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A B S T R A C T   

Today’s decision-makers rely heavily on Integrated Assessment Models to guide the decarbonisation of the en-
ergy system. Uncertainty is embedded in the assumptions these models are built upon. Unless those uncertainties 
are adequately assessed, using Integrated Assessment Models for policy design is unadvised. In this work we run 
Monte Carlo simulations with the MEDEAS model at European Union scale to assess how the uncertainties on the 
main drivers of the transition affect key socioeconomic and environmental indicators. In addition, One-at-a-time 
sensitivity exploration is performed to grade the contribution of a set of model parameters to the uncertainty in 
the same key indicators. The combination of the uncertainties in the model drivers magnify the uncertainty in the 
model outputs, which widens over time. Parameters affecting sectorial and households’ energy efficiency and 
households’ transport energy use ranked amongst the most impacting ones on simulation results.   

1. Introduction 

In the process to achieving long-term sustainability of human soci-
eties, and with capitalism as the global economic system of choice, all 
hopes are put on the urgent replacement of fossil fuels by renewable 
energy as the mean to avoid the worst impacts of the current climate 
crisis and the foreseeable energy crisis. 

Compared to past global challenges such as the ozone layer deple-
tion, maintaining the status quo while transitioning our societies in such 
context of climate change, environmental degradation and potential 
energy scarcity is undoubtedly amongst the most complex humanity as a 
whole has ever faced. 

While certain critical planetary boundaries have already been 
crossed [1,2], putting the climatic stability and resource abundance that 
our societies have enjoyed during the Holocene at stake, failing to take 
the right decisions in the coming years may bring our planet and our 
civilization to a point of no return. In such challenging and uncertain 

context, all kinds of tools, perspectives and approaches will be needed to 
guide decision-making. In this sense, numerical models, and particularly 
Integrated Assessment Models (IAMs) are a group of mathematical 
models used to portray the social, economic, environmental, climatic 
and institutional dimensions of, in the context of this work, the energy 
transition [3]. As such, they represent valuable decision support tools, 
since they provide a riskless manner of exploring alternative scenarios 
and policies [4,5]. 

Despite the great advances made in the development of IAMs in the 
last decades, most of them still share a core set of common assumptions 
whose validity is being disputed in scientific forums. First, IAMs are 
generally characterized by a rather sequential structure with limited 
feedbacks among the represented subsystems. It is especially relevant 
the omission of climate change impacts [6–8]. Second, a lack of plurality 
in the methods to represent the economic dimension has been detected 
in the literature, dominated by assumptions of conventional equilibrium 
through optimization methods, aggregated production functions as well 
as the widespread use of prices as indicators of scarcity [9]. Third, fossil 
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fuel resource abundance, understood as the vast geological availability 
accessible at an affordable price, is a default assumption in most of the 
prominent IAMs used for climate policy analysis. Also, it is usually 
assumed that the resource base of renewable energy sources (RES) 
provides no practical limitation if adequate investments are forthcoming 
[10]. Finally, most models disregard the implications that the future 
energy and mineral investments to achieve the transition to renewables 
may have for the system [11]. 

The MEDEAS models were developed to fill those gaps. Leaving 
technological and economic parameter differences and licensing aside, 
based on the classification used in Ref. [8], the MEDEAS models are 
comparable to the ETM [12], LEAP [13], NEMS [14], POLES [15], 
RETScreen [16] and IEA’s WEM [17] models. However, the following 
aspects set the MEDEAS models apart from their counterparts. First, 
their implementation using the system dynamics approach allows to 
represent none-equilibrium processes and feedback loops (e.g. climate 
damage); second, biophysical limits in terms of energy and mineral re-
sources are enforced: the availability of fossil fuels is represented using 
Hubbert curves [18], and the minerals consumption is referred to their 
actual resources and reserves; third, by using physical variables (energy) 
in the economic module, potential energy scarcity events are repre-
sented without losing sight of the economy (by using Input Output 
Tables and energy intensities [19]); and finally, the Python version of 
the MEDEAS models (pymedeas) is distributed for free and is fully open 
source. 

Despite the unquestionable potential of IAMs, the largely uncertain 
factors that will shape the future energy system, including technological 
innovation, resource availability, socio-economic dynamics and 
geopolitics [20], are unavoidably embedded in the thousands of hy-
pothesis and parameters included in these models and propagate to their 
outputs [21]. Consequently, unless sufficient testing of their projections 
is provided, these models risk losing credibility [22,23]. Most impor-
tantly, scientific models are today’s intermediaries between science and 
policy [24], hence uncertainty represents a non-negligible concern [25] 
that has to be addressed in order for the models to serve society [26]. 

Uncertainty and Sensitivity analysis are methodologies that tackle 
that particular issue. Uncertainty Analysis (UA) aims at assessing the 
uncertainty of the model projections resulting from the uncertainty in 
the model inputs, not trying to identify its origin, while Sensitivity 
Analysis (SA) is used to identify the input parameters’ relative contri-
bution to the outputs uncertainty. To this regard, SA is not to be 
considered as an alternative to UA but rather as its complement [27]. 

The need to include UA and SA in the modelling process is backed by 

a large number of publications that count these techniques among the 
best modelling practices and especially for their application in policy 
design [20,28–30]. The information extracted from their application 
provides a better understanding of the functioning and behavioural 
boundaries of the model. Most importantly, these techniques must make 
it possible to explain results from the model in terms of the mechanisms 
that drives the model [30]. 

Although the application of UA and SA in energy-economy IAMs is 
limited [24,30], examples include: Ref. [22], who performed Global 
Sensitivity Analysis (GSA) of Res-IRF, an energy-economy model of the 
demand for space heating in French dwellings; Ref. [31] used UK energy 
system model, ESME, to explore trade-offs in cost effective energy 
transition scenarios and performed a sensitivity analysis to explore the 
uncertainties that have most impact on the transition; Ref. [32] per-
formed a sensitivity analysis on the GET 7.0 model to analyse how the 
development of the energy supply system in a carbon-constrained world 
influences the cost-effectiveness of fuels and propulsion technologies in 
the transportation sector. Other examples of the application of SA 
techniques in IAMs are reviewed in Ref. [33]. Based on the low number 
of such works, and taking into account the vast and largely unknown 
number of parameters that IAMs include, the knowledge gaps and un-
certainties on the shape the energy transition will take remain even 
larger. 

To date no study has been published dealing with uncertainty in the 
MEDEAS models. Only in Ref. [34] a scenario analysis was performed, 
though in the form of a parametric optimization. Hence, the current 
work represents the first application of uncertainty and sensitivity pro-
cedures to the MEDEAS models, and a further claim for the need to apply 
these techniques in IAMs used in policy design. 

Additionally, in this work parameter sensitivity is analysed both 
qualitatively and quantitatively, and 3 different measures of sensitivity 
are combined to derive results. The first measure consists on the use of 
Spider plots, which provides visual clues on the impact of each input on 
each output. On the other hand, the quantitative measures are the RMSD 
and the Euclidian distance. The first provides an indication of the 
sensitivity of each output parameter relative to each input along the 
analysed timeframe, while the second measures the impact of each input 
on the combined trajectory of all the selected outputs altogether. 

By using these procedures, the main objectives of this work are (1) to 
assess the uncertainties embedded in the model projections and (2) to 
identify the main drivers of the energy transition of the EU28, hence 
provide clues on the key aspects that need to be dealt with in order to 
make the energy transition happen. 

Abbreviations 

BAU Business As Usual 
CSP Concentrated Solar Power 
EROI Energy Return on Investment 
EROIst Standard Energy Return on Investment 
ESME Energy Systems Model (for the UK) 
ESOI Energy Storage On energy Invested 
ETM Energy Transition Model 
EU28 European Union of 28 member states 
GDP Gross Domestic Product 
GDPpc Gross Domestic Product per capita 
GHG Greenhouse gas (emissions) 
GSA Global Sensitivity Analysis 
IAMs Integrated Assessment Models 
IEA International Energy Agency 
IT Information & Technology 
LEAP Long-range Energy Alternatives Planning system model 
MEDEAS Modelling sustainable Energy system Development under 

Environmental And Socioeconomic constraints 
MIT Massachusetts Institute of Technology (license) 
NEMS National Energy Modelling System 
NPP Net Primary Production 
OAT One-at-a-time 
PE Primary Energy 
POLES Prospective Outlook on Long-term Energy Systems model 
PV solar Photovoltaic 
RE Renewable Energy 
RES Renewable Energy Sources 
RETScreen Renewable-energy and Energy-efficiency Technology 

Screening software 
RMSD Root Mean Square Deviation 
SA Sensitivity Analysis 
TFEC Total Final Energy Consumption 
TIMES The Integrated MARKAL-EFOM System (model) 
UA Uncertainty Analysis 
WEM World Energy Model  
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After the Introduction, this document is structured as follows: in the 
Methods section we first present the theoretical background of the 
MEDEAS models. After that we describe the simulations that were run 
and present how the results were processed in order to obtain the in-
dicators used to assess uncertainty and sensitivity. The Methods section 
is followed by the Results, the Discussion and the final conclusions. 

2. Methods 

2.1. The MEDEAS models 

MEDEAS (Modelling sustainable Energy system Development under 
Environmental And Socioeconomic constraints) is a Horizon 2020 
research project that started in 2015 with the aim of developing new 
IAMs to tackle the aforementioned limitations of most mainstream IAMs. 
This project represents a joint effort of a consortium of 12 European 
institutions, including public and private research centres and univer-
sities, energy agencies and IT services companies, to provide policy 
makers with a modelling tool to test new and existing policies to achieve 
a more sustainable European Energy system. 

More specifically, the MEDEAS are a set of a policy-simulation dy-
namic-recursive models sharing the same conceptual modelling 
approach and designed applying System Dynamics. They are available at 
three geographical scales: World, EU28 and country-level (Austria and 
Bulgaria). The one used in this work is that at European scale. 

Although the models were originally developed in the proprietary 
Vensim® software, the official version of the MEDEAS models are 
written in Python and distributed free of charge under the MIT license, 
guaranteeing transparency, reproducibility and traceability [4]. 

All three models are structured in seven main conceptual sub- 
modules: Economy, Energy availability, Energy infrastructures, Mate-
rials, Land-use, Climate/Emissions, and Social & Environmental impact 
indicators (Fig. 1). 

The MEDEAS models dynamically operate as follows: for each 
period, a sectoral economic demand is estimated from exogenous 
pathways of expected Gross Domestic Product per capita (GDPpc) and 
population evolution. The final energy demand required to fulfil pro-
duction is obtained using energy-economy hybrid input-output analysis, 
and energy intensities by type of final energy. The energy sub-module 
computes the available final energy supply, which may or may not 

satisfy demand, adapting the economic production to the available en-
ergy. The materials required by the economy, with emphasis on those 
required by alternative green technologies, are estimated; this allows to 
assess eventual future mineral bottlenecks. The new energy infrastruc-
ture requires energy investments, whose computation allows to estimate 
the variation of the EROI (Energy Return over Energy Invested) of the 
system, which in turn affects the final energy demand. The climate sub- 
module computes the greenhouse gas (GHG) emissions associated to the 
resulting energy mix (complemented by exogenous pathways for non- 
energy emissions), which feeds back to the economy, affecting final 
demand. Additional land requirements are accounted for. Finally, the 
social and environmental impacts are computed. For more detail the 
reader is referred to Refs. [36,37]. 

Despite their short existence, the MEDEAS models have already been 
used to study different aspects of the energy-economy-environment in-
terrelations in 6 publications. In Ref. [36] the MEDEAS model at World 
scale was presented, and the main features and hypothesis were dis-
cussed. In Ref. [37], the Python version of the EU28 model (pymedea-
s_eu) was introduced, the principles behind its development approach 
were laid-out (openness, transparency, user friendliness and 
community-based design) and the effect of the main features of the 
model (evolution of sectorial energy efficiencies, EROI (Energy Return 
on Investment) feedback, climate change impacts and fossil fuels 
availability) was demonstrated through a scenario analysis. In the third 
study [38], the MEDEAS model at World scale was used to evaluate the 
energy (based on the EROI) and the material costs of the transition. 
Ref. [34] performed an optimization study aimed at finding the values of 
a set of model parameters in order to fit the simulated CO2 emissions to 
previously obtained decarbonisation pathways that would allow to 
remain below 2 ◦C of global warming [39]. The fifth work [19] presents 
the macro-economic module included in the MEDEAS models and uses 
simulation results obtained from different input scenarios to highlight 
the conflict between economic growth, climate policy and the sustain-
ability of resources. Finally, Ref. [40] describes a novel methodology, 
implemented in the MEDEAS models, to estimate energy demand based 
on the projection of the evolution of sectoral final energy intensities. 

2.2. Simulations 

The simulations are divided between those used for the Uncertainty 

Fig. 1. Graphical representation of the modules of the MEDEAS models [35].  
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Analysis (UA) and those used for the Sensitivity analysis (SA). Thus, in 
the first group of simulations (UA), the propagation of uncertainty from 
inputs to outputs is assessed, while in the second group (SA), the con-
tributions of the inputs to the uncertainty of each of the outputs is 
analysed. 

The protocol presented herein corresponds to running multiple 
simulations with different combinations of the input parameters values, 
each within a predefined range. This way, uncertainty in the inputs is 
propagated to the outputs and can be assesses/quantified. 

All simulations comprise the time-frame between 1995 and 2050, 
with a time-step of 0.03125 years (11.4 days). The outputs are analysed 
at an annual frequency. Model projections start from 2015, while before 
that the presented results correspond to historical data. 

The scenario used for all simulations is the Business as Usual (BAU), 
which perpetuates historical trends of economic growth, sustained by 
fossil fuels, in which little efforts are put into making the transition to 
decarbonizing the energy system. For further details, the description of 
the most relevant inputs and assumptions that characterize the BAU 
narrative in the MEDEAS models can be found in Ref. [40] (Appendix C 
and Table C. 1). 

2.2.1. Uncertainty Analysis 
The 27 input parameters perturbed during the scenario analysis 

belong to a subgroup of the exogenous model parameters that the user is 
expected to tweak to create different simulation scenarios (model 
drivers). Their names, description and their assigned minimum and 

maximum values are presented in Table 1. 
Among all parameters that define scenarios in the MEDEAS models, 

these 27 were selected due to their uncertain nature and because they 
were expected to have a large impact on the simulation outputs. The list 
includes the desired GDPpc annual growth rate, the annual population 
change, and the techno-ecological potentials and growth of the 
deployment rates of the different RE technologies included in the model 
(solar photovoltaic (PV), Concentrated Solar Power (CSP), onshore and 
offshore wind, etc.) (see Table 1). The upper and lower values of the 
ranges for each of them were selected making a trade-off between 
covering the widest possible range of the values to check the model 
stability, and limiting the values to realistic figures for the uncertainty 
analysis. 

Version 1.2 of the Vensim® implementation of the model (MEDEA-
S_EU v1.2) was used to take advantage of the built-in Sensitivity Simu-
lations functionality, which in this work was used to evaluate 
uncertainty. One thousand multivariate Monte Carlo simulations were 
run on a conventional workstation, sampling from random uniform 
distributions between the minimum and maximum values given to each 
input parameter (Table 1). 

2.2.2. Sensitivity exploration 
For the sensitivity exploration, 19 fixed-value (mostly based on 

literature values) model parameters were selected. The focus was put, 
again, on those parameters whose values were judged more uncertain. 
The minimum and maximum values they were given were based on 

Table 1 
Input parameter names (Vensim® nomenclature), description and minimum and maximum values used to obtain the random uniform distribution for each of them for 
the scenario analysis.  

Input parameter Description Unit Nom. Value in 
BAU 

Minimum Maximum 

P customized cte GDPpc 
variation 

Desired per capita GDP constant annual change. 1/Year 0.02 − 0.05 0.2 

P customized cte pop 
variation 

Population constant annual change. 1/Year 0.005 − 0.05 0.05 

max hydro TWe Techno-ecological potential of hydropower. TWe 0.05 0.025 0.2 
max PE geot-elec TWth Maximum potential primary energy of geothermal for electricity generation. TWth 0.0198 0.01 0.066 
max oceanic TWe Techno-ecological potential of oceanic energy. TWe 0.0011 0.001 0.011 
max onshore wind TWe Techno-ecological potential of onshore wind. TWe 0.1 0.05 0.5 
max offshore wind TWe Techno-ecological potential of offshore wind. TWe 0.1 0.06 0.8 
max potential PHS TWe Maximum potential for Pumping-storage hydroelectricity. TWe 0.0138 0.008 0.055 
P geot growth Annual geothermal capacity growth in relation to the existing installed capacity. 1/Year 0.034 0 0.1 
P solid bioE-elec growth Annual solid bioenergy for electricity capacity growth in relation to the existing 

capacity. 
1/Year 0.035 0 0.3 

P oceanic growth Annual oceanic energy capacity growth in relation to the existing capacity. 1/Year 0.004 0 0.6 
P solar PV growth Annual solar photovoltaic capacity growth in relation to the existing capacity. 1/Year 0.035 0 0.6 
P wind offshore growth Annual offshore wind capacity growth in relation to the existing capacity. 1/Year 0.254 0 0.6 
P wind onshore growth Annual onshore wind capacity growth in relation to the existing capacity. 1/Year 0.087 0 0.5 
P hydro growth Annual hydropower capacity growth in relation to the existing capacity. 1/Year 0.007 0 0.1 
P CSP growth Annual concentrated solar power capacity growth in relation to the existing 

capacity. 
1/Year 0.036 0 0.5 

P biofuels 2gen land compet Annual capacity growth of second generation biofuels in relation to the existing 
capacity. 

1/Year 0.04 0 0.2 

P biofuels 3gen land compet Annual capacity growth of third generation biofuels in relation to the existing 
capacity. 

1/Year 0.04 0 0.2 

start year 3gen cellulosic 
biofuels 

Year of the introduction of third generation biofuels in the energy market. Dimensionless 2025 2020 2050 

Annual shift from 2gen to 
3gen 

Annual share of land shifted from second generation to third generation biofuels. 1/Year 0.1 0 0.4 

P bioE residues Annual growth of electric bioenergy produced from residues in relation to the 
existing capacity. 

1/Year 0.11 0 0.3 

max PE biogas EJ Maximum potential primary energy generation from biogas. EJ/Year 4 3.2 16 
Max NPP potential bioE 

residues 
Maximum potential Net Primary Production (NPP) for electric bioenergy from 
residues. 

EJ/Year 0.825 0.66 3.3 

max PE waste Maximum potential primary energy generation from waste (waste-to-energy). EJ/Year 2 1.25 5 
P solar for heat Annual capacity growth of solar power for heat generation in relation to the 

existing capacity. 
1/Year 0.07 0.1 0.5 

P geothermal for heat Annual capacity growth of geothermal power for heat generation in relation to the 
existing capacity. 

1/Year 0.051 0.05 0.3 

P solid bioE for heat Annual solid bioenergy for heat capacity growth in relation to the existing 
capacity. 

1/Year 0 0.05 0.4  
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expert best guesses and are also presented in Table 2. 
In addition, to evaluate the impact of two endogenous parameters on 

the model outputs, they were both multiplied by a constant, that either 
divided (minimum value of the range) or multiplied (maximum value) 
the actual value of the variable by 2. The two endogenous variables were 
in fact vectors, and only some of their dimensions were perturbed (see 
Table 3). 

The Sensitivity exploration was carried out using version 0.3.0 of 
pymedeas_eu model, which is the Python translation of the Vensim® 
model used for scenario analysis. Forty-three simulations were run, 
modifying one parameter at a time (OAT): 21 with the upper values of 
the range of each parameter, 21 with the lower values and 1 with 
nominal values (see Tables 2 and 3). 

2.3. Sensitivity indexes and results processing 

The list of endogenous parameters (model outputs) upon which the 
uncertainty of the inputs is assessed, was confectioned based on a 
qualitative comparison of the MEDEAS model with two of the most 
widely used energy-economy models (TIMES [41] and LEAP [13]), and 
includes the parameters that are present in all three models (Table 4). 
This previous work was done with the aim of facilitating a future com-
parison between the outputs of the three models at country scale 
(Austria and Bulgaria). 

2.3.1. Uncertainty analysis 
Results of the scenario analysis were qualitatively interpreted using 

fan charts showing the confidence bounds around the mean of the dis-
tribution of each output variable for the 1000 Monte Carlo simulations. 

2.3.2. Sensitivity exploration 
On the other hand, the sensitivity measures (qualitative and quan-

titative) used to analyse the outputs of the 43 simulations consisted on:  

a) plotting the values of all output variables at the end of the simulation 
(year 2050) against the percentage of change of each perturbed 
parameter with respect to its nominal value (spider plots). 

b) the Root Mean Square Deviation (RMSD) between the curves ob-
tained for each output with the minimum and maximum values of 
the perturbed input parameters.  

c) the Euclidean distance between all aggregated outputs obtained with 
perturbed and nominal values of each input parameter (maximum- 
nominal and minimum-nominal distances). 

The expressions below define the input (Eq. (1)) and output (Eq. (2)) 
parameter spaces, that will be used in subsequent equations: 

P={p1,…, pi,…, p21} (1)  

Z =
{

z1(u1,P, t),…, zj
(
uj,P, t

)
,…, z15(u15,P, t)

}
(2) 

Where pi corresponds to any of the input parameters of Table 1 and zj 

Table 2 
Exogenous parameters names (using the pymedeas_eu naming convention), description, units and nominal and minimum and maximum values used for the sensitivity 
exploration.  

Exogenous parameter name Description Unit Nominal Max. 
value 

Mini. 
value 

a1_coef_th Average energy spent in transportation for households in liquid- 
based four-wheelers per unit of households’ economic demand. 
Assuming their present use and technical efficiency. 

EJ/1012 1995 
US$ 

1.929 2.8935 0.9645 

a2_coef_th Average energy spent in transportation for households in liquid- 
based two-wheelers per unit of households’ economic demand. 
Assuming their present use and technical efficiency. 

EJ/1012 1995 
US$ 

0.5502 0.8253 0.2751 

eolxdashxrr_minerals_alt_techn_res_vsx_total_economy Recycling rate of minerals used in variable RE technologies in 
relation to the rates of recycling of the total economy. 

Dimensionless 0.3333 1.0 0.0 

esoi_phs_depleted_potential ESOI of the depleted potential of PHS. ESOI of PHS linearly 
decreases with the cumulated PHS installed capacity. 

Dimensionless 5.0 10.0 1.0 

exponent_availability_conv_gas Priority of conventional over unconventional gas. The smaller the 
value, the higher the priority of conventional gas. 

Dimensionless 0.25 1.0 0.1 

exponent_availability_conv_oil Priority of conventional over unconventional oil. The smaller the 
value, the higher the priority of conventional oil. 

Dimensionless 0.25 1.0 0.1 

future_share_gasxdivxxcoalxplusxgasx_for_elec Future share of gas over coal and gas for electricity generation. Dimensionless 0.3 1.0 0.0 
max_share_transmxandxdistr_elec_losses Maximum share of electricity transmission and distribution losses 

(when RES supply 100% of the total consumption). 
Dimensionless 0.1698 0.5094 0.0566 

min_cp_nuclear Minimum Capacity factor (Cp) for nuclear energy. Dimensionless 0.6 0.9 0.333333 
min_energy_intensity_vs_initial Minimum attainable value of the energy intensity of all economic 

sectors (in percentage with respect to the historical value in 
2009). 

Dimensionless 0.3 0.45 0.15 

min_energy_intensity_vs_initial_h Minimum attainable value of the energy intensity of households 
(in percentage with respect to the historical value in 2009). 

Dimensionless 0.3 0.45 0.15 

min_lifetime_ev_batteries Minimum lifetime of electric vehicles batteries. Years 5.0 10.0 2.5 
share_energy_requirements_for_decom_ev_batteries Share of energy required for decommissioning electric vehicles’ 

batteries. 
Dimensionless 0.1 0.2 0.05 

share_gasxdivxxcoalxplusxgasx_for_heat_plants Share of natural gas in relation to the total fossil fuels for heat 
generation. 

Dimensionless 0.72 1.0 0.0 

share_max_of_change_vs_historical_mean_h Maximum rate of change of the energy intensities of households 
(by final source) with respect to historical trends. 

Dimensionless 0.5 0.75 0.25 

share_max_of_change_vs_historical_mean_rate Maximum rate of change of the energy intensities of all economic 
sectors (by final source) with respect to historical trends. 

Dimensionless 0.5 0.75 0.25 

share_res_elec_generation_curtailedxandxstored Share of the generation of electricity from RE technologies 
curtailed or stored. 

Dimensionless 0.2 0.5 0.0 

threshold_remaining_potential_new_capacity Value of the remaining potential of each RE technology for 
electricity generation below which the planning of new capacity 
is not economically viable (decreasing returns). 

Dimensionless 0.5 0.9 0.1 

share_energy_requirements_for_decom_res_elec Energy requirements for decommissioning renewable electricity 
generation plants as a share of the energy requirements for the 
construction of new capacity. 

Dimensionless 0.1 0.2 0.05  
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refers to any of the output variables of Table 4 and uj are any other 
parameters or variables not included in the input parameter space P that 
each output variable depends on. Note that not all output variables 
depend on all input parameters in P. t is time (Eq. (3)). 

t={1995, 1996,…, 2050} (3) 

The RMSD between the output variables obtained with the minimum 
and maximum values of each perturbed parameter (RMSDpi

j ) are calcu-
lated with Eq. (4): 

RMSDpi
j =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑2050

t=1995

(
fj
(
uj,p1,…,pmin

i ,…,p21, t
)
− fj

(
uj,p1,…,pmax

i ,…,p21, t
))2

2050 − 1995

√

(4) 

The RMSD is divided by the percentage change of the perturbed 
parameter (Δpi) so that all RMSD obtained for the same output variable 
(perturbing different inputs) are comparable among them (Eq. (5)). 

Δpi =
pmax

i − pmin
i

pnom
i

(5)  

Where pmax
i , pmin

i and pnom
i correspond to the minimum, maximum and 

nominal values of the perturbed parameter. 
To ensure that all outputs have the same importance on the calcu-

lation of the Euclidean distance, they are previously standardised using 
Eq. (6): 

f̆j =
fj − μj

σj
(6)  

where fj is the time-series to standardise (endogenous variable), μj is its 
mean value and σj is its standard deviation. The standardised time-series 
(f̆j) will have a mean of 0 and a standard deviation of 1. 

The Euclidean distance (scalar) between the vectors of normalised 
outputs obtained with the maximum and nominal values of the input 
parameter pi, at time t (Epi ,max− nom

t ) is obtained with Eq. (7): 

Epi ,max− nom
t =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑15

j=1

(

Žpi,max
j,t − Žpi ,nom

j,t

)2
√
√
√
√ (7)  

Where, Žpi,max
j,t and Žpi ,nom

j,t are the vectors of standardised outputs resulting 
from simulation with the maximum and nominal values of the range for 

Table 3 
Endogenous parameter names, descriptions, units, affected indexes/sub-indexes and multiplicative factors that were used during the sensitivity exploration.  

Endogenous Parameter Description Unit Affected indices/sub-indexes Minimum Maximum 

variation_nonxdashxenergy_use Annual variation of fuels for non-energy uses. EJ liquids, gases, solids. x0.5 x2.0 
energy_per_x_t Energy per 1012 1995 US$ of economic activity of inland 

transport sector. 
EJ/1012 1995 
US$ 

All inland transport vehicle sub- 
indexes. 

x0.5 x2.0  

Fig. 2. Confidence bounds for the standard EROI of the system (unitless) for the 
1000 Monte Carlo simulations. 

Table 4 
List of common outputs of the MEDEAS_EU and pymedeas_eu models (using the 
naming convention of pymedeas_eu) to be analysed in scenario analysis and 
sensitivity exploration.  

Output parameter name (as in 
pymedeas_eu) 

Description Units 

eroist_system Standard EROI of the 
system 

Dimensionless 

gdp GDP in 1012 1995 US$ 1012 1995 US$ 
gdppc GDP per capita (1012 

1995 US$ per capita) 
$/people 

real_fe_consumption_by_fuel 
[electricity] 

Real final energy 
consumption by fuel 
after accounting for 
energy availability 
(electricity) 

EJ 

real_fe_consumption_by_fuel[gases] Real final energy 
consumption by fuel 
after accounting for 
energy availability 
(gases) 

EJ 

real_fe_consumption_by_fuel[heat] Real final energy 
consumption by fuel 
after accounting for 
energy availability 
(heat) 

EJ 

real_fe_consumption_by_fuel[liquids] Real final energy 
consumption by fuel 
after accounting for 
energy availability 
(liquids) 

EJ 

real_fe_consumption_by_fuel[solids] Real final energy 
consumption by fuel 
after accounting for 
energy availability 
(solids) 

EJ 

real_tfec Real total final energy 
consumption (not 
including non-energy 
uses) 

EJ 

remaining_potential_tot_res_elec Remaining potential 
available as a fraction of 
unity 

Dimensionless 

share_res_electricity_generation Share of RES in the 
electricity generation 

Dimensionless 

total_co2_emissions_gtco2 Total annual CO2 

emissions 
Gt CO2/Year 

total_fe_elec_generation_twh Total final energy 
electricity generation 

TWh 

total_land_requirements_renew_mha Land required for RES 
power plants and total 
bioenergy (land 
competition + marginal 
lands) 

MHa 

tpes_intensity_ej_tdollar Total primary energy 
intensity 

EJ/1012 1995 
US$  
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input parameter pi, respectively, also at time t. 
To get a single value for the whole simulated period, the Euclidean 

distances at all simulation times are added as follows (Eq. (8)): 

Epi ,max− nom =
∑2050

t=1995
Epi ,max− nom

t (8) 

The resulting value is divided by the percentage of change of the 
perturbed parameter so that the Euclidean distances obtained for every 
input parameter are comparable (Eq. (9)): 

δpmax− nom
i =

pmax
i − pnom

i

pnom
i

(9) 

The same procedure is done to obtain the time aggregated Euclidean 
distance between the minimum and nominal values of each input 
parameter pi(Epi ,min− nom), which are also divided by the percentage 
change of the minimum and nominal values of the input parameter 
(δpmin− nom

i ). 

3. Results 

3.1. Uncertainty analysis 

None of the 1000 Monte Carlo simulations failed to converge. 
Therefore, the minimum and maximum values of the input parameters 
shown in Table 1 correspond to the tested stability ranges of the model. 

Figs. 2–5 present the confidence bounds around the mean of the 
distribution of each output variable for the 1000 Monte Carlo simula-
tions. The black line corresponds to the evolution of the value of the 
variable obtained with nominal values of all inputs (BAU scenario). For 
practical reasons, only the plots of the 7 most representative output 
variables of the 15 listed in Table 4 are presented. 

The values of the standard EROI obtained from the Monte Carlo 
Experiments start at ca. 11 in 2015 and by 2050 the spread goes from as 
low as ca. 7 to as high as 13.5 (Fig. 2). The distribution is uniform with a 
slight negative skew. On the other hand, the distributions for GDP, 
GDPpc, total final energy consumption (TFEC) and the CO2 emissions 
are very similar (Fig. 3) and show a very large positive skew. Some of the 
simulations for these 4 output variables display positive exponential 
trends. The share of electricity produced from RES shows a large un-
certainty with Platykurtic distribution (negative kurtosis) and a negative 
skew towards the end of the simulated period (Fig. 4). Finally, the un-
certainty of the land requirements is again very large (Fig. 5), and in this 
case the top limit is the result of the decreasing land availability which 
acts as a ceiling for further renewable capacity installation. 

3.2. Sensitivity exploration 

Spider plots are used to qualitatively assess the impact of the 
perturbation of the parameters from Tables 2 and 3 on the values of the 
output variables from Table 4 in 2050. Fig. 6 shows how 6 of the selected 
15 model outputs are affected by the perturbations on the values of each 

Fig. 3. From top-left to bottom-right, confidence bounds for output variables GDP (in 1012 1995US$), GDP per capita (in 1012 1995US$ per person), Total Final 
Energy Consumption (TFEC, in EJ) and total CO2 emissions (GT of CO2) for the 1000 Monte Carlo simulations. 
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input parameter. 
All output parameters were affected by the individual perturbation 

of most inputs, though in different degrees. With only a few exceptions, 
increasing or decreasing the input parameter value by the same per-
centage did not result in proportional increases or decreases in the 
output variables, showing the non-linear relation between inputs and 
outputs of the model. 

Perturbations on the variation of the non-energy use of liquids, solids 
and gases (variation_non-energy_use) significantly affected all model 

outputs. The impact was particularly clear in the case of the output 
variable GDP. For all output variables except for the “share of RES in the 
electricity generation”, lower values of this parameter resulted in higher 
values of the outputs. 

Input parameter min_energy_intensity_vs_initial represents the mini-
mum value that the energy intensity of each economic sector can 
potentially reach, with respect to their intensities in 2009. Perturbations 
above and below its nominal value (30%) also produced noticeable 
changes in the output variables, being the system’s EROI and the total 
final energy consumption (TFEC) the output variables more significantly 
impacted. CO2 emissions also increased for higher values of this 
parameter. 

Parameter threshold_remaining_potential_new_capacity, corresponds to 
the threshold value of the remaining potential capacities of the RE for 
electricity generation below which the planning of new renewable 
infrastructure starts to decline due to decreasing returns. Increasing the 
nominal value of this parameter (0.5) had a negative impact on the share 
of RES and reduced land requirements. 

Input parameter a1_coef_th, with units of EJ/1012 1995 US$, is a 
coefficient involved in the calculation of the variation of the energy 
intensities of the household transport sector resulting from using 
different energy carriers (gas, liquids and electric batteries), and had a 
nominal value of 1.46. This parameter had a negative relation with 
TFEC, CO2 emissions and the standard EROI of the system. 

CO2 emissions were greatly affected by the minimum value taken by 
the capacity factor (min_cp_nuclear, nominal value = 0.6), which repre-
sents the average fraction of the time that nuclear plants are producing 
energy with respect to the total time. The value of this parameter may tip 
the balance between requiring new nuclear capacity or not. 

Tables 5–7 show the highest three values of the normalised RMSD 
between each output variable obtained with the minimum and 
maximum values of the range of each input parameter. For each output 
variable (columns in the tables), the higher the value of the normalised 
RMSD, the more sensitive it is to changes in the perturbed parameter 
(rows in the tables). 

Table 8 shows to which perturbed parameter each output variable 
was most sensitive, based on the values of the normalised RMSD. 

Table 9 shows that input parameter min_energy_intensity_vs_initial was 
in the top three of the most impacting parameters for all 15 outputs. 
Variable variation_nonxdashxenergy_use and parameter a1_coef_th came 
second and third, being 8 and 7 times among the top three, respectively. 
These results confirm the qualitative results obtained with the spider 
plots. 

Similar conclusions were drawn based on the values of the time- 
aggregated Euclidian distances of all outputs obtained with the mini-
mum and nominal and maximum and nominal values of each input 
parameter (Fig. 7). Accordingly, the most impacting of the selected input 
parameters was the min_energy_intensity_vs_initial, followed by a1_conf_th 
and min_energy_intensity_vs_initial_h. Variable variation_nonxdashxe-
nergy_use came in at the 4th place. 

On the other hand, perturbations in parameters min_lifeti-
me_ev_batteries, exponent_availability_conv_gas, share_max_of_change_ 
vs_historical_mean_rate and share_max_of_change_vs_historical_ 
mean_rate_h (see descriptions in Table 2) did not affect the analysed 
output variables in any particular way. Other parameters that had little 
impact on the outputs were share_res_elec_generation_ 
curtailedxandxsored, share_gasxdivxcoalplusxgasx_for_heat_plants and 
esoi_phs_depleted_potential. 

4. Discussion 

As Ref. [42] points out, it must be noted that sensitivity and uncer-
tainty analysis are themselves uncertain, because there is considerable 
uncertainty in quantifying the uncertainty in input factors. Hence, the 
criteria for the selection of the input parameter ranges must be trans-
parent. In this work, the minimum and maximum values of the input 

Fig. 4. Confidence bounds for the fraction of the total electricity generation 
produced from renewable sources for the 1000 Monte Carlo simulations. 

Fig. 5. Confidence bounds for the total land required by renewable power 
plants (in Mha) for the 1000 Monte Carlo simulations. 
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parameters for the uncertainty analysis (Table 1) were selected using 
two criteria: they should be sufficiently far apart to allow testing the 
model for stability, but at the same time remain realistic. Most of the 
parameters of the list correspond to the techno-ecological potentials for 
the different RES technologies, whose values vary orders of magnitude 
depending on the bibliography. The list also includes the annual in-
crease in the installed capacity of the same technologies which, at least 

on the first stages of the transition, will not be affected by biophysical 
(materials or energy scarcity) or technical constraints (grid integration) 
and hence have been assigned wide ranges. Although a 20% increase in 
the desired GDPpc may seem unrealistic, this parameter is not the actual 
GDPpc, but rather is the expected per capita economic output, which is 
constrained by resource availability and climate change impacts. On the 
other hand, for the sensitivity exploration the ranges given to the input 

Fig. 6. From top-left to bottom-right, values of the GDP, final energy consumption, share of RE in electricity generation, land requirements for RE power plants, 
annual CO2 emissions and standard EROI of the system in 2050, obtained by changing the model parameter values by a specified percentage with respect to the base 
value (x axis). 
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parameters are less relevant, since all output perturbations are nor-
malised by the percentage of change of the input parameter with respect 
to its nominal value. 

4.1. Uncertainty analysis 

The analysis of the 1000 Monte Carlo simulations shows that un-
certainty increases over time and the confidence bounds become wider 
for all output variables analysed. In other words, uncertainty widens as 
the projected output includes less of the known past. This behaviour is to 
be partly expectable because some of the tweaked input parameters are 
constant rates (e.g. growth rate of installed capacity of the different RE 
technologies). 

The EROI of the system disperses from the initial value of ca. 11:1 in 
2015 to values between 7:1 to 13.5:1 in 2050 (Fig. 2). Since the EROI of 

renewable energy generation technologies are nowadays smaller (on 
average) than those of fossil fuels [38], the lower values observed may 
correspond to scenarios with higher penetration of RE, therefore sce-
narios with higher implementation rates of the different RE technologies 
included in the model. Although the uncertainty for the EROI may seem 
relatively small, the difference between the highest and the lowest 
values of the distribution mark the difference between a prosperous 
society and one at the brink of collapse. Indeed, the lowest EROI values 
obtained are just above the critical value of 5:1, considered to be the 
lowest possible value to sustain human societies [43]. 

The nexus between GDP, energy consumption and emissions is well 
known and has been vastly studied since the 70’s [44]. The correlation 
between the three is clearly seen from the similarity between the dis-
tributions of output variables GDP (and GDPpc), final energy con-
sumption and CO2eq emissions (Fig. 3). Although the uncertainty of 

Table 5 
Values of the RMSD generated by perturbing each input parameter (rows) for output variables gdp, gdppc, tpes_intensity_ej_tdollar, total_fe_elec_generation_twh and 
share_res_electricity_generation (columns). The values of RMSD are normalised by the percentage change of the input parameter. Only the highest three values are 
shown.  

Input parameter Output parameter 

gdp gdppc real_tfec tpes_intensity_ej_tdollar share_res_electricity_generation 

min_energy_intensity_vs_initial 2,74E-02 5,11E+01 1,57E+00 2,13E-01 9,70E-03 
a1_coef_th 1,89E-02 3,50E+01 7,64E-01 8,39E-02 – 
share_energy_requirements_for_decom_res_elec – – – – – 
variation_nonxdashxenergy_use 1,48E-01 2,73E+01 4,55E-01 1,23E-01 – 
a2_coef_th – – – – – 
min_energy_intensity_vs_initial_h – – – – – 
threshold_remaining_potential_new_capacity – – – – 1,04E-02 
max_share_transmxandxdistr_elec_losses – – – – 8,93E-03 
min_cp_nuclear – – – – – 
future_share_gasxdivxxcoalxplusxgasx_for_elec – – – – –  

Table 6 
Values of the RMSD generated by perturbing each input parameter (rows) for output variables real_fe_consumption_by_fuel (heat, liquids and solids) and total_-
fe_elec_generation_twh (columns). The values of RMSD are normalised by the percentage change of the input parameter. Only the highest three values are shown.  

Input parameter Output parameter 

real_fe_consumption_by_fuel total_fe_elec_generation_twh 

electricity heat gases liquids solids  

min_energy_intensity_vs_initial 4,23E-01 6,27E-01 2,67E-01 7,56E-01 2,67E-01 1,01E+02 
a1_coef_th – – 2,99E-01 9,35E-01 – – 
share_energy_requirements_for_decom_res_elec – – – – – – 
variation_nonxdashxenergy_use – 2,18E-01 – 2,52E-01 8,91E-02 1,01E+02 
a2_coef_th 2,99E-01 – – – – – 
min_energy_intensity_vs_initial_h 2,67E-01 3,54E-01 1,89E-01 – 2,31E-01 – 
threshold_remaining_potential_new_capacity – – – – – – 
max_share_transmxandxdistr_elec_losses – – - – – 1,12E+02 
min_cp_nuclear – – - – – – 
future_share_gasxdivxxcoalxplusxgasx_for_elec – – - – – –  

Table 7 
Values of the RMSD generated by perturbing each input parameter (rows) for output remaining_potential_tot_res_elec, total_land_requirements_renew_mha, total_-
co2_emissions_gtco2 and eroist_system (columns). The values of RMSD are normalised by the percentage change of the input parameter. Only the highest three values 
are shown.  

Input parameter Output parameter 

remaining_potential_tot_res_elec total_land_requirements_renew_mha total_co2_emissions_gtco2 eroist_system 

min_energy_intensity_vs_initial 3,30E-04 1,51E-02 1,58E-01 2,35E-01 
a1_coef_th – – – 6,81E-02 
share_energy_requirements_for_decom_res_elec – – – 5,58E-02 
variation_nonxdashxenergy_use – – – – 
a2_coef_th – – – – 
min_energy_intensity_vs_initial_h – – – – 
threshold_remaining_potential_new_capacity 8,97E-04 1,62E-01 – – 
max_share_transmxandxdistr_elec_losses 3,51E-04 1,47E-02 – – 
min_cp_nuclear – – 1,27E-01 – 
future_share_gasxdivxxcoalxplusxgasx_for_elec – – 1,03E-01 –  
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these outputs is very large, most of the simulations (confidence bound of 
50%) did not reach exponential trends. The GDPpc had more uncer-
tainty than the GDP, because the uncertainty on the population adds to 
the uncertainty of the GDP itself. In the MEDEAS models, the causation 
between GDP, energy consumption and CO2 emissions is bidirectional: 
more economic activity (measured in GDP) results in more energy 
consumption, hence higher CO2 emissions; high atmospheric CO2 con-
centrations increase the energy demand for adaptation to climate 
change and if the energy supply cannot match the increased demand, the 
GDP is negatively affected. Fig. 3 also shows that none of the biophysical 
constraints implemented in the model impede the exponential growth of 
the economy under certain combinations of input parameters. Higher 
population growth rates are also responsible for higher economic and 
energetic demand and CO2 emissions. 

The uncertainty of the share of electricity generation from RES is 
very large (Fig. 4), and depends not only on the deployment rates but 
also on the techno ecological potentials of each RES technology. Also, in 
a scenario of high population and high economic growth (high energy 
demand) with less RES penetration (little electricity produced from RES) 
will have very low shares. 

Finally, the large uncertainty of the total land requirements (Fig. 5) 
comes also from the uncertainty in the penetration rates of each tech-
nology, their share (some technologies take more land than others), 
their techno-ecological potentials and the land available (once land is 
fully occupied, no more RE infrastructure can be built). 

4.2. Sensitivity exploration 

Very similar results were obtained by using the three different 
sensitivity measures: the RMSD, the Euclidean distances and the Spider 
plots. The later measures only a punctual distance at year 2050, but 
clearly showed the non-linear dependency between inputs and outputs 
[45] (Fig. 7). The RMSD measures distances for each individual 
input-output relationship across all simulated times (1995–2050) while 
the Euclidean distance is the aggregated distance of the vector of all 
outputs of each simulation, aggregated over time. 

Combining the results obtained with the three methodologies, the 

Table 8 
Input parameters that had the largest impact on the value of each output vari-
able, based on the RMSD.  

Output parameter Perturned parameter 

eroist_system min_energy_intensity_vs_initial 
gdp variation_nonxdashxenergy_use 
gdppc variation_nonxdashxenergy_use 
real_fe_consumption_by_fuel 

[electricity] 
min_energy_intensity_vs_initial 

real_fe_consumption_by_fuel[gases] a1_coef_th 
real_fe_consumption_by_fuel[heat] min_energy_intensity_vs_initial 
real_fe_consumption_by_fuel[liquids] a1_coef_th 
real_fe_consumption_by_fuel[solids] min_energy_intensity_vs_initial 
real_tfec min_energy_intensity_vs_initial 
remaining_potential_tot_res_elec threshold_remaining_potential_new_capacity 
share_res_electricity_generation threshold_remaining_potential_new_capacity 
total_co2_emissions_gtco2 min_energy_intensity_vs_initial 
total_fe_elec_generation_twh min_energy_intensity_vs_initial 
total_land_requirements_renew_mha threshold_remaining_potential_new_capacity 
tpes_intensity_ej_tdollar min_energy_intensity_vs_initial  

Table 9 
Summary of tables Tables 5–7, representing how many times each perturbed 
parameter was among the top 3 parameters creating the maximum differences 
when all outputs are considered.  

Parameter name Times among the top 3 

min_energy_intensity_vs_initial 15 
variation_nonxdashxenergy_use 8 
a1_coef_th 7 
min_energy_intensity_vs_initial_h 4 
max_share_transmxandxdistr_elec_losses 4 
threshold_remaining_potential_new_capacity 3 
share_energy_requirements_for_decom_res_elec 1 
a2_coef_th 1 
min_cp_nuclear 1 
future_share_gasxdivxxcoalxplusxgasx_for_elec 1  

Fig. 7. Distances between the simulation results obtained with the minimum and nominal (base in the legend) values and the maximum and nominal (base in the 
legend) values aggregated for all output parameters, and normalised by the percentage change of the perturbed parameter with respect to the base value. Larger 
values correspond to greater distances between the compared simulation results. 
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most impacting parameters on the model outputs were min_e-
nergy_intensity_vs_initial, min_energy_intensity_vs_initial_h, a1_conf_th and 
variation_nonxdashxenergy_use. 

Parameters min_energy_intensity_vs_initial and min_e-
nergy_intensity_vs_initial_h affect the values of the energy intensities of all 
economic sectors and households, respectively. The higher their value, 
the lower potential efficiency gains, which result in higher TFEC and 
CO2 emissions. In addition, the lower the efficiency, the less energy can 
be destined to build new RE infrastructure, which results in a reduction 
of the share of RE electricity. On the other hand, the large impact of 
a1_conf_th shows the importance of the household transport sector in the 
whole energy system. To this regard [46] found that a 100% renewable 
road transport providing the same service as in 2014 would demand 
69% less energy. 

Finally, the actual demand for fossil fuels for non-energy purposes, 
described in the model with variable variation_non-energy_use, is poorly 
understood [47]. Following [47], the demand for each final fuel (liquids, 
gases and solids) is endogenously calculated as a linear function of the 
historic GDP, although this assumption is very uncertain. Therefore, the 
high impact of this variable on the outputs comes as a result of its 
structural uncertainty, rather than parametric uncertainty [20]. 

Based on these results, these 4 parameters will be key when trying to 
fit simulation results between the MEDEAS and other models. On the 
contrary, seven of the input parameters were seen to have little impact 
on the results and will be fixated in future GSA on the MEDEAS models. 

The OAT analysis, although still one of the most widely used tech-
niques for sensitivity analysis in many domains due to its simplicity and 
low computational cost, is known to have drawbacks when applied to 
non-linear models [27]. In addition, when using OAT technique a large 
fraction of the input parameter space is left unanalysed and the effects of 
input parameters interactions cannot be evaluated [22,48]. Acknowl-
edging these weaknesses, in this work this methodology was used as a 
previous step, to discard those parameters with negligible effects on the 
model outputs in a subsequent global sensitivity analysis. 

5. Conclusions 

Uncertainty is at the origin of the main criticisms made to IAM 
models, and unless adequately assessed, it may hold back their use for 
policy design. Thus, uncertainty (UA) and sensitivity analysis (SA) are 
key to give robustness to IAMs outputs. 

The current work complements the previous work done in Ref. [37], 
in which the pymedeas models were introduced and an exploratory 
analysis was performed to assess the impacts of changing model hy-
potheses. The UA performed here assesses the robustness of the sce-
narios chosen in the previous work, while the SA serves to identify the 
most relevant parameters within each scenario. This methodology 
(hypotheses-scenarios-UA-SA) gives a useful procedure for future energy 
system and IAMs models analysis. 

Results from the Monte Carlo simulations indicate that uncertainty in 
the outputs is large and increases over time, especially for scenarios with 
high economic growth expectations. These results also highlight the 
dangers on the climate and the environment of sustaining a growing 
economy with fossil fuels. On the other hand, parameters directly 
affecting sectorial energy efficiencies and households’ transport energy 
use had the larger impact on the model outputs. These are known to be 
key elements to achieve the energy transition, and the results of this 
work support all efforts being made by European policy-makers to this 
regard. The use of fossil fuels for non-energetic purposes had also a big 
impact on model projections, but in this case it was attributed to a 
structural uncertainty rather than a parametric uncertainty. 

This work demonstrates how the uncertainty propagates in highly 
non-linear models with different feedbacks at different sub-models 
levels [42]. The analysis performed here also highlights the limitations 
of the system dynamics approach, which works very well for capturing 
the inner system non-linear feedbacks, but when dealing with rapidly 

increasing non-linear interactions, uncertainty becomes a ‘demon in the 
machine’ that affects the reliability of the model projections [49]. In this 
sense this work contributes to the analysis of limitations of complex 
system dynamics models and IAMs [50] in general and in particular to 
the MEDEAS models. 

Finally, the complex interactions between different parameters and 
strong nonlinearities between inputs and outputs found in this work 
justify a subsequent and more computationally intensive GSA, that will 
benefit from the factor prioritization made here. 
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