(t) | t ∈ R} is bounded in the past. When there is a bounded set B such that
for every bounded subset D ⊂ RN there is a time T (D) > 0 so that

S(t, t− s)D ⊂ B for every t ∈ R and s ≥ T (D) , (4.4)

then there is a bounded pullback attractor.

Remark 4.7. Notice that condition (4.4) is equivalent to the uniformly ulti-
mately bounded character of the solutions of the system.

We also recall the definitions of pullback and global attractor for a skew-
product semiflow. Consider the space of Lipschitz Carathéodory functions map-
ping R×RN onto RN , endowed with a topology T , namely (LC, T ), and f ∈ LC,
so that the induced local skew-product flow

Π: U ⊂ R× Hull(LC,T )(f)× RN → Hull(LC,T )(f)× RN

(t, g, x0) 7→
(
gt, x(t, g, x0)

)
,

(4.5)

is continuous. Recall that the properties on f and the topologies of continuity
for (4.5) are treated in Section 3.1. In particular, we recall the following two
cases:

• f ∈ (LC, σΘ) with L1
loc-equicontinuous m-bounds; see Theorem 3.5(i).

• f ∈ (LC, TD) with Lploc-bounded l-bounds; see Theorem 3.9(i).

Definition 4.8 (Pullback and global attractors for a skew product semiflow).
Assume that for any g ∈ Hull(LC,T )(f) and any x0 ∈ RN , the solution x(·, g, x0)

of ẋ = g(t, x), x(0) = x0, is defined on [0,∞), i.e. the skew-product semiflow
(4.5) is defined on R+× Hull(LC,T )(f)× RN .

• A family Â = {Ag | g ∈ Hull(LC,T )(f)} of nonempty, compact sets of RN is said
to be a pullback attractor for the skew-product semiflow if it is invariant, i.e.

x(t, g, Ag) = Agt for each t ≥ 0 and g ∈ Hull(LC,T )(f) , (4.6)

and, for every nonempty bounded set D of RN and every g ∈ Hull(LC,T )(f) one
has

lim
t→∞

dist(x(t, g−t, D), Ag) = 0 , (4.7)

where dist(A,B) denotes the Hausdorff semi-distance of two nonempty sets A,
B of RN .

A pullback attractor for the skew-product flow is said to be bounded if⋃
g∈Hull(LC,T )(f)

Ag is bounded.
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• A compact set A of Hull(LC,T )(f) × RN is said to be a global attractor for
the skew-product semiflow if it is the maximal nonempty compact subset of
Hull(LC,T )(f)× RN which is Π-invariant, i.e.

Π(t,A) = A for each t ≥ 0 ,

and attracts all compact subsets D of Hull(LC,T )(f)× RN , i.e.

lim
t→∞

dist(Π(t,D),A) = 0 ,

where now dist(B, C) denotes the Hausdorff semi-distance of two nonempty
sets B, C of Hull(LC,T )(f)× RN .

Remark 4.9. We aim to provide a little bit of additional information about the
relationship between the pullback attractor of a skew-product semiflow and the
behavior of the solutions of each process composing the skew-product semiflow
in Definition 4.8. Particularly, for each g ∈ Hull(LC,T )(f), we would like to clarify
who is the set Ag ⊂ RN in the previous definition of the pullback attractor of the
skew-product semiflow Â = {Ag | g ∈ Hull(LC,T )(f)}.

Recalling that for every g ∈ Hull(LC,T )(f) one has

Sg(s+ r, r)x0 = x(s, gr, x0) , (4.8)

then, for every nonempty bounded set D of RN , (4.7) becomes

lim
t→∞

dist(Sg(0,−t)D,Ag) = 0 , (4.9)

which implies that, for the given process Sg(·, ·), Ag pullback attracts bounded
sets at time 0. Now, for every τ ∈ R one can write (4.9) for gτ and Agτ instead
of g and Ag, respectively, i.e.

lim
t→∞

dist(Sgτ (0,−t)D,Agτ ) = 0 . (4.10)

Nevertheless, using (4.8) twice, we also have

Sgτ (0,−t)D = x(t, gτ−t, D) = Sg(τ, τ − t)D ,

and thus (4.10) can be written as

lim
t→∞

dist(Sg(τ, τ − t)D,Agτ ) = 0 , (4.11)

which implies that, for the given process Sg(·, ·), Agτ pullback attracts bounded
sets at time τ . Therefore, as a consequence of the invariance contained in (4.6)
and of the fact that Ag is taken compact for any g ∈ Hull(LC,T )(f), we deduce
that the process Sg(·, ·) has a pullback attractor. In particular if

Ag = {A(τ) = Agτ | τ ∈ R}
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is the minimal family of closed sets satisfying (4.11), then Ag is the pullback
attractor for the process Sg(·, ·). On the other hand if for any g ∈ Hull(LC,T )(f),
the induced process Sg(·, ·) has a pullback attractor and Ag denotes the section
at time 0 of the pullback attractor of Sg(·, ·), then one has that

Â =
{
Ag | g ∈ Hull(LC,T )(f)

}
is a pullback attractor for the skew product flow on Hull(LC,T )(f).

4.2 Pullback attractors and the skew-product flow

This section deals with results of existence of pullback and global attractors for
Carathéodory ODEs as a consequence of the continuity of the skew-product flow.
In particular, we show how, starting from specific properties on the solutions of
an initial problem ẋ = f(t, x), it is possible to obtain the existence of a bounded
pullback attractor for the processes induced by systems with vector field in either
the alpha limit set of f , the omega limit set of f , or the whole hull of f . Fur-
thermore, conditions for the existence of pullback and global attractors for the
induced skew-product flow are also provided.

Theorem 4.10. Let f be in LC and T be a topology such that the induced local
skew-product flow (4.5) is continuous, and assume that

- for any g ∈ {fs | s ≤ 0} ∪ A(f) and x0 ∈ RN , the solution x(·, g, x0) of
ẋ = g(t, x), x(0) = x0, is defined on [0,∞);

- there is a τ ∈ R for which the process Sf (·, ·) is strongly pullback bounded
dissipative on (−∞, τ ].

Then, for any function g ∈ A(f), the solutions of ẋ = g(t, x) are uniformly ulti-
mately bounded. In particular, the induced process Sg(·, ·) has a bounded pullback
attractor.

Proof. Let D be a bounded set. By hypothesis, there are c = c(τ) > 0 and
T (D) = T (τ,D) > 0 such that for each x0 ∈ D one has

|Sf (t, t− s)x0| = |x(s, ft−s, x0)| ≤ c for t ≤ τ and s ≥ T (D) .

If g = limn→∞ ftn with tn ↓ −∞, then we have gt−s = limn→∞ ftn+t−s and by the
continuity of the semiflow

|Sg(t, t− s)x0)| = |x(s, gt−s, x0)| =
∣∣∣ lim
n→∞

x(s, ftn+t−s, x0)
∣∣∣ .

Finally, there exists n0 ∈ N such that, if n ≥ n0, then tn + t ≤ min{0, τ}, and
thus

|Sg(t, t− s)x0| ≤ c for every t ∈ R and s ≥ T (D) .

Therefore, from Remark 4.7 the solutions of ẋ = g(t, x) are uniformly ultimately
bounded and, from Remark 4.6, a bounded pullback attractor exists.
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Analogously, we give conditions to have a bounded pullback attractor for the
process induced by ẋ = g(t, x), when g ∈ LC is any function in the omega limit
set O(f).

Theorem 4.11. Let f be in LC and T be a topology such that the induced local
skew-product flow (4.5) is continuous, and assume that

- for any g ∈ {fs | s ≥ 0} ∪ O(f), and x0 ∈ RN , the solution x(·, g, x0) of
ẋ = g(t, x), x(0) = x0, is defined on [0,∞);

- there is a τ ∈ R for which the solutions of ẋ = f(t, x) are uniformly ulti-
mately bounded on [τ,∞).

Then, for any function g ∈ O(f), the solutions of ẋ = g(t, x) are uniformly ulti-
mately bounded and the induced process Sg(·, ·) has a bounded pullback attractor.

Proof. From (4.2) one has that

|Sf (t+ s, s)x0| = |x(t+ s, f, s, x0)| = |x(t, fs, x0)| ≤ c(τ),

whenever s ≥ τ , t ≥ T (τ, d) and |x0| ≤ d. Since g ∈ O(f) there is a sequence
tn ↑ ∞ with limn→∞ ftn = g. Thus, gr = limn→∞ ftn+r and by the continuity of
the solutions

|Sg(t+ r, r)x0| = |x(t, gr, x0)| =
∣∣∣ lim
n→∞

x(t, ftn+r, x0)
∣∣∣ .

Since there is n0 ∈ N such that, if n ≥ n0, then tn + r ≥ max{0, τ}, we con-
clude that

|Sg(t+ r, r)x0| ≤ c(τ) whenever r ∈ R , t ≥ T (τ, d) and |x0| ≤ d ,

that is, the solutions of ẋ = g(t, x) are uniformly ultimately bounded, as claimed.
As for Theorem 4.10, from Remarks 4.7 and 4.6 we obtain the thesis.

Finally, we give conditions to have a bounded pullback attractor for the pro-
cess induced by ẋ = g(t, x), when g ∈ LC is any function in the hull of f .

Theorem 4.12. Let f be in LC and T be a topology such that the induced local
skew-product flow (4.5) is defined on R+×Hull(LC,T )(f)×RN and it is continuous.
If there is a pullback bounded absorbing set B satisfying (4.4), then, for any g ∈
Hull(LC,T )(f), one has that the solutions of ẋ = g(t, x) are uniformly ultimately
bounded and the induced process Sg(·, ·) has a bounded pullback attractor.

Proof. First, notice that Hull(LC,T )(f) = A(f) ∪ O(f) ∪ {fτ | τ ∈ R}. Moreover,
condition (4.4) implies that the assumptions of Theorems 4.10 and 4.11 are sat-
isfied, as shown in Remarks 4.7 and 4.6. Therefore, if g ∈ A(f) (resp. g ∈ O(f))
the result follows from Theorem 4.10 (resp. Theorem 4.11). If g is f , or one of
its time-translations, the uniformly ultimately bounded character of the solutions
cames again from Remark 4.7, which together with Remark 4.6 allows to end the
proof.
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The next result provides the existence of a pullback attractor as well as a global
attractor (when Hull(LC,T )(f) is compact) of the skew-product semiflow (4.5) and
the relation between them. We denote by x(t, f,D) the subset of RN given by

x(t, f,D) = {x(t, f, x0) | x0 ∈ D} .

Theorem 4.13. Let f be in LC and T be a topology such that the induced skew-
product semiflow (4.5) is defined on R+×Hull(LC,T )(f)×RN and it is continuous.
Assume that there is a bounded set B ⊂ RN such that for each nonempty bounded
set D there is a time T (D) such that

x(t, fs, D) ⊂ B whenever t ≥ T (D) (4.12)

for every s ∈ R. Then

(i) there exists a unique bounded pullback attractor Â = {Ag | g ∈ Hull(LC,T )(f)}
of the skew-product semiflow (4.5) given by

Ag =
⋂
τ≥0

⋃
t≥τ

x(t, g−t, B) for each g ∈ Hull(LC,T )(f) ,

(ii) if Hull(LC,T )(f) is compact, there is a global attractor of the skew-product
semiflow (4.5) given by

A =
⋂
τ≥0

⋃
t≥τ

Π(t,Hull(LC,T )(f)×B) =
⋃

g∈Hull(LC,T )(f)

{{g} × Ag} .

Proof. First, from the continuity of the skew-product flow, we deduce that

x(t, g,D) ⊂ B for every t ≥ T (D) and every g ∈ Hull(LC,T )(f).

Therefore, among other references, (i) follows from Theorem 3.20 of [36]. The
existence of a global attractor A under the compactness of the base Hull(LC,T )(f)

follows from Theorem 2.2 of Cheban et al. [18] and, as shown in Theorem 16.2
of [16], Ag is the section of A over g, that is,

A =
⋃

g∈Hull(LC,T )(f)

{{g} × Ag} ,

which finishes the proof.

Remark 4.14. Notice that, because of the relation

x(t, fs, D) = Sf (t+ s, s)D, f ∈ LC, s, t ∈ R, D ⊂ RN ,

condition (4.12) is equivalent to (4.4), that is, the process induced by f has a
pullback bounded absorbing set B.
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Remark 4.15. Under the assumptions of Theorem 4.13(i-ii), in general the pull-
back attractors {Agt | t ∈ R} with g ∈ Hull(LC,T )(f) have no forward attraction
properties for the corresponding processes. However, the global attractor A al-
ways exhibits collective properties of forward attractivity (see [14]).

Finally, from Theorems 4.10, 4.11 and 4.13 we obtain the corresponding results
for the induced skew-product flow on A(f)× RN and O(f)× RN .

Corollary 4.16. Let f ∈ LC and T be a topology such that the induced local
skew-product flow (4.5) is continuous, and assume that

- for any g ∈ {fs | s ≤ 0} ∪A(f), and any x0 ∈ RN , the solution x(·, g, x0)

of ẋ = g(t, x), x(0) = x0 is defined on [0,∞);

- there is a τ ∈ R for which Sf (·, ·) is strongly pullback bounded dissipative
on (−∞, τ ].

Then, (i) and (ii) of Theorems 4.13 hold for the skew-product flow on A(f)×RN .

Corollary 4.17. Let f ∈ LC and T be a topology such that the induced local
skew-product flow (4.5) is continuous, and assume that

- for any g ∈ {fs | s ≥ 0} ∪O(f), and any x0 ∈ RN the solution x(·, g, x0) of
ẋ = g(t, x), x(0) = x0 is defined on [0,∞);

- there is a τ ∈ R for which the solutions of ẋ = f(t, x) are uniformly ulti-
mately bounded on [τ,∞).

Then, (i) and (ii) of Theorems 4.13 hold for the skew-product flow on O(f)×RN .

4.3 Comparison results for Carathéodory ODEs

This section provides sufficient conditions under which the abstract results of
subsection 4.2 can be applied. In fact, several types of attractors, both for the
induced process and the induced skew-product flow, are obtained. Such results
are based on comparison theorems for the solutions of a Carathéodory differential
system which are recalled at the beginning of the section.

In Section 4.3.1, the size of the solutions of a Carathéodory differential system
ẋ = f(t, x) is compared with the size of the solutions of a scalar linear equation,
while in Section 4.3.2 a comparison with a system of linear Carathéodory equa-
tions is carried out.

We firstly recall the following comparison result for the scalar case from Olech
and Opial [44].
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Proposition 4.18. Consider f : R × R → R, f ∈ LC, x0 ∈ R and denote
by x(·, f, t0, x0) : [t0, t1] → R the solution of the Cauchy Problem ẋ = f(t, x),
x(t0) = x0. If z : [t0, t1]→ R is an absolutely continuous function such that

z(0) ≤ x0 and ż(t) ≤ f
(
t, z(t)

)
for a.e. t ∈ [t0, t1],

then one has
z(t) ≤ x(t, f, t0, x0) for all t ∈ [t0, t1].

Moreover, if, in particular, z(0) < x0, then one has

z(t) < x(t, f, t0, x0) for all t ∈ [t0, t1].

Proof. The first part of the proof is a consequence of the comparison theorem
contained in [44, Théorème 1 p.250]. If z(0) < x0, consider x1 ∈ R such that
z(0) < x1 < x0. Then, from the first part and by the uniqueness of the solution
for the Cauchy Problem ẋ = f(t, x), x(t0) = x0, one has that

z(t) ≤ x(t, f, t0, x1) < x(t, f, t0, x0), for all t ∈ [t0, t1]

which concludes the proof.

From the scalar case a comparison result for the vectorial case can be deduced.
Let us firstly recall some notation. For every i = 1, . . . , N the ith component of
x ∈ RN will be denoted by xi. Moreover, if we write x ≥ 0 we mean that for all
i = 1, . . . , N one has xi ≥ 0, whereas we will write x� 0 if for every i = 1, . . . N

one has xi > 0. The space
(
RN
)+ will denote the set of points x ∈ RN such that

x ≥ 0. Analogously, the ith component of a vector function f : R × RN → RN

will be denoted by fi.

Proposition 4.19. Consider f ∈ LC and assume that for every z, x ∈ RN with
z ≤ x the following condition of monotonocity is satisfied:

zi = xi for some i = 1, . . . , N ⇒ fi(t, z) ≤ fi(t, x) for a.e. t ∈ R. (4.13)

Fixed x0 ∈ RN , and denoted by x(·, f, t0, x0) : [t0, t1]→ RN the unique solution of
the Cauchy Problem ẋ = f(t, x), x(t0) = x0. If z : [t0, t1]→ RN is an absolutely
continuous function such that

z(0) ≤ x0 and ż(t) ≤ f
(
t, z(t)

)
for a.e. t ∈ [t0, t1], (4.14)

then one has that

z(t) ≤ x(t, f, t0, x0) for all t ∈ [t0, t1] . (4.15)
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Proof. The case N = 1 is proved in Proposition 4.18. Consider N ≥ 2 and, in
order to simplify the notation, pose x(·) = x(·, f, t0, x0). Firstly we prove that

z(0)� x0 ⇒ z(t)� x(t) for all t ∈ [t0, t1]. (4.16)

Assume, on the contrary, that there exists τ ∈ [t0, t1] such that the previous
inequality is not true at time τ for one of the components. In other words, and
assuming by simplicity that such component is the first one, we have that

z(t)� x(t) for all t ∈ [t0, τ) and z1(τ) = x1(τ). (4.17)

Consider the function g : R× R→ R defined by

g(t, y) := f1

(
t, y, x2(t), . . . , xN(t)

)
, (4.18)

and notice that, thanks to (4.14) and (4.13), one has

ż1(t) ≤ f1

(
t, z(t)

)
≤ f1

(
t, z1(t), x2(t), . . . , xN(t)

)
= g
(
t, z1(t)

)
,

for almost every t ∈ [t0, τ ]. Therefore, due to Proposition 4.18 we have that

z1(t) < y(t, g, t0, (x0)1) for all t ∈ [t0, τ ], (4.19)

where y(·, g, t0, (x0)1) denotes the solution of the scalar problem ẏ = g(t, y)

with y(t0) = (x0)1. However, due to (4.18), one has that y(t, g, t0, (x0)1) =

y(t, f1, t0, (x0)1) and for the uniqueness of the solution for the Cauchy Problem
ẋ = f(t, x) with x(t0) = x0, one has

y(·, f1, t0, (x0)1) = x1(·, f, t0, x0).

Therefore, one can write (4.19) as

z1(t) < x1(t, f, t0, x0) for all t ∈ [t0, τ ] .

However, such inequality evaluated at time τ , contradicts (4.17). As a conse-
quence we obtain (4.16). Now let x0 ∈ RN be such that z(0) ≤ x0. Then, taken
ε > 0 we have that z(0) � x0 + ε 1, where 1 denotes the N -dimensional vector
of ones. Then, as a consequence of the first part of the proof, one has

z(t)� x(t, f, t0, x0 + ε 1) for all t ∈ [t0, t1],

and thanks to the continuity of the solutions with respect to the variation of the
initial condition (Theorem 1.3), one obtains (4.15) as ε → 0, which finishes the
proof.

Remark 4.20. If in Proposition 4.19 condition (4.14) is changed for

x0 ≤ z(0) and f
(
t, z(t)

)
≤ ż(t) for a.e. t ∈ [t0, t1],

then, one obtains

x(t, f, t0, x0) ≤ z(t), for all t ∈ [t0, t1].
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4.3.1 Comparison with a scalar Carathéodory linear equa-
tion

Consider a Carathéodory differential system ẋ = f(t, x) and the condition below
for f ∈ LC:

(H1) there exist α(·), β(·) ∈ L1
loc, with β(·) non-negative, such that

2 〈f(t, x), x〉 ≤ α(t) |x|2 + β(t) for a.e. (t, x) ∈ RN+1 ,

where 〈·, ·〉 represents the scalar product in RN .

This assumption implies the following inequality for the solutions of ẋ = f(t, x).

Proposition 4.21. Assume that (H1) holds for f ∈ LC. If x(·) is a solution of
ẋ = f(t, x) defined on an interval I, then it satisfies

2
〈
f
(
t, x(t)

)
, x(t)

〉
≤ α(t) |x(t)|2 + β(t) for a.e. t ∈ I. (4.20)

Proof. Let V ⊂ R× RN be such that measR1+N

(
R1+N \ V

)
= 0 and

2 〈f(t, x), x〉 ≤ α(t) |x|2 + β(t) for all (t, x) ∈ V.

Consider the set E =
{

(t, ε) ∈ I ×B1 |
(
t, x(t) + ε

)
∈ V

}
, where B1 is the closed

ball of RN centered at the origin and with radius 1, and for any t ∈ I denote by
Et the section in t of E, i.e. Et = {ε ∈ B1 | (t, ε) ∈ E}. Moreover, given t ∈ I
one has that x(t)+(B1 \Et) ⊂ Br \Vt for some r, and hence measRN (B1 \Et) = 0

for almost every t ∈ I. Then, applying Fubini’s theorem twice, one has

measR(I) ·measRN (B1) = measR1+N (E) =

∫
RN

measR(Eε) dε ,

where Eε denotes the section of E for any fixed ε ∈ B1. Therefore, one has
measR(Eε) = measR(I) for almost every ε ∈ B1. Now, let (εn)n∈N ⊂ B1 be such
that

εn
n→∞−−−→ 0 and measR(Eεn) = measR(I) ∀ n ∈ N .

As a consequence, taking J = ∩
n∈N

Eεn we deduce that

2 〈f(t, x(t) + εn), x(t) + εn〉 ≤ α(t) |x(t) + εn|2 + β(t) ∀t ∈ J ,

and as n→∞ we obtain (4.20) because measR(I) = measR(J).

Remark 4.22. If f ∈ LC satisfies (H1) then, considering the Cauchy problem
ẋ = f(t, x), x(t0) = x0, and denoting by x(·) its solution, from (4.20) and |x(r)|2 =

〈x(r), x(r)〉 one has that for a.e. r ∈ R

d

dr
|x(r)|2 = 2 〈x(r), ẋ(r)〉 = 2

〈
x(r), f

(
r, x(r)

)〉
≤ α(r) |x(r)|2 + β(r).
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Therefore, if we pose y(r) = |x(r)|2 and apply Proposition 4.18 and the variation
of constants formula, we obtain that

|x(t)|2 ≤ exp

(∫ t

t0

α(u) du

)
|x0|2 +

∫ t

t0

β(r) exp

(∫ t

r

α(u) du

)
dr , (4.21)

for every t > t0. As a consequence, the solutions of ẋ = f(t, x) are defined on
[t0,∞) and thus a process Sf (·, ·) can be induced as in (4.1).

In addition to (H1) we also consider the following conditions:

(H2) the equation ẏ = α(t) y has exponential dichotomy on (−∞, 0] with pro-
jection P = Id, that is, there are constants α1 > 0 and K ≥ 1 such that

exp

(∫ t

s

α(u) du

)
≤ K e−α1 (t−s) for s ≤ t ≤ 0 ;

(H3) the set of functions {βt(·)}t∈R is L1
loc-bounded,

Assumptions (H1), (H2) and (H3) allow to obtain that the process Sf (·, ·) is
strongly pullback bounded dissipative on (−∞, τ ] for all τ ∈ R (see Defini-
tion 4.3), as shown in the next result.

Theorem 4.23. Consider f ∈ LC and assume that (H1), (H2) and (H3) hold.
Therefore the induced process Sf (·, ·) is strongly pullback bounded dissipative on
(−∞, τ ] for all τ ∈ R. Consequently, there exists a pullback attractor which is
bounded in the past.

Proof. Consider the nondecreasing function K(·) ≥ 1 defined by

K(t) :=

{
K if t ≤ 0

K eα1 tN(t) if t > 0,
(4.22)

where N(t) := exp
(∫ t

0
|α(u)| du

)
. First we check that one has

exp

(∫ r

s

α(u) du

)
≤ K(t) e−α1 (r−s) for s ≤ r ≤ t , (4.23)

that is, for any t ∈ R, the equation ẏ = α(t) y has exponential dichotomy on
(−∞, t] with projection P = Id.

Clearly, if t ≤ 0 or s ≤ r ≤ 0 ≤ t then, thanks to (H2), we have that (4.23)
holds. If 0 ≤ s ≤ r ≤ t, recalling that K ≥ 1, we have that

exp

(∫ r

s

α(u) du

)
≤ N(t) ≤ K eα1 rN(t) e−α1 (r−s) ≤ K(t) e−α1 (r−s).
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Finally, for s ≤ 0 ≤ r ≤ t, again from (H2) and from the definition of N(·), we
have that

exp

(∫ r

s

α(u) du

)
≤ exp

(∫ 0

s

α(u) du+

∫ r

0

α(u) du

)
≤ K eα1 sN(t) ≤ K(t) e−α1 (r−s).

Gathering all the previous facts, we have that (4.23) holds as stated.
Let D be a bounded set. Thus, there is a positive constant d > 0 such

that supx∈D |x| ≤ d. We take x0 ∈ D, t ∈ R, s ≥ 0 and denote by x(·) :=

x(·, f, t−s, x0), i.e. the solution of the Cauchy problem ẋ = f(t, x) , x(t−s) = x0.
In particular, since Sf (t, t− s)x0 = x(t, f, t− s, x0) = x(t) from (4.21) and (4.23)
we deduce that

|Sf (t, t− s)x0|2 ≤ |x0|2K(t) e−α1 s + I(t, s) (4.24)

where

I(t, s) =

∫ t

t−s
β(r) exp

(∫ t

r

α(u) du

)
dr ≤ K(t)

∫ t

−∞
e−α1 (t−r) β(r) dr

= K(t)

∫ ∞
−t

e−α1 (t+u) β(−u) du .

Now, from (H3) there is a c1 > 0 such that

sup
t∈R

∫ t+1

t

β(u) du ≤ c1, (4.25)

and, hence, since [−t,∞) ⊂
⋃∞
j=0[−t+ j,−t+ j + 1] , we obtain

I(t, s) ≤ K(t)
∞∑
j=0

∫ −t+j+1

−t+j
e−α1j β(−u) du ≤ c1K(t)

∞∑
j=0

e−α1j ≤ c1K(t)

1− e−α1
, (4.26)

because α1 > 0. Therefore, denoting by

ρ2(t) := 1 +
c1K(t)

1− e−α1
, T (t,D) :=

ln
(
d2K(t)

)
α1

,

from (4.24) and (4.26), one has that

|Sf (t, t− s)x0|2 ≤ d2K(t) e−α1 s + I(t, s) ≤ ρ2(t) ,

provided that s ≥ T (t,D) > 0.
Hence, {Bρ(t) | t ∈ R} is a family of bounded absorbing sets. In addition,

since the function K(·), defined in (4.22), is nondecreasing, then ρ(t) and T (t,D)

are also nondecreasing. Therefore, we deduce that

Sf (t, t− s)D ⊂ Bρ(τ) for t ≤ τ and s ≥ T (τ,D),

and the process is strongly pullback bounded dissipative on (−∞, τ ] for all τ ∈ R,
as claimed. The existence of a pullback attractor bounded in the past follows from
Remark 4.6.
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Consequently, an application of Theorem 4.10 provides for each g in the al-
pha limit set A(f) the existence of a bounded pullback attractor for the pro-
cess Sg(·, ·).

Corollary 4.24. Let f be in LC and T be a topology such that the induced local
skew-product flow on Hull(LC,T )(f)×RN is continuous. Under assumptions (H1),
(H2) and (H3), for each g ∈ A(f) the solutions of ẋ = g(t, x) are uniformly ulti-
mately bounded. In particular, the induced process Sg(·, ·) has a bounded pullback
attractor.

Proof. Firstly, notice that, thanks to Remark 4.22, the solutions of ẋ = fs(t, x),
with s ∈ R, are defined on [0,∞). Therefore, in order to apply Theorem 4.10,
we only need to prove that for any g ∈ A(f) and any x0 ∈ RN the solution
of ẋ = g(t, x), x(0) = x0 is defined on [0,∞). From (4.24) and (4.26) and
recalling that the function K(·), defined in (4.22), is nondecreasing, one has that
for any d ≥ 0, and x0 ∈ RN with |x0| < d

|Sf (t, t− s)x0| = |x(s, ft−s, x0)| ≤ c(d) for all t ≤ 0, s ≥ 0 , (4.27)

where c2(d) = K(0) (d2 + c1/(1− e−α1)) and c1 > 0 is determined by (4.25).
Now, consider some g ∈ A(f), i.e. g = limn→∞ ftn with tn ↓ −∞, and let
us fix s ∈ [0, bg,x0). Notice that, for any n ∈ N, one may write x(s, ftn , x0) as
x(s, f(tn+s)−s, x0). Thus, considered n0 ∈ N such that tn + s ≤ 0 for any n ≥
n0, one has that x(s, ftn , x0) = x(s, f(tn+s)−s, x0) satisfies (4.27) for any n ≥ n0

and, by the continuity of the flow, the sequence
(
x(s, ftn , x0)

)
n∈N converges to

x(s, g, x0). Therefore, we conclude that

|x(s, g, x0)| ≤ c(d) for all s ∈ [0, bg,x0) and x0 ∈ RN with |x0| < d .

As a consequence, one has that the solution x(·, g, x0) of ẋ = g(s, x), x(0) = x0

can not explode in finite time, i.e. it has to be defined on [0,∞). Otherwise it is
easy to prove that a contradiction arises.

One concludes the proof applying Theorem 4.10.

In order to have that for all τ ∈ R the solutions of ẋ = f(t, x) are uniformly
ultimately bounded on [τ,∞), we change hypothesis (H2) by

(H∗2) the linear equation ẏ = α(t) y has exponential dichotomy on [0,∞) with
projection P = Id, i.e. there is an α1 > 0 and a constant K ≥ 1 such that

exp

(∫ t

s

α(u) du

)
≤ K e−α1 (t−s) for every 0 ≤ s ≤ t .

Theorem 4.25. Under conditions (H1), (H∗2) and (H3), for each fixed τ ∈ R
the solutions of ẋ = f(t, x) are uniformly ultimately bounded on [τ,∞).
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Proof. Analogously to the first part of the proof of Theorem 4.23, consider now
the nonincreasing function K(·) ≥ 1 defined by

K(t0) :=

{
K e−α1 t0 N(t0) if t0 < 0,

K if t0 ≥ 0 ,
(4.28)

where N(t0) := exp
(∫ 0

t0
|α(u)| du

)
. First we check that one has

exp

(∫ r

s

α(u) du

)
≤ K(t0) e−α1 (r−s) for every t0 ≤ s ≤ r, (4.29)

that is, for any t0 ∈ R, the equation ẏ = α(t) y has exponential dichotomy on
[t0,∞) with projection P = Id.

Clearly, if t0 ≥ 0 or t0 ≤ 0 ≤ s ≤ r then, thanks to (H∗2), we have that (4.29)
holds. If t0 ≤ s ≤ r ≤ 0, then, recalling that K ≥ 1, we have that

exp

(∫ r

s

α(u) du

)
≤ N(t0) ≤ K(t0) e−α1 (r−s).

Finally, for t0 ≤ s ≤ 0 ≤ r, again from (H∗2) and from the definition of N(·), we
have that

exp

(∫ r

s

α(u) du

)
≤ exp

(∫ 0

s

α(u) du+

∫ r

0

α(u) du

)
≤ N(t0)K e−α1 r ≤ K(t0) e−α1 (r−s).

As a consequence we have that (4.29) holds as stated.
Now, consider d > 0 and let x0 ∈ RN be such that |x0| ≤ d. Recalling that

Sf (t + t0, t0)x0 represents the solution x(t + t0, f, t0, x0) of the Cauchy Problem
ẋ = f(t, x), x(t0) = x0, then, thanks to (4.21) and (4.29), we deduce that

|Sf (t+ t0, t0)x0|2 ≤ |x0|2K(t0) e−α1t0 + I(t, t0), for all t ≥ 0, (4.30)

where

I(t, t0) =

∫ t+t0

t0

β(r) exp

(∫ t+t0

r

α(u) du

)
dr ≤ K(t0)

∫ t+t0

t0

β(r) e−α1 (t+t0−r) dr

= K(t0)

∫ t−t0

−t0
β(t− u) e−α1 (t0+u) du ≤ K(t0)

∫ ∞
−t0

β(t− u) e−α1 (t0+u) du .

Now, recalling that for (H3) there exists c1 > 0 is such that

sup
t∈R

∫ t+1

t

β(u) du ≤ c1,

then, as in Theorem 4.23, we deduce that

I(t, t0) ≤ c1K(t0)

1− e−α1
for all t ≥ 0. (4.31)
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Thus, denoting by

c2(t0) := 1 +
c1K(t0)

1− e−α1
and T (t0, d) :=

ln
(
d2K(t0)

)
α1

,

from (4.30) and (4.31) we have that

|Sf (t+ t0, t0)x0| ≤ c(t0) whenever t ≥ T (t0, d) and |x0| ≤ d , (4.32)

and the nonincreasing character of c(·) and T (·, d) proves (4.2) and finishes the
proof.

Hence, an application of Theorem 4.11 provides, for each g in the omega limit
set O(f), the existence of a bounded pullback attractor for the induced process
Sg(·, ·).

Corollary 4.26. Let f be in LC and T be a topology such that the induced local
skew-product flow on Hull(LC,T )(f)×RN is continuous and assume that conditions
(H1), (H∗2) and (H3) hold. Then, for each g ∈ O(f) the solutions of ẋ = g(t, x)

are uniformly ultimately bounded and the induced process Sg(·, ·) has a bounded
pullback attractor.

Proof. Firstly, notice that, thanks to Remark 4.22, the solutions of ẋ = fs(t, x),
with s ∈ R, are defined on [0,∞). Therefore, in order to apply Theorem 4.11,
we only need to prove that for any g ∈ O(f) and any x0 ∈ RN the solution of
ẋ = g(t, x), x(0) = x0 is defined on [0,∞). From (4.30), (4.31) and recalling that
the function K(·), defined in (4.28), is nonincreasing, one has that for any d ≥ 0,
and x0 ∈ RN with |x0| < d

|Sf (t+ t0, t0)x0| = |x(t, ft0 , x0)| ≤ c̃(d) for all t0 ∈ R, t ≥ 0 , (4.33)

where c̃ 2(d) = K(0) (d2 + c1/(1− e−α1)) and c1 > 0 is determined by (4.25).
Now, consider some g ∈ O(f), i.e. g = limn→∞ ftn with tn ↑ ∞, and let us fix
t ∈ [0, bg,x0). Thus, considered n0 ∈ N such that tn ≥ 0 for any n ≥ n0, one has
that x(t, ftn , x0) satisfies (4.33) for any n ≥ n0 and, by the continuity of the flow,
the sequence

(
x(t, ftn , x0)

)
n∈N converges to x(t, g, x0). Therefore, we conclude

that

|x(t, g, x0)| ≤ c̃(d) for all t ∈ [0, bg,x0) and x0 ∈ RN with |x0| < d .

As a consequence, one has that the solution x(·, g, x0) of ẋ = g(s, x), x(0) = x0

can not explode in finite time, i.e. it has to be defined on [0,∞). Otherwise it is
easy to prove that a contradiction arises.

One concludes the proof applying Theorem 4.11 .

Next, substituting (H2) with the stronger assumption below, we obtain a
pullback bounded absorbing set B satisfying (4.4) which is what we need in the
assumptions of Theorem 4.12.
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(H•2) the linear equation ẏ = α(t) y has exponential dichotomy on R with pro-
jection P = Id, i.e. there is an α1 > 0 and a constant K ≥ 1 such that

exp

(∫ t

s

α(u) du

)
≤ K e−α1 (t−s) for s ≤ t ; (4.34)

Theorem 4.27. Consider f ∈ LC and assume that (H1), (H•2) and (H3) hold.
Then there is a pullback bounded absorbing set B satisfying (4.4) and, hence, the
induced process Sf (·, ·) has a bounded pullback attractor.

Proof. From (H•2) we have that

exp

(∫ t

t−s
α(u) du

)
≤ K e−α1 t for all t ∈ R and s ≥ 0. (4.35)

Therefore, reasoning as in Theorem 4.23, with the exception that now K(·) ≡ K,
one has that

Sf (t, t− s)D ⊂ Bρ for every t ∈ R and s ≥ T (D), (4.36)

where ρ2 = 1 + c1K/(1 − e−α1), T (D) = ln(d2K)/α1, and (4.4) holds with Bρ,
as stated. In particular, Sf (·, ·) has a bounded pullback attractor.

As a consequence, an application of Theorem 4.12 provides the existence of a
bounded pullback attractor for the process Sg(·, ·) induced by g ∈ Hull(LC,T )(f).

Corollary 4.28. Let f be in LC and T be a topology such that the induced local
skew-product flow on Hull(LC,T )(f) × RN is continuous and assume that (H1),
(H•2) and (H3) hold. Then if g ∈ Hull(LC,T )(f) one has that the solutions of
ẋ = g(t, x) are uniformly ultimately bounded, and the induced process Sg(·, ·) has
a bounded pullback attractor.

Proof. In order to apply Theorem 4.12, we need to prove that for any g ∈
Hull(LC,T )(f) and any x0 ∈ RN the solution of ẋ = g(t, x), x(0) = x0 is de-
fined on [0,∞). Reasoning as in Theorem 4.23, with the exception that now,
since (4.35) holds, we can pose K(·) ≡ K, from (4.24) and (4.26), one has that

|Sf (t, t− s)x0|2 ≤ |x0|2K e−α1 s +
c1K

1− e−α1
.

where c1 > 0 is determined by (4.25). In other words, we can write

|Sf (t, t− s)x0| = |x(s, ft−s, x0)| ≤ c̃(d) for all t ∈ R and s ≥ 0 ,

where c̃2(d) = K (d2 + c1/(1− e−α1)). Now, reasoning as in either Remark 4.22,
Corollary 4.24 or Corollary 4.26, depending on the fact that, respectively, g = fτ
for some τ ∈ R, g ∈ A(f) or g ∈ O(f), one obtains that the solution of ẋ =

g(t, x), x(0) = x0 is defined on [0,∞).
One concludes the proof applying Theorem 4.10.
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We summarize the results for the existence of a pullback and a global attractor
for the induced skew-product semiflow in the following remark.

Remark 4.29. Under assumptions (H1), (H•2) and (H3), (i) and (ii) of Theo-
rem 4.13 hold. The same happens for Corollary 4.16 (resp. 4.17) when (H1), (H2)
and (H3) (resp. (H1), (H∗2) and (H3)) are assumed.

As follows we present three simple examples to show the applicability of the
previous theorems.

Example 4.30. Consider the system

ẋ = f(t, x) = a(t)x , with a(t) =

{
−1 if t ≤ 0,

1 if t > 0.
(4.37)

Such a system trivially satisfies (H1), (H2) and (H3), and thus the induced pro-
cess, Sf (·, ·) is strongly pullback dissipative on (−∞, τ ] for all τ ∈ R. As a
consequence, the system admits a pullback attractor which is bounded in the
past. In fact, the pullback attractor for Sf (·, ·) is given by

A(t) = 0, for all t ∈ R.

Indeed, for any x0 ∈ RN , s ≤ 0 and any fixed t ∈ R one has

|Sf (t, s)x0| = |x0| exp

(∫ t

s

a(u) du

)
=

{
|x0| es−t if t ≤ 0,

|x0| es+t if t > 0,

which goes to zero as s → −∞. Notice also that the system does not have any
forward attractor since for any fixed s ∈ R one has that |Sf (t, s)| → ∞ as t→∞.
Finally, notice that A(f) = {−x}, and again the set given by A(t) = {0} for all
t ∈ R, is the (bounded) pullback attractor for the process induced by the system
ẋ = −x. However, in this case, {0} is also a forward attractor for ẋ = −x.

Example 4.31. Consider the system

ẋ = f(t, x) = a(t)x+ 1 , (4.38)

where a(·) is the one given in (4.37). The induced process is

Sf (t, s)x0 = x0 exp

(∫ t

s

a(u) du

)
+

∫ t

s

exp

(∫ t

r

a(u) du

)
dr.

Notice that the system trivially satisfies (H1), (H2) and (H3) and in fact we
obtain a pullback attractor which is bounded in the past. In particular, using the
definition of a(·), if t ≤ 0, then

Sf (t, s)x0 = x0 e
s−t + 1− es−t,
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which goes to 1 as s → −∞. As a consequence, we have that A(t) = 1 for all
t ≤ 0. On the other hand, by the invariance of the pullback attractor, we have
that for any t > 0

A(t) = Sf (t, 0)A(0) = x(t, f, 1),

that is, the solution of (4.38) starting at x(0) = 1 which is

x(t, f, 1) = −1 + 2 et.

Summing up, the pullback attractor for this system is given by

A(t) =

{
1 if t ≤ 0,

−1 + 2et if t > 0,

and notice that
⋃
t∈RA(t) is not bounded. Finally, one has that A(f) = {−x+1}

and the set given by A(t) = {1} for all t ∈ R, is the bounded pullback attractor
for the process induced by the system ẋ = −x+ 1.

Example 4.32. Consider the system

ẋ = f(t, x) = a(t)x , with a(t) =

{
1 if t ≤ 0,

−1 if t > 0.
(4.39)

Such a system trivially satisfies (H1), (H∗2) and (H3), and thus, for each fixed
τ ∈ R the solutions of ẋ = f(t, x) are uniformly ultimately bounded on [τ,∞).
In fact, we have that

|Sf (t, s)x0| = |x0| exp

(∫ t

s

a(u) du

)
=


|x0| et−s if s ≤ t ≤ 0,

|x0| e−s−t if s ≤ 0 < t

|x0| es−t if 0 ≤ s ≤ t

where Sf (·, ·) denotes the process induced by (4.39), and one has that

lim
t→∞

Sf (t, s)x = 0, for all x ∈ RN and s ∈ R.

Notice also that such system does not admit a pullback attractor. In fact for any
fixed t ∈ R one has that

lim
s→−∞

Sf (t, s)x =∞, for all x ∈ RN .

Finally, O(f) = {−x} and the set given by A(t) = {0} for all t ∈ R, is the
(bounded) pullback attractor for the process induced by the system ẋ = −x.



4.3 Comparison results for Carathéodory ODEs 117

4.3.2 Comparison with a Carathéodory linear system

In this subsection we aim to develop results analogous to the ones proved in Sub-
section 4.3.1 but the Carathéodory vector field f is now compared with a whole
system of linear Carathéodory equations. Let us firstly recall some notation. For
every i = 1, . . . , N the ith component of x ∈ RN will be denoted by xi. Moreover,
if we write x ≥ 0 we mean that for all i = 1, . . . , N one has xi ≥ 0, whereas we
will write x � 0 if for every i = 1, . . . N one has xi > 0. The space

(
RN
)+ will

denote the set of points x ∈ RN such that x ≥ 0. Analogously, the ith component
of a vector function f : R× RN → RN will be denoted by fi.

We consider the new assumptions for f ∈ LC:

(A1) if x ≥ 0 with xi = 0, then fi(t, x) ≥ 0 for a.e. t ∈ R;

(A2) for a.e (t, x) ∈ R×
(
RN
)+

f(t, x) ≤ A(t)x+ b(t) ,

where the functions A(·) = [aij(·)] ∈ L1
loc

(
RN×N), aij(·) ≥ 0 for every i 6= j,

b(·) ∈ L1
loc

(
RN
)
, and b(t) ≥ 0 for every t ∈ R;

(A3) the linear equation ẏ = A(t) y has exponential dichotomy on (−∞, 0] with
projection P = Id, i.e. there is an α1 > 0 and a constant K ≥ 1 such that

‖Φ(t) Φ−1(s)‖ ≤ K e−α1 (t−s) for s ≤ t ≤ 0 ,

where Φ(t) is the fundamental matrix solution with Φ(0) = IN ;

(A4) the set of functions {bt(·)}t∈R is L1
loc

(
RN
)
-bounded.

The inequality in (A2) actually holds for the positive solutions of ẋ = f(t, x).
The proof is similar to the one of Proposition 4.21 and thus omitted.

Proposition 4.33. Let f be a function in LC satisfying (A2). If x(t) is a solution
of ẋ = f(t, x) defined on an interval I, with x(t) ≥ 0 for all t ∈ I, then

f
(
t, x(t)

)
≤ A(t)x(t) + b(t) for a.e. t ∈ I . (4.40)

Conditions (A1) and (A2) imply that the system ẋ = f(t, x) induces a con-
tinuous time process on

(
RN
)+, as shown in the following result.

Proposition 4.34. Let f be a function in LC and x(t, f, t0, x0) the solution
of ẋ = f(t, x) , x(t0) = x0 with x0 ≥ 0.

(i) If f satisfies (A1), then x(t, f, t0, x0) ≥ 0 for every t ≥ t0 on its maximal
interval of existence.
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(ii) If f satisfies (A1) and (A2), then x(t, f, t0, x0) is defined on [t0,∞).

As a consequence, under assumptions (A1) and (A2) a continuous time process
is induced on

(
RN
)+ by

Sf (t, s)x0 = x(t, f, s, x0) = x(t−s, fs, x0) ≥ 0 , ∀ t ≥ s and x0 ∈
(
RN
)+
. (4.41)

Proof. (i) Denoting by 0 the N -dimensional null vector, by (A1), we have

0 ≤ f(t, x) for all x ∈
(
RN
)+ and a.e. t ∈ R.

Therefore, applying Proposition 4.19 to z(·) ≡ 0, we deduce that for any x0 ≥ 0

0 ≤ x(t, f, t0, x0)

for all t ≥ t0 in the maximal interval of existence of x(·, f, t0, x0), which ends the
proof of part (i).

(ii) For simplicity of notation, let x(t) = x(t, f, t0, x0). From (4.40) we have

ẋ(t) ≤ A(t)x(t) + b(t) for a.e. t ∈ R.

Thus, since aij(·) ≥ 0 for i 6= j, the linear system ẏ = A(t) y + b(t) is quasi-
monotone and the assumptions of Proposition 4.19 are satisfied. Therefore, using
also (i), one has that 0 ≤ x(t) ≤ y(t) for every t ∈ (t0, t1) where y(t) denotes the
solution of ẏ = A(t) y + b(t) with initial data y(t0) = x0, that is,

0 ≤ x(t) ≤ Φ(t) Φ−1(t0)x0 +

∫ t

t0

Φ(t) Φ−1(r) b(r) dr ,

where the right-hand side comes from the variation of constants formula for
Carathéodory linear systems (see [6, Theorem 2.10 p.58]). Therefore, we have
that x(t) = x(t, f, t0, x0) is defined on [t0,∞), which concludes part (ii).

The following result provides the existence of a pullback attractor bounded in
the past in

(
RN
)+.

Theorem 4.35. Let f be a function in LC satisfying (A1), (A2), (A3) and
(A4). Then, the induced process (4.41) is strongly pullback bounded dissipative
on (−∞, τ ] for all τ ∈ R and, as a consequence, there exists a pullback attractor
which is bounded in the past.

Proof. As is Theorem 4.23, from (A3) we deduce the existence of exponential
dichotomy on (−∞, t] for any fixed t ≥ 0. More precisely, there is a nondecreasing
function K(·) ≥ 1 such that

‖Φ(r) Φ−1(s)‖ ≤ K(t) e−α1 (r−s) for s ≤ r ≤ t . (4.42)
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Let D be a bounded set of
(
RN
)+. Thus, there is a positive constant d > 0 such

that supx∈D |x| ≤ d. We take x0 ∈ D, s ≥ 0 and consider x(r) := x(r, f, t−s, x0),
i.e. the solution of the Cauchy problem ẋ(r) = f(r, x(r)) , x(t − s) = x0 . As in
Proposition 4.34, we deduce that 0 ≤ x(r) ≤ y(r) for every r ∈ [t − s, t] where
y(r) denotes the solution of ẏ = A(r) y + b(r) with initial data y(t − s) = x0,
that is,

0 ≤ x(t) ≤ Φ(t) Φ−1(t− s)x0 +

∫ t

t−s
Φ(t) Φ−1(r) b(r) dr .

Therefore, inequality (4.42) provides

|Sf (t, t− s)x0| ≤ |x0|K(t) e−α1 s +K(t)

∫ t

t−s
e−α1 (t−r) |b(r)| dr ,

and the rest of the proof follows step by step the one of Theorem 4.23 and thus
it is omitted.

Remark 4.36. The part in condition (A2) which implies that the system ẏ =

A(r) y + b(r) is quasi monotone, i.e. aij(·) ≥ 0 for i 6= j, can be substituted
by the quasi monotone condition for ẋ = f(r, x), that is (4.13). In this case,
maintaining the notation of Theorem 4.35, we would obtain

f(r, y(r)) ≤ ẏ(r) for a.e. r ,

which implies from Remark 4.20 that x(r) ≤ y(r) for every r ∈ [t− s, t], and the
rest of the proof remains the same.

From Theorems 4.35 and 4.10 we obtain we following result, whose proof is
omitted because it is analogous to the one of Corollary 4.24.

Corollary 4.37. Let f be a function in LC and T be a topology such that the
induced skew-product flow on Hull(LC,T )(f) × (RN)+ is continuous. If f satisfies
(A1), (A2), (A3) and (A4), and g ∈ A(f), then the solutions of ẋ = g(t, x) are
uniformly ultimately bounded, and the induced process Sg(·, ·) on

(
RN
)+ has a

bounded pullback attractor.

If we change hypothesis (A3) by

(A∗3) the linear equation ẏ = A(t) y has exponential dichotomy on [0,∞) with
projection P = Id, i.e. there is an α1 > 0 and a constant K ≥ 1 such that

‖Φ(t) Φ−1(s)‖ ≤ K e−α1 (t−s) for 0 ≤ s ≤ t ,

where Φ(t) is the fundamental matrix solution with Φ(0) = IN ,

we obtain a result analogous to Theorem 4.25.

Theorem 4.38. Let f be a function in LC satisfying (A1), (A2), (A∗3) and (A4),
for each fixed τ ∈ R the solutions are uniformly ultimately bounded on [τ,∞).
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Proof. As is Theorem 4.25, from (A∗3) we deduce the existence of exponential
dichotomy on [t0,∞) for any fixed t0 ∈ R. More precisely, there is a nonincreasing
function K(·) ≥ 1 such that

‖Φ(r) Φ−1(s)‖ ≤ K(t0) e−α1 (r−s) for t0 ≤ s ≤ r . (4.43)

Let x0 ∈
(
RN
)+ be such that |x0| ≤ d for some d > 0, and consider x(r) :=

x(r, f, t0, x0), i.e. the solution of the Cauchy problem ẋ = f(r, x) , x(t0) = x0 .
As in Proposition 4.34, we deduce that 0 ≤ x(r) ≤ y(r) for every r ∈ [t0, t] where
y(r) denotes the solution of ẏ = A(r) y+b(r) with initial data y(t0) = x0, that is,

0 ≤ x(t) ≤ Φ(t) Φ−1(t0)x0 +

∫ t

t0

Φ(t) Φ−1(r) b(r) dr .

Therefore, inequality (4.43) and x(t+ t0) = Sf (t+ t0, t0)x0 provides

|Sf (t+ t0, t0)x0| ≤ |x0|K(t0) e−α1 t0 +K(t0)

∫ t+t0

t0

e−α1 (t+t0−r) |b(r)| dr ,

and the rest of the proof follows step by step the one of Theorem 4.25 and thus
it is omitted.

In particular, this implies that Theorem 4.11 holds in this case and we deduce
the following result.

Corollary 4.39. Let f be a function in LC and T be a topology such that the
induced skew-product flow on Hull(LC,T )(f) × (RN)+ is continuous. If f satisfies
conditions (A1), (A2), (A∗3) and (A4) and g ∈ O(f), then the solutions of ẋ =

g(t, x) are uniformly ultimately bounded, and the induced process Sg(·, ·) on
(
RN
)+

has a bounded pullback attractor.

Finally, if we change hypothesis (A3) by

(A•3) the linear equation ẏ = A(t) y has exponential dichotomy on R with pro-
jection P = Id, i.e. there is an α1 > 0 and a constant K ≥ 1 such that

‖Φ(t) Φ−1(s)‖ ≤ K e−α1 (t−s) for s ≤ t ,

where Φ(t) is the fundamental matrix solution with Φ(0) = IN ,

we obtain a result analogous to Theorem 4.27, whose proof is omitted, and the
corresponding corollary, consequence of Theorem 4.12.

Theorem 4.40. Consider f ∈ LC satisfying (A1), (A2), (A•3) and (A4). Then,
there is a pullback bounded absorbing set B satisfying (4.4) and, hence, the induced
process (4.41) has a bounded pullback attractor.
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Corollary 4.41. Let f be a function in LC and T be a topology such that the
induced local skew-product flow on Hull(LC,T )(f) × (RN)+ is continuous. If f
satisfies (A1), (A2), (A•3) and (A4), and g ∈ Hull(LC,T )(f), then the induced
process Sg(·, ·) has a bounded pullback attractor.

Again, we summarize the results for the existence of a pullback and a global
attractor for the induced skew-product semiflow on Hull(LC,T )(f)× (RN)+ (resp.
A(f)× (RN)+ and O(f)× (RN)+) in the following remark.

Remark 4.42. Under assumptions (A1), (A2), (A•3) and (A4), (i) and (ii) of
Theorem 4.13 hold. The same happens for the conclusions of Corollary 4.16
(resp. 4.17) when (A1), (A2), (A3) and (A4) (resp. (A1), (A2), (A∗3) and (A4))
are assumed.

Example 4.43. Let us go back to the compartmental modelization presented in
Section 3.4.3. Consider B : I × Rd → Rd×d and s : I × Rd → (R+)d satisfying
Lipschitz Carathéodory conditions and defining the compartmental system

ẋ = f(t, x) := B(t, x)x+ s(t, x). (4.44)

Therefore, we know that the compartmental conditions hold for B. In particular
we have that for all t ∈ I, x ∈ Rd one has

- bii(t, x) < 0 ∀i = 1, . . . , n ,

- bij(t, x) ≥ 0 ∀i 6= j .

As a consequence, for any x ≥ 0 and such that xi = 0 for some i = 1, . . . , N , we
have that

N∑
j=1

bij(t, x)xj + si(t, x) ≥ 0

since the only negative entry on the ith row of B is bii, which is multiplied by
zero, and s(t, x) ≥ 0 by definition. Hence, any compartmental model satisfies
condition (A1).

If there exist functions C(·) = [cij(·)] ∈ L1
loc

(
RN×N), cij(·) ≥ 0 for every i 6= j,

b(·) ∈ L1
loc

(
RN
)
, and b(t) ≥ 0 for every t ∈ R such that

- for a.e (t, x) ∈ R×
(
RN
)+ one has

f(t, x) = B(t, x)x+ s(t, x) ≤ C(t)x+ b(t),

- the linear equation ẏ = C(t) y has exponential dichotomy on (−∞, 0] with
projection P = Id, and

- the set of functions {bt(·)}t∈R is L1
loc

(
RN
)
-bounded,
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then, f satisfies also (A2), (A3) and (A4). Thus, Theorem 4.35 provides the
existence of a pullback attractor bounded in the past for the process induced
by (4.44), whereas Corollary 4.37 provides a bounded pullback attractor for any
process induced by a system whose vector field is in A(f). On the other hand, if
f itself is in the alpha limit set of a Lipschitz Carathéodory function satisfying
(A1), (A2), (A3) and (A4), then the process induced by (4.44) has a bounded
pullback attractor.

Similar reasonings hold in case the system ẏ = C(t) y has exponential di-
chotomy on [0,∞) (resp. on R) with projection P = Id and applying Theorem
4.38 and Corollary 4.39 (resp. Theorem 4.40 and Corollary 4.41).



Chapter 5

Continuity of the semiflow for
Carathéodory DDEs

This chapter aims to extend part of the theory that has been developed so far, to
the case of Carathéodory delay differential equations with constant delay of the
type

ẋ = f
(
t, x(t), x(t− τ)

)
, (5.1)

i.e. in which the vector field not only depends on the time and on the present
state, but also on the past.

It is important to notice that such extension is not trivial because steps into an
infinite-dimensional formulation. In fact the phase space for a skew-product flow
induced by (5.1) would be C([−τ, 0],RN). Nevertheless, the specific type of differ-
ential equations considered, together with the fact that the function f is defined
on a finite-dimensional space, make it possible to use some of the arguments of
the previous chapters to extend or develop, with unavoidable discrepancies, some
of the results seen before.

An equation like (5.1) allows to modelize a variety of phenomena in which
the past consistently influences the future. One may object that, however, this is
the simplest type of dependence on the past that one can think of. Yet, this for-
mulation finds extensive and successful application in the modelization of many
phenomena. Examples include applications in economics, industry, military prob-
lems, population dynamics and more (see Bellman and Danskin [8] and Smith
[56] for further details).

The chapter is structured as follows. In Section 5.1, we provide basic prelim-
inaries of Carathéodory delay differential equations with constant delay.

In Section 5.2, we introduce new strong and weak topologies which exhibit a
hybrid behavior with respect to the ones presented in Chapter 2. Furthermore,
we show how such topologies relate to the first ones and how to apply or develop,
in this new context, some of the topological results contained in Sections 2.2, 2.3,
2.4 and 2.5.

123
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Section 5.3 deals with the continuity of the skew-product semiflow induced by
problems of the type (5.1) when LC is endowed with either TB, TD or the new
hybrid topologies TΘB, TΘD and σΘD (and suitable hypothesis are assumed on f).

5.1 Preliminaries

For the sake of completeness and to set some notation, we include a theorem of ex-
istence and uniqueness of the solution for a Cauchy Problem of Carathéodory type
with constant delay. A proof can be derived by the one given for Carathéodory
ordinary differential equations in [21, Theorem 1.1, p.43, Theorem 1.2, p.45 and
Theorem 2.2, p.49] as shown below (see Cruz and Hale [22] and Hale and Verduyn
Lunel [29] for the proofs of existence, uniqueness and continuous dependence for
a more general class of delay differential equations). Notice also that, in order to
simplify the notation, from now on we will consider the delay τ = 1 so that (5.1)
takes the form

ẋ = f
(
t, x(t), x(t− 1)

)
.

Moreover, we will denote by C the set

C := C([−1, 0],RN).

Theorem 5.1. For any f ∈ LC and any φ ∈ C there exists a maximal interval
If,φ = (−1, bf,φ) and a unique continuous function x(·, f, φ) defined on If,φ which
is the solution of the delay differential problem{

ẋ = f
(
t, x(t), x(t− 1)

)
,

x(t) = φ(t) for t ∈ [−1, 0].
(5.2)

In particular, if bf,φ <∞, then |x(t, f, φ)| → ∞ as t→ bf,φ.

Proof. Firstly, consider the ordinary differential Cauchy Problem{
ẋ = f

(
t, x(t), φ(t− 1)

)
,

x(0) = φ(0).

Due to Theorem 1.2, such problem admits a solution x̃0(·) defined on [0, bf,φ(0)),
where bf,φ(0) is as in Theorem 1.2. In particular, x̃0(·) satisfies (5.2) on [0, T0] for
any 0 ≤ T0 < min{1, bf,φ(0)}. Therefore, defining

x̃0(t) := φ(t) for t ∈ [−1, 0],

we have that x̃0(·) is a solution of (5.2) on [−1, T0]. If in particular 1 < bf,φ(0),
then we can repeat the same reasoning in the interval [0, T1], with 1 ≤ T1 <

min{2, bf,x̃0(1)} for the delay differential problem{
ẋ = f

(
t, x(t), x(t− 1)

)
,

x(t) = x̃0(t) for t ∈ [0, 1]
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and obtain the solution x̃1(·) defined in [0, T1]. In particular, due to the unique-
ness of the solution for the ordinary differential Cauchy Problems provided by
Theorem 1.2, we can extend x̃0(·) to [−1, T1] by posing x̃0(t) := x̃1(t) for all
t ∈ [T0, T1] which is the solution of (5.2) on [−1, T1]. Reiterating such argument
we end up with a solution of (5.2) in a maximal interval [−1, bf,φ).

5.2 Spaces and topologies revised

In this section we aim to get back to the spaces introduced in section 2 and
blend them in the context of delay differential equations. While still using the
same spaces of functions as before, in the following we will slightly change the
notation on such spaces (to avoid any possible misunderstanding) by including
the set where the space variable takes values. For example, if f : R×R2N → RN

satisfies (C1) and (C2), we will write that f ∈ C(R2N ,RN) (instead of just
f ∈ C(RN)). The same principle holds also for the rest of the spaces.

An important role will be played by an hybrid version of the topologies pre-
sented in Chapter 2. The term hybrid means that, while still asking for a con-
vergence of L1

loc type, we will possibly treat the first N components of the spatial
variable (representing the current state in a delay differential equation) in a dif-
ferent way from the last N ones (representing the history of the state). Firstly,
let us consider the set of Lipschitz Carathéodory functions LC(R2N ,RN) (see
Definition 2.1) and introduce the notion of l1-bounds and l2-bounds.

Definition 5.2 (l1-bounds and l2-bounds in C(R2N ,RN)). Let us consider a func-
tion f ∈ C(R2N ,RN). We say that f admits l1-bounds (resp. l2-bounds) if for
every j ∈ N there exists a function lj1(·) ∈ L1

loc (resp. l
j
2(·) ∈ L1

loc) such that for
almost every t ∈ R

|f(t, x1, u)− f(t, x2, u)| ≤ lj1(t) |x1 − x2| for all (x1, u), (x2, u) ∈ Bj(
resp. |f(t, x, u1)− f(t, x, u2)| ≤ lj2(t) |u1 − u2| for all (x, u1), (x, u2) ∈ Bj

)
.

In particular, if f ∈ LC(R2N ,RN), i.e. f : R×R2N → RN satisfying the assump-
tions in Definition 2.1, for every j ∈ N we refer to the optimal l1-bound and the
optimal l2-bound for f on Bj ⊂ R2N as to

lj1(t) = sup
(x1,u),(x2,u)∈Bj

x1 6=x2

|f(t, x1, u)− f(t, x2, u)|
|x1 − x2|

,

lj2(t) = sup
(x,u1),(x,u2)∈Bj

u1 6=u2

|f(t, x, u1)− f(t, x, u2)|
|u1 − u2|

.

If f ∈ SC(R2N ,RN) one can still define either the optimal l1-bounds and/or
the optimal l2-bounds if, for almost every t ∈ R, f is Lipschitz continuous with
respect to the first and/or the last N space variables, respectively.
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Remark 5.3. Consider f ∈ LC(R2N ,RN). We claim that for all t ∈ R one has
lj(t) ≤ lj1(t) + lj2(t), where by lj(·) we denote the optimal l-bound for f on Bj as
in (2.2). In order to prove it, firstly observe that if (x1, u1), (x2, u2) ∈ Bj ⊂ R2N ,
then, at least one between (x1, u2) and (x2, u1) is in Bj ⊂ R2N . Otherwise, we
would have

|(x1, u2)|2 > j2 and |(x2, u1)|2 > j2.

However, by assumption we know that

|(x1, u1)|2 ≤ j2 and |(x2, u2)|2 ≤ j2 ,

and thus we would obtain the following contradiction

2j2 < |(x1, u2)|2 + |(x2, u1)|2 = |(x1, u1)|2 + |(x2, u2)|2 ≤ 2 j2 .

Therefore, for any t ∈ R, any pair (x1, u1), (x2, u2) ∈ Bj ⊂ R2N , and assuming
without any loss of generality that (x2, u1) ∈ Bj, one has

|f(t, x1, u1)− f(t, x2, u2)|
|(x1, u1)− (x2, u2)|

≤ |f(t, x1, u1)− f(t, x2, u1)|+ |f(t, x2, u1)− f(t, x2, u2)|
|(x1, u1)− (x2, u2)|

≤ lj1(t)
|x1 − x2|

|(x1, u1)− (x2, u2)|
+ lj2(t)

|u1 − u2|
|(x1, u1)− (x2, u2)|

≤ lj1(t) + lj2(t) ,

which gives us the aimed inequality once, in the previous formula, one takes the
superior over (x1, u1), (x2, u2) ∈ Bj, with (x1, u1) 6= (x2, u2).

As follows, we introduce some new topologies on SC(R2N ,RN).

Definition 5.4 (Hybrid topologies on SC(R2N ,RN)). Let Θ and Θ̂ be suitable
sets of moduli of continuity as defined in Definition 2.3, D be a countable dense
subset of RN and, for any I = [q1, q2], q1, q2 ∈ Q and j ∈ N, let KIj and K̂Ij be the
sets of functions in C(I, Bj) which admit θIj and θ̂Ij , respectively, as a moduli of
continuity.

• We call TΘD the topology on SC(R2N ,RN) generated by the family of semi-
norms

pI, u, j(f) = sup
x(·)∈KIj

∫
I

∣∣f(t, x(t), u
)∣∣dt, f ∈ SC(R2N ,RN) ,

with I = [q1, q2], q1, q2 ∈ Q, u ∈ D and j ∈ N.
(
SC(R2N ,RN), TΘD

)
is a locally

convex metric space.
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• We call TΘΘ̂ the topology on SC(R2N ,RN) generated by the family of semi-
norms

pI, j(f) = sup
x(·)∈KIj , u(·)∈K̂I−1

j

∫
I

∣∣f(t, x(t), u(t− 1)
)∣∣dt, f ∈ SC(R2N ,RN) ,

with I = [q1, q2], q1, q2 ∈ Q and j ∈ N.
(
SC(R2N ,RN), TΘΘ̂

)
is a locally convex

metric space.

• We call TΘB the topology on SC(R2N ,RN) generated by the family of semi-
norms

pI, j(f) = sup
x(·)∈KIj , u(·)∈C(I−1,Bj)

∫
I

∣∣f(t, x(t), u(t− 1)
)∣∣dt, f ∈ SC(R2N ,RN) ,

with I = [q1, q2], q1, q2 ∈ Q and j ∈ N.
(
SC(R2N ,RN), TΘB

)
is a locally convex

metric space.

• We call σΘD the topology on SC(R2N ,RN) generated by the family of semi-
norms

pI, u, j(f) = sup
x(·)∈KIj

∣∣∣∣∫
I

[
f
(
t, x(t), u

)]
dt

∣∣∣∣ , f ∈ SC(R2N ,RN) ,

with I = [q1, q2], q1, q2 ∈ Q, u ∈ D and j ∈ N.
(
SC(R2N ,RN), σΘD

)
is a locally

convex metric space.

• We call σΘΘ̂ the topology on SC(R2N ,RN) generated by the family of semi-
norms

pI, j(f) = sup
x(·)∈KIj , u(·)∈K̂I−1

j

∣∣∣∣∫
I

[
f
(
t, x(t), u(t− 1)

)]
dt

∣∣∣∣ , f ∈ SC(R2N ,RN) ,

with I = [q1, q2], q1, q2 ∈ Q and j ∈ N.
(
SC(R2N ,RN), σΘΘ̂

)
is a locally convex

metric space.

The topologies introduced in the previous definition are called hybrid because
they are derived from the ones presented in Chapter 2 so that the condition of
uniformity for the first N space variables differ from the one of the remaining
N space variables. A natural question arises, concerning the relation between
the topologies TΘ and TΘΘ (resp. σΘ and σΘΘ) on SC(R2N ,RN). In order to
deal with such a problem, we need to state the following technical lemma for the
topologies of the type σΘΘ̂ (which is the analogous of Lemma 2.14 for σΘ). Since
its proof differs from the one of Lemma 2.14 only on minor details, we skip it.
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Lemma 5.5. Let Θ and Θ̂ be suitable sets of moduli of continuity as in Defini-
tion 2.3 and, for each j ∈ N and I = [q1, q2], q1, q2 ∈ Q, let KIj and K̂Ij be the
compact sets in C(I, Bj) which admit θIj and θ̂Ij , respectively, as a modulus of
continuity.

(i) Let f be a function of SC(R2N ,RN). For each j ∈ N and I = [q1, q2],
q1, q2 ∈ Q, if

(
xn(·)

)
n∈N is a sequence in KIj converging uniformly to some

function x(·) ∈ KIj and
(
un(·)

)
n∈N is a sequence in K̂I−1

j converging uni-
formly to some function u(·) ∈ K̂I−1

j , then

lim
n→∞

∫ p2

p1

f
(
t, xn(t), un(t− 1)

)
dt =

∫ p2

p1

f
(
t, x(t), u(t− 1)

)
dt ,

whenever p1, p2 ∈ Q and q1 ≤ p1 < p2 ≤ q2.

(ii) Let (gn)n∈N be a sequence in SC(R2N ,RN) converging to some function g

in
(
SC(RN), σΘΘ̂

)
. Then, for any I = [q1, q2], q1, q2 ∈ Q and j ∈ N one

has

lim
n→∞

sup
x(·)∈KIj , u(·)∈K̂I−1

j

∣∣∣∣∫ p2

p1

[
gn
(
t, x(t), u(t− 1)

)
− g
(
t, x(t), u(t− 1)

)]
dt

∣∣∣∣ = 0,

whenever p1, p2 ∈ Q and q1 ≤ p1 < p2 ≤ q2.

Then, we are finally ready to relate the topologies TΘ and TΘΘ (resp. σΘ and
σΘΘ) on SC.

Proposition 5.6. Let Θ be a suitable set of moduli of continuity as in Defini-
tion 2.3. Considered the topologies TΘ, σΘ, TΘΘ and σΘΘ introduced in Definitions
2.9, 2.10, and 5.4, respectively, the following order relations hold in SC:

TΘ ≤ TΘΘ and σΘ ≤ σΘΘ.

Proof. We will complete the proof for the weak topologies because the other one
is analogous (and simpler). Furthermore, in order to avoid any abuse of notation,
within this proof we will write

KIj,2N := {ξ : I → Bj ⊂ R2N | |ξ(t)− ξ(s)| ≤ θIj (|t− s|), for all t, s ∈ I},

KIj,N := {η : I → Bj ⊂ RN | |η(t)− η(s)| ≤ θIj (|t− s|), for all t, s ∈ I}.

Firstly, let us consider a sequence (fn)n∈N in SC converging to some f ∈ SC

with respect to the topology σΘΘ and prove that one also has fn
σΘ−→ f as n→∞.

To the aim, fix I = [q1, q2], q1, q2 ∈ Q, and j ∈ N and consider J = [p1, p2],
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p1, p2 ∈ Q such that I ⊂ J and I ∪ (I − 1) ⊂ J − 1. Then, one has

sup
(x(·),u(·))∈KIj,2N

∣∣∣∣ ∫
I

[
fn
(
t, x(t), u(t)

)
− f

(
t, x(t), u(t)

)]
dt

∣∣∣∣
≤ sup
x(·)∈KIj,N , u(·)∈KIj,N

∣∣∣∣ ∫
I

[fn
(
t, x(t), u(t)

)
− f

(
t, x(t), u(t)

)]
dt

∣∣∣∣
≤ sup
x(·)∈KJj,N , u(·)∈KJ−1

j,N

∣∣∣∣ ∫
I

[fn
(
t, x(t), u(t− 1)

)
− f

(
t, x(t), u(t− 1)

)]
dt

∣∣∣∣
(5.3)

where the last inequality is obtained up to extending by constants to J the func-
tions x(·) ∈ KIj,N , and up to changing any function u(·) ∈ KIj,N for its translation
ũ : I−1→ Bj ⊂ RN so that ũ(t) = u(t+ 1) for all t ∈ I−1, and up to extending
such functions ũ by constant to J − 1. Now, by assumption we have that

sup
x(·)∈KJj,N , u(·)∈KJ−1

j,N

∣∣∣∣ ∫
J

[fn
(
t, x(t), u(t− 1)

)
− f

(
t, x(t), u(t− 1)

)]
dt

∣∣∣∣ n→∞−−−→ 0,

and thus, passing to the limit as n→∞ in (5.3), we obtain the result thanks to
Lemma 5.5(ii) and recalling that I ⊂ J .

Remark 5.7. Consider any dense and countable set D ⊂ RN , and any pair Θ

and Θ̂ of suitable sets of moduli of continuity as in Definition 2.3 such that, for
any I = [q1, q2], q1, q2 ∈ Q and j ∈ N, one has

θIj (t) ≤ θ̂Ij (t), for all t ∈ [0,∞).

Then, the following chains of order relate the topologies introduced in Defini-
tion 5.4 to some of the topologies presented in Section 2.2 when all of them are
considered on SC(R2N ,RN):

σD ≤ TD ≤ TΘD ≤ TΘ ≤ TΘΘ ≤ TΘΘ̂ ≤ TΘB ≤ TB and

σD ≤ σΘD ≤ σΘ ≤ σΘΘ ≤ σΘΘ̂ ≤ TΘΘ̂,
(5.4)

where, in particular, the order relations TΘ ≤ TΘΘ and σΘ ≤ σΘΘ hold true
thanks to Proposition 5.6. As a consequence, we have that some of the theorems
proved in Chapter 2 already give information about the new topologies introduced
in Definition 5.4. In particular, the results of propagation of the L1

loc-boundedness
and/or L1

loc-equicontinuity of the m-bounds and/or l-bounds from a set to its
topological closure contained in Propositions 2.26, 2.27 and 2.29 directly apply.
Furthermore, by checking the proof of Theorem 2.31, one immediately notice
that all the strong topologies in the first chain of (5.4) coincide on the subsets
of LC(R2N ,RN) with L1

loc-bounded l-bounds. Consequently, analogous comments
hold for the results of relative compactness contained in Section 2.6.

In analogy of Proposition 2.26, we present a result of propagation of the
l2-bounds with respect to all the considered topologies.
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Proposition 5.8. Let T be any of the topologies depicted in (5.4), and whose
definitions are contained either in Section 2.2 or in Definition 5.4. The following
statements hold true.

(i) If E ⊂ SC
(
R2N ,RN

)
has L1

loc-bounded l2-bounds then cls(SC(R2N ),T )(E) has
L1
loc-bounded l2-bounds.

(ii) If f ∈ SC
(
R2N ,RN

)
admits L1

loc-bounded l2-bounds then also any g ∈
Hull(SC(R2N ),T )(f) has L1

loc-bounded l2-bounds.

Proof. Let D be any countable dense subset of R2N . By (5.4), if we prove the re-
sult for the topology σD, then we have it for all the other topologies. Furthermore,
in order to simplify the notation, let

E = cls(SC(RN ),σD)(E).

Consider f ∈ E and let (fn)n∈N be a sequence in E converging to f with respect
to σD. For any j, n ∈ N let us denote by ljn(·) ∈ L1

loc the optimal l2-bound of fn
on Bj. Consider t, h ∈ Q, with h > 0 and (x, u1), (x, u2) ∈ Bj ∩D. Then one has∣∣∣∣ ∫ t+h

t

[f(s, x, u1)− f(s, x, u2)] ds

∣∣∣∣ ≤ ∣∣∣∣ ∫ t+h

t

[f(s, x, u1)− fn(s, x, u1)] ds

∣∣∣∣+
+

∣∣∣∣ ∫ t+h

t

[fn(s, x, u1)− fn(s, x, u2)] ds

∣∣∣∣+

∣∣∣∣ ∫ t+h

t

[fn(s, x, u2)− f(s, x, u2)] ds

∣∣∣∣. (5.5)

Notice that, since (fn)n∈N converges to f in
(
SC(R2N ,RN), σD

)
, then the first

and the last integrals on the right-hand side of the previous inequality tend to
zero as n→∞. Moreover, one has

1

h

∣∣∣∣ ∫ t+h

t

[fn(s, x, u1)− fn(s, x, u2)] ds

∣∣∣∣ ≤ |u1 − u2|
h

∫ t+h

t

ljn(s) ds ,

and by the L1
loc-boundedness of the l2-bounds we have that the set of positive

measures {λjn | n ∈ N} with densities {ljn(·) | n ∈ N} is relatively compact in
M+ with respect to the vague topology (see Remark 2.21 and Definition 2.19).
Therefore, there exists λj ∈M+ such that, up to a subsequence, one has λjn

σ̃−→ λj.
Moreover, recall that by the regularity of λj, one has

λj([t, t+ h]) = inf

{∫
R
φ(s) dλj(s)

∣∣∣ φ ∈ C+
C (R), φ ≡ 1 in [t, t+ h]

}
.

Hence, dividing both the sides in (5.5) by h, taking the limit as n→∞ and
gathering all the previous reasoning, one has

1

h

∣∣∣∣ ∫ t+h

t

[f(s, x, u1)− f(s, x, u2)] ds

∣∣∣∣ ≤ λj([t, t+ h])

h
|u1 − u2|. (5.6)
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Now, consider t, h ∈ R, with h > 0, and let (sn)n∈N and (tn)n∈N be two sequences
in Q such that, as n→∞, sn ↓ t and tn ↑ t+h, respectively. By (5.6), applied on
the intervals [sn, tn], and noticing that λj([sn, tn)] ≤ λj([t, t+h]) for every n ∈ N,
one can write

1

h

∣∣∣∣ ∫ tn

sn

[f(s, x, u1)− f(s, x, u2)] ds

∣∣∣∣ ≤ λj([t, t+ h])

h
|u1 − u2|.

Hence, passing to the limit as n→∞ and using the continuity of the integral,
one obtains (5.6) for every t, h ∈ R with h > 0.

Now, by the Lebesgue-Besicovitch differentiation theorem (see [1, Theorem
2.22, p.54]), there exists lj(·) ∈ L1

loc such that

lim
h→0

λj([t, t+ h])

h
= lj(t) for a.e. t ∈ R , (5.7)

and lj(·) is the density of the absolutely continuous part of the Radon-Nikodym
decomposition of λj. Therefore, as h → 0 (see [24, Corollary III.12.7, p.216]),
(5.6) becomes

|f(t, x, u1)− f(t, x, u2)| ≤ lj(t) |u1 − u2| for a.e. t ∈ R . (5.8)

The set R(x, u1, u2) ⊂ R such that meas(R \ R(x, u1, u2)) = 0 where (5.8) holds,
depends on x, u1 and u2. However, sinceD is numerable, by simply intersecting all
the possible R(x, u1, u2), with (x, u1), (x, u2) ∈ Bj ∩D (there is only a numerable
quantity of them), one obtains a set R0 ⊂ R of full measure for which (5.8)
holds for all (x, u1), (x, u2) ∈ Bj ∩D. Nevertheless, (5.8) can be extended to all
(x, u1), (x, u2) ∈ Bj through the continuity of f with respect to the last variables;
which proves that the functions in E admit a Lipschitz coefficient in the third
variable.

Finally, we prove that E admits L1
loc-bounded l2-bounds. For each f ∈ E

and any j ∈ N, let ljf be either, the optimal l2-bound of f on Bj if f ∈ E, or
the l2-bound given by (5.7) if f ∈ E \ E, i.e. the absolutely continuous part
of a limit measure. Moreover, for each f ∈ E, let (fn)n∈N be a sequence in E

converging to f with respect to σD. Consider j ∈ N, r > 0 and φ ∈ C+
C such that

suppφ ⊂ [−r − 1, r + 1] and φ ≡ 1 in [−r, r], then, we have∫ r

−r
ljf (t) dt ≤

∫
R
φ(t) ljf (t) dt ≤ lim

n→∞

∫
R
φ(t) ljfn(t) dt

≤ sup
g∈E

∫ r+1

−r−1

ljg(t) dt <∞ ,

which ends the proof.

Considered the different role played in delay differential equations by the first
N and the last N space variables of the vector field, and the notion of l1 and l2
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bounds given in Definition 5.2, at this point we would like to see if it is possible
to deduce a result similar to Theorem 2.33, but just for the hybrid topologies
presented in Definition 5.4.

Theorem 5.9. Let E be a set in SC(R2N ,RN) with L1
loc-bounded l2-bounds. If D

is any dense and numerable subset of RN , and Θ and Θ̂ are any pair of suitable
sets of moduli of continuity (see Definition 2.3), then(

E, T1

)
=
(
E, T2

)
and cls(SC(R2N ,RN ),T1)(E) = cls(SC(R2N ,RN ),T2)(E).

where T1 and T2 are any of the strong topologies introduced in Definition 5.4.
Furthermore, one also has that(

E, σΘD

)
=
(
E, σΘΘ̂

)
and cls(SC(R2N ,RN ),σΘD)(E) = cls(SC(R2N ,RN ),σΘΘ̂)(E).

Proof. We will prove the case of the weak topologies and omit the proof for the
strong topologies because it is analogous and simpler. Moreover, in order to
simplify the notation, let us use the following symbols:

EΘD = cls(SC(R2N ,RN ),σΘD)(E) and EΘΘ̂ = cls(SC(R2N ,RN ),σΘΘ̂)(E).

Thanks to Proposition 5.8, we know that EΘD has L1
loc-bounded l2-bounds. In

analogy with Theorem 2.33, we will complete the proof in two steps.
Step 1. Consider a set E1 in SC(R2N ,RN) with L1

loc-bounded m-bounds and
L1
loc-bounded l2-bounds. Let (fn)n∈N be a sequence of elements of E1 converging

to some f in
(
SC(R2N ,RN), σΘD

)
. We shall prove that (fn)n∈N converges to f

in
(
SC(R2N ,RN), σΘΘ̂

)
where Θ and Θ̂ are suitable sets of moduli of continuity.

Fix a compact interval I = [q1, q2], with q1, q2 ∈ Q, j ∈ N and, for any n ∈ N,
let m2j

n (·) ∈ L1
loc and l2jn (·) ∈ L1

loc be respectively the optimal m-bound and the
optimal l2-bound of fn on B2j ⊂ R2N . By the L1

loc-boundedness of the l2-bounds,
there exists ρ > 0 such that

sup
n∈N

∫
I

l2jn (s) ds < ρ <∞ .

Fix ε > 0 and consider δ = ε/3ρ. Since Bj ⊂ RN is compact, and D is dense in
RN , there exist u1, . . . uν ∈ D such that

Bj ⊂
ν⋃
i=1

Bδ(ui),

where Bδ(u) denotes the closed ball of RN of radius δ centered at u ∈ RN . For
i = 1, . . . , ν, let us consider the continuous functions φi : RN → [0, 1], so that

supp(φi) ⊂ Bδ(ui) and
ν∑
i=1

φi(u) = 1 ∀u ∈ Bj ,
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and define the functions

f ∗n(t, x, u) =
ν∑
i=1

φi(u) fn(t, x, ui) and f ∗(t, x, u) =
ν∑
i=1

φi(u) f(t, x, ui) .

Denote by KIj and K̂I−1
j the compact subsets of C(I, Bj) and C(I−1, Bj), with

Bj ⊂ RN , admitting θIj ∈ Θ and θ̂I−1
j ∈ Θ̂, respectively, as moduli of continuity.

For any x(·) ∈ KIj and u(·) ∈ K̂I−1
j one has∣∣∣∣ ∫

I

[
fn
(
t, x(t), u(t− 1)

)
− f

(
t, x(t), u(t− 1)

)]
dt

∣∣∣∣
≤
∣∣∣∣ ∫

I

[
fn
(
t, x(t), u(t− 1)

)
− f ∗n

(
t, x(t), u(t− 1)

)]
dt

∣∣∣∣
+

∣∣∣∣ ∫
I

[
f ∗n
(
t, x(t), u(t− 1)

)
− f ∗

(
t, x(t), u(t− 1)

)]
dt

∣∣∣∣
+

∣∣∣∣ ∫
I

[
f ∗
(
t, x(t), u(t− 1)

)
− f

(
t, x(t), u(t− 1)

)]
dt

∣∣∣∣ .
(5.9)

Let us separately analyze each element in the sum on the right-hand side of the
previous inequality. As regards the first one, we have that∣∣∣∣ ∫

I

[
fn
(
t, x(t), u(t− 1)

)
− f ∗n

(
t, x(t), u(t− 1)

)]
dt

∣∣∣∣
=

∣∣∣∣ ∫
I

ν∑
i=1

φi
(
u(t− 1)

) [
fn
(
t, x(t), u(t− 1)

)
− fn(t, x(t), ui)

]
dt

∣∣∣∣
≤
∫
I

ν∑
i=1

φi
(
u(t− 1)

)
l2jn (t) |u(t− 1)− ui| dt

≤
∫
I

ν∑
i=1

φi
(
u(t− 1)

)
l2jn (t) δ dt =

ε

3ρ

∫
I

l2jn (t) dt ≤ ε

3
,

(5.10)

where the first inequality holds thanks to Definition 5.2 and recalling that for any
t ∈ I, one has that

∣∣(x(t), u(t− 1)
)∣∣ ≤ 2j. Similar reasonings apply to the third

element of the sum in (5.9): in particular, recall that, due to Proposition 5.8, the
l2-bound for f on B2j, namely l2j(·) ∈ L1

loc, satisfies∫
I

l2j(s) ds < ρ <∞.

Finally, let us deal with the the remaining integral in (5.9). By the uniform
continuity of the functions φi(·) on Bj ⊂ RN , and recalling that all u(·) ∈ K̂I−1

j

share the same modulus of continuity, we have that for the given ε > 0 there
exists δ > 0 such that for all i ∈ {1, . . . , ν} one has

∀ s, t ∈ I − 1, ∀u(·) ∈ K̂I−1
j : |s− t| < δ ⇒

∣∣φi(u(s)
)
− φi

(
u(t)

)∣∣ < ε

9 νρm
,
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where
ρm := max

{∫
I

m2j(t) dt, sup
n∈N

∫
I

m2j
n (t) dt

}
<∞ ,

and by m2j(·) ∈ L1
loc we denote the optimal m-bound for f on B2j ⊂ R2N , whose

existence is guaranteed by Proposition 2.26 and (5.4). In particular, the constant
ρm is well defined thanks to the L1

loc-boundedness of them-bounds of the functions
in E1. Thus, let us consider a δ-partition of I, i.e. τ1, . . . , τη ∈ I ∩ Q such that
I = [τ1, τη] and 0 < τk+1 − τk < δ, with k = 1, . . . , η − 1, and a function

φ̄i : K̂I−1
j → L∞(I,R) defined by φ̄i

(
u(t− 1)

)
=

η∑
k=1

φi
(
u(τk − 1)

)
χ(τk,τk+1](t)

Notice that, for any u(·) ∈ K̂I−1
j and any i = 1, . . . , ν one has

‖φi
(
u(· − 1)

)
− φ̄i

(
u(· − 1)

)
‖L∞(I) <

ε

9 νρm
.

Now, we have∣∣∣∣ ∫
I

[
f ∗n
(
t, x(t), u(t− 1)

)
− f ∗

(
t, x(t), u(t− 1)

)]
dt

∣∣∣∣
≤

ν∑
i=1

∣∣∣∣ ∫
I

φi
(
u(t− 1)

) [
fn
(
t, x(t), ui

)
− f(t, x(t), ui)

]
dt

∣∣∣∣
≤

ν∑
i=1

∣∣∣∣ ∫
I

φ̄i
(
u(t− 1)

) [
fn
(
t, x(t), ui

)
− f(t, x(t), ui)

]
dt

∣∣∣∣+
+

ν∑
i=1

∫
I

∣∣fn(t, x(t), ui
)∣∣ ∣∣φi(u(t− 1)

)
− φ̄i

(
u(t− 1)

)∣∣ dt+
+

ν∑
i=1

∫
I

∣∣f(t, x(t), ui
)∣∣ ∣∣φ̄i(u(t− 1)

)
− φi

(
u(t− 1)

)∣∣ dt
≤

ν∑
i=1

[ η∑
k=1

φi
(
u(τk − 1)

) ∣∣∣∣∫ τk+1

τk

[
fn
(
t, x(t), ui

)
− f(t, x(t), ui)

]
dt

∣∣∣∣+
+ 2 ρm ‖φi

(
u(· − 1)

)
− φ̄i

(
u(· − 1)

)
‖L∞(I)

]
.

(5.11)

By the convergence of (fn)n∈N to f in
(
SC(R2N ,RN), σΘD

)
and considering that

we are only using a finite number of points ui, with i = 1, . . . , ν, there exists
n0 ∈ N such that, if n > n0, then for all i = 1, . . . , ν and for all k = 1, . . . , η one
has ∣∣∣∣∫ τk+1

τk

[
fn
(
t, x(t), ui

)
− f(t, x(t), ui)

]
dt

∣∣∣∣ < ε

9 ν η
.

Thus for n > n0, (5.11) becomes∣∣∣∣ ∫
I

[
f ∗n
(
t, x(t), u(t− 1)

)
− f ∗

(
t, x(t), u(t− 1)

)]
dt

∣∣∣∣ < ε

9
+

2 νρmε

9 νρm
=
ε

3
. (5.12)
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From (5.9), (5.10) and (5.12) we obtain that the sequence (fn)n∈N converges to f
in
(
SC(R2N ,RN), σΘΘ̂

)
, and thus the equivalence of the topologies of type σΘD

and σΘΘ̂ on E1.
Step 2. Now, fixed a dense and countable set D ⊂ RN and a pair Θ and

Θ̂ of suitable sets of moduli of conitnuity, assume that (fn)n∈N is a sequence of
elements of E converging to some f in

(
SC(R2N ,RN), σΘD

)
. In order to complete

the proof, we prove that (fn)n∈N converges to f in
(
SC(R2N ,RN), σΘΘ̂

)
. In

particular consider u0 ∈ B1 ∩D ⊂ RN and define the functions

h(t, x, u) = f(t, x, u)− f(t, x, u0) and

hn(t, x, u) = fn(t, x, u)− fn(t, x, u0), ∀n ∈ N.

Notice that the set {hn | n ∈ N} ∪ {h} has L1
loc-bounded m-bounds. Indeed, for

any j ∈ N, considered (x, u) ∈ Bj ⊂ R2N one has that for any n ∈ N

|hn(t, x, u)| = |fn(t, x, u)− fn(t, x, u0)| ≤ ljn(t) |u− u0| ≤ (j + 1) ljn(t)

for almost every t ∈ R, where ljn(·) ∈ L1
loc is the optimal l2-bound for fn on

Bj ⊂ R2N . Additionally, one can repeat analogous arguments for the function h
obtaining

|h(t, x, u)| ≤ (j + 1) lj(t) for a.e. t ∈ R,

where lj(·) ∈ L1
loc is the optimal l2-bound for f on Bj ⊂ R2N . Thus, the L1

loc-
boundedness of the l2-bounds for the set E gives L1

loc-bounded m-bounds for
{hn | n ∈ N} ∪ {h}. Moreover, we also have that the same set has L1

loc-bounded
l2-bounds. Indeed, for any j ∈ N, considered (x, u1), (x, u2) ∈ Bj ⊂ R2N one has
that for every n ∈ N

|hn(t, x, u1)− hn(t, x, u2)| = |fn(t, x, u1)− fn(t, x, u2)| ≤ ljn(t) |u1 − u2|,

for almost every t ∈ R, and one can repeat analogous arguments for the function
h obtaining

|h(t, x, u1)− h(t, x, u2)| ≤ lj(t) |u1 − u2| for a.e. t ∈ R.

Therefore, from the L1
loc-boundedness of the l2-bounds for the set E one has that

{hn | n ∈ N} ∪ {h} also has L1
loc-bounded l2-bounds. Finally notice that (hn)n∈N

converges to h in
(
SC(R2N ,RN), σΘD

)
. Indeed, fixed I = [q1, q2], with q1, q2 ∈ Q

and j ∈ N, for any x(·) ∈ KIj and u ∈ D we have∣∣∣∣ ∫
I

[
hn
(
t, x(t), u

)
− h
(
t, x(t), u

)]
dt

∣∣∣∣
≤
∣∣∣∣ ∫

I

[
fn
(
t, x(t), u

)
− f

(
t, x(t), u

)]
dt

∣∣∣∣+

∣∣∣∣ ∫
I

[
f
(
t, x(t), u0

)
− fn

(
t, x(t), u0

)]
dt

∣∣∣∣
and since (fn)n∈N converges to f in

(
SC(R2N ,RN), σΘD

)
, then the integrals on

the right-hand side of the previous inequality go to zero as n→∞. Therefore,
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the assumptions of step 1 apply to the set E1 = {hn | n ∈ N} ∪ {h} and thus one
has that (hn)n∈N converges to h in

(
SC(R2N ,RN), σΘΘ̂

)
. Hence, for each interval

I = [q1, q2], with q1, q2 ∈ Q and for each j ∈ N one has

sup
x(·)∈KIj , u(·)∈K̂I−1

j

∣∣∣∣ ∫
I

[fn
(
t, x(t), u(t)

)
− f

(
t, x(t), u(t)

)
] dt

∣∣∣∣
≤ sup

x(·)∈KIj , u(·)∈K̂I−1
j

∣∣∣∣ ∫
I

[hn
(
t, x(t), u(t)

)
− h
(
t, x(t), u(t)

)
] dt

∣∣∣∣
+ sup

x(·)∈KIj

∣∣∣∣ ∫
I

[fn
(
t, x(t), u0

)
− f

(
t, x(t), u0

)
] dt

∣∣∣∣,
and the right-hand side goes to zero as n→∞ because (hn)n∈N converges to h
in
(
SC(R2N ,RN), σΘΘ̂

)
and (fn)n∈N converges to f in

(
SC(R2N ,RN), σΘD

)
. As

a consequence (fn)n∈N converges to f in
(
SC(R2N ,RN), σΘΘ̂

)
and, thus, all the

topologies of type σD and σΘ coincide on E.

Remark 5.10. As a consequence of Theorems 5.9 and 2.33, and recalling that
L1
loc-bounded l-bounds imply L1

loc-bounded l2-bounds, one immediately notice
that all the weak topologies in the second chain of (5.4) coincide on the subsets
of LC(R2N ,RN) with L1

loc-bounded l-bounds. Consequently, the results of relative
compactness contained in Section 2.6 apply also to the weak hybrid topologies
on the subsets of LC(R2N ,RN) with L1

loc-bounded l-bounds.

5.3 Continuity of the semiflow

This section will include some results allowing to construct a continuous skew
product semiflow for Carathéodory DDEs. Depending on the properties on the
vector field of the initial Carathéodory problem and on the topology used, several
different results can be written.

5.3.1 Continuity with respect to TB and TD
The first results of continuity for skew product semiflows that we present, take
into account two topologies that have been introduced in Chapter 2: TB and TD.
Notice that the content of Section 2.7 already solves the problem of the continuity
on the base for this topologies and thus we can directly face the continuity of the
solutions with respect to initial data and vector fields.

Theorem 5.11. Consider a sequence (fn)n∈N in LC(R2N ,RN) converging to f
in (LC(R2N ,RN), TB) and

(
φn(·)

)
n∈N in C converging uniformly to φ ∈ C. Then,

with the notation of Theorem 5.1,

x(·, fn, φn)
n→∞−−−→ x(·, f, φ)

uniformly in any [T1, T2] ⊂ If,φ.
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Proof. Following the notation of Theorem 5.1, let If,φ be the maximal interval of
definition of the solution of the delay differential equation ẋ = f

(
t, x(t), x(t− 1)

)
with initial data x(t) = φ(t) for all t ∈ [−1, 0]. Let us consider the interval [−1, β]

with β < bf,φ. Denote

0 < ρ = 1 + max
{(
‖φn‖L∞([−1,0])

)
n∈N, ‖x(·, f, φ)‖L∞([−1,β])

}
, (5.13)

and define

zn(t) =

{
x(t, fn, φn), if −1 ≤ t < Tn,

x(Tn, fn, φn), if Tn ≤ t ≤ β.

where Tn = sup{t ∈ [−1, β] | |x(s, fn, φn)| ≤ ρ, ∀ s ∈ [−1, t]}. Notice that by
(5.13) and by the continuity of

(
x(·, fn, φn)

)
n∈N, we have that Tn > 0 for any

n ∈ N. In particular notice that (zn(·))n∈N is uniformly bounded and let j ∈ N be
so that ρ < j. If t1 < t2, and in particular they are both in the same subinterval,
either [−1, 0), [0, Tn) or [Tn, β], then

|zn(t1)− zn(t2)| ≤


|φn(t1)− φn(t2)| if t1, t2 ∈ [−1, 0),∣∣∣∣∫ t2

t1

fn
(
s, zn(s), zn(s− 1)

)
ds

∣∣∣∣ if t1, t2 ∈ [0, Tn),

0 if t1, t2 ∈ [Tn, β].

In order to study the equicontinuity of the functions zn(·), with n ∈ N, we can
assume, without any loss of generality, that t1, t2 always belong to the same
subinterval, either [−1, 0), [0, Tn) or [Tn, β]. Let us fix ε > 0 and analyze each
case separately.

Case 1: t1, t2 ∈ [−1, 0). Since
(
φn(·)

)
n∈N converges uniformly to φ(·) on

[−1, 0], there exists n0 ∈ N such that if n > n0, then ‖φn(·)−φ(·)‖L∞([−1,0]) < ε/2.
Using the continuity of the functions φn(·) for n = 1, . . . , n0, we find a δ1 > 0

such that for every n = 1, . . . , n0 and t1, t2 ∈ [−1, 0), if |t1 − t2| < δ1, then
|φn(t1) − φn(t2)| < ε. Therefore, irrespectively of n ∈ N, if t1, t2 ∈ [−1, 0) and
|t1 − t2| < δ1, we have |φn(t1)− φn(t2)| < ε.

Case 2: t1, t2 ∈ [0, Tn). Denote by mf (·) the optimal m-bound of f on B2j ⊂
R2N . Then, we have that

|zn(t1)− zn(t2)| ≤
∣∣∣∣∫ t2

t1

fn
(
s, zn(s), zn(s− 1)

)
ds

∣∣∣∣
≤
∫ t2

t1

∣∣fn(s, zn(s), zn(s− 1)
)
− f

(
s, zn(s), zn(s− 1)

)∣∣ ds+

∫ t2

t1

mf (s) ds

≤
∫ β

0

∣∣fn(s, zn(s), zn(s− 1)
)
− f

(
s, zn(s), zn(s− 1)

)∣∣ ds+

∫ t2

t1

mf (s) ds .

For the given ε > 0, since (fn)n∈N converges to f in (LC(R2N ,RN), TB) and
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(
zn(·)

)
n∈N is bounded, one has that there exists n1 ∈ N such that, if n > n1 then

sup
(x(·),u(·))∈C([0,β],B2j)

∫ β

0

∣∣fn(s, x(s), u(s)
)
− f

(
s, x(s), u(s)

)∣∣ ds < ε

2
.

On the other side, for n = 1, . . . , n1, by the continuity of the integral, there exists
a δ2 > 0 such that if t1, t2 ∈ [0, Tn) and |t1 − t2| < δ2, then∫ t2

t1

∣∣fn(s, zn(s), zn(s− 1)
)
− f

(
s, zn(s), zn(s− 1)

)∣∣ ds < ε

2
, n = 1, . . . , n1,

and also ∫ t2

t1

mf (s) ds <
ε

2
.

Hence, irrespectively of n ∈ N, if t1, t2 ∈ [0, Tn) and |t1 − t2| < δ2, we have that∣∣∣∣∫ t2

t1

fn
(
s, zn(s), zn(s− 1)

)
ds

∣∣∣∣ < ε.

Case 3: t1, t2 ∈ [Tn, β]. This case is trivial.

Therefore, taking δ = min{δ1, δ2} we have that for all n ∈ N if |t1 − t2| < δ

then |zn(t1)−zn(t2)| < ε, i.e. (zn(·))n∈N is equicontinuous. Thus, applying Ascoli-
Arzelá’s theorem we obtain a subsequence, that we keep denoting with the same
indexes, converging uniformly to some z(·) ∈ C([−1, β]). We claim that z(·)
coincides with x(·, f, φ) on [−1, β]. Trivially, z(·) = φ(·) on [−1, 0]. Define

T0 = sup{t ∈ [−1, β] | |z(s)| < ρ− 1/2 ∀ s ∈ [−1, t]} , (5.14)

and notice that T0 > 0 because
(
φn(·)

)
n∈N converges uniformly to φ in [−1, 0]

and z(·) is continuous. Moreover, from the uniform convergence of
(
zn(·)

)
n∈N to

z(·) in [−1, β], we have that there exists n0 ∈ N such that if n > n0, then

|zn(t)| < ρ− 1/4 ∀ t ∈ [−1, T0] .

Therefore, for any t ∈ [−1, T0] and for any n > n0 one has zn(t) = x(t, fn, φn),
i.e., if n > n0, then

zn(t) =


φn(t) if t ∈ [−1, 0)

φn(0) +

∫ t

0

fn
(
s, zn(s), zn(s− 1)

)
ds if t ∈ [0, T0] .

(5.15)

Now consider the bounded set B ⊂ C
(
[0, T0], Bj

)
× C

(
[−1, T0 − 1], Bj

)
given by

B =
{(
zn(·), zn(· − 1)

)
| n ∈ N

}
∪
{(
z(·), z(· − 1)

)}
.
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Then, for all t ∈ [0, T0], we have that∣∣∣∣∫ t

0

fn
(
s, zn(s), zn(s− 1)

)
ds−

∫ t

0

f
(
s, z(s), z(s− 1)

)
ds

∣∣∣∣
≤
∫ t

0

∣∣fn(s, zn(s), zn(s− 1)
)
− f

(
s, zn(s), zn(s− 1)

)∣∣ ds
+

∫ t

0

∣∣f(s, zn(s), zn(s− 1)
)
− f

(
s, z(s), z(s− 1)

)∣∣ ds
≤ sup

(ζ(·),ζ(·−1))∈B

∫ t

0

∣∣fn(s, ζ(s), ζ(s− 1)
)
− f

(
s, ζ(s), ζ(s− 1)

)∣∣ ds
+ 2 ‖zn(·)− z(·)‖L∞([−1,β])

∫ t

0

lf (s) ds,

(5.16)

where lf (·) ∈ L1
loc is the optimal l-bound for f on B2j ⊂ R2N . In particular,

when t ∈ [0, T0] ∩ Q, the right-hand side of the previous inequality goes to zero
as n→∞ because (fn)n∈N converges to f in (LC(R2N ,RN), TB) and

(
zn(·)

)
n∈N

converges uniformly to z(·) in [−1, β]. Then, thanks to (5.16) and to the fact
that

(
φn(·)

)
n∈N converges uniformly to φ ∈ C, passing to the limit in (5.15), we

have that

z(t) =


φ(t) if t ∈ [−1, 0)

φ(0) +

∫ t

0

f
(
s, z(s), z(s− 1)

)
ds if t ∈ [0, T0] ∩Q .

(5.17)

As a matter of fact, the formula in the second line of (5.17) holds for any t ∈ [0, T0]

thanks to the continuity of z(·) and the continuity of the integral. Therefore, z(·)
coincides with x(·, f, x0) on [0, T0].

Moreover, we claim that T0 = β. Otherwise, by (5.14) and by the continuity
of z(·), one would have |z(T0)| = |x(T0, f, φ)| = ρ−1/2, which contradicts (5.13).
Hence, T0 = β, as claimed, and thus for any t ∈ [0, β] we have that x(t, f, φ) = z(t)

and x(t, fn, φn) = zn(t) for any n ∈ N, which concludes the proof.

Theorem 5.12. Consider E ⊂ LC(R2N ,RN) with Lploc-bounded l-bounds. If
(fn)n∈N is a sequence in E converging to f in (LC(R2N ,RN), TD) and

(
φn(·)

)
n∈N

is a sequence in C converging uniformly to φ ∈ C, then, with the notation of
Theorem 5.1,

x(·, fn, φn)
n→∞−−−→ x(·, f, φ)

uniformly in any [T1, T2] ⊂ If,φ.

Proof. This result is a direct consequence of Theorem 5.11 and Theorem 2.31.

As a consequence of Theorem 5.11 and Theorem 5.12, together with Re-
mark 2.41 and Corollary 2.42, one can deduce a first result of continuity of the
skew-product semiflow composed of the time translation of the initial vector field
and the solutions of the respective delay differential equation.
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Consider f ∈ LC(R2N ,RN). With the notation introduced in Theorem 5.2,
let us denote by UB the subset of R× Hull(LC,TB)(f)× C given by

UB =
⋃

g∈Hull(LC,TB)(f) ,

φ∈C

{(t, g, φ) | t ∈ Ig,φ} ,

and by UD the subset of R× Hull(LC,TB)(f)× C given by

UD =
⋃

g∈Hull(LC,TD)(f) ,

φ∈C

{(t, g, φ) | t ∈ Ig,φ} .

Theorem 5.13. Consider f ∈ LC(R2N ,RN).

(i) The set UB is open in R× Hull(LC,TB)(f)× C and the map

Π: UB ⊂ R× Hull(LC,TB)(f)× C → Hull(LC,TB)(f)× C
(t, g, φ) 7→

(
gt, xt(·, g, φ)

)
defines a local continuous skew-product semiflow on Hull(LC,TB)(f)× C.

(ii) If additionally f admits Lploc-bounded l-bounds, then the set UD is open in
R× Hull(LC,TD)(f)× C and the map

Π: UD ⊂ R× Hull(LC,TD)(f)× C → Hull(LC,TD)(f)× C
(t, g, φ) 7→

(
gt, xt(·, g, φ)

)
defines a local continuous skew-product semiflow on Hull(LC,TD)(f)× C.

Proof. The proof is a direct consequence of Corollary 2.42, of Theorem 5.11 and
of Theorem 5.12.

5.3.2 Continuity with respect to TΘB, TΘD and σΘD

As one can easily check, the results contained in the previous subsection are
mainly based on the ones presented in Chapter 3. As follows, we want to inquire
into the new topologies presented in Definition 5.4 and see which advantages they
have with respect to TB and TD. As a first step we need to prove the continuity
on the base for such hybrid topologies.

Theorem 5.14. Let Θ and Θ̂ be suitable sets of moduli of continuity and D a
dense countable subset of RN .

(i) The map

Π : R× LC(R2N ,RN)→ LC
(
R2N ,RN) , (t, f) 7→ Π(t, f) = ft ,

defines a continuous flow on
(
LC(R2N ,RN), T

)
, with T ∈ {TΘB, TΘΘ̂, TΘD}.
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(ii) Moreover, if E ⊂ LC(R2N ,RN) has L1
loc-equicontinuous m-bounds and it is

such that f ∈ E implies ft ∈ E for all t ∈ R , then the map

Π : R× E → E , (t, f) 7→ Π(t, f) = ft ,

defines a continuous flow on (E, σ), where σ ∈ {σΘΘ̂, σΘD}.

Proof. Let us firstly deal with the case
(
LC(R2N ,RN), TΘΘ̂

)
. We separately deal

with the continuity with respect to f and with respect to t, and eventually gather
them together.

Let (fn)n∈N be a sequence in LC(R2N ,RN) converging to some function f

in
(
LC(R2N ,RN), TΘΘ̂

)
. We prove that (fn)t → ft in

(
LC(R2N ,RN), TΘΘ̂

)
as

n→∞, uniformly for t in a compact interval. Consider I = [p1, p2] and J =

[q1, q2] such that p1, p2, q1, q2 ∈ Q and fix t ∈ J . Moreover, for any j ∈ N consider
KIj , KI+Jj , K̂I−1

j and K̂I−1+J
j as in Definition 5.4. Notice that x(·) ∈ KIj implies

x(· − t) ∈ KI+Jj up to a suitable extension by constants of the function x(· − t)
in I + J , and that similar reasonings apply to K̂I−1

j and K̂I−1+J
j . Then

sup
x(·)∈KIj , u(·)∈K̂I−1

j

∫
I

∣∣(fn)t
(
s, x(s), u(s− 1)

)
− ft

(
s, x(s), u(s− 1)

)∣∣ds
= sup
x(·)∈KIj , u(·)∈K̂I−1

j

∫
I+t

∣∣fn(r, x(r − t), u(r − t− 1)
)
− f

(
r, x(r − t), u(r − t− 1)

)∣∣dr
≤ sup
x(·)∈KI+Jj , u(·)∈K̂I+J−1

j

∫
I+J

∣∣fn(r, x(r), u(r − 1)
)
− f

(
r, x(r), u(r − 1)

)∣∣dr,
(5.18)

and taking the limit as n→∞ we have that the right-hand side of (5.18) goes to
zero, since fn

n→∞−−−→ f in
(
LC(R2N ,RN), TΘΘ̂

)
. Therefore, one obtains the aimed

continuity in the first variable, uniformly for t in a compact set. Notice that,
with an analogous reasoning, one obtains the continuity of Π with respect to the
second variable, uniformly for t in a compact set, for any of the strong or weak
hybrid topologies cited in the statement.

Next, we prove the continuity with respect to the first variable; in other words
that the map t 7→ ft of R into

(
LC(R2N ,RN), TΘΘ̂

)
is continuous. Consider

f ∈ LC(R2N ,RN), an interval I = [a, b], with a, b ∈ Q, and t ∈ R fixed. We aim
to prove that for any couple of compact sets KIj and K̂I−1

j as in Definition 5.4, we
have that

lim
τ→0

sup
x(·)∈KIj , u(·)∈K̂I−1

j

∫
I

∣∣ft+τ(s, x(s), u(s−1)
)
−ft

(
s, x(s), u(s−1)

)∣∣ds = 0 . (5.19)

Firstly, let us fix x(·) ∈ KIj and u(·) ∈ K̂I−1
j and prove that if τn

n→∞−−−→ 0 then

lim
n→∞

∫
I

∣∣ft+τn(s, x(s), u(s− 1)
)
− ft

(
s, x(s), u(s− 1)

)∣∣ds = 0 . (5.20)



142 5. Continuity of the semiflow for Carathéodory DDEs

Notice that, for all t ∈ R, ft
(
·, x(·), y(· − 1)

)
∈ L1

(
I,RM

)
and consider the

operator Tτ : L1
(
I,RM

)
→ L1

(
R,RM

)
, such that g(·) 7→ Tτg(·), where Tτg(·) is

defined by

Tτg(s) =

{
g(s+ τ) , if s+ τ ∈ I

0 , otherwise.

By the continuity of translations in L1(I), see Castillo and Rafeiro [17, Theo-
rem 3.58, p.101], we have that, if |τn| → 0 as n→∞, then for a given ε > 0 there
exists δ > 0 such that

sup
|τn|<δ

∥∥Tτnft(·, x(·), u(· − 1)
)
− ft

(
·, x(·), u(· − 1)

)∥∥
L1(I)

≤ ε .

Now, for any n ∈ N define an = max{a, a− τn} and bn = min{b, b− τn}, and
consider n0 ∈ N so that for any n > n0 we have |τn| < δ. Therefore, for any
n > n0 the following chain of inequalities holds∥∥ft+τn(·, x(·), u(· − 1)

)
− ft

(
·, x(·), u(· − 1)

)∥∥
L1(I)

≤
∥∥Tτnft(·, x(·), u(· − 1)

)
− ft

(
·, x(·), u(· − 1)

)∥∥
L1(I)

+
∥∥ft+τn(·, x(·), u(· − 1)

)
− Tτnft

(
·, x(·), u(· − 1)

)∥∥
L1(I)

≤ ε+
∥∥ft+τn(·, x(·), u(· − 1)

)
− Tτnft

(
·, x(·), u(· − 1)

)∥∥
L1(I)

≤ ε+

∫ bn

an

∣∣ft(s+ τn, x(s), u(s− 1)
)
− ft

(
s+ τn, x(s+ τn), u(s+ τn − 1)

)∣∣ ds
+

∫ an

a

∣∣ft(s+ τn, x(s), u(s− 1)
)∣∣ds+

∫ b

bn

∣∣ft(s+ τn, x(s), u(s− 1)
)∣∣ ds

≤ ε+

∫ bn+τn

an+τn

∣∣ft(r, x(r − τn), u(r − τn − 1)
)
− ft

(
r, x(r), u(r − 1)

)∣∣ dr
+

∫ an+τn

a+τn

∣∣ft(r, x(r − τn), u(r − τn − 1)
)∣∣ dr

+

∫ b+τn

bn+τn

∣∣ft(r, x(r − τn), u(r − τn − 1)
)∣∣ dr = ε+ I1 + I2 + I3 .

As regards I1, notice that, up to extending the functions x(·), u(·),
(
x(·− τn)

)
n∈N

and
(
u(·−τn−1)

)
n∈N by constants to an interval J containing I+[−δ, δ] we have

that

I1 ≤
∫
J

∣∣ft(r, x(r − τn), u(r − τn − 1)
)
− ft

(
r, x(r), u(r − 1)

)∣∣ dr
≤
∫
J

l2jt (r)
∣∣(x(r − τn), u(r − τn − 1)

)
−
(
x(r), u(r − 1)

)∣∣ dr
≤
∥∥(x(· − τn), u(· − τn − 1)

)
−
(
x(·), u(· − 1)

)∥∥
L∞(J)

∫
J

l2jt (r) dr,

(5.21)
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where l2j(·) denotes the optimal l-bound for f on B2j ⊂ R2N . The right-hand
side of equation (5.21) goes to zero as n→∞, due to the fact that∥∥(x(· − τn), u(· − τn − 1)

)
−
(
x(·), u(· − 1)

)∥∥
L∞(J)

n→∞−−−→ 0.

As regards I2, let m2j be the optimal m-bound of f on B2j and notice that the
following chain of inequalities holds

I2 ≤
∫ a

a−|τn|

∣∣ft(r, x(r − τn), u(r − τn − 1)
)∣∣ dr ≤ ∫ a

a−|τn|
m2j
t (r)

)
dr,

and the integral on the right-hand side goes to zero as n→∞, thanks to the
absolute continuity of the Lebesgue integral. Similar reasonings apply to I3.
Therefore, for any fixed t ∈ R, x(·) ∈ KIj and u(·) ∈ K̂I−1

j we obtain the limit
in (5.20). Next we check that such a convergence is uniform in KIj and K̂I−1

j .
Otherwise, it would exist an ε > 0, a sequence

(
xn(·)

)
n∈N in KIj , a sequence(

un(·)
)
n∈N in K̂I−1

j , and a sequence (τn)n∈N in R converging to 0, such that for all
n ∈ N ∫

I

∣∣ft+τn(s, xn(s), un(s− 1)
)
− ft

(
s, xn(s), un(s− 1)

)∣∣ ds > ε. (5.22)

However, being KIj and K̂I−1
j compact, there exist subsequences of

(
xn(·)

)
n∈N and(

un(·)
)
n∈N, which we keep denoting with the same indexes, converging uniformly

to some x(·) ∈ KIj and u(·) ∈ K̂I−1
j , respectively, as n → ∞. From (5.20), there

exists n0 ∈ N such that, if n > n0, then∥∥ft+τn(·, x(·), u(· − 1)
)
− ft

(
·, x(·), u(· − 1)

)∥∥
L1(I)

<
ε

2
. (5.23)

Then, recalling that l2j(·) denotes the optimal l-bound for f on B2j ⊂ R2N ,
considered δ > 0 such that |τn| < δ for all n ∈ N, for all n > n0 we can write

ε <
∥∥ft+τn(·, xn(·), un(· − 1)

)
− ft

(
·, xn(·), un(· − 1)

)∥∥
L1(I)

≤
∥∥ft+τn(·, xn(·), un(· − 1)

)
− ft+τn

(
·, x(·), u(· − 1)

)∥∥
L1(I)

+
∥∥ft+τn(·, x(·), u(· − 1)

)
− ft

(
·, x(·), u(· − 1)

)∥∥
L1(I)

+
∥∥ft(·, x(·), u(· − 1)

)
− ft

(
·, xn(·), un(· − 1)

)∥∥
L1(I)

≤ ε/2 +
∥∥(xn(·), un(· − 1)

)
−
(
x(·), u(· − 1)

)∥∥
L∞(I)

[∫
I

l2jt+τn(s) ds+

∫
I

l2jt (s) ds

]
≤ ε/2 +

∥∥(xn(·), un(· − 1)
)
−
(
x(·), u(· − 1)

)∥∥
L∞(I)

2

∫
I+[−δ,δ]

l2jt (s) ds.

Moreover, since
(
xn(·)

)
n∈N and

(
un(·)

)
n∈N converge uniformly to x(·) ∈ KIj and

u(·) ∈ K̂I−1
j , respectively, then there exists n1 ∈ N such that, if n > n1, one has∥∥(xn(·), un(· − 1)

)
−
(
x(·), u(· − 1)

)∥∥
L∞(I)

<
ε

2C
,
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where C = 2
∫
I+[−δ,δ] l

j
t (s) ds. Therefore, for n > max{n0, n1}, from the two

previous inequalities we obtain a contradiction which implies the uniform limit
in (5.19).

In order to conclude the proof, consider (fn)n∈N ⊂ LC(R2N ,RN) converging
to some f in

(
LC(R2N ,RN), TΘΘ̂

)
and (tn)n∈N ⊂ R converging to some t ∈ R.

Fixed j ∈ N, I = [q1, q2] with q1, q2 ∈ Q, and KIj and K̂I−1
j as in Definition 5.4,

recalling that the limit in (5.18) is uniform for t in compact intervals, we have
that

lim
n→∞

sup
x(·)∈KIj , u(·)∈K̂I−1

j

∫
I

∣∣(fn)tn
(
s, x(s), u(s− 1)

)
− ft

(
s, x(s), u(s− 1)

)∣∣ ds
≤ lim

n→∞
sup

x(·)∈KIj , u(·)∈K̂I−1
j

∫
I

∣∣(fn)tn
(
s, x(s), u(s− 1)

)
− ftn

(
s, x(s), u(s− 1)

)∣∣ ds
+ lim

n→∞
sup

x(·)∈KIj , u(·)∈K̂I−1
j

∫
I

∣∣ftn(s, x(s), u(s− 1)
)
− ft

(
s, x(s), u(s− 1)

)∣∣ ds = 0,

which ends the proof for the topology TΘΘ̂.

The proof for the topology TΘD can be easily deduced from the previous one
and thus we skip it. As regard the topology TΘB, notice that we can still use
the same arguments till formula (5.22) except fo the fact that now the sequence(
un(·)

)
n∈N is only bounded, that is for all n ∈ N one has un(·) ∈ C(I − 1, Bj),

and thus it does not necessarily admit a converging subsequence. Therefore, we
change the proof as follows. Denote by l2j1 (·) ∈ L1

loc the optimal l1-bound for the
function f on B2j ⊂ R2N . Then we can write

ε <
∥∥ft+τn(·, xn(·), un(· − 1)

)
− ft

(
·, xn(·), un(· − 1)

)∥∥
L1(I)

≤
∥∥ft+τn(·, xn(·), un(· − 1)

)
− ft+τn

(
·, x(·), un(· − 1)

)∥∥
L1(I)

+
∥∥ft+τn(·, x(·), un(· − 1)

)
− ft

(
·, x(·), un(· − 1)

)∥∥
L1(I)

+
∥∥ft(·, x(·), un(· − 1)

)
− ft

(
·, xn(·), un(· − 1)

)∥∥
L1(I)

≤
∥∥xn(·)− x(·)

∥∥
L∞(I)

[∫
I

(
l2j1

)
t+τn

(s) ds+

∫
I

(
l2j1

)
t
(s) ds

]
+
∥∥ft+τn(·, x(·), un(· − 1)

)
− ft

(
·, x(·), un(· − 1)

)∥∥
L1(I)

.

(5.24)

Let us analyze separately the two elements of the sum on the right-hand side
of the previous chain of inequalities. As regard the first one, recall that we can
consider δ > 0 such that |τn| < δ for all n ∈ N, and thus write

∥∥xn(·)− x(·)
∥∥
L∞(I)

[∫
I

(
l2j1

)
t+τn

(s) ds+

∫
I

(
l2j1

)
t
(s) ds

]
≤ 2

∥∥xn(·)− x(·)
∥∥
L∞(I)

∫
I+[−δ,δ]

(
l2j1

)
t
(s) ds < ε/2,

(5.25)
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where the last inequality is true recalling that
(
xn(·)

)
n∈N converges uniformly to

x(·) ∈ KIj and thus there exists n0 ∈ N such that for n > n0 one has∥∥xn(·)− x(·)
∥∥
L∞(I)

<
ε

2C
, where C = 2

∫
I+[−δ,δ]

(
l2j1

)
t
(s) ds.

Furthermore, as regard the second element of the sum on the right-hand side of
(5.24), one has∥∥ft+τn(·, x(·), un(· − 1)

)
− ft

(
·, x(·), un(· − 1)

)∥∥
L1(I)

≤
∥∥ft+τn(·, x(·), un(· − 1)

)
− ft+τn

(
·, x(·+ τn), un(· − 1)

)∥∥
L1(I)

+
∥∥ft+τn(·, x(·+ τn), un(· − 1)

)
− ft

(
·, x(·), un(· − 1)

)∥∥
L1(I)

≤
∥∥x(·)− x(·+ τn)

∥∥
L∞(I)

∫
I+[−δ,δ]

(
l2j1

)
t
(s) ds

+
∥∥ft+τn(·, x(·+ τn), un(· − 1)

)
− ft

(
·, x(·), un(· − 1)

)∥∥
L1(I)

.

(5.26)

Since (τn)n∈N in R converges to 0, there exists n1 ∈ N such that for n > n1 one
has ∥∥x(·)− x(·+ τn)

∥∥
L∞(I)

<
ε

4C
, (5.27)

where, as before, C = 2
∫
I+[−δ,δ]

(
l2j1

)
t
(s) ds. Moreover, define f̃ ∈ LC

(
RN ,RN

)
by

f̃(s, u) = f
(
s, x(s), u

)
.

Therefore, by the continuity of the time translation for
(
LC
(
RN ,RN

)
, TB

)
given

in [41, Lemma II.1, p.24] one has that

f̃t+τn
n→∞−−−→ f̃t with respect to the topology TB.

In particular, considering an interval J ⊂ R with extrema in Q such that J
contains the intervals I, I − 1, and I + [−δ, δ] and up to extending the functions
in KIj and K̂I−1

j by constants to the interval J , one has that there exists n2 ∈ N
such that for all n ≥ n2 one has∥∥ft+τn(·, x(·+ τn), un(· − 1)

)
− ft

(
·, x(·), un(· − 1)

)∥∥
L1(I)

≤ sup
u(·)∈C(J,Bj)

∥∥ft( ·+τn, x(·+ τn), u(·)
)
− ft

(
·, x(·), u(·)

)∥∥
L1(J)

= sup
u(·)∈C(J,Bj)

∥∥f̃t+τn(·, u(·)
)
− f̃t

(
·, u(·)

)∥∥
L1(J)

< ε/4.

(5.28)

Therefore, gathering together (5.24), (5.25), (5.26), (5.27) and (5.28) one obtains
the following contradiction

ε <
∥∥ft+τn(·, xn(·), un(· − 1)

)
− ft

(
·, xn(·), un(· − 1)

)∥∥
L1(I)

< ε.

Consequently, we obtain the uniform limit in (5.19). The joint continuity for the
two variables is then proved exactly as in the case of the topology TΘΘ̂.

The proof for the weak hybrid topologies σΘΘ̂ and σΘD can be deduced from
the one of Theorem 2.43 with minor modifications.
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Theorem 5.15. Consider E ∈ LC(R2N ,RN) with L1
loc-equicontinuous m-bounds

and let Θ be the suitable set of moduli of continuity given by the m-bounds as in
Definition 3.2. Moreover, let D be any dense and countable subset of RN . With
the notation of Theorem 5.11, the following statements hold:

(i) if (fn)n∈N is a sequence in E converging to f in (LC(R2N ,RN), TΘB) and(
φn(·)

)
n∈N is a sequence in C converging uniformly to some function φ ∈ C,

then
x(·, fn, φn)

n→∞−−−→ x(·, f, φ)

uniformly in any [−1, T ] ⊂ If,φ;

(ii) if E has also L1
loc-bounded l2-bounds, (fn)n∈N is a sequence in E converging

to f in (LC(R2N ,RN), TΘD) and
(
φn(·)

)
n∈N is a sequence in C converging

uniformly to φ ∈ C, then

x(·, fn, φn)
n→∞−−−→ x(·, f, φ)

uniformly in any [−1, T ] ⊂ If,φ;

(iii) if E has also L1
loc-bounded l2-bounds, (fn)n∈N is a sequence in E converging

to f in (LC(R2N ,RN), σΘD) and
(
φn(·)

)
n∈N is a sequence in C converging

uniformly to φ ∈ C, then

x(·, fn, φn)
n→∞−−−→ x(·, f, φ)

uniformly in any [−1, T ] ⊂ If,φ;

Proof. Firstly, notice that once we prove (i), we immediately obtain (ii) thanks
to Theorem 5.9.

As regards both (i) and (iii), proceed as in the proof of Theorem 5.11 till
Case 1 included. Case 2 has to be treated differently, yet notice that in both
the cases, for each n ∈ N, denoted by m2j

n (·) the optimal m-bound for fn on
B2j ⊂ R2N , one can write

|zn(t1)− zn(t2)| ≤
∣∣∣∣∫ t2

t1

fn
(
s, zn(s), zn(s− 1)

)
ds

∣∣∣∣
≤
∫ t2

t1

∣∣fn(s, zn(s), zn(s− 1)
)∣∣ ds ≤ ∫ t2

t1

mj
n(s) ds

≤ sup
n∈N

∫ t2

t1

mj
n(s) ds ,

and, due to the L1
loc-equicontinuity of the m-bounds we obtain the result. The

rest of the proof is as for Theorem 5.11 with the exception that in order to pass
from (5.15) to (5.17) as n→∞, the limit has to be taken in the proper topology,
either TΘB for (i), or σΘD for (iii). We shall treat the two cases separately and
with further details.



5.3 Continuity of the semiflow 147

(i) In order to pass from (5.15) to (5.17) as n→∞, we use the topology TΘB.
Notice that everything is consistent since zn(t) = x(t, fn, φn) for any t ∈
[−1, T0] and n > n0, and

(
zn(·)

)
n∈N is uniformly bounded in [−1, T0] by

construction. Therefore, instead of (5.16), for all t ∈ [0, T0]∩Q, we can write∣∣∣∣∫ t

0

fn
(
s, zn(s), zn(s− 1)

)
ds−

∫ t

0

f
(
s, z(s), z(s− 1)

)
ds

∣∣∣∣
≤ sup

x(·)∈K[0,t]
j ,

u(·)∈C([−1,t−1],Bj)

∫ t

0

∣∣fn(s, x(s), u(s− 1)
)
− f

(
s, x(s), u(s− 1)

)∣∣ ds
+ 2 ‖zn(·)− z(·)‖L∞([−1,β])

∫ t

0

l2jf (s) ds.

As said, the rest of the proof is as for Theorem 5.11.

(iii) In order to pass from (5.15) to (5.17) as n→∞, we should use the topology
σΘD. However, this does not allow to directly obtain the result as in case (i).
Yet, thanks to Theorem 5.9 we know that σΘD coincides with any topology
of the type σΘΘ̂, where Θ̂ is a suitable set of moduli of continuity. In partic-
ular, since

(
φn(·)

)
n∈N converges uniformly to φ ∈ C, then by Ascoli-Arzelá’s

theorem, there exists a shared modulus of continuity θ0 ∈ C(R+,R+). Let
us consider the following suitable set of moduli of continuity

Θ̂ :=
{
θ̂Ij (·) ∈ C(R+,R+) | θ̂Ij (s) = max{θ0(s), θIj (s)}

}
,

Then, as said, since (fn)n∈N converges to f with respect to σΘD, then it
also converges to f with respect to σΘΘ̂. Therefore, instead of (5.16), for all
t ∈ [0, β] ∩Q, we can now write∣∣∣∣∫ t

0

fn
(
s, zn(s), zn(s− 1)

)
ds−

∫ t

0

f
(
s, z(s), z(s− 1)

)
ds

∣∣∣∣
≤ sup

x(·)∈K[0,t]
j , u(·)∈K̂[−1,t−1]

j

∣∣∣∣∫ t

0

[
fn
(
s, x(s), u(s− 1)

)
− f

(
s, x(s), u(s− 1)

)]
ds

∣∣∣∣
+ 2‖zn(·)− z(·)‖L∞([−1,β])

∫ t

0

l2jf (s) ds.

As said, the rest of the proof is, in both the cases, as for Theorem 5.11.

As a consequence of the previous theorem, one can obtain a new theorem of
continuity of the induced skew product semiflow for the topologies TΘB, TΘD and
σΘD, with Θ being a suitable set of moduli of continuity (see Definition 2.3) and
D a dense and countable subset of RN .

Consider f ∈ LC(R2N ,RN) with L1
loc-equicontinuous m-bounds, a dense and

countable set D ⊂ RN and let Θ be defined as in Definition 3.2. With the
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notation introduced in Theorem 5.1, let us denote by UTΘB the subset of R ×
Hull(LC,TΘB)(f)× C given by

UTΘB =
⋃

g∈Hull(LC,TΘB)(f) ,

φ∈C

{(t, g, φ) | t ∈ Ig,φ} ,

by UTΘD the subset of R× Hull(LC,TΘD)(f)× C given by

UTΘD =
⋃

g∈Hull(LC,TΘD)(f) ,

φ∈C

{(t, g, φ) | t ∈ Ig,φ} .

and by UσΘD
the subset of R× Hull(LC,TΘD)(f)× C given by

UσΘD
=

⋃
g∈Hull(LC,σΘD)(f) ,

φ∈C

{(t, g, φ) | t ∈ Ig,φ} .

Theorem 5.16. Consider f ∈ LC(R2N ,RN) with L1
loc-equicontinuous m-bounds

and let Θ be defined as in Definition 3.2.

(i) The set UTΘB is open in R× Hull(LC,TΘB)(f)× C and the map

UTΘB ⊂ R× Hull(LC,TΘB)(f)× C → Hull(LC,TΘB)(f)× C
(t, g, φ) 7→

(
gt, xt(·, g, φ)

)
defines a local continuous skew-product semiflow on Hull(LC,TΘB)(f)× C.

If additionally f has L1
loc-bounded l2-bounds, then the following statements hold

true.

(ii) The set UTΘD is open in R× Hull(LC,TΘD)(f)× C and the map

UTΘD ⊂ R× Hull(LC,TΘD)(f)× C → Hull(LC,TΘD)(f)× C
(t, g, φ) 7→

(
gt, xt(·, g, φ)

)
defines a local continuous skew-product semiflow on Hull(LC,TΘD)(f)× C.

(iii) The set UσΘD
is open in R× Hull(LC,σΘD)(f)× C and the map

UσΘD
⊂ R× Hull(LC,σΘD)(f)× C → Hull(LC,σΘD)(f)× C

(t, g, φ) 7→
(
gt, xt(·, g, φ)

)
defines a local continuous skew-product semiflow on Hull(LC,σΘD)(f)× C.



Conclusions

The theory developed in this work allows to extend the skew-product formalism to
Carathéodory ordinary differential equations and delay differential equations with
constant delay through the use of strong and weak metric topologies of integral
type. As a result, one obtains a variety of tools from topological dynamics to study
the qualitative behavior of the solutions of such classes of differential problems.

As an example, the work includes several applications for Carathéodory ODEs
such as linearized skew-product flows, propagation of the exponential dichotomy
and of the dichotomy spectrum of a linear system and study of pullback and
global attractors, as well as some simple motivational examples taken from mod-
elizations of real phenomena, which aim to show the applicability of the theory.
Additionally, the thesis provides a rich description of the topological structure of
the considered spaces of Carathéodory functions (among which, some are new)
presenting, for example, characterizations of the classes of equivalences for func-
tions which differ on negligible subset of R×RN , propagation of properties on the
so-called m-bounds and l-bounds through the limits in the given topologies, and
sufficient conditions of relative compactness for subsets of Lipschitz Carathéodory
functions.

Having constructed several different skew-product flows also for Carathéodory
DDEs with constant delay, it seems natural that many of the previously cited
results could be possibly developed also for this class of differential problems and
thus we aim to include them in future publications. Furthermore, the theory
hereby developed offers many inspirations for a further investigation for both the
classes of problems. Among the many possible research directions for the future,
we like to mention applications in bifurcation theory, control theory, mathematical
biology and numerical analysis.
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Un ejercicio elemental de análisis matemático consiste en probar que, para cada
función continua f : D ⊂ R× RN → RN , el problema de Cauchy

ẋ = f(t, x), x(t0) = x0 , (S.1)

es equivalente al problema integral

x(t) = x0 +

∫ t

t0

f
(
s, x(s)

)
ds. (S.2)

Sin embargo, gracias a la teoría de integración de Lebesgue, es fácil darse cuenta
de que la fórmula (S.2) tiene sentido para una clase de funciones más amplia que
la de las continuas. Es decir, dado un intervalo I ⊂ R de manera que t0 ∈ I,
si uno busca una función x : I ⊂ R → RN que no sea necesariamente derivable
y satisfaga (S.2) en su intervalo de definición, entonces se pueden relajar las
hipótesis sobre f a la integrabilidad local. El matemático griego Constantin
Carathéodory probó en [15] que, bajo las hipótesis,

• f medible Borel,

• para cada conjunto compacto K ⊂ RN existe una función real mK ∈ L1
loc

tal que para casi todo t ∈ R, se tiene

|f(t, x)| ≤ mK(t) para todo x ∈ K,

• para casi todo t ∈ R, f(t, ·) es continua,

cualquier problema de tipo (S.1) admite una solución generalizada, es decir, una
función absolutamente continua, definida sobre un intervalo I ⊂ R que contiene
t0, tal que (S.1) se satisface en casi todo punto de I o, equivalentemente, (S.2) se
verifica para todo punto de I.

Esa clase de problemas diferenciales toma su nombre de Carathéodory y ha
contribuido al enriquecimiento del campo de aplicación de las ecuaciones diferen-
ciales tanto en los estudios teóricos como en los prácticos. De hecho, el desarrollo
de una teoría matemática consistente para ecuaciones diferenciales con campo
vectorial discontinuo ha sido, de alguna manera, impulsada por muchas de sus
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aplicaciones a problemas en teoría de control, en mecánica y en ingeniería eléc-
trica, donde el uso de interruptores, relés y señales digitales, no sólo es habitual,
sino incluso necesario para conseguir resultados óptimos (véase Bressan y Piccoli
[11], Brogliato [12], Clarke [19]).

El objetivo de este trabajo es aplicar herramientas de dinámica no autónoma
a ecuaciones diferenciales de Carathéodory y, en particular, definir un flujo trian-
gular continuo que permita el estudio cualitativo de las soluciones. La noción
de flujo triangular se debe a Bebutov [7] y se ha convertido en una herramienta
fundamental en dinámica no autónoma. Para poder recuperar una estructura
de grupo en la evolución de un sistema no-autónomo (lo que es inmediato para
sistemas dinámicos autónomos, donde se puede construir un flujo a través de las
soluciones), la idea es considerar simultáneamente la solución y la evolución del
campo vectorial en el tiempo. Si las dos componentes son continuas respecto del
tiempo, del campo vectorial inicial y de los datos iniciales, entonces la aplicación
así obtenida, define un flujo triangular continuo.

El estudio de las topologías de continuidad para flujos triangulares generados
por ecuaciones diferenciales de Carathéodory es un tema clásico que fue iniciado
por Miller y Sell [41, 42] y posteriormente tratado por Artstein [3, 4, 5], Heu-
nis [30], Neustadt [43], Opial [45], Sell [52, 53], entre otros muchos autores. Desde
entonces, se han utilizado topologías fuertes y débiles de tipo integral para inves-
tigar ecuaciones diferenciales no autónomas lineales (véase Bodin y Sacker [10],
Chow y Leiva [20] y Siegmund [55] entre otros) y, sin embargo, a pesar de su
interés potencial, la teoría clásica no ha sido convenientemente desarrollada en el
caso no lineal.

En este trabajo armonizamos muchos de los resultados obtenidos en Longo et
al. [38, 39] y continuamos con el estudio para completar la teoría original, mejorar
su aplicabilidad y realizar un análisis exhaustivo del comportamiento cualitativo
de las soluciones. En particular, definimos nuevas topologías métricas en espacios
vectoriales localmente convexos adecuados, en los que la aplicación de translación
en el tiempo resulta continua, así como las soluciones varían continuamente res-
pecto de los datos iniciales. De esa forma, en dichos espacios conseguimos un flujo
triangular continuo formado por el flujo base de las trasladadas en el tiempo sobre
la envolvente de un campo vectorial y por las soluciones del respectivo problema
diferencial.

En la demostración de estos resultados juega un papel importante el estu-
dio meticuloso de las m-cotas y l-cotas de una función de Carathéodory f , es
decir, las familias de funciones positivas y localmente integrables que sirven, res-
pectivamente, como acotación para el módulo de f y como coeficiente de Lip-
schitz para f sobre los compactos de RN . Además, el análisis de las m-cotas
y l-cotas nos permite obtener alguna información topológica adicional. En par-
ticular, caracterizamos los subconjuntos relativamente compactos de funciones
Lipschitz Carathéodory y aclaramos las condiciones (de hecho bastante débiles)
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bajo las cuales las topologías (fuertes o débiles) consideradas en nuestro tra-
bajo, así como anteriormente en la literatura, coinciden. Esos resultados son
particularmente importantes, no sólo porque contribuyen a homogeneizar toda la
teoría, sino porque, en los casos en los que se puedan aplicar, mejoran o simpli-
fican las herramientas matemáticas disponibles. En concreto, en el primer caso
podemos obtener la existencia de una medida ergódica invariante para el flujo
en la base y la posibilidad de utilizar técnicas de teoría ergódica, mientras que
en el segundo caso, podemos elegir, entre las posibles topologías, las más fáciles
de manejar como las que suponen una especie de convergencia puntual. Curiosa-
mente, muchas de las aplicaciones en ingeniería y ciencias aplicadas se basan en
hipótesis que son más fuertes de las que se necesitan para aplicar estos resultados.

Completamos la importancia de los resultados de continuidad obtenidos para
flujos triangulares con algunas aplicaciones teóricas. En particular, definimos
dos tipos de flujos linealizados y obtenemos la derivabilidad con respecto a las
condiciones iniciales de las soluciones de algunos sistemas que no son derivables
en la variable x y por tanto, no tienen una ecuación variacional clásica. Además,
propagamos la dicotomía exponencial de un sistema lineal, así como su espectro de
Sacker-Sell, a través de las trayectorias de estos flujos linealizados. Finalmente, in-
cluimos también un resultado de existencia de soluciones para algunas ecuaciones
de Carathéodory cuyo campo vectorial es posiblemente discontinuo en la variable
x y por tanto, no se le puede aplicar el teorema de Carathéodory. La prueba es
independiente de la teoría de Filippov y se basa en la teoría de Carathódory y el
teorema de continuidad de las soluciones con respecto al campo vectorial.

Como consecuencia de estos resultados, se abre una gama de escenarios diná-
micos en los que es posible combinar técnicas de flujos triangulares continuos, pro-
cesos, y sistemas dinámicos aleatorios (véase Arnold [2], Aulbach y Wanner [6],
Berger y Siegmund [9], Caraballo y Han [13], Carvalho et al. [16], Johnson et
al. [34], Kloeden y Rasmussen [36], Sell [53], Shen y Yi [54] y las referencias
citadas en ellos). En concreto, combinando cuidadosamente el uso simultáneo de
los formalismos de procesos y flujos triangulares, somos capaces de probar la exis-
tencia de determinados conjuntos acotados y absorbentes para el proceso inducido
por un campo vectorial f en una clase específica de ecuaciones de Carathéodory.
Esto nos permite encontrar atractores pullback acotados para los procesos induci-
dos por ecuaciones cuyos campos vectoriales están en el conjunto alpha-límite,
en el conjunto omega-límite o en toda la envolvente de f . Bajo condiciones ade-
cuadas, probamos además la existencia de un atractor pullback o de un atractor
global para el respectivo flujo triangular.

Como última contribución teórica, queremos dejar la teoría preparada para
que los resultados obtenidos en este trabajo se puedan generalizar a ecuaciones
diferenciales de Carathéodory con retardo del tipo

ẋ = f
(
t, x(t), x(t− τ)

)
. (S.3)
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Ese problema tiene la dificultad intrínseca añadida de ser infinito dimensional
debido al hecho de que el espacio fase es el espacio de las funciones continuas
definidas en el intervalo [−τ, 0]. Sin embargo, el tipo de ecuación en concreto y
el hecho que f esté definida en un espacio finito dimensional, nos permite uti-
lizar algunas de las técnicas y de los razonamientos citados anteriormente, para
extender, hasta un cierto punto y con las inevitables discrepancias, la teoría de-
sarrollada para ecuaciones ordinarias de Carathéodory a esta clase de problemas.
En particular, construiremos un semiflujo triangular continuo asociado a (S.3),
respecto de varias topologías métricas (débiles y fuertes). Es interesante notar
que, a pesar de ser una clase muy específica de problemas diferenciales, las ecua-
ciones como (S.3) están ampliamente utilizadas in ingeniería y ciencias aplicadas
para modelizar muchos fenómenos reales en los que el pasado afecta el futuro.

A lo largo de la memoria, aplicaremos algunos de los resultados obtenidos
a tres ejemplos que han sido sacado de unos modelos concretos de mecánica
(K. Popp and P. Stelter [47]), teoría de control (Fabbri et al. [25]) y biología
matemática (Rasmussen et al. [50]). No pretendemos hacer una exposición ex-
haustiva, sino demostrar la vasta aplicabilidad de los resultados obtenidos en este
trabajo.

La teoría de ecuaciones diferenciales de Carathéodory contiene, a día de hoy,
casi un siglo de resultados matemáticos. Desde el punto de vista de los sistemas
dinámicos se han realizado muchos estudios en estabilidad, análisis númerico
y teoría de bifurcación (véase, por ejemplo, Filippov [26], Osinenko et al [46],
Pötzsche y Rasmussen [49], Pötszche [48], entre otros). Los resultados obtenidos
en esta memoria pueden ser aplicados en estas direcciones.

A continuación proporcionamos un resumen un poco más detallado de cada
uno de los capítulos contenidos en la memoria.

1. Preliminares

En este capítulo, fijamos la notación y proporcionamos algunas nociones básicas
que sirven de preliminares para el contenido de la memoria. El capítulo está
dividido en dos secciones. En la sección 1.1 se recuerdan definiciones y resultados
clásicos de ecuaciones diferenciales ordinarias de Carathéodory como el teorema
de existencia y unicidad de soluciones para un problema de Cauchy y el teorema
de variación continua respecto de los datos iniciales. Además, presentamos un
ejemplo de un fenómeno de vibración mediante la modelización de una cuerda de
violín utilizando condiciones de Carathéodory.

La sección 1.2 contiene nociones elementales de dinámica no autónoma como
las definiciones de proceso y flujo triangular y la manera en la que una ecuación
diferencial puede inducir cada uno de ellos. Además, se dan las definiciones de
envolvente de una función, de dicotomía exponencial y de espectro dicotómico.
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2. Espacios y Topologías

Este capítulo contiene el marco topológico en el que se basan la mayor parte de
los resultados de los capítulos siguientes. En la sección 2.1 presentamos todos
los espacios de funciones que se utilizarán para el estudio de las ecuaciones dife-
renciales ordinarias de Carathéodory. Junto a los espacios clásicos de funciones
Lipschitz Carathéodory (LC) y Strong Carathéodory (SC), introducimos dos
espacios nuevos que contienen a los anteriores y cuyos elementos son funciones de
Carathéodory que no son necesariamente continuas en la variable x: los espacios
de funciones Θ-Carathéodory (ΘC) y weak Θ-Carathéodory (WΘC). El símbolo
Θ representa un conjunto de módulos de continuidad que identifican una cantidad
numerable de compactos de funciones continuas en los que las funciones de ΘC y/o
WΘC se comporten “bien”, es decir, de (alguna) manera continua en L1

loc. Estos
espacios jugarán un papel importante en el desarrollo de algunos resultados de
esta memoria. Además, tratamos el problema de la identificación de las funciones
que difieren en un conjunto de medida cero.

En la sección 2.2 dotamos los espacios anteriores de topologías métricas de
tipo integral (débil o fuerte). Entre ellas, se distinguen dos clases nuevas de
topologías, las TΘ y las σΘ; la convergencia (fuerte o débil, respectivamente)
para las sucesiones en (ΘC, TΘ) y en (WΘC, σΘ) deberá ser uniforme sobre los
compactos de funciones continuas determinados por Θ.

En las secciones siguientes nos centramos en un estudio más cuidadoso de las
m-cotas y l-cotas. El papel de estas funciones, una vez que se les dote de una es-
tructura adecuada, va más allá de la existencia y unicidad proporcionadas por el
Teorema 1.2 para las ecuaciones diferenciales de Carathéodory. En particular, en
la sección 2.3 introducimos las nociones de Lploc-acotación y L1

loc-equicontinuidad
que posteriormente se relacionan con los conceptos correspondientes para las fun-
ciones de Carathéodory a través de sus m-cotas y l-cotas.

Como primera aplicación, en la sección 2.4 probamos que la Lploc-acotación y
la L1

loc-equicontinuidad de las m-cotas y las l-cotas en conjuntos de funciones de
Carathéodory se conserva respecto de la clausura topológica en los casos:

(a) Clausura de subconjuntos en SC o LC respecto de cualquiera de las topolo-
gías introducidas.

(b) Clausura de subconjuntos en SCp o LCp, con 1 < p < ∞, respecto de
cualquiera de las topologías fuertes introducidas.

(c) Clausura de subconjuntos en (ΘC, TΘ) y en (WΘC, σΘ).

Esta propagación es crucial porque nos permitirá tratar la clausura de dicho
conjuntos como “homogénea” (respecto a una propiedad específica). Citamos
dos ejemplos concretos: el límite de una sucesión de funciones convergente, con l-
cotas Lploc-acotadas, es una función del espacio LC y por consiguiente, el problema
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diferencial inducido tendrá automáticamente unicidad de soluciones. Por otro
lado, si consideramos una sucesión de funciones, con m-cotas L1

loc-equicontinuas
y que sea convergente en SC, entonces las soluciones del problema diferencial
inducido por el límite tendrán el mismo módulo de continuidad que las soluciones
de los problemas inducidos por los elementos de la sucesión.

En las secciones 2.5 y 2.6 tratamos dos tipos importantes de resultados para el
espacio LC: las condiciones de equivalencia para las topologías fuertes y para las
topologías débiles consideradas, así como el estudio de los conjuntos relativamente
compactos. En primer lugar demostramos que en un subconjunto de LCp (resp.
LC) con l-cotas Lploc-acotadas (resp. L1

loc-acotadas) las topologías fuertes (resp.
débiles) coinciden. Además, proporcionamos una caracterización de los conjun-
tos relativamente compactos para las topologías fuertes, cuando tienen l-cotas
Lploc-acotadas, mientras que para las topologías débiles recordamos los resultados
existentes en [3] y [4].

Concluimos el capítulo con la sección 2.7, donde utilizamos las propiedades de
L1
loc-equicontinuidad y de Lploc-acotación para lasm-cotas y/o las l-cotas para pro-

bar la continuidad de las trasladadas en el tiempo en los espacios
(
ΘCp

(
RM
)
, TΘ

)
y
(
WΘC

(
RM
)
, σΘ

)
. Como consecuencia, podemos construir flujos continuos en

las envolventes de una función en
(
ΘCp

(
RM
)
, TΘ

)
y
(
WΘC

(
RM
)
, σΘ

)
, lo que es el

primer paso para poder definir los flujos triangulares continuos inducidos por los
respectivos problemas diferenciales, tarea que se realizará en el siguiente capítulo
de la memoria.

3. Continuidad del flujo para ODEs de tipo Carathéodory

En este capítulo tratamos el problema de definir un flujo triangular continuo
inducido por ecuaciones diferenciales ordinarias de Carathéodory del tipo

ẋ = f(t, x), x(0) = x0 , (S.4)

y sistemas triangulares de ecuaciones de Carathéodory del tipo{
ẋ = f(t, x), x(0) = x0 ,

ẏ = F (t, x) y + h(t, x), y(0) = y0 ,
(S.5)

donde f es una función Lipschitz Carathéodory, mientras F y h pertenecen, res-
pectivamente a WΘC y ΘCp para que los problemas estén bien puestos.

En la sección 3.1 proporcionamos los resultados de continuidad del flujo trian-
gular, óptimos en relación a la topología utilizada y a las hipótesis sobre el campo
vectorial inicial. A continuación, damos un esquema de las hipótesis para los tres
casos que demostramos (se simplifica la notación omitiendo la dimensión de los
espacios de llegada).
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Caso 1: f ∈ (LC, σΘ) con m-cotas L1
loc-equicontinuas,

F ∈ (WΘC, σΘ) con m-cotas L1
loc-equicontinuas,

h ∈ (WΘC, σΘ) con m-cotas L1
loc-equicontinuas.

Caso 2: f ∈ (LCp, TΘ) con m-cotas L1
loc-equicontinuas,

F ∈ (ΘCp, TΘ), h ∈ (ΘCp, TΘ).

Caso 3: f ∈ (LCp, TD) con l-cotas Lploc-acotadas,
F ∈ (ΘCp, TΘ), h ∈ (ΘCp, TΘ).

Se puede apreciar que hay un intercambio entre la fuerza de la topología utilizada
y las hipótesis sobre las funciones f , F , y h. Es decir, con pocas hipótesis sobre
los campos vectoriales, será necesaria una topología más fuerte y viceversa.

Las secciones restantes del capítulo contienen algunas aplicaciones directas de
la continuidad del flujo triangular. En particular, en la sección 3.2 tratamos el
caso en que la función f es de clase C1 en la variable x y la segunda ecuación
de (S.5) es la ecuación variacional de la primera, es decir, F = Jxf es una función
de SC y h = 0. Gracias a los resultados de la sección 3.1, podemos construir
dos tipos de flujos linealizados (dependiendo de la topología utilizada, TΘ o σΘ)
y probar la derivabilidad de las soluciones respecto de los datos iniciales para
problemas cuyo campo vectorial no es de clase C1 en la variable x y, por tanto,
no admite una ecuación variacional clásica. Concluimos la sección presentando
un ejemplo concreto en el que se verifica este fenómeno.

En la sección 3.3 enseñamos como propagar algunas propiedades de estabilidad
de un sistema linealizado a través de los flujos linealizados definidos en la sección
anterior.

La sección 3.4 contiene otra aplicación teórica y dos ejemplos. La aplicación
teórica es un teorema de existencia de soluciones para problemas diferenciales
cuyos campos vectoriales son funciones en WΘC que sean límites, en la topología
σΘ, de sucesiones en SC. Dicho teorema se obtiene gracias al resultado de con-
tinuidad de las trasladadas en el tiempo (Teorema 2.43), y al teorema de variación
continua de las soluciones respecto de los datos iniciales y de los campos vectori-
ales contenido en la sección 3.1.

Los dos ejemplos tratados al final del capítulo proceden de [25] y de [50], res-
pectivamente. En el primer caso, notamos que las hipótesis consideradas para
conseguir algunos resultados de estabilidad para un esquema abstracto de digi-
tización en teoría de control, son tales que el Teorema 2.31 se puede aplicar y
entonces la topología de tipo integral considerada en este artículo coincide con
cualquiera de las topologías fuertes utilizadas en esta memoria. Además, eviden-
ciamos que algunos resultados incluidos en la misma referencia se pueden obtener
de manera más sencilla utilizando la teoría desarrollada en este trabajo.

Por otro lado, inspirados por el segundo artículo, proponemos un sistema
triangular compuesto por un sistema compartimental no lineal no autónomo y
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por una ecuación para la edad media asociada. Indicamos bajo que hipótesis se
puede construir un flujo triangular continuo utilizando los teoremas probados en
la sección 3.1.

4. Atractores pullback y atractores globales para ODEs de
Carathéodory

Este capítulo contiene resultados de existencia de atractores para una ecuación or-
dinaria de Carathéodory (cuyas soluciones se suponen definidas hasta +∞) y para
el flujo triangular continuo inducido por ella. Tras recordar algunas definiciones y
resultados básicos, enseñamos como un flujo triangular continuo permite deducir
la existencia de un atractor para un conjunto de problemas límite. En particular,
considerando ciertas propiedades sobre las soluciones de un problema ẋ = f(t, x),
conseguimos la existencia de un atractor pullback acotado para los procesos in-
ducidos por sistemas cuyo campo vectorial esté en el conjunto alpha-límite, en
el conjunto omega-límite o en la envolvente de f . Además, proporcionamos un
resultado de existencia de un atractor pullback y un atractor global para el flujo
triangular inducido.

También, facilitamos condiciones suficientes para aplicar los resultados ante-
riores. En concreto, a través de resultados de comparación, obtenemos varios
atractores para ambos, proceso y flujo triangular inducidos. Comparamos el
tamaño de las soluciones de un sistema diferencial de Carathéodory, en primer lu-
gar con el tamaño de las soluciones de una ecuación lineal escalar de Carathéodory
adecuada y después con el tamaño de las soluciones de un sistema lineal de
ecuaciones de Carathéodory. Finalizamos el capítulo aplicando los resultados
obtenidos al ejemplo del sistema compartimental de la sección 3.4.3, y de este
modo, obtener condiciones suficientes para la existencia de distintos tipos de
atractores para los procesos y flujos triangulares inducidos.

5. Continuidad del semiflujo para DDEs de Carathéodory

En el capítulo final de la memoria, mostramos como la teoría desarrollada para
ecuaciones diferenciales ordinarias de Carathéodory puede extenderse a ecua-
ciones diferenciales de Carathéodory con retardo constante del tipo (S.3).

Comenzamos el capítulo con algunos resultados preliminares sobre ecuaciones
diferenciales de Carathéodory con retardo constante y, a continuación, intro-
ducimos nuevas topologías de tipo híbrido respecto de las que presentamos en
el Capítulo 2. El término híbrido quiere enfatizar el hecho de que, a pesar de
seguir pidiendo una convergencia de tipo L1

loc, trataremos las primerasN variables
espaciales (que representan el estado actual del sistema en una DDE) de mane-
ra diferente respecto a las últimas N (que representan la historia del estado).
Además, relacionamos estas topologías con las introducidas en el Capitúlo 2 y
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enseñamos como aplicar o desarrollar, en este nuevo contexto, algunos de los
resultados topológicos obtenidos anteriormente en la memoria.

Finalmente, probamos la continuidad del semiflujo triangular inducido por
problemas del tipo (S.3), cuando LC está dotado de una de las topologías TB, TD
del Capítulo 2, o una de las nuevas topologías hibridas (y f satisfaga hipótesis
adecuadas). Por consiguiente, la teoría queda lista para poder desarrollar, donde
sea posible, resultados análogos a los contenidos en los Capitúlos 3 y 4, pero para
ecuaciones diferenciales de Carathéodory con retardo constante.

Conclusiones

La teoría desarrollada en esta memoria permite extender el formalismo de flujo y
semiflujo triangular a las ecuaciones diferenciales ordinarias y con retardo cons-
tante de tipo Carathéodory, utilizando topologías métricas (fuertes y débiles) de
tipo integral. Como consecuencia, el estudio del comportamiento cualitativo de
las soluciones de esta clase de problemas podrá llevarse a cabo mediante el uso
de herramientas de dinámica topológica.

Este trabajo incluye diversas aplicaciones para ecuaciones diferenciales or-
dinarias de Carathéodory como el estudio de flujos triangulares linealizados, la
propagación de la dicotomía exponencial y del espectro dicotómico de un sistema
lineal y el estudio de los atractores pullback y globales, así como algunos ejemplos
inspirados por modelos de fenómenos reales que demuestran la aplicabilidad de
la teoría desarrollada.

Además la tesis proporciona una descripción detallada de la estructura topoló-
gica considerada en los espacios de funciones de Carathéodory estudiados, muchos
de ellos introducidos por primera vez. Se caracterizan las clases de equivalencia de
las funciones que definen las ecuaciones, se estudia la propagación de las m-cotas
y l-cotas a través de los límites en las topologías dadas y se obtienen caracteriza-
ciones de los subconjuntos relativamente compactos.

Por último, la construcción y caracterización de los distintos semiflujos conti-
nuos para ecuaciones funcionales de Carathéodory con retardo constante, prepara
el camino para el estudio posterior del comportamiento cualitativo de las solu-
ciones y de la existencia de atractores pullback y globales que será llevado a cabo
en futuras publicaciones.

La teoría presentada aporta ideas para investigaciones posteriores, tanto en
el caso de ecuaciones ordinarias como en el de ecuaciones funcionales con retardo
constante. Entre las posibles direcciones para el futuro queremos señalar las
aplicaciones a teoría de bifurcación, teoría de control, biología matemática y
análisis numérico.
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