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RESUMEN

Resumen

La computación heterogénea se presenta como la solución para conseguir supercomputadores cada vez
más rápidos capaces de resolver problemas más grandes y complejos en diferentes áreas de conocimiento.
Para ello, integra aceleradores con distintas arquitecturas capaces de explotar las características de los
problemas desde distintos enfoques obteniendo, de este modo, un mayor rendimiento.

Las FPGAs son hardware recon�gurable, i.e., es posible modi�carlas después de su fabricación. Esto
permite una gran �exibilidad y una máxima adaptación al problema en cuestión. Además, tienen un
consumo energético muy bajo. Todas estas ventajas tienen el gran inconveniente de una más difícil pro-
gramación mediante los propensos a errores HDLs (Hardware Description Language), tales como Verilog o
VHDL, y requisitos de conocimientos avanzados de electrónica digital. En los últimos años los principales
fabricantes de FPGAs han enfocado sus esfuerzos en desarrollar herramientas HLS (High Level Synthesis)
que permiten programarlas a través de lenguajes de programación de alto nivel estilo C. Esto ha favorecido
su adopción por la comunidad HPC y su integración en los nuevos supercomputadores. Sin embargo, el
programador aún tiene que ocuparse de aspectos como la gestión de colas de comandos, parámetros de
lanzamiento o transferencias de datos.

El modelo Controller es una librería que facilita la gestión de la coordinación, comunicación y los
detalles de lanzamiento de los kernels en aceleradores hardware. Explota de forma transparente sus mod-
elos de programación nativos, en concreto OpenCL y CUDA, y, por tanto, consigue un alto rendimiento
independientemente del compilador. Permite al programador utilizar los distintos recursos hardware
disponibles de forma combinada en entornos heterogéneos.

Este trabajo extiende el modelo Controller mediante el desarrollo de un backend que permite la
integración de FPGAs, manteniendo los cambios sobre la interfaz de usuario al mínimo. A través de los
resultados experimentales se comprueba que se consigue una disminución del esfuerzo de programación
signi�cativa en comparación con la implementación nativa en OpenCL. Del mismo modo, se consigue
un elevado solapamiento entre computación y comunicación y un sobrecoste por el uso de la librería
despreciable.
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ABSTRACT

Abstract

Heterogeneous computing appears to be the solution to achieve ever faster computers capable of solving
bigger and more complex problems in di�erent �elds of knowledge. To that end, it integrates accelerators
with di�erent architectures capable of exploiting the features of problems from di�erent perspectives thus
achieving higher performance.

FPGAs are recon�gurable hardware, i.e., it is possible to modify them after manufacture. This allows
great �exibility and maximum adaptability to the given problem. In addition, they have low power
consumption. All these advantages have the great objection of more di�cult programming with the error-
prone HDLs (Hardware Description Language), such as Verilog or VHDL, and the requirement of advanced
knowledge of digital electronics. The main FPGA vendors have concentrated on developing HLS (High
Level Synthesis) tools that allow to program them with C-like high level programming languages. This
favoured their adoption by the HPC community and their integration in new supercomputers. However,
the programmer still has to take care of aspects such as management of command queues, launching
parameters or data transfers.

The Controller model is a library to easily manage the coordination, communication and kernel launch-
ing details on hardware accelerators. It transparently exploits their native or vendor speci�c programming
models, namely OpenCL and CUDA, thus enabling the potential performance obtained by using them in
a compiler agnostic way. It is intended to enable the programmer to make use of the di�erent available
hardware resources in combination in heterogeneous environments.

This work extends the Controller model through the development of a backend that allows the inte-
gration of FPGAs, keeping the changes over the user-facing interface to the minimum. The experimental
results validate that a signi�cant decrease in programming e�ort compared to the native OpenCL im-
plementation is achieved. Similarly, high overlap of computation and communication and a negligible
overhead due to the use of the library are attained.
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CHAPTER 1. INTRODUCTION

Chapter 1

Introduction

On this chapter the following aspects are introduced:

• The context and motivation for the work.

• Problem statement.

• The structure of the document.

1.1 Context

The increase in the operating frequency of processors has been the recipe for progress in computing
performance during decades, but this is no longer possible due to heat emission. The power dissipated
by a processor is proportional to the squared voltage and the frequency. Frequency grows linearly with
voltage, so the case for the power is even worse, as it turns out to be proportional to the cubed voltage [49].
This raised the need for other strategies, both software and hardware based, to bypass this limitation.

The traditional sequential approach in which a single CPU core executed one instruction after another
evolved to the concurrent and parallel programming paradigms, which seek the execution of tasks at the
same time. This premise can be virtually achieved in concurrent programming with a single core by
interleaving small windows of time for the di�erent tasks, creating the illusion of multitasking. Parallel
computing, on the other hand, achieves true simultaneous execution of tasks by relying on multicore
processors. These comprise several independent compute units capable of executing one thread each
simultaneously. It is common nowadays to �nd microprocessors with 4 or 8 cores in commodity systems.
However, a CPU with N cores will not be able to achieve a speedup of N in a given application, due to
data dependencies, serial parts and synchronization costs, partially explained by Amdahl's Law [32]. CPU
vendors have worked in the re�nement of this approach, creating new architectures and developing new
technologies such as hyperthreading [27], capable of increasing the number of virtual cores by scheduling
several threads in a given core that are to use a disjoint set of resources. Following this trend, GPUs
(Graphical Processing Unit), another microprogrammed architecture initially designed to support the
complex calculations of graphical computing, turned out to outperform multicore CPUs thanks to their
huge number of simpler compute units, which gives them the name of manycore. This ability to better
exploit inherent parallelism fostered the development of heterogeneous systems, in which a CPU plays the
role of host and the computation is o�oaded to a co-processor or accelerator. This way it is posible to
dissect problems and schedule every piece to the most suitable accelerator. Tipically, sequential parts will
be solved faster by CPUs, while massively parallel problems �t GPUs better. Despite all the performance

1



1.2. MOTIVATION

bene�ts of GPUs they come at the cost of high energy consumption. This could be minimised by the use
of ASICs (Application Speci�c Integrated Circuit), that featured just the resources required for a given
problem, thus limiting the working die area. This is not a practical solution, since the development of
ASICs has cumbersome design costs. Fortunately, recon�gurable hardware gathers both the capability of
implementing solutions to di�erent problems of GPUs through programming and the speci�ty of a circuit
adapted to a given problem of ASICs.

FPGAs (Field Programmable Gate Array) are the example of recon�gurable hardware device most
used in industry [10, 38]. They have been around since the 80s, when they were used to diminish the cost
of prototyping new ASIC designs. They were not capable of holding really complex designs back then,
what made them unsuitable for computing. This has changed thanks to the improvements in integration,
which has lead to an increase in the density of their logic fabric. They have su�ered from heavy and
error-prone programming with HDLs (Hardware Description Language) such as Verilog [29] or VHDL [8]
in the past, which, on top of that, required deep knowledge of electronics, which hindered their adoption
by the HPC 1 community. This has changed in the recent years thanks to the development of HLS (High
Level Synthesis) languages and frameworks such as the Intel FPGA SDK for OpenCL by Intel [23] or
SDAccel by Xilinx [48], both based on OpenCL, thus improving programmability by replacing HDLs by
C-like languages.

1.2 Motivation

The development of HLS tools has eased the integration of FPGAs in heterogenous systems. However,
several challenges regarding programmability remain that have to be faced by the programmer. He still
has to take care of aspects such as command queue management, kernel launching parameters or data
transfers. This results in a cumbersome boilerplate code that severely impacts portability.

The main goal of heterogeneous systems is the exploitation of the particular features of every archi-
tecture available to achieve higher performance. This is usually achieved by leveraging the vendor speci�c
tools for every given architecture and having in-depth knowledge of their details. Controllers removes
these restriction by providing a uniform user-facing interface to the programmer that enables the use
of CPUs and GPUs as accelerators by leveraging the vendor speci�c frameworks under the hood, thus
achieving optimal performance. It also takes care of dependencies, thus easing e�cient programmability
and allows seamless overlapping of data transfers and computation thanks to its asynchronous policy.

1.3 Problem statement

The aim of this work is to expand the Controllers model by giving support to FPGAs, thus allowing their
integration in heterogeneous systems that use the library. Controllers already supported the simultaneous
use of CPUs and GPUs. In order to preseve this compatibility, this work should intend for a modular
approach.

FPGAs are very di�erent from the traditional microprogrammed architectures. Their ability to adapt
to the given problem instead of the other way around and their recon�gurability opens a world of pos-
sibilities. However, the particularities of their architecture poses new challenges in the form of di�erent

1HPC (High Performance Computing) deals with big scale scienti�c and engineering problems, such as weather forecasting
or simulation of �uid dynamics, seeking a reduction in the time needed to �nd their solution and giving support to ever
increasing input sizes. For that, it involves a combination of research in areas such as compilers, runtime systems, parallel
programming and cutting-edge hardware. The last trend for performance are heterogeneous systems, which form the basis
of modern supercomputers appearing in the world class list TOP500 [1].

2



CHAPTER 1. INTRODUCTION

ways of programming at the algorithmic level, a broader set of con�gurable parameters and compilation
times that can last for hours. Despite the huge improvement in programmability achieved by the HLS
frameworks, these di�erences require a further e�ort to ease their use in a heterogeneous environment.
On top of that, memory management is even more critical for these devices due to their slower types
of o�chip memory. For this reason, a library like Controllers that takes care of data transfers and data
dependencies is a must for the proper integration of these devices in heterogeneous systems.

1.3.1 Objectives

The objectives of this work are as follows:

• Study and comprehend the existent works.

• Study the Hitmap [15] and Controllers [30] libraries that lay the foundations of this work.

• Design and implement a prototype of the proposed model.

• Design, implement and execute experimentation cases that enable the validation of the model.

• Obtain results and reach conclusions from the experimentation performed.

• Validate the proposed model.

1.3.2 Budget and plani�cation

This work is the �rst attempt of the Trasgo research group to include FPGAs in their work�ow. As a
consequence, some resources have to be acquired before the work starts. In these situations it is necessary
to account for the costs of new hardware, software licenses and the time invested in training the involved
personnel.

This section presents a rough inital plani�cation and several budget options to get some insight into
the costs of this work. Table 1.1 shows the most relevant OpenCL compatible FPGAs in the market at the
moment. Many features can be taken into account to choose an option. However, only the most relevant
for our purposes have been listed. Features such as the operating temperature or power consumption
account for price variability, but they are not that determinant for an initial budget. Finally, the features
that made it into the list are:

1. Memory: maximum o�chip memory that can be installed on the FPGA board. From fastest to
slowest, the three available types are HBM2, DDR4 and DDR3.

2. PCIe: the type of connectivity bus featured by the FPGA board. The highest memory bandwidth
will be achieved by x16.

3. LUTs: lookup-tables. This �gure expresses the number of con�gurable logic gates in the FPGA.
The higher this number the biggest the design that can be held. Refer to 2.1.1 for more information.

Xilinx Alveo U50 is a cost e�ective solution that could serve our research purposes, specially compared
to the outdated Intel Stratix V. However, since this project will probably lead to further research an Intel
Stratix 10 outperforms its competitors because of its 10.2 million of LUTs.

FPGAs need specialised software that performs all the steps related to the process of circuits synthesis.
The cost of this software is non negligible and has to be added to the budget. Table 1.2 summaries the

3



1.3. PROBLEM STATEMENT

FPGA model Memory (max) PCIe LUTs Cost
Intel Stratix V [40] 8 GB DDR3 x8 622K $6250
Intel Stratix 10 [39] 8 GB DDR4 x16 10.2M $10,880
Intel Arria 10 [41] 16 GB DDR4 x8 1.15M $5520

Xilinx Alveo U50 [12] 8 GB HBM2 x16 872K 2604.72e
Xilinx Alveo U200 [11] 64 GB DDR4 x16 892K 4382.41e

Table 1.1: Summary of the most relevant features and costs of OpenCL compatible FPGAs.

Software Cost
Quartus Prime Pro (�xed) [21] $3995
Quartus Prime Pro (�oating) $4995

Xilinx Vivado HL System Edition (�xed) [47] $3495
Xilinx Vivado HL System Edition (�oating) $4295

Table 1.2: Costs of software licenses.

costs of the Intel's and Xilinx's suites, both in �xed and �oating license versions. Floating license should
be the preferred option, since more than one person might be working on FPGA projects in the future.

Intel o�ers an alternative to this on-premise solution called Intel Devcloud [3]: 6 months of free access
to their HPC cluster featuring Intel Arria 10 FPGAs. More details on the available hardware at 5.5. It
o�ers an adequate experimental environment with homogeneous computing nodes. However, the developer
is subject to any change that the Intel team may consider applying to their cluster. For that reason, a
local installation is likely in the future.

Table 1.3 shows a tentative coarse task decomposition of the work during the development of this
project based on a discussion with the advisors about a possible path to follow and the di�culty of every
step. In order for the time estimations to be accurate the pro�le of every role has to be taken into
account, i.e., previous knowledge and abilities. Since both advisors have successfully managed several
honours project in the past the times shown in the table are based on previous experience. In the case of
the student, it has to be taken into account that this is his �rst contact with parallel computing, although
he has undertaken some projects on its own regarding low level programming and electronics. For this
reason, the learning OpenCL - FPGA task, which includes traning in the parallel computing paradigm at
a conceptual level, is estimated to last 80 hours.

Reading is one of the pillars of research. Given that this is the �rst contact of the student with research
in general and heterogeneous computing and parallel programming in particular, a high proportion of the
time allocated for this work will be spent on this task.

Controllers and Hitmap lay the foundations of this work. They are two quite complex tools. However,
this work seeks to result in an expansion of Controllers and Hitmap is just an auxiliary tool, from which
only a few features are required. This implies that it is requiered to have deep knowledge about the inners
of Controllers, but there is no need to reach the same level of comprehension for Hitmap. Knowing the
user-facing interface and some implementation details of this library su�ce.

The process of implementation can be quite time consuming due to the use of preprocessor macros and
the conceptual di�culty associated to metaprogramming. The programmer must be aware of the pieces
of code that will be actually expanded in the actual program. Conditional compilation and limited aid
from the compiler when debugging turn this into a complicated task, which justify an initial estimation
of 100 hours of development.

Experimentation should be a straightforward task once FPGAs are properly integrated in Controllers
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thanks to the new backend. Since this is the �rst contact of the student with a project of this kind 30
hours might be a resonable estimate.

Writing this document should be a straightforward task as well, provided that all the results obtained
during the work have been properly annotated. Experience shows, however, that students have a hard
time writing their �rst research document, so 40 hours is the prior estimate.

Finally, a certain degree of freedom is advisable in projects management to account for unexpected
events. This can be accounted by in�ating the estimates of every task. However, since this work is based
on research, having some extra time for other side related tasks, e.g. learning some Verilog or CUDA,
makes more sense and has been recorded as Others.

Role Task Time (hours)

Student
Learning OpenCL - FPGA 80

Reading 100
Understanding Controllers 60
Understanding Hitmap 5
Backend implementation 100

Experimentation 30
Writing document 40

Others 40
Advisor Meetings 60

Corrections to the draft 20

Table 1.3: Estimations of the time invested by two roles involved in the work for its development.

All in all, tables 1.1, 1.2 and 1.3 provide the necessary information to estimate the overall cost of the
project. For the reasons exposed, the FPGA model chosen for this work is Intel Stratix 10 and a �oating
license of Quartus is preferred. Regarding the cost of the time invested by the two roles considered a cost
of 25e/h for the student and and 50e/h for the advisors is assigned. As a consequence, the total cost of
the project, applying an exchange rate of $1.13 = 1e, would be 9628.32e (FPGA) + 4420.35e (Quartus)
+ 11375.00e (student) + 4000.00e (advisors) = 29423.67e.

1.4 Document structure

The rest of document is organised as follows: chapter 2 introduces some basic concepts about FPGA
architecture and the related work. Chapter 3 describes the �nal prototype and the previous exploration
of FPGA parameters that in�uenced the decisions taken. Chapter 4 shows the iterative process of imple-
mentation of the model. Chapter 5 explains the experimentation conducted over the chosen case studies
to validate the proposed model. Finally, chapter 6 discusses the conclusions reached and the possible
future research lines.

5



1.4. DOCUMENT STRUCTURE

6



CHAPTER 2. PREVIOUS CONCEPTS AND STATE OF THE ART

Chapter 2

Previous concepts and State of the Art

This chapter introduces the following aspects:

• The FPGA architecture and the OpenCL programming model.

• Related work about optimisation of parallel applications.

• The Hitmap and Controllers libraries, developed by Trasgo research group.

2.1 FPGA architecture

An FPGA (Field Programmable Gate Array) is an integrated circuit that can be recon�gured after man-
ufacturing [46, 37]. The most basic models consist of just programmable logic gates and interconnects
and I/O ports, which turn them into recon�gurable hardware, as depicted in �gure 2.1. It is not uncom-
mon, however, that they also feature other digital components such as digital signal processors (DSPs),
dynamic RAM (DRAM) or even microprocessors. These are known as hard IP and serve the dual purpose
of extending the FPGA capabilities with tested electronics that may otherwise be di�cult to implement
and saving FPGA surface for other custom non-standard functionality desired by the hardware designer.
All of them could be implemented by leveraging the FPGA logic elements, provided that the FPGA is
large enough. However, it is often not worth it reinventing the wheel knowing circuits design can be a low
productivity and error-prone task. In the same fashion, emulating software libraries, there exists soft IP,
i.e. HDL (Hardware Description Languages, such as VHDL or Verilog) �les usually sold by manufacturers
that describe a hardware component that can be instantiated with the FPGA programmable resources.
These are not necessarily �xed and allow a certain degree of freedom by exposing con�gurable parameters,
as does the Nios II processor [9].

FPGAs can be manufactured with either fuse/antifuse or SRAM technology. Only the latter is re-
con�gurable and interesting from the point of view of HPC, so from now on only this kind is considered
in this work. This makes FPGAs particularly suitable for applications when data paths are complex and
poses a restriction on the utilised surface, since only the targeted elements are needed. This way, it is
possible to save energy by leaving the rest of the die idle, as opposed to microprogrammed accelerators,
such as GPUs [7].
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Figure 2.1: Basic architecture of a generic FPGA. Extracted from [46]

2.1.1 Lookup tables

Lookup tables (LUTs from now on) are the con�gurable elements of the FPGA that provide the combi-
national logic capabilities. They are formed by SRAM cells (called CRAM by Intel, the C standing for
con�gurable) and a multiplexer. The number of both varies depending on the FPGA model.

Figure 2.2 shows the inners of a LUT from Intel Stratix II (it should be clear that LUTs are a common
element in FPGAs regardless of manufacturer, though). CRAM are SRAM cells targeted by the bitstream
generated by the compiler, which �xes its value every time the FPGA is reprogrammed. In this example,
A, B, C and D are the con�gurable arguments of the generated function, whilst Y is the output. In the
general case, to implement an n-input function an SRAM with 2n locations is required.

2.1.2 Logic blocks

LUTs are nested withing bigger blocks generally called logic blocks (this denomination varies between
manufacturers. Intel, for example, called them Adaptative Logic Modules in Stratix and Stratix II) which
always include latches or registers in order to allow sequential circuits to be implemented. This way,
FPGAs uses can be expanded further than the mere implementation of combinational circuits, allowing
the synthesis of algorithms. Other resources, such as adders, may also be included, as in the case of
Stratix II shown in �gure 2.2.

The programming process of FPGAs produces a bitstream that is downloaded to the device. This
bitstream speci�es which elements will be used, their interconnections and the logic functions that are
to be implemented. These functions are described by the so called LUT mask i.e. a sequence of bits
for every used LUT that describes the state of every CRAM cell. This state will remain �xed until the
FPGA is reprogrammed with a di�erent bitstream (or until it is disconnected from power. It is possible
for the device to recover that state right after power up thanks to an EPROM that stores the bitstream
and recon�gures the FPGA, nonetheless).
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Figure 2.2: Schematic view of a lookup table (left) and a logic block (right). Extracted from [10]

2.1.3 Routing architecture

Routing architecture is another characteristic feature of FPGAs that makes them recon�gurable hardware.
The �nal interconnection grid is the result of an optimisation e�ort known as placement and routing
conducted by a CAD tool (Quartus for Intel FPGAs and Vivado for those of Xilinx). Placement is the
problem of deciding, given the resources the FPGA will need to synthesise a circuit, which part of the
circuit it will occupy. This decision is key to achieve high frequency, since FPGAs are not completely
regular, taking into account that they are not just composed by the logic fabric, but also feature other
resources, such DRAM memory. As a consequence, the distance to this memory, and any other resources
that are to be leveraged by the design, must be minimised. Routing, on the other hand, deals with the
wiring of the logic and the periferial I/O blocks by con�guring the routing switches depicted in �gure 2.3.
Placement and routing is a highly complex problem that can prolong compilation of kernels to several
hours, adding another di�culty to the work with FPGAs.

Figure 2.3: Routing architecture of Stratix and Stratix II. Extracted from [10]

2.1.4 SRAM vs. DRAM

In this section the di�erent types of memory available in FPGAs and their particularities will be explained,
since a deep understanding is required to achieve high performance leveraging this type of accelerators,
due to bandwidth limitations explained later.

In the �rst place, there is static random access memory (SRAM). This is a low latency RAM that can
be used both as logic fabric, as has already been discussed, and memory. The second case will be analysed
here, in order to establish a comparison with DRAM. SRAM can be seen as a unidimensional array of
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memory cells. This makes interfacing with this kind of memory an easy task that can be performed
without a memory controller. It can be dual port, i.e. it allows concurrent access to both a reading and a
writing agent. On top of that, it is extremely fast, which makes it ideal for caching commonly used data.
They are expensive, however, and usually only a few megabytes are available, so it has to be used wisely.

Figure 2.4: Schematic of a DRAM. Extracted from [20]

In the second place, there is dynamic random access memory (DRAM) and all its �avours (DDRAM,
SDRAM, etc.). For the sake of simplicity, only the generic features of this kind of memory will be explained
without going into the speci�cs of the di�erent specialisations. Unlike SRAM, DRAM is physically
assembled as a two dimensional array of memory cells. This might not convey much to the reader
unfamiliar with electronics, but it has severe implications on complexity. Not only that, but their cells
being based on capacitors adds complexity to its design due to their physical attributes. The value of
DRAM cells depend on the charge of the capacitor (when fully charged it acts as a closed circuit, so
its value is 0, whilst the opposite happens when it is fully discharged). When a row is to be read, it is
copied to a bu�er. Capacitors get discharged in the process, losing their information, that will not be
recovered until the row is closed. Once that happens the contents of the bu�er are copied to the original
row, which recovers its values by recharging the capacitors. Moreover, capacitors charge tend to decay
with time, so a row that has not been read during the time the capacitor can keep its charge, which is
of several milliseconds [34], will lose its value. To prevent this, a refreshing cycle that takes care of this
situation by recharging the capacitors at a constant rate established by the manufacturer is implemented.
Once the row is available in the bu�er, their cells can be accessed there by enabling the CAS (column
address strobe) signal [13]. Therefore, rows loaded in this bu�er can be accessed up to 98% faster due
to the avoidance of row activation latency as can be seen in the last row of table 2.1. As a consecuence,
DRAM is more e�ciently used when their data is accessed in bursts of contiguous memory locations.
This is known as coalescing and has a major impact on the way programmers develop their programs.
All this complexity justi�es the need for a memory controller that hides the details of the component to
the hardware designer that is to use it.
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Year introduced Chip size $ per GiB
Total access time to
a new row / column

Average column
access time to
existing row

1980 64 Kibibit $1,500,000 250 ns 150 ns
1983 256 Kibibit $500,000 185 ns 100 ns
1985 1 Mebibit $200,000 135 ns 40 ns
1989 4 Mebibit $50,000 110 ns 40 ns
1992 16 Mebibit $15,000 90 ns 30 ns
1996 64 Mebibit $10,000 60 ns 12 ns
1998 128 Mebibit $4,000 60 ns 10 ns
2000 256 Mebibit $1,000 55 ns 7 ns
2004 512 Mebibit $250 50 ns 5 ns
2007 1 Gibibit $50 45 ns 1.25 ns
2010 2 Gibibit $30 40 ns 1 ns
2012 4 Gibibit $1 35 ns 0.8 ns

Table 2.1: DRAM size increased by multiples of four approximately once every 3 years until 1996, and
thereafter considerably slower. Extracted from [34]

2.1.5 Data alignment

Data is stored contiguously in memory and is accessed as explained in section 2.1.4. In order to support
values of diverse natures, there exist several basic datatypes with di�erent sizes that, in addition, can be
combined to form complex datatypes: structures and unions. Data is retrieved in bursts of �xed width
that is established by the width of the bus of the memory controller. This implies that when a given
datatype spans a region larger than this width, more than one memory transfer has to be done. Sometimes
this inevitable due to a fat complex type, but others this is just due to improper data alignment [6].

The memory controller can only access memory positions aligned to its memory bus width by design.
For this reason, data should be aligned to this width to prevent more memory accesses than necessary.
The compiler can deal with this problem in many situations, specially with basic data types, but atten-
tion should be paid when working with compound data types. Data alignment is mandatory in certain
architectures or for a subset of their instructions, as the SSE multimedia instructions of AMD processors.
Anyway, it is best practice to keep data aligned to obtain high performance. From now on, we will be
considering the case of Intel FPGAs, for which the data bus of the memory controller is 64 bytes wide.
This must not be confused with the data bus between the memory controller and the DRAM, since this
is not directly accessible to the programmer, as can be seen in �gure 2.5.

Figure 2.5: Datapath between the global memory and a kernel. Extracted from [44]

An example might clarify what happens when data is not properly aligned. Let s be a structure
de�ned as shown in the code snippet 2.1:
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1 struct s {

2 char c;

3 int i;

4 }

Listing 2.1: A misaligned structure

s comprises an 1 byte char and a 4 bytes int. Thus, the total size of s should be 5 bytes. However,
this might lead to a situation as the one depicted in �gure 2.6. The starting address of the structure is
0x36 and the �nal address is 0x41 (take into account that this is not a fully accurate example, since this
address range belongs to the kernel space, and has been designed this way for the sake of simplicity). The
�rst burst that can be transferred lies in 0x00-0x39, but the structure spans further, so a second memory
access is needed for such a small datum. This is not the default behaviour of compilers but a technique
called packing that is useful in embedded applications in which memory resources are scarce. Compilers
will usually proceed as shown in �gure 2.7, i.e., it will align the structure to the greatest datatype. For
that, it will leave as many empty addresses after small datatypes so that the next member gets properly
aligned. This empty addresses are called padding. In this example, the smallest type of the members in s
is char, followed by an int that is unaligned. It is clear three addresses must be left empty after c so that i
becomes properly aligned. This is an inner type of alignment, but the structure itself is not aligned to the
64 bytes boundary, so two accesses are still needed. This can be explicitly requested by the programmer
and the compiler will allocate and address multiple of 64 for s.

0x38 0x39 0x40 0x41 0x420x370x360x35

c

i

unallocated

Figure 2.6: Packed misaligned structure. The dashed line indicates which part of the structure lies in the
�rst region transferred and which in the second.

0x38 0x39 0x40 0x41 0x420x370x360x35

c

i

unallocated

0x43 0x43 0x44

Figure 2.7: Padded misaligned structure. The dashed line indicates which part of the structure lies in the
�rst region transferred and which in the second.

2.1.6 Shift register pattern

Every application should be programmed with e�cient memory use in mind, regardless of the architecture
of the accelerator, but this becomes specially critical when programming for FPGAs, since they achieve a
much lower transfer bandwidth than their counterparts CPUs and GPUs. As an example, the GPU Nvidia
Tesla V100 SXM2 can achieve a 897.0 GB/s throughput, whilst the FPGA Intel Arria 10 is limited to
34.128 GB/s. That, added to some potential �aws in the memory controller implemented by Intel implies

12



CHAPTER 2. PREVIOUS CONCEPTS AND STATE OF THE ART

that the programmer must be aware that he should limit memory access and keep them e�cient in order
to achieve high performance [52].

Some problems exhibit a property known as spatial locality, i.e. adjacent locations are accessed repet-
itively. This is the case, e.g., of stencil or convolution based problems. For a deeper explanation of one
case of each, refer to chapter 5. Take for example, an stencil memory access pattern. As it is shown in
�gure 2.10 the value of each cell is calculated by applying a linear function over the neighbouring cells in
the stencil (green). Notice how every cell composing the stencil will be reused for the calculation of the
value of another cell. Since, given a N × N matrix, this is a O(N2) algorithm, 5×N2 memory accesses
have to take place, incurring in overhead. Fortunately, due to the problem structure, a classic electronics
construct can help reduce this load: the shift register.

A shift register (�gure 2.8) has a �xed number n of stages implemented with �ip-�ops that get updated
at every clock cycle, i.e the datum in �ip-�op i passes to �ip-�op i+1. This behaviour �ts the stencil
problem if enough memory rows are loaded in a shift register, as illustrated in �gure 2.10. In the case
of a 2D 5-point stencil at least 2 rows and a cell must be loaded in the shift register to get any bene�t
from exploiting this pattern, as shown in �gure 2.9 in red. It is desirable to have as many preloaded
memory positions in the shift register as possible (in pink), as these equal the number of steps that can be
calculated without retrieving new values from memory. This way accesses are reduced to N2. However,
although the improvement is in terms of a multiplicative constant, accesses are coalescable, since memory
positions are adjacent, and this leads to great speed improvements. In the case of a 1-D stencil, this is
much more noticeable, since the complexity of the algorithm is modi�ed: given an M length stencil and
an N length array, accesses improve from N ×M to just N [25].

Figure 2.8: Schematic and timing diagram of a serial shift register made out of D �ip-�ops. Extracted
from [14].
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Data matrix

Min. shift register

Extra shift register

M

N

Figure 2.9: Shift register pattern applied to bidimensional data.

...

...

Figure 2.10: First and �nal step of an iteration of a stencil calculation.

2.2 Related work

This section gives an overview of the related work. First, some insight is be given into the previous work
developed by the Trasgo research group that has been leveraged in this work. After that, the basics of
the OpenCL model are explained to enable the comprehension of the rest of this document. Finally,
Controllers is compared with other heterogenous programming models.

2.2.1 Hitmap

The Hitmap library [15] o�ers automatic techniques of partitioning and mapping of data, in an e�cient
and con�gurable way, in run time. This library de�nes an abstraction interface and a plug-in system
that encapsulates regular and irregular techniques, helping to generate code independent from the chosen
mapping function. Hitmap supports partitioning (tiling) of sparse or compact array distributions. This
partitioning enables the implementation of data and tasks parallelism according to the SPMD (Single
Program Multiple Data) model. This library o�ers functionalities to create, manipulate, distribute and
communicate these partitions (tiles) and hierarchy of partitions.

The Hitmap library introduces the following concepts:

Signature: A signature S is de�ned as a tuple of three integer elements representing a subspace of
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array indices in a one-dimensional domain. It resembles the classical Fortran or MATLAB notation for
array-index selections. The cardinality of the signature is the number of di�erent indices in the domain

S ∈ Signature = (begin : end : stride)
Card(s ∈ Signature) = b(s.end - s.begin)/s.stridec .

Shapes. We de�ne a Shape h as a n-tuple of signatures. It represents a selection of subspace of array
indices in a multidimensional domain (multidimensional parallelotope). The cardinality of the shape is
the number of di�erent index combinations in the domain

h ∈ Shape = (S0, S1, S2, . . . , Sn−1)

Card(h ∈ Shape) =
n−1∏
i=0

Card(Si).

Tiles. We de�ne a Tile as an n-dimensional array. Its domain is de�ned by a shape, and it has a
number of elements of a given type, depending on the programming language chosen

Tileh∈Shape : S0 × S1 × S2 × . . .× Sn−1 −→ <type>.

Figure 2.11: Tiling creation from an original array. Extracted from [15].

Hitmap supports three sets of functionalities:

• Tiling functions. De�nition and manipulation of arrays and tiles, in a tile-by-tile basis. These
functions can be used independently of the others, to improve locality in sequential code as well as
to generate data distributions manually for parallel execution.

• Mapping functions. Data distribution and layout functions to automatically partition array domains
into tiles, depending on the virtual topology selected. These functions are oriented to data and task
distribution on parallel environments. The input needed at this point are the virtual topology and
layout functions to be used, and the data structure to be distributed. These functions return i) the
ranges of the tiles that need to be created (using the tiling functions), ii) the mapping between tiles
and virtual processors, and iii) the neighbour information, encapsulated in a single structure.
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• Communication functions. Creation of reusable communication patterns for distributed hierarchical
tiles. These functions are an abstraction of a message-passing model to communicate tiles among
virtual processors, and may be used with the mapping information (mapped tiles, neighbourhood
information, and virtual topology), to create mapping-dependent communication patterns. They
return a handler that can be used to repeatedly communicate tiles among processors.

Figure 2.12: UML diagram of the Hitmap library architecture. Extracted from [15].

2.2.2 Controllers

The controller model [30] introduces a simpli�ed way to program application that can exploit heteroge-
neous computational platforms including accelerators or/and multi-core CPUs. Its architecture is repre-
sented in �gure 2.13. The device controllers coordinate the execution of series of kernels. These kernels
are declared as functions, that are managed by the controller entities. Controllers automatically manages
the two main concepts used in a program that exploits accelerators.

1. Kernel management, including the kernel launching and con�guration. The controller manages
the deployment/execution of sequences of kernel functions in the computational device associated
to the controller. The controllers can include policies to exploit concurrent kernel execution tech-
niques, interleave computations with communications or reorder the sequence of kernels. The kernel
con�guration is the selection of speci�c con�guration parameters for the kernel launching that can
be associated to a particular kernel and computational platform.

2. Data management, including the data transfers carried out across the memory hierarchies of the
host and the accelerators and the abstraction used to access data elements independently of the
target device, the threads indices space or the data layout.
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Figure 2.13: Diagram of the controller model architecture. The kernel-launching requests can be enqueued.
The controller entity manages the execution of enqueued kernels, and for bound variables, the data
transfers between memory spaces. In the �gure, the host variable A is not bound to the controller.
Variable B is a bound variable, with a duplicated image for the data in the device memory. Variable C
is an internal variable of the controller, de�ned in the host, but allocated only in the device. Extracted
from [30].

Rules for asynchronous execution

The rules applied at run-time to decide which operations should wait to be ready for execution, and which
ones can be started, executed asynchronously, and potentially be overlapped with previous or subsequent
operations are based on data dependencies.

The decisions of which kernels should be or not be executed concurrently to improve the overall
performance of the application is a problem orthogonal to the overlapping of data transfers with kernel or
host-task execution, and it is beyond the scope of this work. In this proposal, the order of the execution of
kernels is strictly preserved. Similarly, requests for the execution of host-tasks are also executed in order,
although they can be overlapped with kernels if dependencies allow it. Data transfers can be overlapped
with the execution of both kernels and host-tasks.

The internal rules that decide when a request can be safely started have been designed by study-
ing the dependencies between the di�erent types of requests and between the input/output role of their
parameters. Allocate/deallocate and wait operations have simple rules due to the synchronisations re-
quired by their semantics. Each data structure can have two memory images, one in the host and one
in the device. The kernel, host-task and data transfer requests have been analysed considering them as
a multiple-reader/multiple-writer problem. The dependencies generated by this scheme are depicted in
2.14.

Queue management policy

Controllers implements two policy modules: synchronous and asynchronous execution. The asynchronous
policy module pops tasks from the queue, but it delegates to the backend the application of the rules
depicted in 2.14. Thus, di�erent mechanisms can be exploited on di�erent backends, using the particular
primitives and resources provided by the speci�c programming model. The backend methods use the
information provided in the request parameters, and in the associated tiles, to evaluate the rules and
transform the request into calls to the particular programming model for the speci�c device. The syn-
chronous policy works with the same model, but always introducing a dependency with the previously
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Figure 2.14: Dependencies between request types. Rounded boxes identify request types, using the x data
structure as parameter. We distinguish between K or H requests that use x with an input or output role.
For clarity, the Wait and Alloc/Free operations are skipped in the �gure. Inside each box we represent
in small boxes whether the request reads or writes in the host or device memory image of x. Arrows
express dependencies between request types implied by the use (read or write) of the memory images of
x. Requests that are not linked with arrows can be executed concurrently. Remind that this model does
not consider the case of several concurrent host-tasks.

evaluated request to sequentialise them.

In the Controllers model a kernel is declared using two primitives. The �rst is CTRL_KERNEL_PROTO,
that declares a prototype for all the implementations of a given kernel. See lines 1-5 in �gure 2.2. It de-
clares the number of implementations available and for which backend or devices are those implementations
designed. This is used by the Controller to locate, at run-time, the best available implementation of a
kernel for the chosen device. In the example, there is only one implementation declared. The GENERIC
keyword indicates that it is usable on any backend. Other keyword names are associated to the speci�c
types of backend or device. The rest of the prototype is the description of the kernel parameters, including
their input/output roles, types and names. INVAL indicates a value parameter. IN, OUT, or IO (in/out)
indicate the role of a HitTile received as reference.

Each kernel implementation is declared by using the primitive CTRL_KERNEL. See lines 7-17 in
�gure 2.2. The �rst parameters are the kernel name, and the type of implementation. After the declaration
of the kernel parameters, the code is included in a structured block. This particular example computes
a saxpy operation, fused with the application of the square root on each element of the result. The
implementation is a generic �ne-grain data-parallel speci�cation, that can be automatically coarsened
and adapted by the Controller to the proper task granularity of di�erent types of devices, such as GPU,
or sets of CPU cores.

1 CTRL_KERNEL_PROTO ( saxpy_sqrt , 1 , GENERIC ,

2 3,

3 IVAL , int , alpha ,

4 IN , HitTile_float , matrix_x ,

5 IO , HitTile_float , matrix_y ) ;

6

7 CTRL_KERNEL ( saxpy_sqrt , GENERIC ,

8 int alpha ,

9 KHitTile_float matrix_x ,

10 KHitTile_float matrix_y ,

11 {

12 const int row = threadId . x ;

13 const int col = threadId . y ;
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14 hit ( matrix_y , row , col ) = sqrt (

15 alpha * hit ( matrix_x , row , col ) +

16 hit ( matrix_y , row , col ) ) ;

17 } );

Listing 2.2: Example of a kernel prototype and its implementation, using the Controller library

1 int main(int argc , char *argv []) {

2

3 Ctrl_Thread threads;

4 Ctrl_ThreadInit(threads , SIZE , SIZE);

5

6 __ctrl_block__ (1)

7 {

8 PCtrl ctrl = Ctrl_Create(CTRL_TYPE_FPGA , CTRL_POLICY_ASYNC , DEVICE , &PLATFORM);

9

10 HitTile_float matrix_a = Ctrl_Alloc(ctrl , float , hitNewShapeSize(SIZE , SIZE) );

11 HitTile_float matrix_b = Ctrl_Alloc(ctrl , float , hitNewShapeSize(SIZE , SIZE) );

12 HitTile_float matrix_c = Ctrl_Alloc(ctrl , float , hitNewShapeSize(SIZE , SIZE) );

13

14 HitTile_float matrix_tmp = hitNewTile(float , hitNewShapeSize(SIZE , SIZE));

15

16 Ctrl_HostTask(ctrl , Init_Tiles , matrix_a , matrix_b , matrix_c);

17

18 Ctrl_Launch(ctrl , Mult , threads , matrix_c , matrix_a , matrix_b , SIZE , SIZE);

19

20

21 Ctrl_HostTask(ctrl , Init_Tiles , matrix_a , matrix_b , matrix_c);

22

23 // Matrix Mult: Main loop

24 // Clock: Synchronise and start measuring

25 Ctrl_MoveTo(ctrl , matrix_a , matrix_b , matrix_c);

26

27 for (int i = 0; i < N_ITER; i++) {

28 if ((i % 2) == 0) {

29 Ctrl_Launch(ctrl , Mult , threads , matrix_c , matrix_a , matrix_b , SIZE ,

SIZE);

30 Ctrl_MoveFrom(ctrl , matrix_c);

31 Ctrl_HostTask(ctrl , Host_Compute , i, p_sum , p_res , matrix_c , matrix_tmp

);

32 } else {

33 Ctrl_Launch(ctrl , Mult , threads , matrix_b , matrix_a , matrix_c , SIZE ,

SIZE);

34 Ctrl_MoveFrom(ctrl , matrix_b);

35 Ctrl_HostTask(ctrl , Host_Compute , i, p_sum , p_res , matrix_b , matrix_tmp

);

36 }

37 }

38

39 Ctrl_GlobalSync(ctrl);

40 // Clock: synchronise and stop measuring

41

42 Ctrl_Free(ctrl , matrix_a , matrix_b , matrix_c);

43 hit_tileFree(matrix_tmp);

44

45 Ctrl_Destroy(ctrl);

46 }

47

48 ...

49 }

Listing 2.3: Snippet of the main code of a Matrix Multiplication programmed using the Controller library
(asynchronous)
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2.2.3 OpenCL

OpenCL (Open Computing Language) [16] is an open royalty-free standard for general purpose parallel
programming across CPUs, GPUs and other processors, giving software developers portable and e�cient
access to the power of these heterogeneous processing platforms. As such, it does not provide an im-
plementation for the di�erent architectures, but they are developed by the vendors who decide to give
OpenCL support to their devices, as in the case of Intel with their Intel FPGA SDK for OpenCL.

Platform model

The platform model of OpenCL consists of a host that is connected to one or several accelerators (devices
in OpenCL terminology). Devices are formed by compute units and compute units, at the same time, by
processing elements. Once again, it is up to the vendors how to map this concepts to their architecture.
In the case of FPGAs compute units and processing elements tend to be considered the same, since a
compute unit is always mapped to a pipeline.

The role of the host in this model is that of submitting commands to the devices that will be used to
perform computations.

Figure 2.15: Depiction of the OpenCL platform model. Extracted from [26].

Execution model

OpenCL applications comprise two parts: host program and kernels. The host program is executed by
the host and contains the entry point of the application. It takes care of orchestrating all the devices and
performing tasks such as managing data transfers between host and devices, submitting commands to the
accelerators or processing the events they generate. On the other hand, the kernel is the function that is
executed on one or more accelerators and conveys the computational load of the program.

The core feature of kernel execution in OpenCL is the index space. A given instance of a kernel, named
work-item, is associated to a point in that index space with its own global ID, equivalent to the so named
thread in other models such as CUDA. Although every work-item executes the same code, frequently they
operate on di�erent data and can even follow di�erent execution pathways, leading to a concept known
in parallel programming as branch divergence.

Work-items are organised into work-groups, which are a more coarse-grained decomposition of the
index space and have their own ID. Work-items are assigned a unique local ID within the work-group as
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well. This makes possible to identify work-items either by their global ID or by a combination of their
work-group ID and their local ID.

According to the OpenCL speci�cation every work-item runs on a single processing element, whilst
every work-group is mapped to only a compute unit. Since FPGAs are not microprogrammed, PEs and
CUs are equivalent concepts when working with these devices, i.e, work-groups run, indeed, on a single
pipeline (compute unit), but their work-items will execute through all stages of the pipeline, instead of
sequentially executing all the instructions of the kernel code as they would on a CUDA core of a Nvidia
GPU (processing element).

Figure 2.16: Depiction of the OpenCL execution model. Extracted from [26]

The execution of kernels takes place on a given context, which gives access to the host to the following
resources:

• Devices: the collection of accelerators used by the host.

• Kernels: the OpenCL functions that run on OpenCL devices.

• Program objects: the program source and executable that implements the kernels.

• Memory objects: a set of memory objects visible to the host and the OpenCL devices.

Memory model

OpenCL de�nes four memory address spaces that can be accessed by the work-items:

• Global memory: accessible for every work-item in every work-group. It is usually the slowest type
of memory and tends to be o�-chip (o�-chip DRAM in FPGAs).

• Constant memory: this is a special region of global memory that remains constant during the
execution of the kernel, acting as a sort of caché.

• Local memory: shared among work-items in the same work-groups. It is usually implemented in
faster memory than global memory (on-chip SRAM in FPGAs).

• Private memory: accessible only by a given work-item. It is frequently the fastest type of memory
and is usually mapped to registers.
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Programming model

OpenCL supports the data parallel programming model and the task parallel programming model. The
�rst one distributes computation among a set of work-items organised as has been explained in the
execution model. This type of kernels are called ND-Range kernels. The second model relies on a single
work-item to perform the computations, which gives place to the so called Task kernels.

The programming model of OpenCL de�nes two domains of synchronisation: work-items in a single
work-group and commands enqueued to command queues in a single context. The �rst is performed
using a work-group barrier, whilst the second relies on command-queue barriers and events, the approach
leveraged in Controllers.

2.2.4 Other programming models

There are several projects that intend to develop heterogeneous programming models seeking the same
goals than Controllers, such as EngineCL [31], the University of Thessally's [33], OmpSs@FPGA [5] or
FPM [45].

EngineCL and the University of Thessally's model improve programmability in heterogeneous systems
by leveraging OpenCL under the hood for every supported architecture. This can lead to higher overheads
than using the vendor speci�c tools such as CUDA for Nvidia GPUs. On top of that, EngineCL depends
on C++ fancy features such as variadic templates, initialiser lists or rvalue references, thus denying to the
programmer the possibility of integrating the tool with applications coded in the C language. Besides,
the geometry for kernel execution must be manually speci�ed by the programmer with the University of
Thessally's model through the workers() and groups() classes.

OmpSs@FPGA and FPM do have vendor speci�c backends for every supported architecture, thus
avoiding the performance issues su�ered by the previous models. They rely on non-standard directives to
express parallelism and dependencies and a source-to-source compiler that translates them into runtime
system API calls, a common feature with the University of Thessally's model. Forcing the programmer
to include a source-to-source compiler in his software stack might cause trouble when the model is to be
included in an environment that implements another compiler speci�c syntax.

Controllers decreases programming e�ort while keeping the overhead resultant from the use of the
library to the minimum. To that end, it features vendor speci�c tools. It is designed to be compatible
with the C99 standard by avoiding the use of the aforementioned C++ features, which are replaced by
preprocessor macros, thus allowing the generation of portable code in both languages and keeping the
model compiler agnostic. Finally, the geometry for kernel execution can be automatically adjusted by
Controllers in run time thanks to the characterisation of the kernel.

2.3 Conclusions

The �rst part of this chapter introduced the FPGA architecture. It gave some insight into the complexity
of this type of accelerators and explained the inner mechanisms that allow recon�gurability. Some details
about memories featured by FPGAs and how to overcome their limitations were also given.

In the second part the related work was presented. A brief description of the previous work of Trasgo
research group relevant to this work, namely Controllers and Hitmap, was given to ease the comprehension
of the rest of the document. Finally, an analysis of several state of the art heterogeneous models was
made in order to establish a comparison with Controllers.
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Chapter 3

Description of the solution

This chapter introduces the following aspects:

• The con�gurable parameters in FPGAs that are to be supported by the Controllers model.

• An extension of the Controllers model that allows the execution of kernels in FPGAs with automatic
overlapping of communication and computation operations.

3.1 Approach to the solution

So far HPC has been based on the exploitation of microprogrammed architectures such as CPUs and
GPUs, which have something in common: they are �xed by the manufacturer. Recon�gurable computing
has broken this paradigm by allowing the programmer to design his own architecture. Although this has
the bene�t of adapting the hardware to the problem, resulting in an increase in performance in certain
applications and signi�cant savings in power [4] it comes at the cost of more di�cult programming.
Although this has been alleviated by HLS languages, mainly OpenCL, in the recent times, leading to
an increase in productivity, there are still plenty of tunable parameters. Since the success of a given
FPGA implementation relies on these parameters, a previous exploration must be conducted in order to
�nd how we can give support for them in our model. Take into account that all the work shown in this
document has been undertaken using an Intel FPGA, so this section will re�ect the possibilities o�ered by
the software stack of this manufacturer. Xilinx FPGAs are programmed in OpenCL as well, so no major
changes would have to done to integrate them apart from the syntax to con�gure these parameters.

This section shows the proposal of a new backend for the Controller library that gives support to
FPGAs. This solution reduces the programming e�ort, allows automatic management of dependencies
and seamless overlapping of data transfers and computations thanks to its asynchronous policy. It keeps
the changes to the user-facing interface to the minimum while adding support for the studied parameters
that are most relevant for performance.

3.2 Con�gurable parameters

There are two types of con�gurable parameters: compiler parameters and kernel parameters. Compiler
parameters must be �xed by the programmer prior to the kernel compilation. Otherwise, the default
value will be used. On the other hand, kernel parameters may not be con�gured by the programmer and
the compiler will adapt its value depending on the data access patterns.
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3.2.1 Compiler parameters

The Altera O�ine Compiler (AOC from now on) presents several parameters to the programmer that can
potentially increase performance.

• no-interleaving: by default, OpenCL allocates bu�ers interleaved in memory, as shown in �gure
3.1. This is generally the con�guration that guarantees more balanced memory accesses. However,
there might be situations in which it is known beforehand that the bu�ers allocated will be accessed
independently and there are enough memory banks to map every bu�er to a di�erent bank. This
strategy might increase the memory bandwidth, which will result in a performance increase. This
situation is shown in �gure 3.1.

Figure 3.1: Memory interleaving (left) vs no interleaving (right). Extracted from [24].

• const-cache-bytes: establishes the size of constant memory (implemented with on-chip memory
elements, eSRAM and M20K). It works as a ROM memory.

• fp-relaxed: allows the compiler to relax the order of arithmetic operations, possibly a�ecting the
precision. This option might increase the FPGA working frequency by simplifying the generated
hardware. As precision might be compromised, the current problem must be tolerant to some
arithmetic error.

3.2.2 Kernel parameters

This section introduces the most relevant kernel parameters speci�ed in the kernel source code. They
are provided as attributes by using the annotation __attribute__() and allow the con�guration of local
memory and the kernel pipeline.
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Local memory

Local memory is by far the most con�gurable element when programming the FPGA using OpenCL. It
can lead to outstanding performance improvements.

• numbanks(N): �xes the number of banks for a given local memory.

• bankwidth(N): changes the width of the bank in bytes (N).

• singlepump / double pump: this is a technique widely used in electronics for virtually doubling
available ports by doubling the operating frequency of the resource. By default, each local memory
replicate has two physical ports. The double pumping feature allows each local memory replicate to
support up to four physical ports. This is achieved by using the available ports both in the high and
low edge of the global clock. This is possible because the frequency of the memory block doubles
that of the global clock.

Figure 3.2 shows how double pumping is implemented. There it is clearly shown how the two
multiplexers serve the purpose of enabling the ports from high or low edge clock, as the selection bit
is connected to the global clock and the M20K block operates at 2× frequency of the global clock.

This is known in electronics as a resource sharing technique. As such, it reduces usage of local
memory at the expense of a higher logic utilisation. It might reduce kernel clock frequency as well,
so it should be used carefully.

Figure 3.2: Schema of double pumping. Extracted from [24].

• numreadports(N): number of read ports of the memory implementing the variable.

• numwriteports(N): number of write ports of the memory implementing the variable.

• merge('label', 'direction'): joins memories with the same label according to the direction spec-
i�ed by 'direction'. Suppose two arrays a and b with the same label. If the 'depth' direction is
passed to merge then a and b are mapped as shown in �gure 3.3 and accessed separately. If, on the
other hand, the direction is 'width', i-th elements of both arrays are accessed at the same time.

• bank_bits(b0, b1 . . . , bn): memory banks are generated according to the lowest array index. This
can be modi�ed with this attribute, choosing the addressing bits.
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a
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a b
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Figure 3.3: Depth-wise merge (left) and width-wise merge (right).

3.2.3 Pipeline con�guration

OpenCL kernels are implemented as pipelines in FPGAs. This implies that code is executed in a sequential
way, which seems to collide with the parallel programming paradigm leveraged to increase performance
with other architectures, such as GPUs. As FPGAs are recon�gurable hardware this is easily adapted to
explode parallelism. There are two ways to do this: pipeline replication and pipeline vectorisation.

Pipeline replication

A single kernel pipeline maps to the concept of compute unit in OpenCL. A compute unit is capable
of executing one workgroup at a given time. Once all the stages of the pipeline have been �lled every
cycle a work-item completes. A new workgroup cannot get into the pipeline until the �rst stage of the
pipeline becomes free, which could lead to suboptimal performance in ND-Range kernels (this is not the
recommended type of kernels for FPGA, however, since single-work-item kernels work better in general
according to Intel). This can be bypassed by replicating the compute unit, so more than one work-group
can be executing at the same time. There is no restriction on how many compute units can be instanced,
but the available area in the FPGA. Massive replication of compute units is not recommended, since
memory bandwidth could decrease because di�erent workgroups will be competing for the same global
memory resources. Figure 3.4 shows the performance of the unidimensional Jacobi, an unoptimised stencil
kernel similar to Hotspot (5.2) whose all memory accesses are to global memory. It is clear that increasing
the number of replicates causes memory contention, which eventually leads to poor performance.

Pipeline vectorisation

Vectorisation allows several workitems in the same workgroup to execute in parallel in the same pipeline.
Workitems will execute simultaneously in the same stage of the FPGA during their advance through the
pipeline. There is an imposed limitation in this case: the number of SIMD lanes must be a power of 2
not larger than 16. This kind of parallelism is by far more desirable than that achieved by the pipeline
replication, since there is an opportunity to achieve coalescent memory accesses, due to the workitems
belonging to the same workgroup. This is not the case with pipeline replication, as workitems executing
in di�erent pipelines are completely independent.

This technique is advantageous over pipeline replication as well in terms of chip area used, since control
logic is not replicated, as in the case of pipeline replication. It is clear that this technique outperforms
pipline replication by looking at �gure 3.5. In this case, SIMD-4 seems to be best vectorisation factor,
but this will greatly depend on the problem, as well as the work-group size.
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Figure 3.4: Performance of di�erent number of replicas of CUs for unidimensional Jacobi

3.3 Local memory geometry: Matrix Transpose

In this section the behaviour of AOC when generating the geometry of local memories is going to be studied
in order to determine whether manual intervention from the programmer is required in the general case
and, as a consequence, it would be worth it giving support to the kernel parameters that allow their
con�guration. One of the simpler kernels yet conceptually rich in terms of memory access patterns is
the matrix transpose. It will allow the discussion of the di�erences between GPUs and FPGAs and why
the programmer must think di�erently when he switches between architectures. For that purpose, a
CUDA implementation from the Nvidia SDK has been adapted to OpenCL [19], as shown in the code
snippet 3.1. This kernel performs the matrix tranpose operation e�ciently by leveraging local memory
and an optimisation technique known as tiling, which consists of splitting a big array into smaller blocks
to improve data locality. This way, it is possible to accelerate the operation by applying it over smaller
blocks of the matrix in parallel, which are �rst loaded horizontally in the local memory tile and then read
vertically and stored in the correspondent position in global memory. Since the tranpose operation occurs
in local memory, every access to global memory is coalescent, thus achieving maximum bandwidth.

1 #define TILE_DIM 4

2

3 __attribute__ (( reqd_work_group_size(TILE_DIM , TILE_DIM , 1)))

4 __attribute__ (( num_simd_work_items(TILE_DIM)))

5 __kernel void MatTranspose(__global float* restrict dest ,

6 __global float* restrict src)

7 {

8 __local float tile[TILE_DIM ][ TILE_DIM ];

9

10 int tx = get_local_id (0);

11 int ty = get_local_id (1);

12 int bx = get_group_id (0);

13 int by = get_group_id (1);

14 int x = bx * TILE_DIM + tx;

15 int y = by * TILE_DIM + ty;

16 int width = get_num_groups (0) * TILE_DIM;

17

18 for(int j = 0; j < TILE_DIM; j += TILE_DIM) {
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Figure 3.5: Performance of di�erent number of SIMD lanes for asynchronous (left) and synchronous(right)
execution of unidimensional Jacobi.

19 tile[ty + j][tx] = src[(y + j) * width + x];

20 }

21

22 barrier(CLK_LOCAL_MEM_FENCE);

23

24 x = by * TILE_DIM + tx;

25 y = bx * TILE_DIM + ty;

26

27 for(int j = 0; j < TILE_DIM; j += TILE_DIM) {

28 dest[(y + j) * width + x] = tile[tx][ty + j];

29 }

30 }

Listing 3.1: Matrix Transpose adapted from the CUDA implementation

Local memory (shared memory in the CUDA terminology) is organised either in 16 or 32 memory
banks, depending on the GPU architecture. As memory banks are independent, groups of 16 threads
(called warps) can access the local memory at the same time. Moreover, its SRAM technology allows
random access without penalty. However, the programmer must be aware of the destination bank of
every accessed memory position, since only one access is allowed at the same time. When there is more
than one simultaneous request for a memory bank a con�ict known as bank con�ict occurs. In the
matrix transpose example this happens because the local memory is written in a row major manner and
read in column major manner. Figure 3.6 shows a simpli�ed case with 5 memory banks. Note how
when the second column is to be accessed a 5 bank con�ict takes place. On the right, it is shown how
the data layout changes to a diagonal distribution that prevents the problem. This work-around is not
needed anymore when programming FPGAs, since the compiler takes care of the issue and synthesises
appropriate interconnections. The novel programmer must be aware that applying this solution may
result in a memory arbitration that would eventually cause poor performance.

The CUDA version of this code depends on vectorisation to achieve high performance. By default,
AOC will synthesise the kernel as a pipelined circuit. In order to be able to apply the original idea in
FPGAs it is necessary to apply pipeline vectorisation. It is possible to replicate the CUDA vectorisation
by applying a SIMD factor of 16. It might not give the best performance, nonetheless, since the memory
bus has a width of 64 bytes, which equals a coalescent request of 4 �oats, i.e. it is expected that the
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Figure 3.6: Local memory after being �lled in a row major manner (left) and the same scenario when
padding is applied (right)

maximum speedup is achieved at SIMD 4, whilst SIMD 16 might lead to some serious memory contention.

When applying SIMD in this kernel AOC gives the warning Compiler Warning: Vectorized kernel
contains loads/stores that cannot be vectorized. This might reduce performance. alerting about a possible
decrease in performance. This does not necessarily have to be the case. For further information, the
compiler report can be consulted. There, the geometry of the local memory synthesised for tile is described,
as can be seen in �gure 3.7. The compiler opted for a single bank of memory with two replicates, thus
allowing 4 read and 4 writes to take advantage of vectorisation. The 5 private copies of every replica
enables the execution of 5 work-groups simultaneously, so no stage of the pipeline remains idle. The
report also speci�es that the LSUs perform 128 bits wide accesses. This con�rms that SIMD has been
successfully applied by the compiler, since �oats are 32 bits wide.

Figure 3.7: Local memory synthesised for tile.
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3.4 Integration of FPGA as accelerator in Controllers

FPGAs can be programmed in the OpenCL programming model. This a standard for heterogeneous
computing that allows the programmer to leverage the capabilities of di�erent types of accelerators:
CPUs, GPUs and FPGAs. The Trasgo research group had previously integrated GPUs, both Nvidia's
and AMD's, in their model. There is a speci�c backend for Nvidia cards that was implemented in CUDA
and a generic one implemented in OpenCL. The last one was used as a base to develop the backend for
FPGAs. Thanks to the transparency for di�erent architectures of OpenCL, integrating the FPGA for
the execution of kernels was straightforward. Most of the work was dedicated towards exploiting speci�c
characteristics of FPGAs that were not considered in the GPU backend. They are listed as follows:

3.4.1 Single work item kernels

Due to the inherent parallel nature of GPUs, kernels were executed in ND-Range fashion (refer to 2.2.3
for more information). Although this kernel launch model is supported by FPGAs, the single work item
model adapts better to the pipeline architecture in the general case (there are some exceptions, such as the
Matrix Power algorithm studied at 5). For this reason the Controller library is extended to support both
models when targetting FPGAs that can be selected thanks to a parameter in the kernel characterisation,
namely NDRANGE and TASK. Since there is no restriction on the execution model for a given problem
(provided that the kernel code does not include explicit constraints) it is up to the programmer to choose
the most adequate to achieve maximum performance.

3.4.2 Format of kernel name

It is now clear there are plenty of con�gurable parameters in FPGA kernels. Some of them have to
be statically speci�ed in the kernel code, as in the case of the pipeline con�guration. The number of
SIMD lines additionally requires to �x the workgroup dimensions. This is why the FPGA kernel binaries
nomenclature had to be carefully chosen:

kname{_SIMD-N-XxYxZ}{_CU-M}{_pro�ling/emu}_version.aocx

Optional parts appear inside brackets in the kernel name de�nition. Parts in bold letter are mandatory,
whilst the rest of the de�nition are variables:

• kname: name of the kernel as it will be called in the host code.

• N: number of SIMD lanes.

• X, Y, Z: dimensions X, Y and Z, respectively of workgroups.

• M: number of CU replicates.

• version: either Ctrl or Ref, standing for Controllers and native.

This simple solution allows the execution of instances of the same kernel with di�erent compile-time
parameterisations and prevents valuable information from being lost after the compilation process that
can be useful for the programmer to use the kernel binary in other contexts di�erent from that of the
Controller library.
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3.4.3 Expansion of kernel signature

The pipeline con�guration is a decision with great impact on performance. For that reason, the kernel
signature for FPGAs has been extended with a new parameter called PIPELINE. The purpose of this new
parameter is to allow the programmer to set the number of SIMD lines and/or compute units and choose
between the ND-Range or Task model of execution. This new directive must always appear in kernel
signatures for FPGAs. It supports multiple parameters in order to enable sophisticated con�gurations of
the pipeline. Caution is needed here, as some parameters clash between them because of their opposite
semantics (as would happen in a raw native implementation). The possible parameters that PIPELINE
can receive are:

• TASK: the kernel will be executed as a SWI (Single Work Item) kernel.

• NDRANGE: the kernel will be executed as an ND-Range kernel.

• SIMD( M, wgx, wgy, wgz): the characterised kernel will execute in a pipeline with M lanes and
workgroup dimensions (wgx, wgy, wgz).

• CU( N ): the kernel will execute in a pipeline replicated N times.

As the reader might have guessed TASK and NDRANGE cannot be used together in the same
signature.

The o�ine compilation of kernels required by FPGAs imposes new restrictions on the manipulation
of strings for the generation of the kernel code that is to be compiled, since many of those were performed
at runtime with the OpenCL backend. To keep the changes of the CTRL_KERNEL primitive to the
minimum the roles of the kernel arguments are added nested in the PARAMS macro and the kernel body
is no longer a parameter but a block of code following the signature in a C function fashion.

1 CTRL_KERNEL(Mult , FPGA , PIPELINE( NDRANGE ,

2 SIMD( 4, 64, 64, 1) ),

3 PARAMS( OUT , IN , IN, INVAL , INVAL ),

4 KHitTile_float C, KHitTile_float A,

5 KHitTile_float B,

6 int A_width , int B_width)

Listing 3.2: Example of the new kernel signature

3.4.4 Kernel declaration

Controllers was initially thought as a uni�ed host plus device programming model, leveraging the online
compilation capability supported by the integrated architectures. However, FPGAs are an exception to
this rule, since they can only operate with o�ine compilation. Kernels must be compiled separately from
host code and the resulting kernel binaries must be provided to the host application. For this reason the
code must be split into host and kernel �les. In order to work around this limitation and preserve the
transparency property of Controllers some e�ort was dedicated to hide it from the programmer.

Some code was moved to a header �le included by both the host and the kernel �le to minimise the
changes to be made by the programmer to adapt his Controller code to work with FPGAs. These common
parts were the de�nition of types used by Hitmap tiles, Ctrl_NewType, and any type alias made to allow
the use of quali�ed types, such as unsigned char, in specialised HitTiles. In addition, the kernel execution
mode (either ND-Range or Task) was added to the kernel characterisation as a parameter, which should
match the one speci�ed in CTRL_KERNEL.
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Ctrl_NewType conveys di�erent information depending on which �le includes it. Hence, it is necessary
for the preprocessor to distinguish between host code and kernel code in order to perform the appropriate
macro expansions in every case. The less invasive way of achieving this result is the annotation of the
kernel �le with the empty macro CTRL_FPGA_KERNEL_FILE.

3.4.5 Managing incongruent grid sizes

Sometimes, computation is issued for a grid size that is not multiple of any of the block dimensions. As
a result, the last block in that given dimension will have some of its work-items idle, since otherwise
unallocated memory positions would be accessed. The OpenCL backend deals with this issue by checking
that the index of the current work-item is between the grid borders speci�ed in the structure Ctrl_Thread
by the user with the function Ctrl_ThreadInit. This leads to a branch divergence i.e. work-items that
meet the condition will perform the computation, whilst those that do not will return. Although this
solution works for GPUs, FPGAs cannot cope with branch divergence in SIMD pipelines, since it is not
synthesisable.

An alternative approach, which might lead to minor performance improvements, and can be extended
to every architecture supported by Controllers with minor e�ort is the use of padding. As has been already
mentioned, the problems with vectorisation come from checking the work-item indices belong to the index
space, which prevents going out of bounds when accessing memory. The adopted solution comes through
deleting the need for testing such condition. This is achieved by allocating enough memory for a big block
size. The chosen size is 256 in every working dimension, since these are the default dimensions assumed
by AOC for a SIMD kernel with a synchronisation point when they are not speci�ed by the user.

The user will not perceive any alteration in the memory he requested, since the HitShape created will
be preserved. To this end, the new memory size the backend will work with will be stored at the tile
members acumCard and origAcumCard[0]. This way, some trash computations will be performed, as they
will be out of bounds according to the dimensions chosen by the user, and they will not be visible because
they exceed the boundaries speci�ed in the requested shape initially.

3.4.6 Replacing pinned memory by aligned memory

In order for DMA transfers to take place in the CUDA programming model memory has to be pinned [18].
The term pinned memory refers to memory pages in the host address space that will not be moved to swap
storage during the execution of the program. This way it is guaranteed that the page will be available
when the DMA controller initiates a transference between host and device. In case the programmer does
not explicitly allocate memory as pinned, the runtime will create a temporary pinned copy of the page to
be transferred, a�ecting performance. On the other hand, memory is a scarce resource and pinning abuse
may also lead to performance decrease. There is no way to guarantee the allocation of pinned memory in
OpenCL, however, as the Nvidia OpenCL Best Practices Guide states it is possible to give a hint to the
runtime to act this way. The process for host to device transfers, depicted in �gure 3.9, is as follows (the
opposite device to host is analogous):

• Create data bu�er for transfers.

• Create auxiliary bu�er to indicate OpenCL the corresponding mapped host memory will not be
swapped out.

• Map auxiliary bu�er to host memory.
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Pipeline

Device

Workgroup

Ctrl_MoveToPadded data

HostHitmap

Figure 3.8: The �gure shows a case in which the user allocates a 6×4 matrix. For the sake of simplicity and
to keep the �gure clear, the Task model of execution is supposed, hence, a single work-group is launched,
and the default work-group size for padding has been reduced from 256x256 to 16x16. Although the
user requests a 6×4 matrix, it is padded until the data �ts into 16x16 work-groups. In this case a high
percentage of the allocated memory is just due to padding because the matrix is extremely small. This
will not happen in real applications. The device computes the kernel with the padded data, but the
programmer only sees the data he requested, keeping this process transparent

data

pinned_data

device_data

DeviceHost

Figure 3.9: Pinned memory in OpenCL (Nvidia's implementation). The dashed arrow indicates mapped
memory, whilst the continuous one stands for the direction of the memory transfer

This construct has no interest when programming for FPGAs, however, as it is not mentioned in
any of the Intel guides nor in the scienti�c literature and none of the author tests point in the opposite
direction. Rather, it just contributes to the occupancy of the global memory of the device.

Intel FPGAs, on the other hand, bene�t from aligned memory to to achieve higher transfer rates
thanks to DMA. The memory bus of these device is 64 bytes wide, i.e, data is transferred in that size
bursts. Thus, memory bu�ers are aligned to 64 bytes in this solution to take advantage of this feature.
More information on memory alignment in chapter 2.
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3.5 Conclusions

This chapter was a summary of the con�gurable parameters of Intel FPGA SDK for OpenCL and showed
a brief study that justi�es the inclusion of support for vectorisation and compute unit replication in
Controllers. Finally, the speci�cation of the new backend was detailed.
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Chapter 4

Implementation

This chapter introduces the following aspects:

• Description of the approaches to the �nal implementation of the FPGA backend of the Controllers
model.

• Removal of initialisation operations from runtime code sections.

• Enabling pro�ling and emulation of kernels.

4.1 Naïve approach to the solution

The �rst milestone of the problem solved in this work was getting the Controllers model to execute FPGA
kernels. Since FPGAs can be programmed in OpenCL, this was achieved by modifying the existing
OpenCL backend for GPU. As a consequence, this was quite straightforward, although this solution just
gave partial support to the Controllers instrumentation i.e. management of queues with asynchronous and
synchronous policies and data transfers, but did not leverage the Hitmap library nor eased the seamless
de�nition of kernels.

4.1.1 Changes made to the GPU backend

In this section the changes applied to the OpenCL backend in order to serve as a draft for this work are
detailed. To start with, the OpenCL backend for GPUs was copied and every function, macro or variable
referring to the previous backend nomenclature was renamed to prevent collisions between both backends
when they are running at the same time to support GPUs and FPGAs.

O�ine compilation

Before this work, Controllers dealt with kernels as strings in order to perform online compilation. FP-
GAs do not support this compilation mode and need to load a kernel binary compiled previously with
a speci�c compiler (AOC - Altera O�ine Compiler in the case of Intel FPGAs) in a process known as
o�ine compilation. In order for the new FPGA backend to support this feature it was only necessary
to read the precompiled kernel binary, whose path was hardcoded, and feed it to the function clCre-
ateProgramWithBinary instead of clCreateProgramWithSource, which takes a kernel string as
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argument. The online compilation takes place when the function clCreateKernel is called. In the case
of o�ine compilation it is turned into a dummy function that still has to be called to adjust to the OpenCL
standard and only serves the purpose of returning an OpenCL kernel object built from the binary.

Constraints on passing structures

Controllers wraps data into a simpli�cation of Hitmap tiles known as KHitTiles in order to allow data
partitioning. This cannot be done straightforwardly, since the OpenCL standard states that structs with
pointer members cannot be passed as kernel arguments (section 6.8.d) [16]. The OpenCL backend for
GPU works around this by unfolding the tile arguments into coordinates and the pointer to data. The
tile coordinates are saved into a KHitTile wrapper and the data is passed by reference. The Intel FPGA
SDK for OpenCL has an extra limitation in old versions of the compiler on passing data structures: they
cannot be passed by value. Instead, struct arguments must be converted into pointers to struct [22].
As host pointers are meaningless for the device, pointers to struct must be passed through an OpenCL
bu�er. All this manipulation was suspected to incur in some serious overhead and seemed too much e�ort
for a naïve approximation of the solution which only looked for a functional implementation. Instead,
the KHitTile struct was fully unfolded and every member was passed individually as a parameter. This
implied kernels had to be adapted to receive all these dummy (recall they are intended to leverage the
Hitmap library, which will not be used yet) arguments. Since this limitation is resolved in new versions
of the compiler, there is no point in including support for this in the backend, so it was overlooked in the
development of the de�nitive solution.

ND-Range kernels and Tasks support

The only di�erence in host code between launching an ND-Range kernel or a Task is calling the function
clEnqueueNDRangeKernel or clEnqueueTask, respectively. Additionally, clEnqueueNDRange
needs the grid and workgroup dimensions. Both functions calls were typed in the FPGA backend and
every time a kernel of one kind was to be launched the call of the opposite kind was commented out.

4.1.2 Changes made to the experimentation code

The advantage of using Controllers over other heterogeneous programming models is highlighted by the
minimal changes that have to be made in the experimentation host codes to launch kernels on FPGA. In
fact, only the used device had to be changed to FPGA.

Some other changes had to be performed, but they are totally unrelated to the Controllers model,
and are only due to the kernels being di�erent from the GPU version. Although the GPU kernels can be
executed on FPGA it is not recommended, since it is an entirely di�erent architecture and the performance
achieved will be poor in most cases. For this reason, sometimes the arguments passed to the FPGA
kernels vary in number or type with respect their GPU counterparts, which has to be re�ected in the
kernel prototype.

In the case of the native version of experimentation host codes the o�ine compilation and ND-Range
kernels and Tasks support explained in the previous point had to be added.
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4.2 Approaches considered before de�nitive solution

It is clear that some of the decisions took in the naïve approximation can be considered bad practice and
are not acceptable in a �nal product. It serves its exploratory purpose as a prototype well, nonetheless.
During the development of this work several approaches were tried in order to satisfy the goal of integrating
FPGAs in Controllers in an iterative manner. In this section every approach and the reasons why it was
not the most appropriate alongside some thoughts on the knowledge gained from each of them, which
in�uenced the following approach, are presented in this section.

4.2.1 First steps towards generalisation

The naïve approach requires programmer intervention in the FPGA backend to change the kernel used
and specify its launching mode (ND-Range or Task). This is unacceptable and should be moved to the
Controllers frontend.

Choosing the desired kernel to launch

Both the pipeline con�guration and the device for execution (actual hardware or FPGA emulator), along-
side pro�ling mode or normal mode are decisions that have to be made prior to the kernel compilation. For
this reason, these are static features of the kernel binary and a di�erent con�guration of these parameters
requires a new compilation. Given that kernel compilation is an expensive process that can take up to
several hours it is advisory to save these binaries. There is no simple way of retrieving all this parameters
from the compiled binary apart from consulting the HTML report generated during compilation, which is
not easy to automate. A plausible solution which helps getting all the binaries organised is naming them
according to the nomenclature explained in 3.4.2. It has also the advantage of allowing the mapping of
the kernel characterisation detailed in 3.4.3 to the appropriate kernel binary by the manipulation of the
string of the kernel path.

Specifying the kernel launching mode

Launching a kernel as ND-Range or as a Task not only implies how many workitems will execute it but
prior work of adaptation of the whole kernel has had to be made in order to adapt to one of them.
Although every kernel can be launched in both modes (unless an explicit restriction is expressed in the
kernel �le) this adaptation work is necessary to achieve high performance. Therefore, it seems reasonable
to consider this decision part of the characterisation of the kernel, speci�cally of the con�guration of the
pipeline. The concrete parameters were explained in 3.4.3.

The annotation __attribute__((max_global_work_dim(0))) in the kernel �le restricts its
execution to Task mode and encourages AOC to try to optimise the pipeline in this direction. This has
been exploited in Controllers by the creation of a series of new macros which will ultimately expand to
the attribute conditioned to the de�nition of CTRL_FPGA_KERNEL_FILE. The mechanism used to
achieve this has been the concatenation of the parameter passed to KERNEL_PIPELINE with the token
EXTRACT with the operator ##. This way, when the concatenation result is
CTRL_EXTRACT_KERNEL_TASK, a macro de�ned in the backend, the preprocessor will expand it
to the given de�nition, which in this case is the said attribute. This mechanism has been used for the
rest of the arguments.
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4.2.2 First approach: Uni�ed host+device programs

As has been discussed in the previous chapter the use of OpenCL on FPGAs requires host code and
kernel code to be split in two di�erent �les, so that o�ine compilation is possible. This clashes with
the transparency property of Controllers, i.e., the programmer faces the same programming interface
regardless of the device he intends to use. The way to achieve this is by shifting the task of splitting the
Controllers code from the programmer to another preprocessing step.

Lex

The tool chosen to achieve this result was Lex (speci�cally the GNU �avour Flex). Lex is a tool for
generating scanners, also known as lexers: programs which recognise lexical patterns in text. It is based
on the recognition of patterns by leveraging regular expressions. Unlike sed, Lex is designed to work over
whole �les. Moreover, it allows intermingling C code, which makes Lex a more versatile tool.

Structure of a kernel �le

The code snippet 4.1 shows how a kernel �le prepared for o�ine compilation should look. It is worth
noticing every construct shown here is also necessary for the compilation of the host code. For this reason,
the annotation CTRL_FPGA_KERNEL_FILE is necessary to allow the preprocessor to distinguish
between the backend implementation targeted to the host and to the device.

1 #define CTRL_FPGA_KERNEL_FILE

2 #include "Ctrl.h"

3

4 Ctrl_NewType( float );

5

6 CTRL_KERNEL_CHAR(Mult , MANUAL , LOCAL_SIZE_0 , LOCAL_SIZE_1 , KERNEL_PIPELINE(KERNEL_SIMD(

4, 64, 64, 1)));

7

8 CTRL_KERNEL_PROTO( Mult ,

9 1, FPGA , 5,

10 OUT , HitTile_float , C,

11 IN , HitTile_float , A,

12 IN , HitTile_float , B,

13 INVAL , int , A_width ,

14 INVAL , int , B_width

15 );

16

17 CTRL_KERNEL(Mult , FPGA , KHitTile_float C, KHitTile_float A, KHitTile_float B, int

A_width , int B_width ,

18 (

19 ...

20 ));

Listing 4.1: Structure of a kernel �le after preprocessing step

Extraction of kernel constructs from uni�ed code

The Lex program created for the extraction of kernel constructs from uni�ed code is shown in code
snippet 4.2. Speci�cally, it extracts CTRL_KERNEL, Ctrl_NewType, CTRL_KERNEL_CHAR and
CTRL_KERNEL_PROTO. Since the input �le is scanned sequentially three bu�ers have to be de�ned
to allow the recognition of the constructs in no particular order, i.e, assuming they are indenpendent of
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each other. Some regular expresions, such as those referring to macro arguments or the kernel proto-
type, have been given an alias based on semantics to improve readability. Scanning the kernel body in
CTRL_KERNEL and the primitive CTRL_KERNEL_CHAR was done by declaring two start conditions
that drive the automaton to the states that deal with the problem of matching parentheses. The rest of
the code is self explanatory.

1 %{

2 #include <stdio.h>

3 #include <stdlib.h>

4 #include <string.h>

5

6 #define CTRL_KERNEL_BUF 100000

7 #define CTRL_KERNEL_PROTO_BUF 1000

8

9 int unmatched_parens = 0;

10 char ctrl_kernel_buf[CTRL_KERNEL_BUF ];

11 char ctrl_kernel_proto_buf[CTRL_KERNEL_PROTO_BUF ];

12 char ctrl_kernel_char_buf[CTRL_KERNEL_PROTO_BUF ];

13 %}

14

15 %option noyywrap

16

17 spaces [\t\n ]

18 sep ;

19 arg [ A-Za-z0 -9_*-]+{ spaces }*

20 new_t Ctrl_NewType{spaces }*"("([^\) ]|{ spaces }])*")"{spaces }*{sep}*{ spaces }*

21 k_char_1 CTRL_KERNEL_CHAR{spaces }*"("({arg},{spaces }*)+KERNEL_PIPELINE"("

22 k_proto CTRL_KERNEL_PROTO{spaces }*"("(({ arg}|,){spaces }*)+")"{spaces }*{ sep}*{ spaces }*

23 ctrl_k_signature CTRL_KERNEL{spaces }*"("{spaces }*({ arg},)+[\t\n ]"("

24

25

26 /* extracts argument inside parenthesis */

27 %x kernel_body k_char_args

28 %%

29 {new_t} {

30 strcat(ctrl_kernel_char_buf , yytext);

31 }

32 {k_char_1} {

33 strcat(ctrl_kernel_char_buf , yytext);

34 unmatched_parens = 1;

35 BEGIN k_char_args;

36 }

37 {k_proto} {

38 strcat(ctrl_kernel_proto_buf , yytext);

39 }

40 {ctrl_k_signature} {

41 strcat(ctrl_kernel_buf , yytext);

42 unmatched_parens = 1;

43 BEGIN kernel_body;

44 }

45

46

47 .|\n ;

48

49 <kernel_body >{ spaces }*[^\(^\) ]+"(" {

50 unmatched_parens ++;

51 strcat(ctrl_kernel_buf , yytext);

52 }

53 <kernel_body >[^\(^\) ]*")"{spaces }*{sep}*{ spaces }* {

54 strcat(ctrl_kernel_buf , yytext);

55

56 if (! unmatched_parens)

57 BEGIN INITIAL;
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58

59 unmatched_parens --;

60 }

61 <kernel_body >(.|\n) ;

62

63 <k_char_args >{ spaces }*[^\(^\) ]+"(" {

64 unmatched_parens ++;

65 strcat(ctrl_kernel_char_buf , yytext);

66 }

67 <k_char_args >[^\(^\) ]*")"{spaces }*{sep}*{ spaces }* {

68 strcat(ctrl_kernel_char_buf , yytext);

69

70 if (! unmatched_parens)

71 BEGIN INITIAL;

72

73 unmatched_parens --;

74 }

75 <k_char_args >(.|\n) ;

76

77

78 <<EOF >> { return 0 ; }

79

80 %%

81 int main() {

82 yylex();

83

84 printf("#define CTRL_FPGA_KERNEL_FILE\n");

85 printf("#include \"Ctrl.h\"\n\n");

86 printf("%s\n", ctrl_kernel_char_buf);

87 printf("%s\n", ctrl_kernel_proto_buf);

88 printf("%s\n", ctrl_kernel_buf);

89 }

Listing 4.2: Lex program for the extraction of kernel constructs from uni�ed code

Reasons for rejection

This approach contributes to a uniform view of the Controller model by avoiding the separation of host
and kernel code, thus keeping transparency. Otherwise the programmer has to take into account that
FPGAs are a special case and split the program, indicating which �le contains the kernel code with the
CTRL_FPGA_KERNEL_FILE annotation. However, this solution relies on Lex, and this implies that
Controllers will now have a dependency on an external tool. As stated in 2.2.4 one of the main advantages
over other models is it is compiler agnostic, and Lex could be considered a source-to-source compiler in
this case which would remove this key feature from Controllers.

4.2.3 Second approach: First steps towards compiler agnostic compilation

Although the single �le property is a desirable feature, it comes at the cost of the dependency on the
external tools sed and Lex. This would impose that the programmer using Controllers had these pro-
grams installed on his machine and the model would stop being compiler agnostic, which is one of its
key advantages over other models. Neither the single �le property nor relieving the programmer from
writing the annotation CTRL_FPGA_KERNEL_FILE outbalance the bene�ts of keeping Controllers
independent of the compiler used, so the de�nitive solution will rely on the preprocessor to achieve this
goal.

Kernel arrays are wrapped into KHitTile structures, which track the shape coordinates and keep a
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pointer to its data. This pointer has to be meaningful for the device i.e. it cannot point to the host
memory space, so the data must be copied to memory accessible by the device. This is easily achieved
in CUDA by declaring the data pointer as void * and making it point to a device bu�er. The entire
KHitTile structure will be passed by value to the kernel device function. This is not possible due to the
restriction that forbids passing structures with pointer members by value. The only possible workaround
for this, that was previously implemented in the OpenCL backend, is the extraction of the data pointer
from the KHitTile structure. In order to keep the body of kernels the same for the user regardless of the
architecture, the structure KHitTile_wrapper is created, which holds the coordinates in the corresponding
KHitTile. The signature of the kernel changes and now a KHitTile_wrapper and the data pointer are
passed instead of the whole KHitTile. The latter will be assembled inside the kernel and named as the
original parameter speci�ed by the user, avoiding this way any modi�cation in the code that accesses
global memory.

The approach taken in the OpenCL backend has the major pitfall of depending heavily on compile-
time string manipulation, which hinders its reuse in the FPGA backend. Speci�cally, the data pointer
type is extracted from the HitTile_<type> passed to the kernel prototype macro. This is possible by
leveraging a generic macro that expands to a variable (raw_ktile_KHitTile_##type) that holds the
<type> in HitTile_<type> as a string which can be concatenated to the rest of the kernel argument
later, as shown in the code snippet 4.3. Instead, the data pointer might be void * typed. These kind of
pointers must be casted before being dereferenced. The assembly of the KHitTile_<type> would perform
an implicit cast of the data pointer to <type> and the problem would be solved. This requires pasting
the KHitTile_<type> assembler code to the kernel code using the concatenation operator #. This would
work for unoptimised codes that do not make use of the #pragma directive, as embedding it in a macro
is not supported by the Altera O�ine Compiler. As a side note, the option of preprocessing the kernel
�le with CPP and feeding the result to AOC was also considered as a workaround for this limitation and
it was found out that although it supports embedding pragmas in macros, it moves the directive to the
beginning of the expanded code. This is an undocumented behaviour that can be amended by replacing
#pragma by __Pragma("GCC *") in C programs [2]. However, this substitute will not be recognised by
AOC, so CTRL_KERNEL must be modi�ed so the kernel is not passed as a macro parameter anymore.
Instead, the original CTRL_KERNEL from the �rst Controller versions is retrieved, i.e, the argument is
removed and a code block (delimited by brackets { and }) containing the kernel is attached to the macro,
resembling a function de�nition.

1 #define hit_ktileNewType( type ) \

2 typedef struct { \

3 type * data; \

4 int origAcumCard [4]; \

5 int card [3]; \

6 } KHitTile_ ##type;\

7 char *raw_ktile_KHitTile_ ##type = CTRL_KERNEL_STRINGIFY( type ); \

8 ...

9 bool raw_added_ktile_KHitTile_ ##type = false;

Listing 4.3: Retrieving KTile type in OpenCL. This macro is called from Ctrl_NewType

A clear disadvantage of having the kernel code surrounded by brackets is that there is no way for the
preprocessor to paste code next to it, so theKHitTile_<type> structures cannot be assembled in the device
during the kernel execution. Given that the Hitmap macro hit used in the Controllers kernels to access
the data relies on these structures, they must be assembled anywhere else. Recall that KHitTile_<type>
structures cannot be passed by value, but there is no restriction on passing a pointer to them. Therefore,
the strategy followed is the creation of a new kernel that receives the KHitTile_wrapper and the data and
saves the assembled KHitTile_<type> structure in global memory. Finally, the pointer to its memory
position is passed to the kernel. Despite looking like a manipulation close to a naïve function refactoring,
it requires several modi�cations to Controllers.
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Kernel initialisation

The new ktile assembler kernel is injected in the macro Ctrl_NewType, given that it must be generic
and dependent on the ktile type. We will call this kernel pre-kernel from now on. It is clear that the
pre-kernel must be called before the kernel in order to have the ktiles prepared for its use. Thus, every
initialisation step prior to OpenCL kernels launch must have been completed before the kernel is to be
enqueued. At the moment, this is achieved the �rst time the kernel is called with the macro Ctrl_Launch.
Not only does this prevent launching kernels in earlier stages of the Controllers program, but also is quite
ine�cient. Notice that this involves the creation of every kernel object that will be used by the program.
In the case of FPGAs this is even worse, as kernels are stored in binaries that have to be retrieved from
disk, severely a�ecting the time measurements in experimentation (unless they are actually read from a
ramdisk, but such speci�c infrastructure should not be expected from the user).

1 __kernel void CTRL_KERNEL_POPULATE_KHITTILE_ ##type(KHitTile_fpga_wrapper ktile_wrapper ,

__global void* restrict data , \

2 __global KHitTile_ ##type* restrict ktile) { \

3 ktile ->origAcumCard [0] = ktile_wrapper.origAcumCard [0]; \

4 ktile ->origAcumCard [1] = ktile_wrapper.origAcumCard [1]; \

5 ktile ->origAcumCard [2] = ktile_wrapper.origAcumCard [2]; \

6 ktile ->origAcumCard [3] = ktile_wrapper.origAcumCard [3]; \

7 ktile ->card [0] = ktile_wrapper.card [0]; \

8 ktile ->card [1] = ktile_wrapper.card [1]; \

9 ktile ->card [2] = ktile_wrapper.card [2]; \

10 ktile ->data = data; \

11 }

Listing 4.4: New ktile assembler kernel

All in all, this initialisation step must be moved before the �rst kernel needs it to have completed. As
the pre-kernel will be launched for every tile created by the user when he summons the macro Ctrl_Alloc
and both the name of the kernel and the chosen architecture are needed (recall, for example, that the
kernel pointer is of the form p_kernel_<type>_<name>) it seems reasonable to have it in the macro
CTRL_KERNEL_PROTO. Two subtleties must be considered here: the code expanded from this macro
will be placed before the main function, i.e, no code can be executed except from de�nitions and declara-
tions and some information is needed to build the kernel that is not available until the Controller is created
(speci�cally, platform and device). The �rst problem is solved by wrapping the initialisation code in a
constructor function 1. The second requires a more sophisticated solution. First a new structure must be
created and declared as global. It will work as a linked list and every element will contain the information
needed for the initialisation, as shown in the code snippet 4.5. For every new kernel prototype a new
element is added to the linked list and each pointer member is made to point to the memory pointed by
the OpenCL objects created in the initialisation needed for the kernel creation. Notice how the memory
pointed by p_kernel_<type>_<name> * would not be accessible from anywhere else than the kernel
prototype scope as the parameters <type> and <name> are no longer available. This way, the creation of
the kernel can now take place when the Controller is created and the chosen device and platform objects
are available. This modi�cations are depicted in �gure 4.1. Of course, the initialisation code must be
split between the kernel prototype and the Controller creation function (Ctrl_FPGA_Create). The keen
reader might have noticed that this pattern has already been used to pass the initialised ktiles to the
kernel from the pre-kernel.

1 struct prekernel_params {

2 cl_kernel *prekernel;

1The typical C program has main as its entry point and every function has to be called from it, meaning that no code can
be executed before main is called or after it has returned. Sometimes it desirable to execute some initialisation code so that
certain resources are available when the program starts running. For this situations, constructors or initialisation routines

can be leveraged. When a function is annotated as constructor the compiler stores it in an array in a special section, so that
they can be called in order before main starts.
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3 const char *prekernel_name;

4

5 struct prekernel_params *next;

6 } prekernel_params;

7

8 struct kernel_params {

9 cl_kernel *kernel;

10 cl_program *program;

11 const char *kernel_name;

12 unsigned char *binary_str;

13 size_t binary_length;

14

15 struct kernel_params *next;

16 } kernel_params;

17

18 struct tile_params {

19 size_t ktile_size;

20 cl_kernel *p_prekernel;

21 };

Listing 4.5: New linked list of initialisation parameters

clEnqueueNDRange(p_kernel_##type##_##name, ... );

CTRL_KERNEL_WRAP_FPGA( name, ..., type, ... )

next next next

kernel_params

allocated memory
binary_file = fopen(kernel_path, "rb");

p_kernel_##type##_##name

static void Ctrl_InitKernel_##type##_##name
__attribute__((constructor))

kernel

fread(binary_str, binary_length, 1, binary_file);

strcat(kernel_path, name);

binary_str

malloc

program

Ctrl_FPGA_Create( ..., device, platform)

while(curr_k_par->next != NULL)
curr_k_par->program = clCreateProgramWithBinary(context, ..., binary_str, ...);
curr_k_par->kernel = clCreateKernel(*curr_k_par->program, ...); 

CTRL_KERNEL_PROTO(name, ...)

int main() {

PCtrl ctrl = Ctrl_Create(CTRL_TYPE_FPGA, ..., device, platform);

Ctrl_Launch(ctrl, name, ...);

host_program.c

...

...

...

...

...

}

Figure 4.1: Design modi�cation that moves initialisation operations before the execution measure region.
The rounded blocks represent either functions (lowercase) or macros (uppercase) with a simpli�cation of
the concerned code. Dependencies are shown in colours. The execution of every function/macro happens
from top to bottom. Dashed arrows from the host program represent the preprocessor expansions, whilst
the solid ones show the execution of code thanks to the evaluation of a task in the Controller queue.

Tile allocation

The assembly of the ktiles needs to be performed when the tiles are allocated, as that is the moment when
the HitTile structures are built. Recall that in order to allocate the bu�er that will store the ktile it is
necessary to have its size at hand. This will depend on its <type> and this information is not available in
the task evaluation functions that create the tiles. This functions must be kept unaltered, since they are
part of the runtime, hence independent of the backends, so the size must be passed other way. The pre-
kernel function needed for every given tile also depends on the the same parameter, so the pointer to the
corresponding kernel object must also be passed. A brief explanation on how tiles are managed might be
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valuable to understand the adopted solution. As has already been mentioned, tiles are represented by the
HitTile structure, which keeps track of coordinates and other useful information to ease complex memory
access patterns. In order to manage both host and device copies of the tile and perform data movements
according to di�erent policies there is a need for more information. HitTile was designed to support an
extension via its member void *ext. In Controllers it is leveraged by attaching a tile specialisation that
contains all the extra information detailed. The object oriented approach taken in the development of
Controllers allows to adapt this tile specialisation named Ctrl_<type>_Tile to every architecture. Thus
, three new members are added to Ctrl_FPGA_Tile:

1. cl_mem ktile: device bu�er that will store the KHitTile_<type> structure once it has been popu-
lated by the pre-kernel.

2. size_t ktile_size: size of the KHitTile_<type> that will be stored in the bu�er ktile.

3. cl_kernel *populate_ktile_kernel : <type> specialised kernel that will assemble the ktile.

The void pointer member ext of HitTile can be used to pass the size of the ktile and the pointer to
the pre-kernel, that will be packed in a structure , from Ctrl_Alloc_<type>. Once inside the creation of
tiles function the ext member is needed to attach the specialised tile, so the members inside the struct
are saved into the corresponding ones in Ctrl_FPGA_Tile. After that, the ktile bu�er is created in the
function that evaluates the tile allocation task making use of the new information and the pre-kernel is
launched.

Parameters passing

Kernel launching is managed in Controllers by pushing a task in the queue associated to the controller.
This way the task can be evaluated independently from the moment the user calls the kernels and can
be reordered either to guarantee data consistency or to increase performance. Therefore, the parameters
passed must be stored in a list. The task keeps a pointer to its head and a list of the sizes of every
argument to ensure they can be accessed afterwards. Initially, kernels were supposed to receive ktiles
by value, regardless of the architecture, so the sizes stored were that of ktiles of the corresponding type.
This is not the case anymore, since the arguments of FPGA kernels are pointers to that ktiles. It
might seem the OpenCL kernels also broke the rule, since they received a ktile wrapper and a pointer to
data. However they were generated by splitting the original parameters. This requires adapting the list
generation macros to store ktile bu�ers and the size list to store ktile pointers bu�ers. This macro will
be conditionally expanded as explained for FPGAs for the moment, although it will be extended to the
binary based OpenCL backend, when the migration takes place.

1 #define CTRL_KERNEL_KTILE_STORE_IN(list , type , name) \

2 *(( cl_mem *)(list)) = (( Ctrl_FPGA_Tile *)(name ->ext))->ktile; \

3

4 #define CTRL_KERNEL_KTILE_STORE_IO(list , type , name) \

5 *(( cl_mem *)(list)) = (( Ctrl_FPGA_Tile *)(name ->ext))->ktile; \

6

7 #define CTRL_KERNEL_KTILE_STORE_OUT(list , type , name) \

8 *(( cl_mem *)(list)) = (( Ctrl_FPGA_Tile *)(name ->ext))->ktile; \

Listing 4.6: Parameters passing

Performance penalty induced by AOC

Once this solution was implemented it was discovered via experimentation with the Sobel kernel that it
su�ered from huge overhead, with execution times of around 20 seconds for a single frame. The pro�ler
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results showed that the memory bandwidth achieved by this kernel was 179.7 MB/s (1.61% of e�ciency).
Since the only change in the kernel was the replacement of ktiles by pointer to ktiles a simple experiment
was conducted to study the behaviour of the o�ine compiler with two minimal kernels that reproduced
this problematic scenario. The code in 4.7 has two kernels that are functionally equal and are expected
to be synthesised the same way. Note that the only formal di�erence is how arguments are passed. In the
case of struct_with_pointer the struct with pointer member datatype swp is passed and a local copy is
instanced inside the kernel, whilst in struct_without_pointer a struct without a pointer member is passed
instead alongside a pointer and both arguments are assembled into a swp.

1 typedef struct {

2 int x;

3 int y;

4 __global int *restrict data;

5 } swp;

6

7 typedef struct {

8 int x;

9 int y;

10 } swop;

11

12 __kernel void struct_with_pointer(__global swp *restrict p_in , __global swp *restrict

p_out) {

13 swp in = *p_in;

14 swp out = *p_out;

15

16 for(int i = 0; i < 10; i++)

17 out.data[i] = in.data[i] + 3;

18 }

19

20 __kernel void struct_without_pointer(swop in_coords , __global int *restrict data_in ,

21 swop out_coords , __global int *restrict data_out) {

22 swp in = {

23 .x = in_coords.x,

24 .y = in_coords.y,

25 .data = data_in

26 };

27

28 swp out = {

29 .x = out_coords.x,

30 .y = out_coords.y,

31 .data = data_out

32 };

33

34 for(int i = 0; i < 10; i++)

35 out.data[i] = in.data[i] + 3;

36 }

Listing 4.7: Simple experiment to check the behaviour of AOC with struct and pointer to struct arguments

It is clear that AOC is unable to recognise that both kernels are equal and has to generate more
complex arbitration logic to ensure proper functionality. This leads to slower LSUs, as appears in table
4.1. Attending just to the sum of the latencies of the LSUs shown in the table the struct_with_pointer
kernel will execute 30 times slower. This �nding about the behaviour was con�rmed as the explanation
for such a poor performance in Sobel by comparing the report generated for the Controllers version with
that of the native.

In conclusion, this solution has to be discarded due to an undocumented behaviour of the o�ine
compiler. Nevertheless, it is solid enough as to be considered for future versions of Controllers in case
Intel amends its compiler decisions for this scenario.
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Figure 4.2: Arbitration logic in struct_without_pointer (left) and struct_with_pointer kernels (right)

struct_with_pointer struct_without_pointer
LD 129 26
ST 3 2

Table 4.1: Load store units latencies in the experiment kernels

4.3 De�nitive approach: returning to the ktile wrapper

As it has already been discussed, there is a performance penalty on using pointers to struct as kernel argu-
ments. Given its magnitude there is no other workaround for passing the ktiles to the kernel than returning
to the approach taken in the OpenCL backend. It could be easily adapted to FPGA by typing data point-
ers as void * (Recall the only information referring to the datatype of the data pointer is the HitTile type,
which is of the form HitTile_<type>) had it not been because this is done in CTRL_KERNEL_PROTO,
which, as every C statement, has to be followed by ;. Since the kernel signature is followed by the ker-
nel body and nothing can stay in between, the ; would have to be removed. It could be argued that
Controllers would stop being a C based model, so this is not an acceptable workaround. Moreover, the
kernel prototype was initially thought as an independent statement and generating the kernel signature
from it would keep it �xed before CTRL_KERNEL. Instead, it will be expanded from CTRL_KERNEL.
The same applies for kernel attributes, that were expanded from CTRL_KERNEL_CHAR in the uni�ed
version.

4.3.1 Expanding the kernel signature from CTRL_KERNEL

In order to generate the kernel signature it is necessary to have the roles of each argument, since ktiles
have to be separated in the ktile wrapper and the data pointer and INVALs must be kept as they are.
This information is not available in CTRL_KERNEL, but in CTRL_KERNEL_PROTO. It has to be
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duplicated in order to make this distinction between arguments. Take into account that CTRL_KERNEL
is supposed to be seen as the kernel signature for the user of Controllers and the roles are just quali�ers
to the arguments. In order to minimise the impact of including them here they will be surrounded by the
macro CTRL_KERNEL_FPGA_ROLES.

The name of the arguments cannot be extracted leveraging the preprocessor, since it is preceded by
its type and a white space. The concatenation operator cannot alter any of the characters of the token,
but it is able to attach text to its sides. This allows the modi�cation of the type and the name of the
argument. On top of that, it is possible to assign an alias to a pointer with typedef. With these tools, the
strategy is as shown in �gure 4.3: now there will be a ktile wrapper structure for every type instantiated
in the host code, so that it can be instantiated by attaching fpga_wrapper_ to the beginning of the token.
In order to type the data pointer as void * this datatype, alongside the keyword restrict, are aliased with
typedef in the creation of ktiles of a given type, as well. A token will be concatenated to them, _wrapper
and _data, respectively, in order to be distinguishable from the rest of the arguments.

KHitTile_<type> K

fpga_wrapper_KHitTile_<type> K_wrapper data_KHitTile_<type> K_data

__global void * restrict

typedef

KHitTile_<type> K

# #

(assembled in kernel body)coords data*

coords data*

data*
coords

Figure 4.3: The concatenation operator and typedef are leveraged to generate the function signature from
CTRL_KERNEL.

Special attention should be paid to the semantics of the address quali�er for the de�nition of the
pointer alias. De�ning the alias as typedef void* restrict data_KHitTile_<type> will result in the o�ine
compiler giving the error parameter may not be quali�ed with an address space. In order to understand
what is going on it is necessary to analyse the steps taken by the compiler. Since no address space is
speci�ed, the pointer points to the private address space. Hence __global data_KHitTile_<type> is
indicating that the pointer itself resides in the global address space, so the compiler is understanding the
opposite of what we want to convey: the pointer should reside in the private address space and should be
pointing to the global address space. For that, the solution comes through including the address quali�er
in the de�nition of the alias, so the compiler understands it refers to the memory pointed by the pointer,
as in �gure 4.3.

1 // Host code file

2 CTRL_KERNEL_CHAR(Mult , MANUAL , NDRANGE , LOCAL_SIZE_0 , LOCAL_SIZE_1);

3

4 CTRL_KERNEL_PROTO( Mult ,

5 1, FPGA , 5,
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6 OUT , HitTile_float , C,

7 IN , HitTile_float , A,

8 IN , HitTile_float , B,

9 INVAL , int , A_width ,

10 INVAL , int , B_width

11 );

12

13 // Kernel code file

14 CTRL_KERNEL(Mult , FPGA , PIPELINE( NDRANGE , SIMD( 4, 64, 64, 1) ), PARAMS( OUT , IN, IN,

INVAL , INVAL ),

15 KHitTile_float C, KHitTile_float A, KHitTile_float B, int A_width , int

B_width)

16 {

17 CTRL_INIT_KTILE(A, float);

18 CTRL_INIT_KTILE(B, float);

19 CTRL_INIT_KTILE(C, float);

20 // Kernel body

21 }

Listing 4.8: Example of the de�nitive version of the Controllers interface modi�ed macros

Expanding the kernel signature from CTRL_KERNEL, an alternative approach

Since the names of the arguments must be available for the generation of the kernel signature and leverag-
ing the preprocessor to hide this requirement from the user by the last approach was unsuccessful, there
is no other option than requesting the programmer to do so. To serve this purpose, the macro KTILE(
type, name ) is created, which only takes the type of the data pointer and the name of the argument
as parameters. The roles are not needed anymore, since they were just used to di�erentiate between
invals and ktiles and this is solved by the use of the new macro. The pipeline speci�cation is also moved
from CTRL_KERNEL_CHAR to CTRL_KERNEL, but the launching mode has to be preserved in both
macros. It will be used to determine the launching model in the kernel characterisation macro and to
generate the associated attributes in CTRL_KERNEL. A code excerpt involving the modi�ed macros is
given in 4.9, where it is clearly stated which belong to either the host or the kernel �le.

1 // Host code file

2 CTRL_KERNEL_CHAR(Mult , MANUAL , NDRANGE , LOCAL_SIZE_0 , LOCAL_SIZE_1);

3

4 CTRL_KERNEL_PROTO( Mult ,

5 1, FPGA , 5,

6 OUT , HitTile_float , C,

7 IN , HitTile_float , A,

8 IN , HitTile_float , B,

9 INVAL , int , A_width ,

10 INVAL , int , B_width

11 );

12

13 // Kernel code file

14 CTRL_KERNEL(Mult , FPGA , PIPELINE( NDRANGE , SIMD( 4, 64, 64, 1) ), KTILE(float , C),

KTILE(float , A), KTILE(float , B), int A_width , int B_width)

15 {

16 CTRL_INIT_KTILE(A, float);

17 CTRL_INIT_KTILE(B, float);

18 CTRL_INIT_KTILE(C, float);

19 // Kernel body

20 }

Listing 4.9: Example of an alternative version of the Controllers interface modi�ed macros
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4.3.2 Pro�ling and emulation

Thanks to the kernel name format described in 3.4.2 the user is able to perform pro�ling or run a kernel
on an emulated device just by enabling the corresponding option in the CMake �le that compiles the
Controllers project. Since this is a decision that conceptually a�ects how a kernels is executed but not
its functionality or its eventual mapping on the device it seems more appropriate to keep these options
outside the Controllers code.

To enable pro�ling the option FPGA_PROFILING must be set, whilst for emulation the same must
be done with the option FPGA_EMULATION. As they are incompatible, when they are activated at the
same time emulation will be chosen by default. What is happening behind the scenes is that the kernel
path string is modi�ed by inserting the word pro�ling or emu, depending on the enabled option, as
speci�ed by the kernel name format.

4.4 Conclusions

This chapter described the solution developed for the integration of FPGAs in the Controllers library.
It enhances programmability, while allowing transparent dependency and data management and asyn-
chronous execution, which leads to performance gains thanks to to the ability to overlap data transfers and
computation. This was achieved at the cost of minor changes to the user-facing interface of Controllers
when programming FPGAs in the de�nitive approach. They could be minimised even more in the future
thanks to the second approach, which does not work at the moment due to the current behaviour of the
Intel compiler. All the discarded approaches are functional, so the �rst approach could be leveraged in
the future to remove any divergence the programmer can perceive in Controllers due to the use of this
backend, provided the independence from external tools is not a concern anymore.

The initalisation operations related to kernels launching were removed from the runtime, as this
became a need for the second approach. This might, in addition, lead to a potential improvement in time
measurements that compare Controllers with other reference models.

Finally, pro�ling and emulation were eased for the programmer by requiring just the activation of a
�ag.

49



4.4. CONCLUSIONS

50



CHAPTER 5. EXPERIMENTATION

Chapter 5

Experimentation

This chapter introduces the following aspects:

• The objectives of the experimentation performed.

• The chosen case studies:

� Hotspot

� Matrix Power

� Sobel Filter

• Performance study that validates our proposal.

• Study of software metrics on the generated code.

• The results obtained from the experimentation and the conclusions reached.

5.1 Objectives of experimentation

This section introduces the objectives of the experimentation for the proposed model. This objectives are
as follows:

1. The performance improvement due to overlap depends on the workload of the communication and
computation tasks and the dependencies between them.

2. The solution proposed over the Controllers library o�ers a code implementation with less complexity
over other existing technologies.

3. The overhead of this abstraction, due to the implemented prototype and the internal control struc-
tures, has a minimal e�ect over performance in parallel executions compared to solutions over other
exising technologies.

5.2 Case study: Hotspot

The base program is an adaptation of that of the Rodinia suite of benchmarks by Zohouri et al. [50,
51, 35, 53]. It computes the stability point of the Poisson's Partial Di�erential Equation (PDE) for heat
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di�usion. It uses a Jacobi iterative method on a 2-dimensional discrete space. It is a 4-point stencil
program that executes a �xed number of time iterations. The kernel exploits the shift register pattern for
both spatial and temporal locality (refer to 2.1.6 for further information). The program is tested with 400
iterations. The result matrix is transferred to the host after each kernel launching operation, saving it in
a di�erent host bu�er using a host-task. Thus, the results could be used to check partial results or create
an animation of the computation evolution. Matrices with input sizes from 1024×1024 to 4096×4096 are
considered in order to achieve a memory-bound scenario.

Algorithm 1 Hotspot

1: function Copy(A,B)
2: Data: x, y: column and row indices, respectively
3: B[x][y]← A[x][y]
4: end function

5: function HotspotIteration(P,A,B)
6: Data: x, y: column and row indices, respectively
7: B[y][x]← P [y][x] + (A[y − 1][x] +A[y + 1][x]− 2A[y][x])/Rx +

(A[y][x− 1] +A[y][x+ 1]− 2A[y][x])/Ry +
(T −A[y][x])/Rz

8: end function

9: function main

10: Data: n: number of iterations, P: power matrix, A: original temp. matrix, B: temp. matrix copy
11: for i← 1, n do
12: HotspotIteration(P, A, B)
13: MoveFrom(B)
14: Copy(B,A)
15: end for
16: end function

5.3 Case study: Matrix Power

This program is an evolution of the 2mm and 3mm programs in the PolyBench Benchmarks [36] to
generate a chain of matrix multiplications of arbitrary length. It computes the normalisation of the
matrices Ci = Ai : i ∈ [1 : n]. It iteratively computes in the device the multiplication of the original
matrix by the partial result of the previous step: ck = Ck−1 × A : k ∈ [1 : n] where C0 = A. The
kernel to multiply matrices is obtained from the Intel FPGA Support Resources. This optimised kernel
uses local memory, loop unrolling and SIMD to take advantage of the FPGA resources. Each partial
result Ci is transferred to the host. A host-task computes the normalistion of the matrix and saves it in
another bu�er. The matrix normalisation consists of the following phases: (a) Determining the minimum
and maximum values in the matrix; (b) substracting the minimum from each element of the matrix, and
dividing each element by the maximum; (c) computing the elements norm as the square root of the sum
of each element power 2; and (d) dividing each matrix element by the elements norm. The program is
tested with n = 30 iterations and input sizes from 1024×1024 to 4096×4096 to reach a memory-bound
scenario.
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5.4 Case study: Sobel

The Sobel Operator is described in 2. For this experimental study an implementation that iteratively
processes frames from a video in YUV format has been chosen. The kernel was adapted from that of
the Intel FPGA Support Resources, which received as input RGB images and transformed every pixel
to a single channel on the �y. Instead, this transformation was removed, since the tested program
reads an input video stream from a �le, frame by frame and each frame has three components that are
communicated to the device. Then, the Sobel �lter is applied to each component launching the same
kernel, once for each component. The resulting image is transferred back to the host to store it in an
output video �le. Each component of a frame is read, written, computed, or transferred separately.
The input/output images are read from and written to �les. The computation of the Sobel �lter is a
very fast operation. Thus, this study case is very demanding in terms of concurrency exploitation and
asynchronous data-transfer executions. The program is tested with 120, 240, 300 and 360 frames of a
high-de�nition video (Full HD images of 1920×1080 pixels) so the performance gained from computation
and communication overlap could be perceived.

Algorithm 2 Sobel

1: function SobelOperation(A,B, threshold)
2: Data: x, y: column and row indices, respectively
3: h← −A[y − 1][x− 1]− 2A[y − 1][x]−

A[y − 1][x+ 1] +A[y + 1][x− 1] +
2A[y + 1][x] +A[y + 1][x]

4: v ← −A[y − 1][x− 1] +A[y − 1][x+ 1]−
2A[y][x− 1] + 2A[y][x+ 1]−
A[y + 1][x− 1] +A[y + 1][x+ 1]

5: temp←
√

(h2 + v2)

6: if temp > threshold then
7: B[x][y]← 255
8: else
9: B[x][y]← 0
10: end if
11: end function

12: function main

13: Data: n: number of frames, A[3]: input video matrix, B[3]: output video matrix
14: for i← 1, n do
15: for j ← 1, 3 do
16: MoveTo(A[j])
17: SobelOperation(A[j], B[j])
18: MoveFrom(B[j])
19: LoadFrame(A[0], A[1], A[2]) . Reads frame from source video and loads it in input

matrices
20: PutFrame(B[0], B[1], B[2]) . Writes output matrices in destination video
21: end for
22: end for
23: end function
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5.5 Experimental environment

In this experimental study the �nal prototype of the Controller library is compared against the reference
programs in OpenCL with the synchronous and asynchronous implementations. The choice between
synchronous and asynchronous policy can be done at run-time. The kernel codes are surrounded by the
primitive CTRL_KERNEL and the accesses to global memory are rewritten with the Hitmap's hit()
access macro.

The experimentation was conducted on nodes of the Intel DevCloud platform featuring FPGAs. Each
of these nodes comprises an Intel(R) Xeon(R) Gold 6128 CPU @ 3.40GHz with 192 GB of RAM equipped
with an Intel Arria 10.

The O.S. is an Ubuntu 18.04 Linux distribution. All programs are compiled with GCC v7.4 using the
Intel FPGA SDK for OpenCL. The performance experiments measure the clock time from the start of
the �rst data transfer to the end of the last host-task. This includes data transfers, computation times,
and system overheads.

5.6 Performance study

Figure 5.1 shows the performance results obtained for the di�erent versions of the Hotspot and Matrix
Power case studies. The plots represent the total execution times in the y-axis and di�erent input data
sizes in the x-axis. Figure 5.2 shows the performance of Hotspot, Matrix Power and Sobel �lter when the
number of iterations increases to enable a comparison with the latter, since input size is not a parameter.
During the development of this work AOC was upgraded in Intel DevCloud, leading to some behavioural
changes in the o�ine compiler and, as a result, some changes in the overhead of the Controllers library
that are worth studying. For that reason, plots for the 19.3 and 20.1 version of the compiler are included.
The same information is conveyed by tables 5.1 and 5.2 to ease the discussion of the results with numerical
values.

From these results it is clear that the asynchronous policy of Controllers works specially well with
FPGAs, with almost non existent overhead and, in some cases, even negative overhead. This can be
explained through the treatment of events by Controllers, which processes them in batches, opposed to the
reference programs, which do so once they are issued. The Controllers way reduces the number of requests
to the device driver, hence leading to minor gains in time that could explain this counterintuitive results.
The di�erences between the compiler versions are particularly noticeable in the Matrix Power and Sobel
Filter kernels. It can be seen that for the 19.3 version the Matrix Power the Controller implementation
achieves lower times than its counterpart, while the opposite happens when it is compiled with the 20.1
version of AOC. On the other hand, the opposite happens to the Sobel �lter kernel, whose Controllers
version performs better with the 20.1 compiler (notice that the di�erence lies in the asynchronous policy
version, whilst for the synchronous one Controllers outperforms the native implementation regardless of
the compiler).

Recall that, although functionally the same, the code of Controllers kernels is not exactly the same once
CTRL_KERNEL is expanded and hence the synthesised circuits di�er. Table 5.3 gathers the operating
frequencies of the synthesised kernels for both versions. They match the previous observations: the Matrix
Power kernel achieves a frequency of 258.33 Hz in the Controllers implementation and 255.95 Hz in the
reference one with the 19.3 version of AOC, whilst it was stated that the Controllers version ouperformed
its counterpart with this compiler version. The opposite happens with the 20.1. The same reasoning can
be applied to the Sobel �lter kernel. However, the Controllers implementation always achieves lower times
with the Hotspot benchmark regardless of the compiler, although according to 5.3 this sould only occur
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(a) Hotspot 400 iterations (v19.3)
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(b) Matrix power 30 iterations (v19.3)
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(c) Hotspot 400 iterations (v20.1)
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(d) Matrix power 30 iterations (v20.1)

Figure 5.1: Experimentation results with Hotspot and Matrix Power benchmarks for di�erent matrix
sizes. AOC v19.3 results are at the top, whilst v20.1 are at the bottom.

with the 20.1 version and not in the 19.3 or, at least, it should not be that signi�cant with this one. This
suggests that other factors might be involved in this phenomenon. Unfortunately, pro�ling is of no help
in this case, since the frequencies of the studied kernels change due to the instrumentation and the order
relations between them changes (see, for example, how the Matrix Power kernel achieves higher frequency
in the reference implementation with the 19.3 version of the compiler when it is compiled from pro�ling).
Future work will include �xing the operating frequency of the kernel with the workaround described in
[52], since the Intel FPGA SDK for OpenCL does not provide any native mechanism, to �nd out the
underlying cause of this behaviour.
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Figure 5.2: Experimentation results with Hotspot, Matrix Power and Sobel Filter for di�erent number of
iterations with AOC v20.3

kernel
AOC

v19.3 v20.1

Matrix Pow 258.33 271
Hotspot 361.11 315
Sobel 340.28 316

(a) Frequencies of Ctrl kernels

kernel
AOC

v19.3 v20.1

Matrix Pow 255.95 278
Hotspot 362.5 302
Sobel 345.83 314

(b) Frequencies of Ref kernels

kernel
AOC

v19.3 v20.1

Matrix Pow 250.0 271
Hotspot 310 292
Sobel 333.33 319

(c) Frequencies of Ctrl kernels (pro�ling)

kernel
AOC

v19.3 v20.1

Matrix Pow 257.58 242
Hotspot 360.80 307
Sobel 347.22 317

(d) Frequencies of Ref kernels (pro�ling)

Table 5.3: Frequencies (MHz) of the experimentation kernels in native (Ref) and Controllers (Ctrl)
versions.

5.7 Development e�ort measures

This section analyses the di�erences in development e�ort between the Controller codes and the baseline
implementation using OpenCL for the asynchronous scenarios. Four classical development e�ort met-
rics are measured: number of lines of code, number of tokens, McCabe's cyclomatic complexity [28] and
Hasltead development e�ort [17]. The �rst two metrics measure the volume of code that the programmer
should develop. The third metric measures the rational e�ort needed to program it in terms of code diver-
gences and potential issues that sould be considered to develop, test and debug the program. For that, it
considers the program as a connected graph and calculates the maximum number of linearly independent
circuits. The last metric uses both code complexity and volume indicators to obtain a comprehensive
measure of the development e�ort. The measured codes include the kernel de�nitions, kernel character-
isation, the coordination host code, and data structures management. For a fair comparison, they have
been formatted following the same criteria, with no line breaks in expressions or calls to functions, closing
curly braces always on their own line, etc.
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The results shown in table 5.1 indicate that programming using the new Controller library gener-
ates lower volume of code, a reduced cyclomatic complexity, and reduced Halstead measures than both,
synchronous and asynchronous versions using OpenCL. This is specially noticeable for the asynchronous
baseline versions, that introduce manually more complex mechanisms for kernel and data transfer syn-
chronisations. These mechanisms are transparent and portable in the Controller programs. A close look at
the codes indicates that the higer reduction is found in the parts of the host codes related to coordination,
as expected.

5.8 Conclusions

The proposed solution integrates FPGAs in the Controllers library while incurring in little to no overhead.
In fact, it has been found that in some situations, using Controllers can result in lower execution times
than the vendor framework based on OpenCL. This is specially noticeable in the Sobel Filter case study.
This phenomenon is likely to be due to a combination of a higher frequency of the Controllers synthesised
kernel and the way our model manages events. Since Sobel Filter performs brief computations, di�erences
due to events management is much more noticeable than with other benchmarks.

Programmability is highly increased, thanks to the reduction in the e�ort the programmer has to put
to develop parallel applications in a heterogeneous system, as shown by the studied metrics, where our
model scores signi�cantly better results than the native OpenCL implementations.
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Size Impl. Sync Async Overlap

1024
Ref 2.0487 1.4194 30.71 %
Ctrl 2.1462 1.4120 34.21 %

Overhead 4.76 % -0.53 %

2048
Ref 8.2508 5.2437 36.45 %
Ctrl 7.9550 5.2181 34.40 %

Overhead -3.58 % -0.49 %

3000
Ref 13.2460 6.8106 48.58 %
Ctrl 13.4202 6.7653 49.59 %

Overhead 1.32 % -0.67 %

3500
Ref 18.1536 9.5178 47.57 %
Ctrl 19.1729 9.4718 50.60 %

Overhead 5.62 % -0.48 %

4096
Ref 32.8879 21.3831 34.98 %
Ctrl 34.2106 21.2967 37.75 %

Overhead 4.02 % -0.40 %

(a) Hotspot

Size Impl. Sync Async Overlap

640
Ref 0.3037 0.1354 55.42 %
Ctrl 0.2098 0.1363 35.04 %

Overhead -30.90 % 0.70 %

1280
Ref 1.5966 1.0084 36.84 %
Ctrl 1.5868 0.9977 37.12 %

Overhead -0.62 % -1.07 %

1920
Ref 4.3672 3.3014 24.40 %
Ctrl 4.4355 3.2881 25.87 %

Overhead 1.57 % -0.40 %

2560
Ref 9.3919 7.8438 16.48 %
Ctrl 9.5399 7.8294 17.93 %

Overhead 1.58 % -0.18 %

(b) Matrix Power

N fr Impl. Sync Async Overlap

120
Ref 2.1781 1.2502 42.60 %
Ctrl 2.0640 1.2536 39.27 %

Overhead -5.24 % 0.27 %

240
Ref 4.3461 2.4901 42.71 %
Ctrl 4.1539 2.4993 39.83 %

Overhead -4.42 % 0.37 %

300
Ref 5.4302 3.1103 42.72 %
Ctrl 5.1928 3.1199 39.92 %

Overhead -4.37 % 0.31 %

360
Ref 6.5216 3.7305 42.80 %
Ctrl 6.2145 3.7423 39.78 %

Overhead -4.71 % 0.32 %

(c) Sobel Operation

Table 5.1: Average execution times for Hotspot, Matrix Power and Sobel Operation compiled with AOC
v19.3 (top left, top right and bottom, respectively). Percentage of overlap between synchronous and
asynchronous versions and overhead of Controllers are also shown.
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Size Impl. Sync Async Overlap

1024
Ref 2.0672 1.4217 31.23 %
Ctrl 2.2510 1.4289 36.52 %

Overhead 8.89 % 0.51 %

2048
Ref 8.2309 5.2391 36.35 %
Ctrl 8.1363 5.2279 35.75 %

Overhead -1.15 % -0.21 %

3000
Ref 13.2327 6.8397 48.31 %
Ctrl 13.6032 6.7910 50.08 %

Overhead 2.80 % -0.71 %

3500
Ref 18.1535 9.5437 47.43 %
Ctrl 19.0996 9.4395 50.58 %

Overhead 5.21 % -1.09 %

4096
Ref 32.5939 21.0722 35.35 %
Ctrl 33.9702 21.1640 37.70 %

Overhead 4.22 % 0.44 %

Size Impl. Sync Async Overlap

640
Ref 0.2915 0.1329 54.41 %
Ctrl 0.2097 0.1341 36.04 %

Overhead -28.05 % 0.94 %

1280
Ref 1.5344 0.9557 37.72 %
Ctrl 1.5809 0.9763 38.24 %

Overhead 3.03 % 2.16 %

1920
Ref 4.2373 3.1461 25.75 %
Ctrl 4.3323 3.1954 26.24 %

Overhead 2.24 % 1.57 %

2560
Ref 9.0600 7.4305 17.74 %
Ctrl 9.2370 7.6102 18.08 %

Overhead 1.95 % 2.42 %

N fr Impl. Sync Async Overlap

120
Ref 2.1915 1.2507 42.93 %
Ctrl 2.0871 1.2491 40.15 %

Overhead -4.76 % -0.12 %

240
Ref 4.3668 2.4902 42.97 %
Ctrl 4.1902 2.4897 40.58 %

Overhead -4.04 % -0.02 %

300
Ref 5.4571 3.1112 42.99 %
Ctrl 5.2389 3.1085 40.67 %

Overhead -4.00 % -0.09 %

360
Ref 6.5488 3.7312 43.02 %
Ctrl 6.2765 3.7290 40.59 %

Overhead -4.16 % -0.06 %

Table 5.2: Average execution times for Hotspot, Matrix Power and Sobel Operation compiled with AOC
v20.1 (top left, top right and bottom, respectively). Percentage of overlap between synchronous and
asynchronous versions and overhead of Controllers are also shown.

Case study Version LOC TOK CCN Halstead

Hotspot
Ctrl 224 1702 40 773603

OpenCL Sync 336 2673 53 1497213
OpenCL Async 401 3196 49 2036837

Matrix Power
Ctrl 145 1473 21 590244

OpenCL Sync 239 2215 26 1205075
OpenCL Async 307 2533 29 1470233

Sobel �lter
Ctrl 137 1231 22 557772

OpenCL Sync 202 1944 28 810726
OpenCL Async 290 2561 38 1385085

Table 5.4: Measurements of development e�ort metrics for the reference and Controllers codes. It includes
a comparison of number of lines of code (LOC), number of code tokens (TOK), McCabe's cyclomatic
complexity (CCN) and the Hasltead's development e�or metric (Halstead).
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Chapter 6

Conclusions

This chapter introduces the following aspects:

• De�nition of the objectives that have been ful�lled

• Future research lines

• Personal experience

6.1 Objectives ful�lled

This work is part of a research project directed by Trasgo research group. This work introduces an
approach for the integration of FPGAs in the Controllers model, thus improving programmability and
allowing automatic management of dependencies and seamless overlapping of data transfers and computa-
tion thanks to its asyncrhronous policy. In addition, its use leads to reductions in cyclomatic complexity,
with signi�cantly low overheads in the execution times compared to manually programmed and optimised
solutions which directly leverage OpenCL.

1. Some of the existent works have been studied and compared to Controllers in section 2.2.4.

2. The Hitmap and Controllers libraries have been studied and a brief description of both is given in
chapeter 2.

3. The design of the new backend is described in chapter 3 and its implementation in chapter 4.

4. The experimentation performed is explained in chapter 5 and enabled the validation of the model.

5. The experimentation allowed to reach conclusions about the improvement in programmability, over-
lap and the overhead caused by the use of Controllers with respect to the baseline native implemen-
tations.

6. The proposed model was validated through the experimentation conducted to that end, showing a
proper integration of FPGAs in the model in a transparent way.

The result of this work has lead to a publication that has been accepted and will be
presented in the international conference CMMSE 2020 (International Conference Compu-
tational and Mathematical Methods in Science and Engineering) on July 26th - 30th.
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6.2 Future work

The development of this work has opened multiple research lines that might be the source of future
works. In chapter 5 it was found that the use of Controllers leads to lower execution times than OpenCL
in several scenarios. This could be partially explained by the di�erence in operating frequency between
Controllers and reference kernels. This explanation had some holes, however, so more re�ned tools such
as the workaround for �xing kernel frequency mentioned in [52] or the advanced pro�ling method detailed
in [43] will probably be used to dig into the problem.

FPGAs allow more advanced techniques that are out the scope of this work and could potentially
increase performance. This is the case of partial recon�guration, which allows the modi�cation of some
parts of the synthesised circuit while the rest are runnning. Since programming time range from millisec-
onds to a second, there is a chance for overlapping them with computation or data transfers, leading to
performance improvements. Combining this technique with the ideas for partial recon�gurable kernels in
OpenCL in [42] could turn Controllers into an attractive option for shared heterogeneous environments
in which context switches are frequent, such as cloud platforms.

HLS languages have the bene�t of improving programmability and this has been the main focus of
this work. However, the programmer might lose control over the synthesised circuit, relying on the design
inferred by the compiler. This can be problematic for advanced use cases, as the one in 4.2.3. Fortunately,
it is possible to integrate HDL modules with the Intel FPGA SDK for OpenCL, reaching full control over
the �nal design.

6.3 Personal assessment

This work has been my �rst contact with research and the beginning of a career focused on research in
HPC. Its development did not only allow me to learn new technologies but also introduced me to the
research methodology. As a result, now I am capable of looking up the information I need to support my
arguments more e�ciently and I have become a better learner, which are valuable skills in every job.

I came from a data science background, so I had to learn many new concepts and tools to undertake
this project successfully. It has been an exciting journey that has opened my mind and has given me the
opportunity to work with FPGAs and expand my knowledge about electronics and the details of the low
level layers of computers. Had it not been for this I would have never made a serious project with FPGAs
and I would have not discovered all the learning oportunities it o�ers to electronics enthusiasts like me
thanks to their recon�gurability.

All in all, this has been an enriching experience that rea�rms my motivation to pursuit a PhD and a
career based on research.

62



APPENDIX A. CONTENTS OF THE CD-ROM

Appendix A

Contents of the CD-ROM

The code of the backend elaborated in this work, as well as the case studies adapted for the experimen-
tation, can be accessed upon request. For that, contact the members in charge at the Trasgo research
group (https://trasgo.infor.uva.es/) for this work:

• Arturo González Escribano: arturo@infor.uva.es

• Yuri Torres de la Sierra: yuri.torres@infor.uva.es

63

https://trasgo.infor.uva.es/


64



BIBLIOGRAPHY

Bibliography

[1] TOP500. https://www.top500.org/. [Online; accessed 8-June-2020].

[2] ISO/IEC 9899:201x; Programming languages � C. "http://port70.net/~nsz/c/c11/n1570.html#
6.10.9", 2011. [Online; accessed 7-May-2020].

[3] A development sandbox for data center to edge workloads. https://software.intel.com/content/
www/us/en/develop/tools/devcloud.html, 2020. [Online; accessed 15-June-2020].

[4] BertenDSP. GPU vs FPGA performance comparison. In Proceedings of the 2017 ACM/SIGDA
International Symposium on Field-Programmable Gate Arrays-FPGA'17, 2016.

[5] Jaume Bosch, Xubin Tan, Antonio Filgueras, Miquel Vidal, Marc Mateu, Daniel Jiménez-González,
Carlos Álvarez, Xavier Martorell, Eduard Ayguadé, and Jesus Labarta. Application Acceleration on
FPGAs with OmpSs@ FPGA. In 2018 International Conference on Field-Programmable Technology
(FPT), pages 70�77. IEEE, 2018.

[6] Randal E Bryant, O'Hallaron David Richard, and O'Hallaron David Richard. Computer systems: a
programmer's perspective, volume 2. Prentice Hall Upper Saddle River, 2003.

[7] Cosmin Cernazanu-Glavan, Stefan Fedeac, Alexandru Amaricai-Boncalo, and Marius Marcu. En-
ergy pro�ling of FPGA designs. In 2014 IEEE International Symposium on Robotic and Sensors
Environments (ROSE) Proceedings, pages 118�123, October 2014.

[8] IEEE Design Automation Standards Committee et al. Std 1076�2008, ieee standard vhdl language
reference manual. IEEE, New York, NY, USA, 2008.

[9] Altera Corporation. Nios II Classic Processor Reference Guide. page 282.

[10] Altera Corporation. FPGA architecture (White Paper). 2006.

[11] Digi-Key. A-U200-P64G-PQ-G. https://www.digikey.es/product-detail/es/xilinx-inc/

A-U200-P64G-PQ-G/122-2250-ND/9645681. [Online; accessed 13-June-2020].

[12] Digi-Key. A-U50DD-P00G-ES3-G. https://www.digikey.es/products/es?keywords=xilinx%

20alveo%20u50. [Online; accessed 13-June-2020].

[13] Ulrich Drepper. What every programmer should know about memory. Red Hat, Inc, 11:7, 2007.

[14] Tony Gaddis. Digital Fundamentals, Global Edition. Pearson Education Limited, 2014.

[15] Arturo Gonzalez-Escribano, Yuri Torres, Javier Fresno, and Diego R Llanos. An extensible system
for multilevel automatic data partition and mapping. IEEE Transactions on Parallel and Distributed
Systems, 25(5):1145�1154, 2013.

[16] Khronos OpenCL Working Group et al. The OpenCL Speci�cation, version 1.0. 29, 8 December
2008.

65

https://www.top500.org/
http://port70.net/~nsz/c/c11/n1570.html#6.10.9
http://port70.net/~nsz/c/c11/n1570.html#6.10.9
https://software.intel.com/content/www/us/en/develop/tools/devcloud.html
https://software.intel.com/content/www/us/en/develop/tools/devcloud.html
https://www.digikey.es/product-detail/es/xilinx-inc/A-U200-P64G-PQ-G/122-2250-ND/9645681
https://www.digikey.es/product-detail/es/xilinx-inc/A-U200-P64G-PQ-G/122-2250-ND/9645681
https://www.digikey.es/products/es?keywords=xilinx%20alveo%20u50
https://www.digikey.es/products/es?keywords=xilinx%20alveo%20u50


BIBLIOGRAPHY

[17] Maurice Howard Halstead et al. Elements of software science, volume 7. Elsevier New York, 1977.

[18] Mark Harris. How to optimize data transfers in CUDA C/C++. NVIDIA Developer Zone, 2012.

[19] Mark Harris. An e�cient matrix transpose in CUDA C/C++. Retrieved July, 26, 2013.

[20] Hynix. 64Mb Synchronous DRAM based on 1M x 4Bank x16 I/O, 2007.

[21] Intel. Intel R© Quartus R© Prime Pro Edition Software. https://www.intel.com/content/www/us/

en/programmable/buy/design-software.html. [Online; accessed 13-June-2020].

[22] Intel. Intel FPGA SDK for OpenCL Programming Guide. 2016.

[23] Intel. Intel FPGA SDK for OpenCL Programming Guide. 2019.

[24] Intel. Intel FPGA SDK for OpenCL Best Practices Guide. 2020.

[25] Qi Jia and Huiyang Zhou. Tuning stencil codes in OpenCL for FPGAs. In 2016 IEEE 34th Interna-
tional Conference on Computer Design (ICCD), pages 249�256. IEEE, 2016.

[26] David R Kaeli, Perhaad Mistry, Dana Schaa, and Dong Ping Zhang. Heterogeneous computing with
OpenCL 2.0. Morgan Kaufmann, 2015.

[27] Deborah T Marr, Frank Binns, David L Hill, Glenn Hinton, David A Koufaty, J Alan Miller, and
Michael Upton. Hyper-Threading Technology Architecture and Microarchitecture. Intel Technology
Journal, 6(1), 2002.

[28] Thomas J McCabe. A complexity measure. IEEE Transactions on software Engineering, (4):308�320,
1976.

[29] Michael McNamara. IEEE Standard Verilog Hardware Description Language. https://www.

verilog.com/IEEEVerilog.html, 2008. [Online; accessed 9-June-2020].

[30] Ana Moreton-Fernandez, Hector Ortega-Arranz, and Arturo Gonzalez-Escribano. Controllers: An
abstraction to ease the use of hardware accelerators. The International Journal of High Performance
Computing Applications, 32(6):838�853, 2018.

[31] Raúl Nozal, Jose Luis Bosque, and Ramón Beivide. Enginecl: Usability and performance in hetero-
geneous computing. Future Generation Computer Systems, 107:522�537, 2020.

[32] David Padua. Encyclopedia of parallel computing. Springer Science & Business Media, 2011.

[33] Ioannis Parnassos, Nikolaos Bellas, Nikolaos Katsaros, Nikolaos Patsiatzis, Athanasios Gkaras, Kon-
stantinos Kanellis, Christos D Antonopoulos, Michalis Spyrou, and Manolis Maroudas. A program-
ming model and runtime system for approximation-aware heterogeneous computing. In 2017 27th
International Conference on Field Programmable Logic and Applications (FPL), pages 1�4. IEEE,
2017.

[34] David A Patterson and John L Hennessy. Computer Organization and Design ARM Edition: The
Hardware Software Interface. Morgan kaufmann, 2016.

[35] Artur Podobas, Hamid Reza Zohouri, Naoya Maruyama, and Satoshi Matsuoka. Evaluating high-level
design strategies on FPGAs for high-performance computing. In 2017 27th International Conference
on Field Programmable Logic and Applications (FPL), pages 1�4. IEEE, 2017.

[36] Louis-Noël Pouchet and Scott Grauer-Gray. Polybench: The polyhedral benchmark suite (2011).
URL http://www-roc. inria. fr/� pouchet/software/polybench, 2015.

66

https://www.intel.com/content/www/us/en/programmable/buy/design-software.html
https://www.intel.com/content/www/us/en/programmable/buy/design-software.html
https://www.verilog.com/IEEEVerilog.html
https://www.verilog.com/IEEEVerilog.html


BIBLIOGRAPHY

[37] Arifur Rahman. FPGA based design and applications. Springer Publishing Company, Incorporated,
2008.

[38] Prasanna Sundararajan. High performance computing using FPGAs. Technical report, 2010.

[39] TerasIC. DE10-Pro. https://www.terasic.com.tw/cgi-bin/page/archive.pl?Language=

English&CategoryNo=248&No=1144. [Online; accessed 13-June-2020].

[40] TerasIC. DE5-Net FPGA Development Kit. https://www.terasic.com.tw/cgi-bin/page/

archive.pl?Language=English&CategoryNo=158&No=526&PartNo=1. [Online; accessed 13-June-
2020].

[41] TerasIC. DE5a-Net-DDR4. https://www.terasic.com.tw/cgi-bin/page/archive.pl?Language=
English&CategoryNo=228&No=1108&PartNo=1. [Online; accessed 13-June-2020].

[42] Anuj Vaishnav, Khoa Dang Pham, Dirk Koch, and James Garside. Resource Elastic Virtualization
for FPGAs Using OpenCL. In 2018 28th International Conference on Field Programmable Logic and
Applications (FPL), pages 111�1117, Dublin, Ireland, August 2018. IEEE.

[43] Anshuman Verma, Huiyang Zhou, Skip Booth, Robbie King, James Coole, Andy Keep, John Mar-
shall, and Wu-chun Feng. Developing dynamic pro�ling and debugging support in OpenCL for
FPGAs. In Proceedings of the 54th Annual Design Automation Conference 2017, pages 1�6, 2017.

[44] Hasitha Muthumala Waidyasooriya, Masanori Hariyama, and Kunio Uchiyama. Design of FPGA-
based computing systems with OpenCL. Springer, 2018.

[45] Chao Wang, Xi Li, Junneng Zhang, Peng Chen, Xiaojing Feng, and Xuehai Zhou. FPM: A Flexible
Programming Model for MPSoC on FPGA. In 2012 IEEE 26th International Parallel and Distributed
Processing Symposium Workshops PhD Forum, pages 477�484, May 2012.

[46] Wayne Wolf. FPGA-based system design. Pearson education, 2004.

[47] Xilinx. Vivado Design Suite - HLx Editions. https://www.xilinx.com/products/design-tools/

vivado.html#buy. [Online; accessed 13-June-2020].

[48] Xilinx. SDAccel Programmers Guide. 2019.

[49] Victoria Zhislina. Why has CPU frequency ceased to grow? Intel. Retrieved October, 14, 2015.

[50] Hamid Reza Zohouri. High performance computing with FPGAs and OpenCL. arXiv preprint
arXiv:1810.09773, 2018.

[51] Hamid Reza Zohouri, Naoya Maruyama, Aaron Smith, Motohiko Matsuda, and Satoshi Matsuoka.
Evaluating and optimizing OpenCL kernels for high performance computing with FPGAs. In SC'16:
Proceedings of the International Conference for High Performance Computing, Networking, Storage
and Analysis, pages 409�420. IEEE, 2016.

[52] Hamid Reza Zohouri and Satoshi Matsuoka. The Memory Controller Wall: Benchmarking the In-
tel FPGA SDK for OpenCL Memory Interface. In 2019 IEEE/ACM International Workshop on
Heterogeneous High-performance Recon�gurable Computing (H2RC), pages 11�18. IEEE, 2019.

[53] Hamid Reza Zohouri, Artur Podobas, and Satoshi Matsuoka. Combined spatial and temporal blocking
for high-performance stencil computation on FPGAs using OpenCL. In Proceedings of the 2018
ACM/SIGDA International Symposium on Field-Programmable Gate Arrays, pages 153�162, 2018.

67

https://www.terasic.com.tw/cgi-bin/page/archive.pl?Language=English&CategoryNo=248&No=1144
https://www.terasic.com.tw/cgi-bin/page/archive.pl?Language=English&CategoryNo=248&No=1144
https://www.terasic.com.tw/cgi-bin/page/archive.pl?Language=English&CategoryNo=158&No=526&PartNo=1
https://www.terasic.com.tw/cgi-bin/page/archive.pl?Language=English&CategoryNo=158&No=526&PartNo=1
https://www.terasic.com.tw/cgi-bin/page/archive.pl?Language=English&CategoryNo=228&No=1108&PartNo=1
https://www.terasic.com.tw/cgi-bin/page/archive.pl?Language=English&CategoryNo=228&No=1108&PartNo=1
https://www.xilinx.com/products/design-tools/vivado.html#buy
https://www.xilinx.com/products/design-tools/vivado.html#buy

	Acknowledgements
	Resumen
	Abstract
	List of figures
	List of tables
	Introduction
	Context
	Motivation
	Problem statement
	Objectives
	Budget and planification

	Document structure

	Previous concepts and State of the Art
	FPGA architecture
	Lookup tables
	Logic blocks
	Routing architecture
	SRAM vs. DRAM
	Data alignment
	Shift register pattern

	Related work
	Hitmap
	Controllers
	OpenCL
	Other programming models

	Conclusions

	Description of the solution
	Approach to the solution
	Configurable parameters
	Compiler parameters
	Kernel parameters
	Pipeline configuration

	Local memory geometry: Matrix Transpose
	Integration of FPGA as accelerator in Controllers
	Single work item kernels
	Format of kernel name
	Expansion of kernel signature
	Kernel declaration
	Managing incongruent grid sizes
	Replacing pinned memory by aligned memory

	Conclusions

	Implementation
	Naïve approach to the solution
	Changes made to the GPU backend
	Changes made to the experimentation code

	Approaches considered before definitive solution
	First steps towards generalisation
	First approach: Unified host+device programs
	Second approach: First steps towards compiler agnostic compilation

	Definitive approach: returning to the ktile wrapper
	Expanding the kernel signature from CTRL_KERNEL
	Profiling and emulation

	Conclusions

	Experimentation
	Objectives of experimentation
	Case study: Hotspot
	Case study: Matrix Power
	Case study: Sobel
	Experimental environment
	Performance study
	Development effort measures
	Conclusions

	Conclusions
	Objectives fulfilled
	Future work
	Personal assessment

	Contents of the CD-ROM

