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Summary

Diffusion-Weighted Magnetic Resonance Imaging (DW-MRI) is able to measure in-
trinsic properties of tissue structure non-invasively. By applying diffusion-weighting,
DW-MRI is sensitive to microscopic water displacements, with multiple applica-
tions for tissue characterization, diagnosis and treatment monitoring. Nevertheless,
the application of these long and powerful diffusion-weighting gradients results in
compelling imaging challenges. Consequently, this Thesis focuses on the optimiza-
tion of the Spin Echo (SE) Diffusion-Weighted Imaging (DWI) sequence to improve
image quality and estimation of the diffusion-related parametric maps.

As far as image quality is concerned, traditional SE DWI acquisition experiences
artefacts from signal dephasing due to bulk motion, Concomitant Gradients (CGs),
and Eddy Currents (ECs) which decrease image quality and complicate image inter-
pretation. Additionally, it also suffers from severe signal attenuation due to the long
Echo Time (TE) needed to achieve strong diffusion-weightings. Multiple approaches
have been proposed to diminish these DWI artefacts, from synchronization, gating
and complex DWI sequences such as the Twice Refocused Spin Echo (TRSE)
to the application of diffusion-weighting gradients with nth-order motion-nulling
and/or EC-nulling. Nevertheless, these techniques generally result in suboptimal
acquisitions with long TEs. In this Thesis, we propose a versatile formulation for
the design of optimized diffusion-weighting gradient waveforms that alleviates the
previous drawbacks while minimizing the TE of the acquisition.

The estimation of the diffusion-related parametric maps is usually affected by several
confounding factors such as low accuracy and precision and lack of repeatability
and reproducibility, partially caused by the previous artefacts. These confounding
factors appear in both the monoexponential and the Intravoxel Incoherent Motion
(IVIM) Diffusion-Weighted (DW) signal models, and hinder the establishment
of their diffusion-related parametric maps as quantitative imaging biomarkers.
Accuracy of the estimates, particularly of the Apparent Diffusion Coefficient (ADC)
of the monoexponential DW signal model, can be increased by using the appropriate
estimator. However, the set of diffusion-weightings (i.e., set of b-values) that
increases the precision of the estimated parametric maps remains unclear. In
this Thesis, we derive the Cramér-Rao Lower Bound (CRLB) of both DW signal
models under the assumption of DW to be affected by Rician distributed noise, and
propose a formulation for the optimization of the set of b-values that maximizes
the noise performance (i.e., minimizes the variance and maximizes the precision) of
the estimated diffusion-related parametric maps.
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Resumen

La resonancia magnética de difusión (DW-MRI, es sus siglas en inglés) es una
modalidad de imagen médica capaz de medir las propiedades intrínsecas de la
estructura de los tejidos de forma no invasiva. A través de una ponderación en
difusión, la DW-MRI es sensible a los desplazamientos microscópicos de agua, lo que
la dota de múltiples aplicaciones tanto para la caracterización de los tejidos como
para el diagnóstico y el seguimiento de tratamientos. No obstante, la aplicación de
los gradientes necesarios para realizar la ponderación de la difusión (muy potentes
y duraderos) da lugar a problemas en las imágenes adquiridas. Por consiguiente,
esta tesis se centra en la optimización de las secuencias de DW-MRI basadas en
adquisiciones spin-echo (SE) para mejorar la calidad de las imágenes de difusión y
la estimación de los mapas paramétricos relacionados con la difusión.

En lo que respecta a la calidad de la imagen, la secuencia tradicional de DW-MRI
basada en SE experimenta considerables artefactos de desfase de la señal debido
al movimiento, a los gradientes concomitantes y a las corrientes de Foucault, lo
que disminuye la calidad de las imágenes adquiridas y complica su interpretación.
Además, las imágenes también sufren de una severa atenuación de la señal debido
al largo tiempo necesario para lograr las fuertes ponderaciones de difusión, es decir,
necesita de largos tiempos de eco (TE). Se han propuesto múltiples enfoques para
disminuir los anteriores artefactos de la DW-MRI. Por ejemplo, se han utilizado
desde técnicas de sincronización, y secuencias complejas de DW-MRI como la
secuencia SE con doble reenfoque, hasta la aplicación de gradientes de ponderación
de la difusión con anulación de movimiento de orden n-ésimo y/o anulación de
las corrientes de Foucault. Sin embargo, estas técnicas generalmente dan como
resultado adquisiciones subóptimas con largos TEs. En esta tesis, proponemos
una formulación versátil para el diseño de formas de onda para los gradientes de
ponderación de la difusión optimizadas que disminuyan los problemas anteriormente
mencionados de las adquisiciones y las imágenes de DW-MRI y al mismo tiempo
minimicen el TE de la adquisición.

Por otro lado, la estimación de los mapas paramétricos relacionados con la difusión
suele verse afectada por varios factores perjudiciales como son la baja precisión y
baja exactitud, la falta de repetibilidad y falta de reproducibilidad, causados, en
parte, por los artefactos descritos anteriormente. Estos factores perjudiciales apare-
cen tanto en los mapas de difusión estimados a partir del modelo monoexponencial
de señal como en los mapas estimados a partir del modelo de movimiento incoher-
ente intravoxel, lo que dificulta el establecimiento de biomarcadores cuantitativos a
partir de los mapas paramétricos estimados. La precisión de las estimaciones, y
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en particular la precisión de los mapas de difusión aparente del modelo de señal
monoexponencial de DW-MRI, puede aumentarse utilizando el estimador apropiado.
Sin embargo, el conjunto de ponderaciones de la difusión a realizar (es decir, el
conjunto de valores b) que aumentan la precisión de los mapas paramétricos esti-
mados sigue sin estar claro. En esta Tesis se deriva la cota inferior de Cramér-Rao
de ambos modelos de señal de DW-MRI bajo el supuesto de que las imágenes
adquiridas de DW-MRI se ven afectadas por un ruido con distribución Rician y a
su vez se propone una formulación para la optimización del conjunto de valores b
que maximizan el nivel de señal (es decir, minimizan la varianza y maximizan la
precisión) de los mapas paramétricos estimados relacionados con la difusión.
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Acronyms

This section lists (in alphabetic order) all the acronyms that have been used in this
Thesis dissertation.

ADC Apparent Diffusion Coefficient

CG Concomitant Gradient

CGs Concomitant Gradients

CHESS Chemical Shift Selective

CODE Convex Optimized Diffusion Encoding

CPMG Carr-Purcell-Meiboom-Gill

CRLB Cramér-Rao Lower Bound

CT Computerized Tomography

DFT Discrete Fourier Transform

DKI Diffusion Kurtosis imaging

DTI Diffusion Tensor Imaging

DW Diffusion-Weighted

DW-MRI Diffusion-Weighted Magnetic Resonance Imaging

DWI Diffusion-Weighted Imaging

EC Eddy Current

ECs Eddy Currents

EP Error Propagation

EPI Echo Planar Imaging

FID Free Induction Decay

FIM Fisher Information Matrix
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Acronyms

FOV Field-of-View

FT Fourier Transform

GRAPPA Generalized Autocalibrating Partially Parallel Acquisition

GRE Gradient Echo

IQR Interquartile Range

IR Inversion Recovery

IRB Institutional Review Board

IVIM Intravoxel Incoherent Motion

LS Least Squares

ML Maximum Likelihood

MOCO Motion-Compensated

MONO Monopolar

MR Magnetic Resonance

MRI Magnetic Resonance Imaging

ms-EPI multishot Echo Planar Imaging

MSD Mean Squared Displacement

NMR Nuclear Magnetic Resonance

ODGD Optimized Diffusion-weighting Gradient Waveform Design

PD Proton Density

PDF Probability Density Function

PET Positron Emission Tomography

PGSE Pulse Gradient Spin Echo

PI Parallel Imaging

PNS Peripheral Nerve Stimulation

RF Radio-Frequency

ROI Region of Interest

SE Spin Echo
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Acronyms

SE-EPI Spin Echo Echo Planar Imaging

SENSE Sensitivity Encoding

SNR Signal-to-Noise-Ratio

SQP Sequential Quadratic Programming

ss-EPI single shot Echo Planar Imaging

STE Stimulated Echo

STEAM Stimulated Echo Acquisition Mode

SWI Susceptibility-Weighted Imaging

TE Echo Time

TR Repetition Time

TRSE Twice Refocused Spin Echo

WLS Weighted Least Squares
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Introduction

Contents
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . 9
1.4 Materials: MRI scanners . . . . . . . . . . . . . . . . . 10
1.5 List of Publications . . . . . . . . . . . . . . . . . . . . 11
1.6 Thesis Overview . . . . . . . . . . . . . . . . . . . . . . 15

1.1 Motivation

Magnetic Resonance Imaging (MRI) is a powerful medical image modality used
to obtain images of a broad range of tissues and properties. It is based on the
combined application of a strong magnetic field with Radio-Frequency (RF) pulses
and magnetic field gradients, which make it genuinely versatile and sensitive to
a wide variety of tissue properties and characteristics. During the past decades
MRI has become a conventional image modality in the medical routine due to its
physical foundations, which make it a non-invasive, innocuous and harmless image
modality in comparison to other techniques such as Computerized Tomography
(CT). However, MRI also presents various disadvantages. Particularly, it is a slow
technique, and really sensitive to artefacts.

Within the realm of MRI we can probe different physical and physiological phe-
nomena that exist in biological tissues depending on the sequence applied. These
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Figure 1.1: Example of two slices of body diffusion-weighted images at b-values of [0, 200,
400, 600, 800, 1000] s/mm2.

sequences are a particular combination of the aforementioned RF pulses and mag-
netic field gradients to obtain an image. Generally grouped by their image modality,
T1-weighted or T2-weighted MRI, Susceptibility Imaging, Magnetic Resonance Tag-
ging, CINE MRI or Diffusion-Weighted Magnetic Resonance Imaging (DW-MRI)
are some of the modalities with more distinct clinical applications. DW-MRI or
Diffusion-Weighted Imaging (DWI) is a particularly valuable modality due to its
sensitivity to the microscopical motion of diffusing water throughout the tissues.
The DWI sequence was initially proposed in 1965 by Stejskal and Tanner (Stejskal
and Tanner, 1965). It is based on the application of a 90◦ excitation RF pulse and
a 180º inversion RF pulse interleaved with two strong diffusion-weighting magnetic
field gradients. This RF pulse configuration is named Spin Echo (SE) since the
measured signal is generated by the refocusing of the spins after the 180◦ inversion.
On the other hand, the gradients describe the sensitivity to diffusion in a term
named b-value and encode the phase of stationary and moving spins resulting in a
signal dephase proportional to the overall motion. Besides its apparent simplicity, it
was not until 1985 that the first diffusion-weighted images of a brain were obtained
by Dennis le Bihan with a 0.5T MRI (Le Bihan and Breton, 1985), with maximum
gradient strengths of 10 mT/m, b-values up to 200 s/mm2 and a standard SE
sequence which took close to 10 min to acquire a single b-value (Le Bihan, 2007a).
At the beginning, it had little appeal due to its slowness and extreme sensitivity to
motion artefacts. However, due to the MRI hardware advancement and sequence
development in the past 35 years, DWI has become one of the most reliable MRI
techniques in the clinical routine. Nowadays, a standard clinically-available MRI
scanner can have a static magnetic field of 3T, a maximum gradient strength
between 40 and 70 mT/m, achievable b-values up to several thousand s/mm2 and
scanning times close to 100 ms per b-value. An example of liver diffusion-weighted
images at various b-values is shown in Figure 1.1.

During this time, DWI has continuously proved to be able to facilitate diagnosis,
characterization and monitoring of multiple pathologies all over the human body.
Head, liver, breast and prostate are some commonplace target tissues and stroke,
hepatic metastasis, and prostate cancer are some example pathologies. Neverthe-
less, further pathologies and more detailed explanations of DWI applications are
described later in Section 2.3.

During the past three decades the applications of MRI, and particularly of DWI,

4
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Figure 1.2: Magnetic resonance imaging (MRI) pipeline. Magnetic Resonance (MR) Hard-
ware, image acquisition sequence, postprocessing and quantitative parameter estimation.
(MRI cross-sectional scanner figure was courtesy of Allen D. Elster, MRIquestions.com.)
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Chapter 1: Introduction

have been multiplied by thousands as shown in previous paragraphs due to the
continuous advancements in each of the different elements involved in the acquisition
and image interpretation pipelines. These elements can be divided into:

1. MRI hardware.

2. Sequence acquisitions.

3. Image postprocessing.

4. Parameter estimation.

A graphical depiction of this idea is shown in Figure 1.2. The advancement of
DWI-related hardware (1) has made it possible to increase the diffusion-weighting
within reasonable scanning times. The development of new sequence acquisitions
(2) have considerably reduced the scanning time per image. The improvement of
the image postprocessing methods (3) has increased image quality facilitating image
interpretation, and has paved the way towards novel image perceptions. Finally, the
creation of advanced signal models together with the development of new estimation
methods (4) have expanded the possibilities for diagnosis, characterization and
treatment monitoring of a vast number of pathologies. This has been possible due
to the estimation of new parameters that attain some remarkable properties that
make them suitable to be used as biomarkers.

On the one hand, an imaging biomarker is a biologic qualitative feature detectable
in an image that is relevant to establish the presence or severity of a disease (Smith
et al., 2003). On the other hand, with quantitative imaging biomarkers we refer to
"the extraction of quantifiable features from medical images for the assessment of
normal or the severity, degree of change, or status of a disease, injury, or chronic
condition relative to normal. Quantitative imaging includes the development,
standardization, and optimization of anatomical, functional, and molecular imaging
acquisition protocols, data analyses, display methods, and reporting structures.
These features permit the validation of accurately and precisely obtained image-
derived metrics with anatomically and physiologically relevant parameters, including
treatment response and outcome, and the use of such metrics in research and patient
care." (Buckler et al., 2011).

Thus, a quantitative imaging biomarker is an objectively measurable characteristic
of the tissue. Note that not all the measures taken from medical imaging can
be used as quantitative biomarkers. To be valid, they must fulfill the following
requirements:

1. Precise: the measurement must be repeatable for the same subject and within
subjects in the same session and between sessions.

2. Accurate: in terms of estimation theory, it means that the bias of the
estimation is small.

3. Reproducible: low variability across sites and platforms. This is critically
important for multi-center studies.
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4. Robust: the measurement is insensitive to platform scan parameters and to
the estimation algorithm.

5. Clinical utility: the measurement can only be considered a quantitative
imaging biomarker if it demonstrates an important role in diagnosis or
treatment monitoring. To become so, it must be submitted to clinical
validation. This clinical utility also means that a new quantitative imaging
biomarker must imply a measurable clinical improvement.

In a more practical way, a quantitative imaging biomarker needs to be obtained
at the lowest possible costs (low-priced) and in the shortest time (fast), and it
must be safe and harmless to the patient. The main limitations of medical image
measurements that can interfere with the definition of possible quantitative imaging
biomarker are:

1. Long acquisition times and complexity: we usually need to acquire multiple
images, with very complex and specific acquisition processes.

2. Limited spatial and temporal resolution: there are limitations basically due
to the scanning hardware, physical properties, and the allotted scanning time
per subject.

3. Presence of confounding factors: there are some acquisition factors (such as
noise, patient motion, image artefacts) that will introduce systematic error
in the parametric estimates. These factors must be studied and taken into
account in order to reduce the variability of a measure to make it accurate,
robust and repeatable, and thus make it feasible to be used as a quantitative
imaging biomarker.

At the beginning of this chapter we mentioned that the first images that gave
birth to DWI were brain images and were acquired by Le Bihan and Breton
(1985), however, as he mentions in his historical account (Le Bihan, 2007a) the
original target tissue in which everything started was the liver in 1984. Due to the
difficulty of Diffusion-Weighted (DW) liver imaging, he eventually gave up and
switched to the brain. Since then, DWI has greatly evolved and it is nowadays
successfully applied to any tissue. Nevertheless, in order to obtain quantitative
imaging biomarkers from DW liver imaging multiple artefacts, limitations and
pitfalls still need to be addressed and diminished. Some of these are motion,
Concomitant Gradients (CGs), and Eddy Currents (ECs), which generally appear
simultaneously. In general, they may cause signal dephasing, image ghosting, signal
attenuation, shine-through effects, image distortions (i.e., shifting, shearing, scaling,
blurring), bias and variance on the quantitative diffusion-related parametric maps,
and even patient discomfort. A detailed explanation of these effects along with their
causes is provided in Section 2.4. Consequently, DWI is in no way a direct and
simple image acquisition technique, making it difficult to find diffusion descriptors
that can be used as quantitative imaging biomarkers. This is precisely the purpose
of the present Thesis.
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1.2 Objectives

The main objective of this Thesis is to optimize acquisition and estimation
techniques for liver Diffusion-Weighted Imaging (DWI) that may grant
viable quantitative imaging biomarker computation in the clinical rou-
tine. Specifically, we will focus on (a) the improvement of DW image
quality by maximizing the signal intensity while reducing physical and
physiological confounding factors affecting the DW images and on (b)
the precise estimation of the diffusion-related parametric maps.

The main objective can be break down into the following individual objectives:

1. To develop a formulation for the optimization of the diffusion-weighting
gradient waveforms of spin-echo DWI to improve DW image quality. The
proposed formulation will maximize the Signal-to-Noise-Ratio (SNR) of DWI
acquisitions for a given b-value while diminishing motion-related artefacts
and Concomitant Gradient (CG) effects. The formulation will be based on
the natural b-value definition while considering the physics of other physical
and physiological effects.

2. To extend previous formulation for the design of optimized diffusion-weighting
gradient waveforms of SE DWI to improve DW image quality with the
purpose of diminishing Eddy Current (EC) artefacts and Peripheral Nerve
Stimulation (PNS) effects while preserving all previous properties.

3. To develop a formulation for the determination of the optimized set of b-
values that maximizes the noise performance (i.e., maximizes the precision
and minimizes the variance) of the Apparent Diffusion Coefficient (ADC)
maps of the monoexponential diffusion signal model of liver DWI, and to
establish a methodology towards their quick determination. The formulation
will be based on the minimization of the Cramér-Rao Lower Bound (CRLB)
of the estimator and the methodology will rest on the optimized b-value
convergence properties.

4. To adapt the previous formulation for the determination of the optimized
set of b-values that maximizes the noise performance (i.e., maximizes the
precision and minimizes the variance) of the Intravoxel Incoherent Motion
(IVIM) diffusion-related parametric maps (i.e., pseudodiffusion, diffusion,
and pseudodiffusion fraction) in liver DWI.

The first two objectives pursue the optimization of DWI acquisition to pave the way
towards the computation of quantitative imaging biomarkers, while the last two
objectives pursue the computation of precise measures that fulfill the requirements
to be considered as quantitative imaging biomarkers for their respective signal
models.

As a final remark, it must be noted that the qualitative and quantitative validation
of each of the previous formulations is, in many cases, a challenging task which
could be an objective by itself.
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1.3 Methodology

In this Thesis we adopt a post-positivism worldview, which is is turn an evolution
of the positivism worldview. In post-positivism, the ethical principles that guide
research are based on good conduct and good research, and it is assumed that,
although reality exists, it can only be known in a flawly manner and upon a
probability basis. Thus, theories and hypotheses exist, but they can be imperfect
and may bias researchers. In this context, the methodology of this Thesis is based
on the engineering research method initially described by Adrion (1993) and later
refined by Glass (1995). The engineering method consists in observing existing
solutions, proposing a better solution and developing it to subsequently measure,
analyse and repeat until no further improvements are possible. The particular
steps followed throughout this Thesis can be described as follows:

The informational phase consists in observing the state-of-the-art solutions of
a given problem via a literature survey. From the five steps of the image acquisition
pipeline described in Section 1.1 we detected the multiple artefact sources and
technique limitations that hinder the extraction of biomarkers based on DWI.
Thus, we decided to pay further attention to the acquisition and estimation steps
because vital work could be done on DW sequence design in favor of image quality
and parameter estimation. Existing solutions to reduce motion artefacts were
based on triggering, which considerably increases the acquisition time, and on
motion-compensated diffusion-weighting gradient waveforms, which typically result
in longer Echo Time (TE). With regard to other physical and physiological effects
such as concomitant gradients or eddy currents, correction methods were based on
both complex and frequently longer sequences and on postprocessing techniques that
do not account for intravoxel dephasing. On the other hand, proposed techniques
of sequence optimization for precise parameter estimation often rely on inaccurate
noise assumptions or require long computation times.

The propositional phase consists in proposing a hypothesis or a method, or
formulating an algorithm or a theory. We proposed to increase diffusion-weighted
image quality, reduce motion artefacts, concomitant gradient artefacts, eddy current
induced image distortions and peripheral nerve stimulation through the design
of optimized diffusion-weighting gradient waveforms. The application of these
optimized gradients may allow reductions of some of the artefacts at the source
without triggering, thus overcoming some of the limitations of state-of-the-art
methods. In order to increase the precision of the diffusion-related parametric maps
we proposed to optimize the set of diffusion-weightings (i.e., set of b-values) that
minimizes the variance and increases the noise performance in parameter mapping.

The analytical phase consists in analysing and exploring a proposition. Regard-
ing DWI sequence optimization the proposition was materialized with the design of
a constraint nonlinear formulation based on the pure b-value mathematical expres-
sion to design optimized diffusion-weighting gradient waveforms. The optimized
gradients depend on linear and nonlinear constraints while iteratively minimize
the TE for a given b-value to increase SNR. For instance, a linear constraint is
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included to achieve moment-nulling and to reduce motion artefacts, a nonlinear
constraint is included to achieve phase cancelation at both sides of the inversion
pulse to reduce concomitant gradients, and a linear constraint is included to cancel
out remanent gradient fields and diminish image distortions due to eddy currents.
As for the optimization of parameter estimation to obtain precise parametric maps,
the optimized set of diffusion-weightings (i.e., set of b-values) is obtained using
the CRLB under the assumption diffusion-weighted images polluted with Rician
distributed data.

The evaluative phase consists in evaluating a proposition through experi-
mentation. The proposed and implemented formulations were validated through
simulations, phantom experiments and in-vivo acquisitions.

• Simulations were performed on synthetic datasets in order to have ground
truth images to compare the results with, and to deduce the relative perfor-
mance of each formulation.

• Phantom experiments were carried out in order to have real acquisitions in
a controlled environment. These images show to what extent the confound-
ing factor is present, and how much it can be diminished. Further, these
acquisitions pave the way for the design of in-vivo acquisitions.

• In-vivo acquisitions of the brain and the liver of various volunteers were used
to clinically validate the performance of both formulations.

In addition, throughout the progress of this Thesis we have carried out an additional
phase known as the dissemination phase. In this last phase we shared with
the community our motivation, final propositions, methods, and results with a
thorough comparison with the state-of-the-art. This dissemination was done for
the research community on specialized international journals and conferences and
on regional non-specialized journals for the local community.

1.4 Materials: MRI scanners

To prove the validity of the proposed formulations throughout this Thesis, all the
experiments were carried out with acquisitions performed in various MR scanners
from three different vendors and with two different external magnetic field B0
intensities. These scanners are described next:

• MR 750

◦ Institution: University of Wisconsin-Madison, Wisconsin, USA

◦ GE Healthcare, Waukesha, Wisconsin, USA

◦ Nominal B0: 3T

◦ Maximum Gradient Strength: 50 mT/m

◦ Maximum Slew Rate: 200 T/m/s
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• Signa Premier

◦ Institution: University of Wisconsin-Madison, Wisconsin, USA

◦ GE Healthcare, Waukesha, Wisconsin, USA

◦ Nominal B0: 3T

◦ Maximum Gradient Strength: 70 mT/m

◦ Maximum Slew Rate: 150 T/m/s/axis

• Achieva 3T

◦ Institution: Universidad de Valladolid, Valladolid, Spain

◦ Philips Healthcare, Best, The Netherlands

◦ Nominal B0: 3T

◦ Maximum Gradient Strength: 80 mT/m

◦ Maximum Slew Rate: 200 T/m/s

• Signa HDxt 1.5T

◦ Institution: University of Wisconsin-Madison, Wisconsin, USA

◦ GE Healthcare, Waukesha, Wisconsin, USA

◦ Nominal B0: 1.5T

◦ Maximum Gradient Strength: 33 mT/m

◦ Maximum Slew Rate: 120 T/m/s

• Aera 1.5T

◦ Institution: Universidade de Lisboa, Lisbon, Portugal

◦ Siemens, Erlangen, Germany

◦ Nominal B0: 1.5T

◦ Maximum Gradient Strength: 43 mT/m

◦ Maximum Slew Rate: 180 T/m/s

1.5 List of Publications

Below we include a list of publications related to this thesis, which is also shown as a
diagram in Figure 1.3. Each contribution is related with one of the aforementioned
objectives although more than one publication can be related with the same
objective.

• Core publications of this Thesis:

◦ Publications in indexed international journals
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Figure 1.3: Relation between each of the contributions related to this Thesis grouped
by the two major objectives (a) and b) ) and other publications carried out during this
PhD (c). In each contribution related to this Thesis we tackle an individual objective and
the chapter indicates its location within this Thesis dissertation. Some contributions do
not form a chapter by themselves thus they are contained within the next corresponding
journal contributions. Dashed lines indicate contributions of another author that are in
line with our work on both diffusion-weighting gradient waveform design and b-value
optimization. As such, they are not included in this Thesis. The red-color publications
were published on international conferences while black-color publications were published
on international journals.
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− Peña-Nogales, Ó., Zhang, Y., Wang, X., de Luis-Garcia, R., Aja-
Fernández, S., Holmes, J.H. and Hernando, D. Optimized Diffusion-
Weighting Gradient Waveform Design (ODGD) formulation for
motion compensation and concomitant gradient nulling. Magnetic
resonance in medicine. 2019a; 81(2), 989-1003.

− Peña-Nogales, Ó., Hernando, D., Aja-Fernández, S. and de Luis-
Garcia, R. Determination of optimized set of b-values for Apparent
Diffusion Coefficient mapping in liver Diffusion-Weighted MRI. Jour-
nal of Magnetic Resonance. 2020a; 310, 106634.

◦ Publications in international conferences

− Peña-Nogales, Ó., de Luis-García, R., Aja-Fernández, Zhang,
Y., S., Holmes, J.H. and Hernando, D. Optimal design of motion-
compensated diffusion gradient waveforms. ISMRM 25th annual
Meeting and Exhibition, Honolulu, USA, April 2017a; 3340.

− Peña-Nogales, Ó., Hernando, D., Aja-Fernández, S. and de Luis-
García, R. Determination of the optimal set of b-values for ADC
mapping under a Rician noise assumption. ISMRM 25th annual
Meeting and Exhibition, Honolulu, USA, April 2017b; 3341.

− Peña-Nogales, Ó., Zhang, Y., de Luis-García, R., Aja-Fernández,
S., Holmes, J.H. and Hernando, D. Optimal diffusion-weighting
Gradient Waveform Design (ODGD): Formulation and Experimental
Validation. ISMRM 26th annual Meeting and Exhibition, Paris,
France, June 2018; 685.

− Peña-Nogales, Ó., Zhang, Y., de Luis-García, R., Aja-Fernández,
S., Holmes, J.H. and Hernando, D. Reduced Eddy Current induced
image distortions and Peripheral Nerve Stimulation based on the
Optimal Diffusion-weighting Gradient Waveform Design (ODGD)
formulation. ISMRM 27th annual Meeting and Exhibition, Montreal,
Canada, May 2019b; 3488.

− Peña-Nogales, Ó., Aja-Fernández, S., and de Luis-García, R.
Determination of the optimal set of b-values for Intravoxel Incoherent
Motion (IVIM) parameter mapping in liver Diffusion-Weighted MRI.
ISMRM 28th annual Meeting and Exhibition, Paris, France, August
2020b; 4314.

In the subsequent list we also include other contributions accomplished during
the progress of this Thesis. These publications originated from collaborations
with colleagues and other international institutions. Although at least some of
them are related to the scope of this Thesis, they have been left out for coherence
and practical purposes, or because the the author of this Thesis was secondary
in some of these publications. Two collaborations have been particularly fruitful:
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that with the University of Wisconsin-Madison, WI, USA, and the one with the
University of Texas – Health Science Center at Houston, TX, USA, which led to
two publications in indexed international journals aiming at the determination of
quantitative imaging biomarkers in the liver and the brain, respectively.

• Other publications accomplished during the progress of this Thesis:

◦ Publications in indexed international journals

− Zhang, Y., Peña-Nogales, Ó., Holmes, J.H. and Hernando, D.
Motion-Robust and Blood-Suppressed M1-Optimized Diffusion MR
Imaging of the Liver. Magnetic resonance in medicine. 2019b; 82(1),
302-311.

− Peña-Nogales, Ó., Ellmore, T.M., de Luis-García, R., Suescun,
J., Schiess, M.C. and Giancardo, L. Longitudinal connectomes as
a candidate progression marker for prodromal Parkinson’s disease.
Frontiers in neuroscience. 2019c; 12, 967.

◦ Publications in international conferences

− Aja-Fernández, S., Peña-Nogales, Ó., and de Luis-García, R.
Effect of the Sampling on the Estimation of the Apparent Diffusion
Coefficient of Diffusion in MRI. 42nd IEEE International Conference
on Acoustics, Speech and Signal Processing, New Orleans, USA.
March 2017; 2521.

− Sanz-Estébanez, S., Peña-Nogales, Ó., de Luis-García, R., Aja-
Fernández, S., and Alberola-López, C. Groupwise non-rigid registra-
tion on multiparametric abdominal DWI acquisition for robust ADC
estimation: Comparison with pairwise approaches and different mul-
timodal metrics. IEEE International Symposium on Biomedical
Imaging, Melbourne, Australia. April 2017; 325.

− Zhang, Y., Peña-Nogales, Ó., Holmes, J.H. and Hernando, D.
Monte-Carlo Analysis of Quantitative Diffusion Measurements Using
Motion-Compensated Diffusion Weighting Waveforms. ISMRM 25th
annual Meeting and Exhibition, Honolulu, USA, April 2017; 1377.

− Suescun, J., Peña-Nogales, Ó., Ellmore, T.M., de Luis-García,
R., Schiess, M.C. and Giancardo, L. Tracking RBD and PD progres-
sion with longitudinal structural brain connectomes. International
Congress of Parkinson’s Disease and Movement Disorders, Hong
Kong. 2018;

− Zhang, Y., Peña-Nogales, Ó., Holmes, J.H., and Hernando, D.
Motion-Robust and Blood-Suppressed M1-Optimized Diffusion MR
Imaging of the Liver. ISMRM 27th annual Meeting and Exhibition,
Montreal, Canada, May 2019a; 116.
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− Pena, D.A., Peña-Nogales, Ó., Ellmore, T.M., de Luis-García,
R., Suescun, J., Schiess, M.C. and Giancardo, L. Longitudinal
Connectivity Outperforms Volumetric Change As A Marker For
Prodromal Parkinson’s Disease. American Academy of Neurology
71st Annual Meeting, Philadelphia, USA. 2018; 4186.

− Moya-Sáez, E., Peña-Nogales, Ó., Sanz-Estébanez, S., de Luis-
García, R., and Alberola-López, C. CNN-based synthesis of T1, T2,
and PD parametric maps of the brain with a minimal input feeding.
ISMRM 28th annual virtual Meeting and Exhibition, Paris, France,
August 2020; 3806.

− Peña-Nogales, Ó., Castillo-Passi, C., Lizama, C., de Luis-García,
R., Aja-Fernández, S., and Irarrazaval, P. Anomalous Diffusion
estimation through the solution of the Fractional Time order Bloch-
Torrey equation. ISMRM 28th annual Meeting and Exhibition, Paris,
France, August 2020c; 4398.

1.6 Thesis Overview

In order to best reflect the research work that has resulted in this Thesis dissertation,
this document is divided into four Parts. On the one hand, the specific objective of
improving DW image quality by maximizing the signal intensity while reducing
physical and physiological confounding factors affecting the DW images is tackled
in Part II. On the other hand, the objective of achieving precise estimation of the
diffusion-related parametric maps is addressed in Part III. Each of these Parts is
further divided in three Chapters, the first one introducing and motivating the
corresponding problem and the latter two presenting our methodology and solutions.
Finally, this Thesis dissertation is further completed with Part I, which acts as a
background that introduces the basement of our work, and finishes with Part IV,
which introduces some some final remarks and conclusions.

A more detailed description is portrayed next:

• Part I: Background, which introduces and motivates this Thesis dissertation.

◦ Chapter 2 contains the background knowledge needed to fully under-
stand the different issues addressed throughout this dissertation. It starts
by explaining the principles of Magnetic Resonance Imaging (MRI) and
the fundamentals of Diffusion-Weighted Imaging (DWI) together with
a brief list of its applications and limitations, and finishes with the
elemental knowledge needed to perform parameter estimation.

• Part II: This part contains the first contribution of this Thesis dissertation,
and focuses on the optimization of DW image quality through the design of
diffusion-weighting gradient waveforms. It is divided in the following three
chapters:
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◦ Chapter 3 introduces some of the artefacts and limitations DWI is
subjected to due to the lengthy acquisitions, patient motion, Concomitant
Gradients (CGs), Eddy Currents (ECs) and the nerve stimulation effects.
It shows some procedures to diminish them and the trade-off they pose.
Then we provide an extended more theoretical description of previous
artefacts and limitations, which acts as the basement of the formulation
we propose to tackle them.

◦ Chapter 4 focuses on the validation of the proposed formulation to
increase the quality of the diffusion-weighted images and of the corre-
sponding diffusion-related parametric maps by reducing the artefacts
introduced by the lengthy DWI acquisitions, patient motion, and the
CGs. In this Chapter we perform analytical experiments, simulations,
and both phantom and in-vivo experiments to assess the proposal.

◦ Chapter 5 focuses on the validation of the proposed formulation to
increase the quality of the diffusion-weighted images by reducing the
artefacts introduced by the ECs and to reduce the effects of Peripheral
Nerve Stimulation (PNS) while preserving all properties described in
the previous chapter. In this chapter we perform analytical experiments
and two different phantom acquisitions to assess the goodness of the
proposed formulation to decrease ECs artefacts. On the other hand,
the proposed formulation to reduce PNS is introduced and evaluated
through analytical experiments.

• Part III: This section contains the second contribution of this Thesis disser-
tation and focuses on the precise estimation of the diffusion-related parametric
maps through the optimal selection of the diffusion-weighting b-values. It is
divided in the following three chapters:

◦ Chapter 6 motivates the problems of the estimation of diffusion-related
parametric maps and provides an overview of the multiple techniques
proposed to optimize the set of b-values used in DWI with different
objectives and for various diffusion signal models. At the same time it
indicates the pros and cons of each technique. Next, it introduces the
Cramér-Rao Lower Bound (CRLB), which will be the mathematical
foundation of the formulations proposed in the next two chapters.

◦ Chapter 7 introduces the CRLB of the monoexponential DW signal
model and the mathematical methods used to optimize the set of b-values
for increased noise performance (i.e., precision increase and variance
reduction) in the estimated Apparent Diffusion Coefficient (ADC) maps.
This chapter continues with a validation carried out with analytical
simulations and both phantom and in-vivo DWI experiments.

◦ Chapter 8 introduces the CRLB of the Intravoxel Incoherent Motion
(IVIM) biexponential DW signal model and the mathematical methods
used to optimize the set of b-values for precise estimation of the three
diffusion-related parametric maps of the IVIM model. This chapter
ends with an in-vivo liver DWI validation of the proposed formulation.
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• Part IV: Backmatter part, which concludes this Thesis dissertation.

◦ Chapter 9 winds up this Thesis dissertation with a comprehensive
discussion and conclusion of our work. It includes our contributions but
also pinpoints our limitations as well as hypothesizes on some future
lines of research.
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2.1 Introduction to Magnetic Resonance Imaging

2.1.1 MR physics

Current Magnetic Resonance Imaging (MRI) is based on the early discovery of
Nuclear Magnetic Resonance (NMR) carried out by Bloch (1946) and Purcell et al.
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(1946), which was originally of interests for the fields of physics and chemistry
to study the atomic properties of nuclei. Both MRI and NMR techniques are
based on the interactions of nuclear spins with an external magnetic field, thus,
in order to completely describe the undergoing physical phenomenon quantum
mechanics are usually employed. Nevertheless, when using the macroscopic limit
of quantum mechanics to study the nuclear spins it reduces to classical mechanics.
Thus, a complete explanation of the Magnetic Resonance (MR) phenomenon
can be accomplished with classical mechanics (Hanson, 2008) as briefly described
next.

As aforementioned, MR is based on the interaction between an external static
magnetic field B0 and a nucleus with a non-zero spin angular momentum. This
physical property depends on the protons, neutrons and electrons of the nuclei,
but only those with an odd number of them are eligible for MR. Some of these are
the helium atom (3He), the fluorine atom (19F) and the phosphorus atom (31P).
However, the most abundant nuclei in organic samples is the hydrogen atom (1H)
due to its presence in water molecules, converting it into the most commonly used
for imaging in MR and, as such, it will be the considered nucleus hereinafter. When
a sample is not within a B0, all of its spins are randomly distributed leading to a
null macroscopic magnetization. On the other hand, when the sample is within a
static magnetic field B0, the spins reorganize to create a net magnetization (M0) in
the direction of the B0 and start a rotation movement called precession around the
same direction. By convention, the direction of the B0 is the longitudinal (z) axis.
Thus, the relation between the M0 and B0 can be written as:

∂M
∂t

= M× γB0, (2.1)

implying that the precession of M0 around B0 will be at an angular frequency
on the transverse plane ‘xy’, also known as the Larmour frequency (ω0) given
by

ω0 = γB0 [rad/s], (2.2)

where γ is the gyromagnetic ratio specific to the nucleus. For 1H it is 42.58
MHz/T.

In addition to the external static magnetic field B0, in MRI there are also time
varying Radio-Frequency (RF) fields. These RF fields are short electromagnetic
pulses (B1) applied in the transverse plane that rotate at the Larmour frequency in
phase with the magnetization M. With the application of the B1 rotating magnetic
field, the spins absorb energy, which will produce another rotation to the net
magnetization modelled by:

∂M
∂t

= M× γ(B0 + B1), (2.3)

where B = B0 + B1. The new precession around the B1 magnetic field will tip the
magnetization vector away from the longitudinal direction in a spiral way towards
the transverse plane. The amount of rotation from the longitudinal axis ‘z’ is fixed
by the intensity and duration of the B1, and is accounted for as the flip angle α.
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Thus, the application of any RF pulse is considered to be an excitation of the
system. Once part of the net magnetization is excited and tilted to the transverse
plane ’Mxy’, it can be measured by the proper receiving coil (i.e., receiving antenna)
according to Faraday’s law of induction. Note that, for convenience, RF pulses are
named after the flip angles they produce.

Following the end of the RF pulse, the spins release the absorbed energy from the
RF pulse through a time-varying signal named Free Induction Decay (FID) and,
with time, return to equilibrium by restoring the net magnetization back into the
longitudinal axis and fading away the transverse magnetization ‘Mxy’. The process
of returning to equilibrium is called relaxation, and is driven by the relaxation time
constants T1 and T2, respectively. Both relaxations occur simultaneously, however,
they are driven by different underlying interactions.

On the one hand, the longitudinal relaxation, i.e., the process of restoring the net
magnetization into the longitudinal axis, is due to the interaction between the
spins and the surrounding medium, i.e., spin-tissue interactions. This medium is
composed of different lattices with different compositions, having each of them a
different longitudinal relaxation time or T1.

On the other hand, the transverse relaxation, i.e., the process of fading away the
magnetization of the transverse plane, is due to the interactions between the micro
magnetic fields generated by neighbouring spins, i.e., spin-spin interactions, and the
spins with the field inhomogeneities of the external magnetic field B0. During the
application of the RF pulse, all the spins precess in coherence, however, after its
conclusion spins progressively lose their coherence depending on the neighbouring
spins having each lattice a different transverse relaxation time or T2. If the field
inhomogeneities are also considered, the lost of coherence is faster, leading to a
shorter transverse relaxation time name T ∗2 .

The equation modelling MR dynamics of the magnetization M is the well-known
Bloch equation which is based on the extension of Eq. (2.4) by including the
dynamics of the previous relaxation phenomena. The Bloch equation is described
next:

∂M
∂t

= M× γB− Mxi +Myj
T2

− (Mz +M0)k
T1

, (2.4)

where Mz is the longitudinal magnetization, M0 is the equilibrium magnetization,
andMx andMy are both components of the transverse magnetization. Particularly,
the equations describing both relaxation phenomena can be independently described
by: {

∂Mz

∂t = −Mz+M0
T1

∂Mxy

∂t = −Mxy

T2

(2.5)

where the longitudinal relaxation is described by:

Mz(t) = M0 + (Mz(0)−M0)e−
t
T1 , (2.6)

and the transverse relaxation is described by:

Mxy(t) = Mxy(0)e−
t
T2 (2.7)
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Further, if we also take into account the incoherences introduced by the fields
inhomogeneities in the transverse relaxation phenomena, Eq. (2.7) transforms
into

Mxy(t) = Mxy(0)e
− t
T∗

2 , (2.8)

where 1
T∗

2
= 1

T2
+ (γ ∗∆Binho), being ∆Binho the field inhomogeneities across the

voxel.

2.1.2 MR image formation

In MRI, in order to obtain information of a particular plane of the sample, i.e.,
of the human body, we need to code its information through the usage of spatial
field gradients. Firstly, we need to be able to perform a selective excitation of
the corresponding plane. Secondly, we need to be able to form an image out of
the excited plane. These techniques were initially proposed by Lauterbur (1973)
and Mansfield and Grannell (1973) to obtain the first MR images.

Since the whole sample is affected by the same magnetic field B0, all spins are
processing at the same Larmor frequency proportional to the B0 as shown in
Eq. (2.2). Thus, to perform a selective excitation of a particular plane, we need to
apply a spatial magnetic field gradient to obtain a magnetic field that depends on
the position as:

B(r) = B0 + G · r, (2.9)

where G is the magnetic field gradient. This way, the new resonance frequencies of
the spins will also depend on their position as:

w(r) = ω0 + γG · r (2.10)

Note that if a specific gradient is applied in one direction, i.e., x, y, z, or any linear
combination of them, all the spins that lie at a particular perpendicular position of
that direction will precess at the same resonance frequency ω(r). Therefore, if we
apply a spatial field gradient perpendicular to the plane of the slice by adjusting
the resonance frequency of the B1 pulse to the Larmor frequency of the plane, we
excite only that plane and avoid that the spins of other planes absorb energy.

In MRI, the orientation of the excited plane depends on the target tissue to be
imaged. Traditional plane orientations are axial (plane ‘xy’), coronal (plane ‘xz’),
and sagittal (plane ‘yz’) although oblique orientations can also be used. Also, the
excited plane is considered a slice when its thickness is in the order of millimetres,
or a slab if its thickness is in the order of centimetres.

Once a slice has been excited and there is magnetization in the transverse plane,
all the spins of that slice will be precessing in phase generating a current in the
receiver coil. A priori, the receiver coil is not able to distinguish between the
currents generated from each point of the slice, thus, the application of spatial
magnetic field gradients, i.e., imaging encoding gradients, is required to form an
image.
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For example, to form an image of an axial slice the application of imaging encoding
gradients in both x and y directions is needed. One gradient is considered to
be the phase encoding gradient, and the other one is the frequency encoding
gradient. Thus, from ingenious combinations of both encoding gradients we can
take advantage of the previously mentioned Larmour frequency modifications they
introduce along the encoding gradient direction and of the phase accrual they
introduce. This phase accumulated is given as:

φ(x, y, t) = ω0t+ γ

∫ t

0
Gx(τ)∂τx+ γ

∫ t

0
Gy(τ)∂τy (2.11)

Finally, the signal throughout the slice is coded in both frequency and phase steps
enabling its reconstruction.

The measured signal by the receiver coil will be the ensemble of all signals from all
points of the image as shown next

s(t) =
∫
x

∫
y

m(x, y)e−i2π[kx(t)x+ky(t)y]∂x∂y, (2.12)

where m(x, y) is the spin density distribution, and

kx(t) = γ

2π

∫ t

0
Gx(τ)∂τ, (2.13)

ky(t) = γ

2π

∫ t

0
Gy(τ)∂τ, (2.14)

are the k-space trajectories along each axis. Eq. (2.12) is the 2D Fourier Transform
(FT), which relates the measured signal in the image space with the sampled signal
acquired by the receiver coils in the k-space as shown in Figure 2.1. Thus, the
relationship between the image and the sampled data depends on the sampled
k-space trajectory made by the imaging encoding gradients. It is to be noted
that both the k-space and the image space signals are complex, albeit the final
form of the image space usually is the magnitude image after discarding its phase
information.

Traditionally, RF excitation pulses are repeated every Repetition Time (TR) to
acquire a different line of the k-space at each repetition as shown in Figure 2.2. This
way, the frequency encoding gradient is kept the same throughout each repetition
to traverse the full width of the k-space, Gx in Figure 2.2, and the phase encoding
gradient is varied to correctly point to the beginning of each new k-space line, Gy
in Figure 2.2. This technique is named Spin-Warp Imaging. Subsequently, once the
full k-space is acquired on a rectilinear cartesian trajectory, the Discrete Fourier
Transform (DFT) is used to reconstruct the final image.

2.1.3 Rapid Imaging Techniques

The traditional line-by-line technique to acquire the k-space described in previous
Section and shown in Figure 2.2 requires long acquisition times due to the need
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k-space Image space

2D FT

Figure 2.1: 2D Fourier Transform (2D FT) of an MR image of an in-vivo liver on both
k-space (left) and image space (right).

Figure 2.2: MR sequence example. a) Timing diagram of a sequence repeated every
Repetition Time (TR) with a different phase encoding gradient. b) k-space trajectory
and samples acquired (red dots) at each TR. Shaded k-space trajectories and samples
correspond to repetitions of the sequence not shown on the timing diagram a) but needed
to acquire the whole k-space.
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Figure 2.3: Echo Planar Imaging (EPI) sequence. a) k-space trajectory and samples
acquired (red dots). b) Imaging encoding gradient waveforms on both x and y axis during
signal acquisition.

to perform multiple RF excitations. These long times may further introduce the
appearance of different artefacts such as motion. Thus, several techniques to reduce
the time needed to sample the k-space have been proposed.

Echo Planar Imaging (EPI) is one of the most common techniques used to sample
the whole k-space in a single RF excitation pulse, also known as single shot Echo
Planar Imaging (ss-EPI), reducing the time needed to sample the image from
minutes to milliseconds at the expense of demanding large efficiency operation
to the MRI hardware. EPI was originally described by Mansfield (1977) and it
consists on the location of the k-space on the bottom left corner by the application
of rephasing gradients and on the subsequent application of multiple frequency
and phase encoding gradients to cycle traverse from side to side of the k-space in a
zig-zag pattern until all lines have been sampled. The phase encoding gradients
to jump from line to line of the k-space are called blips. The frequency encoding
gradients are also called readout gradients since they are the only ones activated
when the analogue to digital converter samples the signal. An example of this
k-space reading technique is shown in Figure 2.3.

Besides reducing the image scanning time, acquiring the whole k-space in a single
RF excitation may introduce several artefacts into the reconstructed image. One
of the most common artefacts of EPI appears due to the misalignments between
the sampling of odd and even lines. These misalignments are produced by the
differences between the frequency encoding gradients of consecutive lines due to
having opposing polarity and introduce an artefact known as Nyquist ghosting
(see Figure 2.14). As its very name indicates, this artefact consists of a ghost of
the image along the phase encoding direction. Several correction methods have
been proposed being the standard one the implementation of a reference scan
without phase encoding gradients to measure the phase inconsistencies between odd
and even lines. Another artefact that appears along the phase encoding direction
is the chemical shift artefact (see Figure 2.10). It appears due to the different
resonance frequency between water and lipid spins and results in a substantial
shifting of the signal generated by the lipids. A simple way to correct these
artefacts consists of implementing lipid suppression techniques prior to the RF
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excitation pulses. Further, in EPI image distortions frequently appear along the
phase encoding direction due to its low bandwidth. These distortions can occur due
to off-resonance effects caused by field inhomogeneities or magnetic susceptibility
variations and result image compressions, dilatations and/or shifting. These
artefacts are commonly corrected by reconstructing the images taking into account
the B0 map. Finally, since the different k-space lines are acquired consecutively at
different relaxation times, each of them carry a different T∗2 weighting which also
causes blurring along the phase-encoding direction. This blurring can be corrected
through multishot Echo Planar Imaging (ms-EPI), which reduces the time needed
to acquire the k-space per shot, in spite of suffering from other problems such as
motion-induced artefacts.

Another common technique for rapid imaging is Parallel Imaging (PI). PI is
commonly used in combination with EPI and is based on the simultaneous sampling
of the k-space by various receiver coils located around the Field-of-View (FOV).
This way, each coil acquires a different image with a different sensitivity, and all of
them are later combined to reconstruct the final image. Thus, the availability of
repeated data points sampled with various coils allows the reconstruction of the final
image from subsampled k-spaces, i.e., k-spaces with lower number of phase encoding
steps, reducing the overall acquisition time. If the data points were not sampled
multiple times, the reconstruction of the subsampled k-space would result in an
aliased image. The two main techniques to perform the combination of multiple
coil images are Sensitivity Encoding (SENSE) and Generalized Autocalibrating
Partially Parallel Acquisition (GRAPPA). The former one solves a pixelwise linear
reconstruction problem on the image space (Pruessmann et al., 1999) while the
latter one solves the reconstruction problem directly on the k-space (Griswold et al.,
2002). Nevertheless, despite reducing the acquisition time, PI generally results in
noise amplification in the reconstructed images due to the fewer number of samples
and the propagation of errors along the reconstruction procedures.

2.1.4 Fundamental MR pulse sequences

In MRI, we can obtain images that look different depending on the combination of
the timings, RF pulses and gradients introduced in previous sections. Each different
combination of these means is called sequence, and each sequence will obtain an
image whose intensities will depend to great or less extent to some properties of the
tissue. To this end, the two most basic pulse sequences are described next:

Gradient Echo (GRE) is composed of an RF pulse with α typically lower than
90◦ and a sequence of gradients with different polarities that provide coherence
to the spins of the excited slice, increasing the signal strength of the transverse
magnetization. Particularly, the prephasing gradient lobe after the RF pulse
dephases the excited spins which are subsequently rephased by the readout gradient
lobe producing an echo peak signal. The time at which the echo peak occurs is the
Echo Time (TE) and corresponds to the time at which the dephased introduced
by the prephasing gradient lobe is compensated by the readout gradient lobe as
shown in Figure 2.4.
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Figure 2.4: Standard gradient echo sequence with its Free Induction Decay (FID) and
echo signal.

Table 2.1: "Combinations of TE and TR alues Used to Generate Various Contrast
Weightings in Spin Echo Imaging" (Table and caption taken from (Bernstein et al., 2004)).

Short TE Long TE
(≤ 20 ms) (≥ 80 ms)

Short TR (<700 ms) T1-weighted Not commonly used
Long TR (>2000 ms) Proton density-weighted T2-weighted

In GRE, the intensity of the echo peak will be primarily weighted by the T∗2
relaxation time as shown in Eq. (2.8). Nothe that the T∗2 relaxation not only depends
on the tissue properties but also on the field inhomogeneities and susceptibility
effects. These sequences are usually used for their speed as a result of their low
TE, however their T∗2 weighting causes severe signal losses that hinder their utility.

Spin Echo (SE) is composed of two RF pulses, an initial one that acts as an
excitation RF pulse with α typically of 90◦ and a successive one that acts as a
refocusing RF pulse with α typically of 180◦. The phase inversion introduced
by the refocusing RF pulse refocuses the accrued phase from chemical shift, field
inhomogeneities and susceptibility effects. Thus, the echo peak occurs at twice the
time between both RF pulses, meaning that the refocusing RF pulse is located at
time TE/2. See Figure 2.5 for details.

In SE, the intensity of the echo peak can be weighted by the T1, T2, and the proton
density (Proton Density (PD)), i.e., spin density, depending on the combination of
TE and TR as shown in Table 2.1. These sequences are used for their robustness,
however they have considerably longer TE than GRE sequences.

Nevertheless, nowadays there are multiple imaging techniques and sequences de-
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Figure 2.5: Standard spin echo sequence with its Free Induction Decay (FID) and echo
signal.

signed to obtain different tissue contrasts or to overcome faults of the existing ones.
Some of these are Inversion Recovery (IR) sequences, Chemical Shift Selective
(CHESS) sequences, Susceptibility-Weighted Imaging (SWI) or Diffusion-Weighted
Imaging (DWI) which will be the anchor point of this thesis on the following sec-
tions.

2.2 Diffusion-Weighted Imaging

2.2.1 Diffusion definition

Diffusion corresponds to the random displacement of molecules due to their thermal
energy, i.e., energy present when temperature is above 0◦ K. This random displace-
ment behaves as a random walking movement known as Brownian motion. It holds
that name because it was initially noticed by Robert Brown in the early-19th when
observing pollen grains randomly moving inside a static water solution.

Subsequently, in the mid-19th century Adolf Fick related the molecules random
displacement to their concentrations throughout the sample. He established that
there is a flux of molecules from regions with higher concentrations to regions with
lower concentrations, being that flux proportional to the concentration gradient,
which is directly related to the diffusion coefficient D whose units are in distance
squared per time (i.e., mm2/s). To model that phenomena, he introduced the
Fick’s law of diffusion, which in the early 20th century was extended on the PhD.,
thesis of Albert Einstein to create the diffusion equation (Eq. (2.15)). Einstein
merged Fick’s law of diffusion with Brownian motion defined following the statistics
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of random walks.
∂P (r, t)
∂t

= D∇P (r, t) (2.15)

The previous equation can be easily solved through the FT to see that the proba-
bility distribution has the following Gaussian distribution:

P (r|µ, σ) = 1√
12πDt

e−
(r−r0)2

12Dt (2.16)

This distribution indicates the probability of finding a particle in r that was originally
in r0 at time t. Thus, the Mean Squared Displacement (MSD) of particles along
time in a three dimensional medium is:

〈∆r〉2 = 6Dt (2.17)

In the previous equation we can see that the MSD is proportional to the diffusion
time.

2.2.2 Diffusion Sensitive Sequences

Diffusion essentially consists of the displacement of molecules throughout the
medium, thus, in the presence of a magnetic field gradient moving molecules will
experiment different gradient intensities depending on their actual position causing
phase dispersion throughout the slice. As a result, the induced phase dispersion
will produce an attenuation of the transverse magnetization, hence a decrease of
the echo peak.

Due to this phenomena, we can convert almost any MRI sequence into a diffusion
sensitive sequence by introducing strong magnetic field gradients. These gradients
are named diffusion-weighting gradients and, when introduced, the sequence be-
comes part of the family of diffusion imaging pulse sequences. Particularly, we
can convert both GRE and SE sequences into diffusion imaging pulse sequences,
however, due to the severe signal losses of GRE sequences, sequences whose echo
peak is formed through the application of RF pulses, such as SE, are preferred on
the clinical routine.

Stejskal and Tanner (1965) were the first who proposed the inclusion of diffusion-
weighting gradients into the SE sequence. Originally, it was named Pulse Gradient
Spin Echo (PGSE) and it is described in Figure 2.6.

Compared to the SE sequence introduced in Subection 2.1.4, the PGSE sequence
includes a pair of diffusion-weighting gradients with the same amplitude (G),
duration (δ), and polarity, separated by a time ∆ and placed around the 180◦
RF pulse. With that gradient combination we are able to induce phase shifts
that depend on the spin location to subsequently rephase them with the second
diffusion-weighting gradient after the application of the 180◦ RF refocusing pulse.
Consequently, at each voxel the accrued phase at the echo peak of static spins
will be zero, while the accrued phase of moving spins will be different to zero
because at both sides of the 180◦ RF pulse they have been subjected to different
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Figure 2.6: Pulse Gradient Spin Echo (PGSE) sequence for DWI (also known as SE-DWI).

gradient intensities. Hence, the decrease in the intensity of the echo peak due to
intravoxel dephasing directly depends on the diffusion characteristics of the tissue.
An illustrative display of moving and not moving spins under diffusion-weighting
gradients is shown in Figure 2.7.

It is easy to notice that MRI does not measure the signal of each spin individually,
but it measures macroscopic behaviour or an ensemble average of all spins within
the voxel, i.e., spin density distribution. Therefore, from the probability density
function of each spin given in Eq. (2.16), the ensemble-average diffusion propagator
is:

P (r|t) =
∫

Ω
ρ(x)Ps(r|r0, t)∂r, (2.18)

where Ω is the physical volume of a voxel. This propagator can be further compared
to the signal measured by diffusion imaging sequences in the scanner. If we consider
the ideal case of the narrow pulse assumption when δ � ∆, which means that
spins only move in the time between diffusion-weighting gradients, between the
application of the diffusion-weighting gradients the spins might have moved from
r0 to r′ following the P (r|t). Consequently, compared to the sequences without
diffusion-weighting gradients spins will have a phase deviation:

ϕ(r) = γδGr − γδGr0 = γδG(r − r0) (2.19)

As a result, the signal measured when diffusion-weighting gradients are applied is
proportional to the T2 weighted signal obtained when there are no gradients, and
given the macroscopic nature of DWI it is:

Mxy = M0E{ejγδG(r−r0)} = M0

∫ ∫
P (r, r0|∆)ejγδG(r−r0)∂r∂r0 (2.20)

Particularly for the PGSE sequence, we can see the effects of the RF pulses,
diffusion-weighting gradients, relaxation phenomena and diffusion through by
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Figure 2.7: Evolution of various spin phases initially located in different positions along
the SE-DWI acquisition. Not moving spins experiment the same gradient intensity at
both sides of the RF-180 achieving complete rephasing by the end of the second diffusion-
weighting gradient. Moving spins do not experiment the same gradient intensity at both
sides of the RF-180 not achieving complete rephasing. The signal of a voxel corresponds
to the ensemble of all moving and not moving spins within the voxel, being its attenuation
related to the diffusivity.
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analysing the Bloch-Torrey equation:

∂M
∂t

= M× γB− Mxi +Myj
T2

− (Mz +M0)k
T1

+∇ ·D∇M, (2.21)

where ∇ is the laplacian operator. For simplicity, solving the previous Bloch-Torrey
equation without the T1 and T2 relaxation terms results in the measured signal at
TE by the PGSE sequence:

S(TE) = S0e
−
∫ TE

0
k(τ)TDk(τ)∂τ = S0e

−γ2D
∫ TE

0
[(
∫ t

0
G(τ)∂τ)T (

∫ t
0

G(τ)∂τ)]∂t
, (2.22)

where k(t) is:

k(t) = γ

∫ t

0
G(τ)∂τ (2.23)

If rectangular diffusion-weighting gradients are used, Eq. (2.22) can be further
simplified to:

Mxy = M0e
−γ2DG2δ2(∆−δ/3) (2.24)

Eq. (2.24) shows that the sensitivity of diffusion imaging sequences is characterized
by ∆, δ, and the diffusion-weighting gradient shape which together conceive the
term of b-value as:

b− value ≡ b = γ2G2δ2(∆− δ/3), (2.25)

which in standard DWI simplifies the measured signal to:

S(b) = S0e
−b·D (2.26)

Essentially, by adding diffusion-weighting gradients to any sequence we can also
make it sensitive to the diffusion properties of the medium in addition to being
sensitive to its T1, T2 and PD properties. This is the case of several extensions of
the SE such as the Twice Refocused Spin Echo (TRSE) or the Stimulated Echo
(STE). The echo peak of these sequences is also formed from RF pulses and the
diffusion-weighted measured signal essentially corresponds to the monoexponential
signal of Eq. (2.26). The upside of these sequences is that they behave better when
the MRI is subjected to strong eddy currents or that they achieve higher diffusion-
weightings, i.e., higher b-value, albeit suffering from lower signal intensities, which
is crucial in DWI.

Throughout the previous descriptions and derivations we assumed that the excited
medium does not contain barriers and that the diffusion is homogeneous being
the same in every direction. These mediums are called isotropic mediums and
are characterized by a single diffusion constant D [mm2/s]. A concur example
of an isotropic medium is a glass of water where the diffusion constant is 3.00
mm2/s at 37.5◦C. On the other hand, if the medium contains barriers the diffusion
will more likely happen along certain directions than along others. Due to this
property, these mediums are called anisotropic mediums and are characterized by
the diffusion tensor. As a result, to obtain all the information of the diffusion tensor
diffusion imaging sequences need to be repeated several times by applying the
diffusion-weighting gradients in different non-collinear directions. This direction

32



2.2. Diffusion-Weighted Imaging

dependency transforms the b-value constant into the b-matrix and supposes a
straightforward change of the diffusion imaging technique to Diffusion Tensor
Imaging (DTI).

In order to pave the way for accessible MRI, several DWI sequences for both,
isotropic and anisotropic mediums have been made available on GitHub by the
author of this Thesis. These include SE-DWI, and TRSE-DWI sequences with
different k-space trajectories developed on PyPulseq, an open source MRI pulse
sequence design package for Python (Geethanath and Vaughan Jr, 2019; Ravi
et al., 2019). These sequences can be run on any General Electric, Siemens, and
Bruker MRI scanners provided that their Pulseq (Ravi et al., 2018) interpreters
are available. Further, they provide the versatility to easily change any sequence
parameter such as FOV, slice thickness, matrix size, number of slices, set of b-
values, diffusion-weighting directions, TE and TR. Nevertheless, the available DWI
sequences were only used in this Thesis when specifically stated.

2.2.3 Diffusion Models

So far in this chapter, we have described the diffusion phenomena in isotropic
and anisotropic mediums under the assumption of free diffusion. In biological
tissues, however, this assumption does not hold true due to the presence of multiple
physiological underlying effects (Le Bihan, 2007b). Thus, due to the macroscopic
nature of DWI the physical concept of diffusion (D) is replaced with the global
concept of Apparent Diffusion Coefficient (ADC)) (Le Bihan et al., 1986). With
this nomenclature, the measured diffusion equation is formulated as:

S(b) = S0e
−b·ADC (2.27)

In the past three decades, the monoexponential diffusion Eq. (2.27) has been
successfully applied in the clinical routine to help diagnose, characterize, and
perform treatment monitoring of numerous pathologies non-invasively. For example,
it is commonly used for the diagnosis of pathologies such as stroke in the brain and
metastasis in the liver as shown earlier in Section 1.1.

This monoexponential diffusion signal model was proposed by Stejskal and Tanner
in the 60s. Then, in the 80s, thanks to a better understanding of the biological
tissues Le Bihan et al. (1988) proposed the Intravoxel Incoherent Motion (IVIM)
signal model. This model separates the contribution of the Diffusion-Weighted
(DW) signal into two terms. The first one corresponds to the signal of the diffusing
spins, and the second one corresponds to the signal coming from the microcirculation
or pseudodiffusion of blood flow in the capillary network. The IVIM signal model
is:

S(b) = S0

[
fe−b·D

∗
+ (1− f)e−b·D

]
, (2.28)

where f is the pseudodiffusion fraction, D∗ the pseudodiffusion coefficient and D
the diffusion coefficient. The pseudodiffusion fraction (f) relates to the percentage
of a voxel volume occupied by capillaries and the pseudodiffusion coefficient (D∗)
relates to the blood velocity, which is about ten times greater than D.

33

https://github.com/ritagnunes/PulseqDiffusion


Chapter 2: Background

Figure 2.8: “Plot of the diffusion MR imaging signal attenuation (S/S0) against the
b-value. The plot is straight only with intermediate b-values (arrow B). The slope is
then the ADC. At very low b-values (arrow A), the slope is higher, with the inclusion of
perfusion (intravoxel incoherent motion effect). At higher b-values (arrow C), the plot
gets curved and the slope (ADC) decreases with the b-value, reflecting its non-Gaussian
nature in tissues (hindrance of diffusion by tissue elements, such as cell membranes).
Around 1985, only very low b-values were available. Around 1995, b-values around 1500
s/mm2 became common, while today very high b-values (5000 s/mm2 and higher) can be
reached.” (Figure and caption taken from Le Bihan (2013)).

Later on, with the advancement of MRI hardware, particularly due to the im-
provement of gradient coils and amplifiers, the sensitivity of the diffusion imaging
sequences considerably increased. The application of higher b-values (either due to
stronger gradients or longer diffusion times) has shown that the diffusion signal
deviates from the monoexponential signal decay, which implies a deviation from
the Gaussian behaviour described before. This signal deviation from the Gaussian
model, as well as the maximum achievable b-values along the past four decades,
is shown in Figure 2.8. Consequently, there has been considerable research in
the development of new diffusion signal models to try to explain that deviation
phenomenologically.

One of the earliest empirical models proposed to explain that non-Gaussian be-
haviour was introduced by Bennett et al. (2003). This is the stretched exponential
model which includes the dimensionless stretching parameter α. α can be in the
range [0, 1] and is known as the heterogeneity index or the anomalous index. The
lower the α the more heterogeneous is the medium. The stretched exponential
model is:

S(b) = S0e
−(b·ADC)α where α ∈ [0, 1] (2.29)

Later in 2005, a second model was proposed by Jensen et al. (2005) to account for
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the non-Gaussian behaviour of biological tissues at high b-values. This model is a
straightforward extension of the exponent of the monoexponential model through
the Taylor series by the inclusion of the kurtosis term (K). In the case of Gaussian
diffusion, the kurtosis term would be 0, however, in the case of non-Gaussian
diffusion K is greater than 0. This novel signal model is named Diffusion Kurtosis
imaging (DKI) and is as follows:

S(b) = S0e
−b·ADC+ b2ADC2K

6 (2.30)

It is to be noted that all previous signal models have been described as having
constant parameters, still they can be transformed into their tensor form similarly
to the standard monoexponential and DTI models.

2.3 Medical Applications of DWI

DWI has proven to be a magnificent technique for the diagnosis, characterization
and monitoring of multiple pathologies. Initially applied to diagnose brain strokes,
it rapidly extended to target other tissues such as liver, breast, prostate, and
kidneys among others. Below we show some pathologies and applications to which
DWI is applied to. Further details and applications can be found in (Koh and
Thoeny, 2010; Padhani et al., 2009a; Taouli et al., 2016).

Hepatic Metastasis is better diagnosed with DWI than with T2-weighted
MRI (Bruegel et al., 2008a). Particularly, low diffusion-weighting b-values facili-
tate lesion detection, while high b-values are used for the characterization of the
metastasis.

Diffuse Hepatic Disease. It is believed that DWI can contribute to diagnose
the grade of hepatic fibrosis (Lewin et al., 2007). It can also be studied with more
complex diffusion models such as IVIM, where the pseudo-diffusion parameter has
been shown to decrease in cirrhotic livers compared to healthy volunteers (Chow
et al., 2012; Luciani et al., 2008).

Breast Lesion Detection. The application of DWI to the identification of
breast benign and malignant lesions has been thoroughly studied. The diffusion
coefficient has been shown to be lower in malignant breast lesions than in benign
breast lesions as reported by Guo et al. (2002); Woodhams et al. (2005). This
diffusion coefficient decrease might be caused by the increase of cellularity of
malignant breast lesions.

Acute Pancreatitis can be diagnosed with DWI without the usage of contrast
agents with better sensitivity than with Computerized Tomography (CT) (Shinya
et al., 2009). If using the diffusion coefficients, care must be taken because even
though the diffusion coefficients of the acute pancreatitis are low in comparison to
the parenchyma, the coefficients of the pancreas gland seems to change with age
due to the presence of fat and atrophy (Herrmann et al., 2013).
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ADCDWI

a) b)

Figure 2.9: Diffusion-weighted imaging (DWI) of a patient with acute stroke (a) and the
corresponding ADC map (b). The stroke affected area is shown bright on the DW image
and dark on the apparent diffusion coefficient map. (Figure taken from Birenbaum et al.
(2011)).

Prostate Cancer can be better diagnosed and characterized in the prostate
gland by including DWI acquisitions to the standard T2-weighted MRI. The
diffusion coefficient improves detection of the prostatic carcinoma in the peripheral
zone (Haider et al., 2007). In addition, DWI in the prostate helps with the
localization of the lesion that sometimes fails with other methods such as ultrasound-
guided biopsy (Park et al., 2008).

Myocardial Edema Detection can be detected with DWI thanks to the later
hardware advancement (Luna et al., 2012). Due to the strong cardiac motion,
the application of DWI to the heart requires strong diffusion-weighting gradients
and low b-values to diminish motion artefacts. Further, it requires a modification
of the standard Stejskal and Tanner DWI sequence to synchronize the sequence
with the cardiac phases. The diffusion coefficient of the edema in acute infarcted
myocardium is lower than in healthy myocardium.

Lung Cancer detection with DWI is as challenging as the application of DWI
to the previous myocardial edema detection. The diagnostic accuracy of nodal
metastasis in the mediastinum has shown to be higher with DWI than with
Positron Emission Tomography (PET) scans (Nomori et al., 2008), while it is also
effective for a precise lesion localization. On the other hand, the diffusion coefficient
parameter needs to be treated carefully since there is considerable overlap in the
ranges of different lung pathologies (Matoba et al., 2007).

Stroke Detection is one of the first successes of DWI (Moseley et al., 1990).
While early detection of acute stroke is neither feasible with T1-weighted or T2-
weighted MR Imaging nor with CT. The former imaging modalities need up to
6 hours while the latter one needs days for stroke detection. With DWI acute
stroke can be diagnosed after a few minutes of arterial blockage, and the diffusion
coefficient varies through the subsequent phases. An example of a DWI acquisition
of a patient that suffers from acute stroke with the corresponding diffusion coefficient
map is shown in Figure 2.9.

Brain Diseases. The application of DWI and its extension to DTI, same se-
quence that DWI’s although applied in multiple diffusion-weighting directions, to
the brain has evolved from stroke and tumor diagnosis and characterization to the
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diagnosis of neurological and neurodegenerative diseases. For example, it has been
shown that DTI might be helpful for the identification of the structural brain map-
ping in migraine (Planchuelo-Gómez et al., 2020) and that it might be useful for the
early diagnosis of Parkinson’s disease on its prodromal stage (Peña-Nogales et al.,
2019a). Other applications of DWI/DTI target Alzheimer’s disease, schizophrenia
or epilepsy. However, while all these are promising applications of DTI they are
still in their early research stages.

2.4 Artefacts, Limitations, and Pitfalls

In Section 1.1 we defined a quantitative imaging biomarker as an objectively
measurable characteristic of the tissue that needs to fulfill various requirements (i.e.,
precision, accuracy, reproducibility, robustness and of clinical utility). However,
in order for a measure to achieve these requirements there are some artefacts,
limitations and pitfalls of the MR images, and particularly, of the DW images,
that need to be overcome. Some of these are described next:

B0 field inhomogeneities. One of the main components of the MR scanners is
the strong static magnetic field B0. Ideally, the B0 magnetic field is designed to be
as homogeneous as possible within the scanner bore when no patient is present.
However, B0 field inhomogeneities are always present due to the presence of metallic
components, the size and shape of the room, and the lack of ideal magnets. In turn,
the magnetic field varies across the FOV producing spatially-dependent variations
of the Larmor frequency, which contribute to the formation of some image artefacts
such as shading, spatial distortions, image blurring or signal loss. Note that all
of these artefacts will be more noticeable for larger FOVs since magnetic field
variations will also be larger. In order to increase the homogeneity of the B0
magnetic field active and passive shimming is commonly used. Also, artefacts can
be corrected with image postprocessing methods since the B0 field map can be
obtained with specialized sequences.

Susceptibility artefacts are another source of magnetic field inhomogeneities
that, opposite to the B0 field inhomogeneities, originate from the sample or patient
to be imaged. Each material has different susceptibility properties (χ) depending
on how they behave in the presence of an external magnetic field. It the material
disperses the magnetic field it is called diamagnetic, while if it concentrates the
magnetic field it is called paramagnetic or even ferromagnetic if the effect is strong.
This dependency is also present in biological tissues being most of them diamagnetic
with different degrees of susceptibility. On the contrary, air is slightly paramagnetic.
As a result, when a patient is in the MR scanner it will create spatially-dependent
variations of the Larmour frequency that will contribute to similar artefacts to the
ones explained above. These are particularly strong next to metallic implants due
to their ferromagnetic properties. In order to diminish susceptibility artefacts, spin-
echo sequences, as the ones traditionally used for DWI, are prefered over gradient
echo sequences, and similar postprocessing methods than those implemented for
the B0 field inhomogeneities can be applied.
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Figure 2.10: Chemical shift artefact in the phase encoding direction of a liver Spin Echo
Echo Planar Imaging (SE-EPI) acquisition at b-values [100, 500] s/mm2.

B1 inhomogeneities are also related to the artefacts caused by B0 field inho-
mogeneities and susceptibility artefacts. Firstly, if the spins precess at a frequency
slightly different to the Larmor frequency the B1 RF pulse, applied at the Larmor
frequency, will not be in resonance with them. Secondly, if the spins precess at the
Larmor frequency but the B1 RF pulse varies spatially throughout the FOV the
spins will not be in resonance either. In either case, these off-resonance effects will
produce the net magnetization to precess around an effective field (Beff) oriented
at an angle between B0 and B1. From these, the first problem was tackled on the
description of previous two artefacts, and the second one can be tackled by using
complex amplitude- and frequency-modulated RF pulses that can be made almost
insensitive to B1 inhomogeneities.

Chemical shift is caused by the small shifts in the resonant frequency of some
spins due to the different chemical environment of their nuclei. The most frequent
case in MRI can usually be seen around the interfaces of water-containing structures
surrounded with fat. In this case, the hydrogen protons of fat are partially shielded
from the external magnetic field due to their atomic structure, which translates into
a reduction of their Larmor frequencies. For instance, at 3T the spins of fat protons
resonate at around 430 Hz lower than spins of water protons. Thus, since the MRI is
tuned to excite and measure at the Larmor frequency of water protons the different
resonance frequency of fat compared to the water may produce a displacement of
several voxels of the fat on the acquired images hindering image interpretation.
The direction of the displacement will depend on the acquisition sequence, being
stronger in the low-bandwidth imaging encoding directions. Hence, this artefact can
be tackled by increasing the receiver bandwidth, or by incorporating fat suppression
techniques into the acquisition sequence. An example of a chemical shift artefact is
shown in Figure 2.10.

Motion is inherently one of the most severe artefacts in MRI due to the long
acquisition times. There are several types of motion that can introduce ghosting
artefacts into the MR images such as cardiac motion, respiratory motion or patient
movement as shown in Figure 2.11. On the other hand, some other types of motion
can also be valuable for MRI techniques such as Brownian motion, i.e., diffusion, or
blood flow, i.e., perfusion. In any case, the motion sources that introduce artefacts
into the MR images should be controlled and the artefacts diminished in order to
facilitate image interpretation. There is a large number of techniques to eliminate
or diminish motion artefacts (Norris, 2001) 1) some focus on the minimization of
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Motion artefact No motion

Figure 2.11: Patient motion artefact on a T1-weighted Spin Echo Echo Planar Imaging
(SE-EPI) brain acquisition with Repetition Time (TR) of 637 ms.
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Figure 2.12: Diffusion-weighted (DW) image of the liver at b-values [0, 2000] s/mm2. The
DW image at b-value 2000 smm2 shows poor SNR.

motion through sedation or stabilization, 2) some on signal suppression through
the use of saturation pulses, 3) others use faster imaging sequences such as EPI,
flow-compensated sequences, low motion-sensitive acquisition sequences or perform
multiple acquisitions of the same sequence, 4) other techniques involve triggering,
gating or navigator echos to perform different parts of the acquisition at the same
motion instant, and 5) finally, there are also postprocessing techniques to estimate
and correct for motion.

Noise are signal fluctuations inherent to any scientific measurement. In MRI,
these fluctuations are due to thermal noise, which is included by the voltage
fluctuations in the scanned object and in the receiver coils while measuring the k-
space signal. MRI and particularly DWI are image modalities with intrinsically low
signal intensities due to the acquisition procedure and the relaxations phenomena
as shown in Figure 2.12. As a result, they achieve low Signal-to-Noise-Ratio (SNR)
compared to other imaging modalities such as Computerized Tomography. The
SNR in MRI is proportional to the static magnetic field B0, the voxel size and
the number of samples. It is also inversely proportional to the receiver bandwidth.
Thus, the SNR can be increased by accordingly varying previous parameters in
the sequence. Further, the noise distribution depends on the acquisition procedure,
coil system and on the image formation. In order to remove its effects on the
acquired images it can be filtered out, and the actual noise distribution can be
used for better parameter estimation (Aja-Fernández and Vegas-Sánchez-Ferrero,
2016).
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Acoustic noise is generated in every MRI acquisition. Whenever a strong
current is driven into a conductor placed in a magnetic field a Lorentz force is
generated. If the current is switching rapidly a time-varying force distribution is
generated as occurs in the gradient coils. These forces produce vibrations that are
radiated into other physical parts of the scanner or into the air producing acoustic
noise. According to the Lorentz force, the stronger the driven gradients and the
faster they switch the more vibrations and more acoustic noise will be generated.
Thus, DWI and EPI are some of the sequences that generate stronger acoustic noise
which may cause patient discomfort, anxiety and may restrict fetal acquisitions
due to possible hearing loss (Hutter et al., 2018). The simplest technique to reduce
acoustic noise consists of providing ear plugs and/or headphones to the patient as
well as acoustically isolating the MR room. Further, reducing the gradient strength
and switching speed can also decrease the acoustic noise in spite of reducing image
quality.

Eddy Currents (ECs), also known as Foucault currents, are generated accord-
ing to the Faraday-Lenz Law of electromagnetism, where a varying magnetic field
induces electric currents in nearby conductors, which in turn generate their own
magnetic field with opposite polarity to the source one. In MRI the sources of
the varying magnetic field are typically the gradients and the source of the eddy
currents is any metallic component such as other coils, shields or wires. ECs are
proportional to the gradient strength, the switching time, and persist after the gra-
dients are switched off, which may result in severe image artefacts. ECs especially
cause serious artefacts in DWI due to the strong diffusion-weighting gradients,
which can introduce image shearing, shifting, scaling, and blurring due to the
persistent eddy currents during the application of the imaging gradients (Jezzard
et al., 1998). They might also cause misestimation of the diffusion coefficients
due to a misinterpretation of the effective diffusion-weighting b-value applied, and
image ghosting during the application of EPI sequences due to mis-registrations
between even and odd echos. In order to reduce eddy currents and the artefacts
they might produce, MR scanners implement active shielding gradients, gradient
pre-emphasis to counteract a priori the induced eddy current, advanced sequences
with low sensitivity to eddy currents as the TRSE DWI sequence (Reese et al.,
2003) shown in Figure 2.13, reference scans and/or postprocessing techniques. An
example of image ghosting and the corrected image is shown in Figure 2.14.

Concomitant Gradients (CGs) are a consequence of Maxwell’s equation of
the curl and the divergence. They are nonlinear and spatially dependent magnetic
field gradients that appear any time we generate a magnetic field gradient. At the
isocenter of the MR scanner they are zero but they increase parabolically away
from it in standard symmetric MR scanners, thus, their effects will be stronger
with larger gradient strengths and in larger FOVs. Some DWI sequences are
prone to the artefacts CGs introduce due to the application of the strong diffusion-
weighting gradients. These can be phase variations within the imaging plane that
may result in k-space blurring and shifting, and phase variations through imaging
plane that may result in signal attenuation due to the phase dispersions across
a given voxel (Baron et al., 2012). In order to reduce these we can use adapted
MR sequences, gradient derating or use postprocessing correction methods during
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Figure 2.13: Twice Refocused Spin Echo (TRSE) DWI sequence. GDiff are the diffusion-
weighting gradients.
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Figure 2.14: Ghosting artefacted image and corrected image, a) and b), respectively, of
a doped water phantom SE-EPI DWI acquisition at b-values of [0, 500] s/mm2. The
ghosting artefact in the phase encoding direction was introduced due to the misalignment
of even and odd echos of EPI due to induced Eddy Currents. The corrected image was
obtained via postprocessing using a reference scan.

41



Chapter 2: Background

image reconstruction.

Gradient nonlinearities. Gradients are linearly varying magnetic fields that
are zero at the scanner isocenter. However, similarly to the external magnetic field
inhomogeneities, the linearity of the magnetic field gradients also lessens away from
isocenter. It is important to note that some MRI vendors may sacrifice gradient
linearity to increase other gradient characteristics such as rise time (Janke et al.,
2004). The increment of gradient nonlinearities may introduce image distortions
due to erroneous spatial encoding, blurring and phase variations that might turn
into signal attenuation. Further, in DWI gradient nonlinearities may produce
spatially dependent b-values which result in erroneous estimations of the diffusion
coefficients (Malyarenko et al., 2014). Common procedures to correct these artefacts
are applied during image reconstruction due to their known response.

Peripheral Nerve Stimulation (PNS) is caused by the fast switching of
magnetic field gradients and consists of the stimulation of muscles and nerve cells.
Any muscle or nerve cell can be stimulated, however, the stimulation is remarkably
more intense in the peripheral nerves, and as such the effect is named PNS. For
instance, the threshold for PNS is around one order of magnitude softer than the
threshold for cardiac stimulation. In modern clinical scanners patients might suffer
it in sequences where the magnetic field gradients are driven fast to large gradient
strengths such as in DWI or PI and it can cause tingling, poking of the skin or
even involuntary muscle movement which might produce patient anxiety (Schulte
and Noeske, 2015). Since nerve stimulation appears due to the application of high
performance gradient coils with short ramp times and high gradient strengths used
for fast imaging an standard approach to reduce them is by simply increasing the
ramp time used to drive the gradient to its maximum strength.

Blood signal. As previously mentioned, due to the cyclic respiratory and cardiac
motions MRI acquisition of certain tissues is arduous. Thus, in order to reduce
motion-induced signal losses in some tissues gradient moment-nulling techniques
are commonly employed. These techniques are frequently included in DWI for
target tissues such as the heart or the liver. However, while DWI should provide
tissue characterization by only probing microscopic Brownian motion, if gradient
moment-nulling techniques are implemented it also probes signal from moving blood
as shown in Figure 2.15. This lack of signal suppression will result in bright spots in
blood vessels of DW images, which might introduce biases in the diffusion coefficient
maps (Zhang et al., 2019). Further, the bright spots of unsuppressed blood signal
can mimic focal lesions, consequently hindering image interpretation.

Power cosumption. MRI uses highly specialized equipment (i.e., magnet, cry-
ocoole, heat exchanger, patient table, gradient amplifier, RF units, computer and
more modules). However, its high level of functionality and performance turns into
huge energy demands since the quality of the generated images is directly related
to the strength of the magnetic field and the power of the gradient amplifiers and
RF untis. The power consumption of an MRI scanner can be divided into its three
operational modes (Off, Ready-to-scan, and Scan). While the computation and
the patient table average power consumption is below 5% of the power consumed
by the scanner in one day, the power consumed by the magnet is 82%, 52%, and
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Motion-compensated DWIStandard DWI

a) b)

Figure 2.15: Diffusion-weighted images of a standard DWI acquisition (a) and a motion-
compensated DWI acquisition with gradient moment-nulling (b). b-Value of both DW
images is 100 s/mm2. Yellow arrows point at blood vessels which show suppressed and
unsuppressed signals on the standard and on the motion-compensated images, respectively.

38% in each operational mode, respectively. Subsequently, there is an increase
off the other modules power consumption from 16% in the Off mode to 58% in
the Scan mode (Herrmann and Annekristin, 2012). This increase of the power
consumption in the Scan mode is mainly due to the gradient amplifiers and the
RF units, considerably used in every acquisition. Traditional techniques to reduce
power consumption consist in reducing the intensity of the gradient amplifiers and
the RF units albeit degrading the acquired image. Also, novel imaging modalities
(i.e., Magnetic Resonance Fingerprinting and Synthetic MRI) considerably reduce
the scan time with the corresponding reduction of the power consumption (Ma
et al., 2013; Moya-Sáez et al., 2020).

Signal models. In DWI the spins of water molecules are assumed to diffuse
freely throughout the medium, that is, the diffusion distribution is Gaussian.
Under that assumption the diffusion signal model equates to a monoexponential
decaying signal where the diffusion coefficient is termed ADC. It holds that name
because in biological tissues diffusion is known to be complex due to the presence
of multiple compartments, cells, proteins, membranes, organelles . . . , and as such,
it is conceived to summarize all hidden physical phenomena that occur at smaller
scales still not available for DWI (Le Bihan, 2013). Also, the monoexponential
model is valid at low diffusion-weightings, i.e., low b-values, but at higher b-values
the signal model deviates from the monoexponential behaviour. Thus, these last
two situations make it difficult to retrieve specific microstructure information from
ADC measurements. As a consequence, to obtain added tissue information from
DWI new diffusion-weighting signal models have been developed to try to connect
phenomenologically the signal parameters with the underlying tissue structure.

Parameter estimation is a crucial aspect of some magnetic resonance imaging
techniques such as relaxometry, susceptibility mapping or DWI. Parameter estima-
tion from weighted images provides further information to the radiologist to assess
the patient’s pathology. However, parameter estimation entails controversy due to
the choice of the appropriate acquisition parameters (i.e., b-value), the multiple
parameters some signal models contain, and the low SNR of some weighted images
which might make accurate and precise parameter estimation unfeasible in the
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Figure 2.16: ADC estimated maps of a liver DWI acquisition estimated with a least
squares estimator and a maximum likelihood estimator, a) and b), respectively, for a
particular set of b-values. Note the differences on the estimated maps for both estimators.

clinical routine (Barbieri et al., 2016; Peña-Nogales et al., 2020). Note that in
clinical practice the acquisition time is limited. In order to diminish the impact on
the estimated maps, multiple signal weighting methods have been proposed based
on the Error Propagation (EP) formulation or on the Cramér-Rao Lower Bound
(CRLB), as well as estimators based on voxel-wise or Region of Interest (ROI)
-wise analysis and deep learning. Figure 2.16 shows the variability of the estimated
ADC maps from the monoexponential signal diffusion model across two different
estimators for the same set of b-values.

Lack of standardization. In some tissues, the application of many MR se-
quences and reconstruction procedures lack standardization in terms of method-
ology, terminology and portrayal of the experiments carried out in publications;
this is the case of DWI in the liver. This lack of standardization greatly limits
its understanding and hinders the comparison between multiple studies performed
at different research centers and clinics. Most of the factors that contribute to
that diversity are related to how different publications tackle each of the aforemen-
tioned artefacts and pitfalls such as the actual implemented sequence, the image
reconstruction techniques, the signal model and its parameters nomenclature or
the estimator employed, among others. All these conceivable combinations affect
DWI interpretation to such an extent that, for instance, liver DWI has been
called ‘the tower of Babel’ by Guiu and Cercueil (2011), due to the difficulties to
understand all the terminology and methodology of published studies. An example
of methodology variation across six different studies is shown in Table 2.2.

Other artefacts in MRI include Gibbs artefacts, Zebra artefacts, Overflow artefacts,
Dielectric effects or Zero fill artefact, among others. They fall however out of the
scope of this dissertation.

2.5 Parameter estimation

2.5.1 Noise in MRI

In previous sections we have described the nature of the generated and acquired MR
signal. However, while the generated signal was characterized in the strict sense,
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Chapter 2: Background

the acquired signal was characterized in the loose sense. In addition to all previous
phenomena, the acquired signal is also affected by noise as it always happens in
any scientific measurement. Particularly, in MRI the main source of noise are
the voltage fluctuations known as the thermal noise introduced by scanned object,
followed by the thermal noise introduced by the receiving coils during acquisition
of the k-space (Hoult and Lauterbur, 1979). These noise fluctuations are known to
have a Gaussian distribution with zero mean and a variance proportional to

σ2
thermal ≈ 4kBTReffBW , (2.31)

where kB is the Boltzmann’s constant, T is the temperature of the receiving coils,
Reff is the effective resistance of the coils and the scanned object, and BW is the
receiver bandwidth (Aja-Fernández and Vegas-Sánchez-Ferrero, 2016). Its presence
in the acquired images may not only complicate visual assessment of the MR images,
but it may also hinder further postprocessing steps such as the computation of the
diffusion and related parameters, and thus, the extraction of quantitative imaging
biomarkers.

Due to its random nature, the most common way to cope with the noise present
in the measured complex k-space is through probabilistic modeling. Its accurate
modeling will provide tools for processing the MR images and to estimate the
aforementioned diffusion and related parameters.

In many fields the most common way to take advantage of noise modeling is through
noise filtering techniques, however, in MRI we can use it for many other applications
such as image reconstruction (Dolui et al., 2012; Michailovich et al., 2011), image
segmentation (Roy et al., 2012; Wu et al., 2011) and particularly for parameter
estimation (see Part III of this Thesis dissertation). Furthermore, if the appropriate
noise modeling was not taken into account, this noise could be amplified, which
could degrade the quality of the reconstructed images or complicate parameter
estimation. Therefore, a thorough study of the effect of the noise in MRI is vital
to guarantee the computation of quantitative imaging biomarkers.

Albeit being able to describe the noise model in MRI by a single receiving coil as
a zero mean white Gaussian noise with the same value of the variance σ2 for every
pixel within the acquired data, i.e., the noise is stationary: the noise features do
not depend on the position. The final noise probability model in the magnitude
data will depend on the coil configuration of the MR scanner and on the different
postprocessing steps the acquired data is submitted to.

In an antenna with L-coils, where L is the number of coils, the complex k-space
acquired signal ŝl(k) by the l-th coil is polluted by additive white Gaussian noise
with zero mean and variance σ2

kl
:

ŝl(k) = sl(k) + nl(k;σ2
kl

), l = 1, · · ·, L (2.32)

where sl(k) is the DFT noise free acquired signal of Eq. (2.12), and nl(k;σ2
kl

) =
nlr(k;σ2

kl
) + i · nli(k;σ2

kl
) the additive white Gaussian noise process on both the
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real and imaginary canals which is assumed to be stationary. Finally, through the
inverse DFT we obtain the signal in the complex image space:

Ŝl(x) = Sl(x) +Nl(x;σ2
kl

), l = 1, · · ·, L (2.33)

where Nl(x;σ2
kl

) is also a complex additive white Gaussian noise (Thunberg and
Zetterberg, 2007) with zero mean due to the linearity of the DFT. In this manner,
the Probability Density Function (PDF) of the Gaussian noise distribution is:

PŜ(Ŝ|S, σ) = 1√
2πσ2

e−
(Ŝ−S)2

2σ2 , (2.34)

where Ŝ and S are the intensity of the image and the true amplitude of the signal
on the corresponding space. Further, the relation between the k-space and the
image space noise variances is given by the number of points of the DFT as:

σ2
l = 1
|Ω|σ

2
Kl
, (2.35)

where |Ω| is the number of voxels of the reconstructed FOV. Note that in this case
there are no spatial correlations.

Next, in the case of PI the receiver antenna is composed of multiple coils used
to accelerate the image acquisition process as explained in previous Section 2.1.3.
This acceleration is achieved by subsampling the k-space data in each coil but
results in the appearance of aliasing in the image space. Thus, to suppress this
artefact PI techniques reconstruct the non-aliased image through the combination
of the information acquired by the multiple coils of the antenna. However, the
noise distribution of the reconstructed images depends on the way the information
from each coil is combined.

In PI the relation between the noise variances in the k-space and the image space
of Eq. 2.35 depends on the reconstruction process. If the SSl (x) is reconstructed
directly through the inverse DFT of SSl (k), where the superscript S indicates the
acquired signal is subsampled, Eq. 2.35 becomes:

σ2
l = r

|Ω|σ
2
Kl
, (2.36)

where r is the acceleration factor. On the contrary, if zero-padding is applied
to the missing k-space lines (i.e., the lines of the k-space not acquired) Eq. 2.35
becomes:

σ2
l = 1
|Ω| · rσ

2
Kl
, (2.37)

As previously indicated in Section 2.1.3, SENSE and GRAPPA are methods to
reconstruct the final image from subsampled versions of the signals in each coil.
However, new methods that typically constitute a pipeline of linear operations over
the subsampled signal SSl (k) are being continuously proposed, and they still are
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the main cause of introducing non-stationary noise into the final reconstructed
magnitude images. The reconstruction methods can be mainly grouped by two
different approaches:

• Reconstruction of a single complex image: This reconstruction process
applied in SENSE combines the subsampled data acquired by the different
coils together with the sensitivity map of each coil and the covariance matrix,
among other additional information, to obtain the final image

ŜR(x) = f
(
{SSl (x), l = 1, · · · , L}; Θ

)
, (2.38)

where the f(·) is a linear reconstruction function (Blaimer et al., 2004), and
Θ all the additional information needed. The linear reconstruction function
applied over the Gaussian data reconstructs the final images but generates
correlated Gaussian data whose variance depends on the position:

ŜR(x) = SR(x) +NR(x;σ2
R(x)) (2.39)

where NR(x;σ2
R(x)) is a non-stationary complex additive white Gaussian

noise. The final step to reconstruct the image corresponds to the computation
of the magnitude image. This is partly due to its simpler visual interpretation
and robustness:

M(x) = |ŜR(x)| (2.40)

and therefore is polluted with a non-stationary Rician noise distribution. The
PDF of this noise distribution is:

PŜ(Ŝ|S, σ) = Ŝ

σ2 exp
(
− Ŝ

2 + S2

2σ2

)
I0(SŜ

σ2 ), where Ŝ > 0, (2.41)

where I0 is the 0th order modified Bessel function of the first kind.

• Reconstruction of multiple complex images: The reconstruction pro-
cess obtains a reconstructed image per coil from the combination of the data
from the different coils:

SRl (x) = fl
(
{SSm(x),m = 1, · · · , L}; Θ

)
, with l = 1, · · · , L. (2.42)

where fl(·) is a linear reconstruction function over each coil (Blaimer et al.,
2004; Griswold et al., 2002). Similarly to the previous case, the linear recon-
struction function applied over the Gaussian data of each coil reconstructs the
images but generates correlated Gaussian data for each coil whose variance
depends on the position:

SRl (x) = ARl (x) +NRl (x;σ2
Rl(x)), with l = 1, · · · , L. (2.43)

Then, the distribution of the final reconstructed magnitude image depends
on the method used to combine the images from the different coils. Probably
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the simplest procedure to perform this combination is the Sum-of-Squares
(SoS):

MSoS(x) =

√√√√ L∑
l=1
|SRl (x)|2. (2.44)

Note that Eq. (2.44) is equivalent to

MSoS(x) = |SR(x)|

√√√√ L∑
l=1
|Cl(x)|2, (2.45)

where Cl(x) are the sensitivity maps of each coil. Thus, this procedure
assumes that the coil sensitivities are constant through the image.

L∑
l=1
|Cl(x)|2 = α. (2.46)

In this case, since the MSoS(x) is the sum of multiple signals, the Rician
distribution is no longer valid, and it can be approximated by a non-stationary
non-central chi (nc-χ) distribution if the variance of the noise is assumed to be
the same for all coils, and no correlation exist between them (Aja-Fernández
and Vegas-Sánchez-Ferrero, 2016). This is the case of GRAPPA acquisitions
and the PDF of the nc-χ noise distribution is:

PŜ(Ŝ|S, σ, L) = ŜLS1−L

σ2 exp
(
− Ŝ

2 + S2

2σ2

)
IL−1(SŜ

σ2 ), where Ŝ > 0.

(2.47)
In antennas with multiple coils noise correlations do exist, but they are usually
left aside due to their minimal effects and practical considerations (Constan-
tinides et al., 1997). If the correlations were taken into account the PDF
of the magnitude images could be accurately approximated by the standard
nc-χ model of Eq. (2.47) with new effective parameters (i.e., reduced num-
ber of coils L and increased variance of the noise σ2) (Aja-Fernández and
Vegas-Sánchez-Ferrero, 2016).

Another common procedure linearly combines the complex signals of each
coil using a Spatial Matched Filter (SMF) (McKenzie et al., 2002). However,
this procedure requires extra information such as the sensitivity maps of each
coil. An implementation of the SMF procedure is:

SRT (x) =
L∑
l=1

SRl (x) · Cl(x). (2.48)

In this case, the complex image SRT (x) still follows a complex Gaussian distri-
bution whose magnitude image follows a non-stationary Rician distribution.

Table 2.3 shows a survey of noise models in the final magnitude images for different
acquisition and reconstruction schemes. For further details about noise in MRI
see Aja-Fernández and Vegas-Sánchez-Ferrero (2016).
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Table 2.3: Survey of noise models in the final magnitude images for different acquisition
and reconstruction procedures schemes. (Table courtesy of Santiago Aja-Fernández (Aja-
Fernández and Vegas-Sánchez-Ferrero, 2016))

Coils Parallel Reconstruction Model Stationarity Params.
Single Single – Rician Stationary σ2

Multiple No SoS nc-χ Stationary σ2

(uncorrelated) L
Multiple No SoS nc-χ Non-stationary σ2

eff(x)
(correlated) (approx.) Leff(x)
Multiple No SMF Rician Stationary σ2

(uncorrelated)
Multiple No SMF Rician Non-stationary σ2(x)
(correlated)
Multiple PI SENSE Rician Non-stationary σ2

R(x)
Multiple PI GRAPPA + SoS nc-χ Non-stationary σ2

eff(x)
(approx.) Leff(x)

Multiple PI GRAPPA + SMF Rician Non-stationary σ2
R(x)

2.5.2 Estimation Theory

In previous Section 2.2.3 we described a series of mathematical models that describe
the behaviour of the diffusion signal depending on the voxel intensity of the DW
images and the b-values. These models describe the diffusion process macroscop-
ically, which will introduce unavoidable errors in the estimation of the diffusion
parameters. Another source of error in the estimation of the diffusion parameters
comes from the additive noise of the measurements. The thermal noise affects
the voxels intensity converting them into random variables. As such, if multiple
measurements are done under the same conditions, the corresponding voxels inten-
sities will vary, i.e., observations, as well as the estimated diffusion parameters, i.e.,
estimates. These variations are inevitable, however they can be diminished through
the application of the appropriate estimators i.e., the procedure to calculate an
estimate from sampled data. In order to know which estimator is appropriate for
DWI data, we need to work with the statistical parameter estimation theory (Kay,
1993).

Given a set of N observations of random variables X = (X1, X2, ..., XN )T whose
PDF is parametric with regard to an unknown parameter vector θ ∈ RP , the esti-
mation consists in the computation of such parameter vector. Thus, from the vector
of observations (i.e., realizations of the random variables) x = (x1, x2, ..., xN )T we
compose a vector of estimates θ̂ = g(x1, x2, ..., xN ), where g(·) is a vector with
P components and N variables. These estimates correspond to a realization of
the random variable θ̂ = g(X1, X2, ..., XN ), meaning that we will obtain different
estimates for a new set of observations x. Hence, θ̂ = g(X1, X2, ..., XN ) is an
statistical estimator as defined by Papoulis and Pillai (2002).

Estimation theory defines several desired properties for statistical estimators.
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Figure 2.17: Graphical representation of accuracy and precision on a dartboard.

• An estimator should obtain estimates which are close to each other on
average. This property is called precision, and is known as the variance of
the estimates. Formally, the precision of an estimator is defined as

var(θ̂(X)) =
(

[Cθ̂(X)]11, [Cθ̂(X)]11, ..., [Cθ̂(X)]PP
)T

, (2.49)

where Cθ̂(X) is the covariance matrix of the random vector θ̂(X). The
lower the variance of the estimates, the higher the precision. A graphical
representation of the precision is shown in Figure 2.17.

• An estimator should obtain estimates which are close to the real value on
average. This property is called accuracy, and is known as the bias of the
estimates. Formally, the bias of an estimator is defined as

bias(θ̂(X)) = E{θ̂(X)} − θ, (2.50)

where E{·} is the expectation operation. The lower the bias of the estimates,
the higher the accuracy. Within this property, we can consider that an
estimator is unbiased if the bias of its estimates is zero. If the bias tends
asymptotically to zero when the number of samples increases towards infinity,
the estimator is asymptotically unbiased. A graphical representation of the
accuracy is shown in Figure 2.17.

In order to choose the optimal realizable estimator in terms of precision and
accuracy, the standard procedure consists on selecting the estimators with the
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maximum possible accuracy, this is, the unbiased estimators, and then selecting the
one with the highest precision. This is basis of the procedure performed in Part III
of this Thesis dissertation to increase the precision of the DWI diffusion-related
parametric maps.

• An estimator should obtain estimates which are closer to each other and
closer to the real value with an increasing number of samples. This property
is called consistency, which is equivalent to an asymptotically unbiased
estimator when its variance tends to zero. Formally, the consistency of an
estimator is defined as

lim
N→∞

Pr(||θ̂(X))− θ||2 > ε) = 0, (2.51)

where Pr(·) is the probability of the estimates to converge to θ.

• An estimator should uniformly have the minimum variance as well as being
unbiased. Such an estimator is called uniformly minimum variance
unbiased estimator (UMVUE), and the word uniformly implies that the
estimator should have the minimum variance regardless of the values of θ.
Formally, the UMVUE (Kay, 1993) is defined as

var(θ̂UMV UE(X)) ≤ var(θ̂(X)) ∀ θ̂(X) with bias(θ̂(X)) = 0. (2.52)

• An unbiased estimator should obtain the highest possible precision. Such an
estimator is called efficient. Formally, an efficient estimator is defined as

Cθ̂(X) > I
−1(θ, (2.53)

when the following regularity condition holds true:

E{∂ logPx(x|θ)
∂θp

} = 0, with p = 1, 2, ..., P, (2.54)

where I(·) is the Fisher Information Matrix (FIM) further described later
in Chapter 6, and Px(x|θ) the joint PDF of the random variables X =
(X1, X2, ..., XN )T at observations x. However, the problem remains on estab-
lishing the existence of the upper bound of the precision of the estimates,
i.e., a lower bound on the variance of the estimates. To establish that bound
we can rely on the existence of the Cramér-Rao Lower Bound (CRLB) also
described on Chapter 6. If the estimator achieves the highest possible pre-
cision as the number of samples increases towards infinity it is said to be
asymptotically efficient.

Next, we describe two of the most common estimators that attain some of the
previous properties.

Least Squares (LS) estimators are based on the estimation of the parameters
by minimizing the squared discrepancies between the sampled data and their

52



2.5. Parameter estimation

expected values, i.e., their L2-norm. These discrepancies are also known as resid-
uals. Assuming we have a random variable Xn that depends on parameter θ as
follows:

E{Xn} = φn(θ), (2.55)

where φ(θ) is a deterministic signal model for n = 1, ..., N . As such, LS estimator
seeks to minimize the following residual

θ̂LS = arg min
θ

N∑
n=1

(xn − φn(θ))2, (2.56)

where θ̂LS is the LS estimate when φn(·) is a linear function of θ and xn for
n = 1, ..., N is the sampled data. If for any reason, we want to give a different
importance to each residual, we can easily extend the LS estimator to Weighted
Least Squares (WLS) estimator by multiplying each residual by a specific weight wn.
On the other hand, if φn(·) is a nonlinear function of θ the corresponding random
LS estimator would be the Non Linear Least Squares (NLLS) estimator.

Maximum Likelihood (ML) estimators are based on the maximum likelihood
principle to obtain the estimates of parameters θ that most likely produced the
sampled data xn. To be able to construct this estimator we need prior information
of the data, particularly, we need to know its PDF Px(x|θ). From the PDF we
construct the likelihood function from some given data x as L(θ|x). The set of
parameters most likely to produce the sampled data corresponds to the maximum
point of the likelihood function. Thus, the ML estimate can be obtained as:

θ̂ML = arg max
θ

L(θ|x), (2.57)

where θ̂ML is the ML estimate. The actual implementation of ML is usually based
on the negative log-likelihood as:

θ̂ML = arg min
θ

L (θ|x), (2.58)

where L (θ|x) = − logL(θ|x).

In the case of having sampled data with Gaussian distributed noise both the ML and
the WLS estimators are equivalent if the weights (wn) are wittily chosen and both
share multiple of previously described properties. However, in the case of having
Rician distributed noise only the ML estimator is consistent and asymptotically
unbiased and efficient (Papoulis, 1977). These implications together with the nature
of the DW magnitude data make the ML estimator the standard one to estimate
the diffusion and related parameters throughout this Thesis dissertation.
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3.1 Introduction

Diffusion-Weighted Magnetic Resonance Imaging (DW-MRI) has a unique ability
to non-invasively probe tissue microstructure as detailed shown in Section 1.1. By
applying powerful diffusion-weighting gradient waveforms (Stejskal and Tanner,
1965), DW-MRI is sensitive to the microscopic Brownian motion of water molecules,
with multiple applications for tissue characterization in health and disease (Koh
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and Collins, 2007; Le Bihan et al., 1986; Padhani et al., 2009a; Taouli and Koh,
2009).

However, as briefly shown in Section 2.4, the application of these powerful diffusion-
weighting gradients results in significant imaging challenges including:

• Signal dephasing due to bulk motion (Liau et al., 2012; Murtz et al., 2002;
Taouli and Koh, 2009).

• Signal dephasing due to Concomitant Gradients (CGs)-induced fields, also
known as Maxwell fields (Baron et al., 2012; Bernstein et al., 1998; Meier
et al., 2008).

• Image distortions due to Eddy Currents (ECs) (Aliotta et al., 2018; Bernstein
et al., 1998; Jezzard et al., 1998).

• Possible Peripheral Nerve Stimulation (PNS)(Den Boer et al., 1999; Reilly,
1989).

Bulk motion artefacts are particularly severe in organs that experience substantial
physiological motion (e.g., heart and liver). In these organs, the presence of
macroscopic elastic tissue motion during the application of the diffusion gradients
can result in localized signal voids (Anderson and Gore, 1994; Murphy et al., 2013;
Norris, 2001; Trouard et al., 1996). CGs are characterized by Maxwell’s equations,
and appear in sequences where the diffusion gradients are asymmetrical about
the radiofrequency pulse (Baron et al., 2012), and can introduce large spatially
dependent dephasing in diffusion MRI sequences. Lastly, ECs and PNS appear
when the gradient amplifiers are switched fast to drive large gradient intensities.
Switching gradients result in current inductions characterized by the Faraday-Lenz
Law of electromagnetism that persist after the gradients are switched off (Bernstein
et al., 1998; Weissenberger, 2002; Zhou, 1998), and can introduce large image
distortions (i.e., shearing, shifting, scaling and blurring), misestimation of the
b-value and ghosting. Switching gradients can also cause an electric depolarization
that may lead to nerve stimulation (Glover, 2009; Schulte and Noeske, 2015; Zhang
et al., 2003), which can cause tingling and involuntary muscle movement and might
increase patient anxiety. The peripheral nerves are more prone to experience the
stimulation, hence, it received the name of peripheral nerve stimulation (Feldman
et al., 2009).

Bulk motion-, Concomitant Gradient (CG)-, and ECs-related signal dephasing can
complicate the interpretation of DW images and introduce bias and variability in
the quantification of diffusion parameters. In addition, PNS may increase patient
discomfort.

Multiple approaches have been proposed to address the effects of bulk motion, CGs,
ECs, and PNS in several Magnetic Resonance Imaging (MRI) applications. These
approaches include both acquisition-based and reconstruction-based methods, as
described next:

• Bulk motion artifacts can be reduced through the gating of the Diffusion-
Weighted (DW) acquisition (Taouli and Koh, 2009). Synchronizing the
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Diffusion-Weighted Imaging (DWI) acquisition with the bulk physiological
motion (e.g., using cardiac and/or respiratory triggering) reduces motion
artifacts, although these methods generally increase the overall acquisition
time (Murtz et al., 2002). Further, elastic motion can occur regionally through-
out the entire cardiac or respiratory cycle, and therefore triggered acquisitions
are generally unable to completely avoid motion artefacts. Sensitivity to bulk
motion can be further reduced by applying diffusion-weighting gradient wave-
forms that guarantee first- and/or second-order moment-nulling (Ozaki et al.,
2013; Simonetti et al., 1991; Stoeck et al., 2016). Traditionally, first-order
moment-nulling (i.e., velocity compensation) has been achieved with bipolar
waveforms (Ozaki et al., 2013), and second-order moment-nulling (i.e., accel-
eration compensation) with ‘motion-compensated’ diffusion encoding gradient
waveforms (Stoeck et al., 2016). However, first- and second-order moment-
nulled diffusion waveforms have typically resulted in substantial increases
in the achievable Echo Times (TEs), leading to low Signal-to-Noise-Ratio
(SNR) efficiency in these acquisitions.

• CG-effects can be minimized using multiple different approaches, includ-
ing: post-processing-based methods (Norris and Hutchison, 1990), shimming
coils (Sica and Meyer, 2007), image gradients dephasing (Baron et al., 2012),
and application of symmetric diffusion-weighting gradient waveforms such as
monopolar gradients (Zhou et al., 1998), or waveform reshaping to guarantee
phase cancellation (Meier et al., 2008).

• Eddy Current (EC) artefacts are commonly reduced through shielding gra-
dients and additional wiring (Bernstein et al., 2004; Le Bihan et al., 2006).
The image distortions they introduce can be mitigated prospectively by,
for example, adapting the k-space trajectories by taking into account the
residual EC on the corresponding directions (Xu et al., 2013; Zhou et al.,
1999). Further, calibration and reference scans can be used to eliminate
them with post-processing methods (Haselgrove and Moore, 1996; Koch and
Norris, 2000; Zhou, 1998). Gradient derating, complex MR sequences and
tuned diffusion-weighting gradient waveforms can be also used to diminish
the image distortions (Aliotta et al., 2018; Finsterbusch, 2009, 2010) with
the advantage of also achieving intravoxel rephasing. Some of these corre-
spond to the use of bipolar (Alexander et al., 1997) gradient waveforms in
spin-echo DWI, or the implementation of the Twice Refocused Spin Echo
(TRSE) DWI sequence (Reese et al., 2003). However, these methods tipically
result in substancial increases in the achievable echo times (TEs), deacreasing
the SNR and the efficiency of these acquisitions. On the other hand, the
misestimation of the diffusion-weighting b-value can be compensated with gra-
dient pre-emphasis (Le Bihan et al., 2006), although this increases hardware
demands.

• Nerve stimulation is usually diminished by limiting the maximum slew rate
and/or the maximum gradient strength of the gradient waveform leading to
sub-optimal waveforms (Bernstein et al., 2004; Hidalgo-Tobon, 2010). Further,
the gradient waveform shape, i.e., monopolar vs. bipolar, also plays and
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important role in diminishing PNS (Ham et al., 1997; Harvey and Mansfield,
1994; Schulte and Noeske, 2015) as well as the gradient orientation and the
patient’s position (Abart et al., 1997; Den Boer et al., 2002).

Recently, Aliotta et al. (2017) proposed a novel algorithm, termed Convex Optimized
Diffusion Encoding (CODE), to design gradient waveforms with first- and/or second-
order moment-nulling. By formulating the gradient waveform design problem as a
constrained nonlinear optimization problem (with constraints including sequence
timing, hardware limits, and moment-nulling), CODE enables flexible design of
gradient waveforms and seeks to minimize the achievable Echo Time (TE) for a
desired b-value (or conversely, to maximize the achievable b-value for a given TE).
By approximating this constrained optimization formulation as a convex (linear)
optimization problem (instead of the original nonlinear, non-convex quadratic
problem), CODE results in simplified computation. However, because of this
approximation, it is unclear whether CODE results in optimal waveforms, i.e.,
whether it achieves the minimum TE for a given desired b-value. This optimality is
critical for moment-nulled diffusion-weighting waveform design, as it will determine
the SNR of the DWI acquisition, particularly for organs with relatively short
T2 relaxation time (e.g., the liver). Further, CODE waveforms are generally
asymmetric around the refocusing pulse and the gradient amplifiers are switched
fast to drive large gradient intensities. Therefore, they may suffer from substantial
CG-, EC-, and PNS-effects, which need to be addressed.

Therefore, in this part of the Thesis dissertation we propose a novel Optimized
Diffusion-weighting Gradient Waveform Design (ODGD) method for diffusion-
weighting gradient waveform design for any diffusion-weighting direction that seeks
to overcome the limitations of previous methods. The proposed ODGD method
consists of: 1) a constrained optimization formulation that minimizes the TE for
a given b-value subject to moment-nulling, CG-nulling, EC-nulling, and PNS-
nulling constraints, and 2) a quadratic optimization algorithm that directly solves
the formulation without introducing approximations. The proposed method is
described and evaluated in phantoms and in-vivo brain and liver diffusion MRI
experiments in Chapters 4 and 5. Specifically, in the following section we describe
the underlying theory of ODGD, and in Chapter 4 we validate the proposed
optimization formulation to achieve moment-nulling and CG-nulling, while in
Chapter 5 we validate the proposed optimization formulation to achieve EC-nulling,
and PNS-nulling.

3.2 Theory

The proposed Optimized Diffusion-weighting Gradient Waveform Design (ODGD)
formulation seeks to optimize the TE for a given b-value, under various linear and
nonlinear constraints. These constraints are listed below.
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3.2.1 Moments

In order to refocus the signal from static spins, all diffusion-weighting gradient
waveforms require zeroth-order moment-nulling (M0). Additionally, diffusion-
weighting gradient waveforms with high-order moment-nulling are desirable in
tissues affected by physiological motion in order to avoid motion-related signal
dephasing (importantly, this dephasing will result in artifactual signal decay in
voxels that experience elastic tissue motion). These moment constraints can be
expressed as follows (Welsh et al., 2015):

Mn = γ

∫ TDiff

0
tnG(t)∂t = 0 where n = 0, 1, 2... (3.1)

where γ is the gyromagnetic ratio, and G(t) and TDiff are the diffusion-weighting
waveform (G(t)= [Gx(t), Gy(t), Gz(t)]) and the diffusion-weighting time, respec-
tively. Under this constraint, M0 = 0 rephases the static spins, M1 = 0 rephases
the spins moving with uniform speed, and M2 = 0 rephases the spins moving with
uniform acceleration.

In the present Thesis dissertation:

• ODGD-M0 stands for ODGD with M0 = 0.

• ODGD-M1 stands for ODGD with M0 = M1 = 0.

• ODGD-M2 stands for ODGD with M0 = M1 = M2 = 0.

3.2.2 Concomitant Gradients

As indicated in Section 2.4 Concomitant Gradients (CGs) are well-known nonlinear
spatially dependent magnetic fields that appear, as a consequence of Maxwell’s
equations for the curl and divergence, anytime we generate a magnetic field gra-
dient (Bernstein et al., 1998). In conventional MRI scanners (Bernstein et al.,
1998; Meier et al., 2008), these CGs are orthogonal to the diffusion-weighting
gradients, and have significant first- and second-order spatially varying terms as
follows:

Bc(x, y, z, t) = 1
2B0

[(G2
x(t) +G2

y(t))z2 +G2
z(t)x

2 + y2

4 −

Gx(t)Gz(t)xz −Gy(t)Gz(t)yz]
(3.2)

where Bc is the CG magnetic field and B0 is the amplitude of the static magnetic
field. Importantly, CGs are small near isocenter, and increase in magnitude away
from isocenter. These nonlinear and spatially dependent magnetic fields can cause
a phase accrual throughout the gradient diffusion-weighting time (TDiff) given
by:

φc(x, y, z) = γ

∫ TDiff

0
Bc(x, y, z, t)∂t (3.3)
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Therefore, the application of gradients leads to a spatially dependent dephasing
of the MRI signal. This dephasing may cause a blurring of the k-space due to
parabolic phase variations within the imaging plane, and a shifting of the k-space
due to the cross-terms GiGj, so called in-plane dephasing (Baron et al., 2012). In
addition, through-plane phase dispersion resulting from CGs (Baron et al., 2012)
may cause severe signal attenuation. Further, this additional signal decay will be
larger for increasing b-values, which may introduce bias in quantitative diffusion
measures.

Consequently, in order to address the effects of CGs, the CG-related phase accrual
can be nulled (φc(x, y, z) = 0) by incorporating the following nonlinear constraint
into the diffusion-weighting gradient waveform design formulation:

γ

∫
A1

G(t)2∂t− γ
∫
A2

G(t)2∂t = 0 (3.4)

where A1 and A2 are the time periods before and after the refocusing radiofrequency
pulse. By including this constraint, the effects of Eq. (3.2) can be mitigated over
the entire Field-of-View (FOV), since the proposed correction of Eq. (3.4) is not
spatially-dependent.

In the present Thesis dissertation:

• ODGD-Mn-CG where n∈[0, 1, 2] stands for ODGD with nth order moment-
nulling with Concomitant Gradient (CG)-nulling.

3.2.3 Eddy Currents

Eddy Currents (ECs) are time-varying magnetic field gradients generated according
to the Faraday-Lenz Law of electromagnetism by conducting parts of the scanners
such as gradient and Radio-Frequency (RF) coils Bernstein et al. (2004). They
build up during the time-varying part of the gradient waveform and decay on the
gradient constant portions and when gradients are off, as earlier introduced in
Section 2.4. The ECs are proportional to the slew rate of the waveform and have
opposite sign (Le Bihan et al., 2006). They are characterized by their impulse
responses given by the following decaying exponential functions:

e(t, τ) = H(t)
∑
n

αne
t
τn , (3.5)

where τn is the characteristic time constant, αn is the characteristic amplitude, n
is the number of induced currents and H(t) is the step function. In standard MRI
scanners, the ECs time constants can be in the range of few microseconds to hundred
of seconds. ECs can introduce k-space shifting and unwanted phase accumulation.
In traditional k-space imaging these effects do not affect the magnitude images;
however, in rapid imaging such as Echo Planar Imaging (EPI) it can cause image
scaling, shearing or shifting.

Consequently, in order to address the effects of the ECs, the ECs with a given set
of time constants τ can be nulled by incorporating the following linear constraint
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into the diffusion-weighting gradient waveform design formulation:

g(t, τ) = ∂G(t)
∂t

∗ e(t, τ)
∣∣∣∣
TDiff

= 0, (3.6)

In the present Thesis dissertation:

• ODGD-Mn-EC where n∈[0, 1, 2] stands for ODGD with nth order moment-
nulling with Eddy Current (EC)-nulling.

3.2.4 Peripheral Nerve Stimulation

Nerve stimulation can be caused by the rapid switch of field gradients that may
induce an electric depolarization and hence, stimulation of the nerves. These effects
are more prone in modern scanners and in rapid imaging techniques due to the
need to drive large gradient intensities quickly. Every nerve can be stimulated,
however, the threshold for cardiac or respiratory stimulation is approximately ten
times higher than the threshold for Peripheral Nerve Stimulation (PNS) (Schulte
and Noeske, 2015). As such, limiting the Magnetic Resonance (MR) acquisitions
to the PNS threshold is a cautious margin to avoid more harmful stimulations. A
conservative nerve impulse response to study PNS is given by:

n(t) = α · c
r(c+ t)2 , (3.7)

where the gradient-coil specific constants α, r, and c are the effective coil length,
rheobase, and chronaxie time, respectively. Thus, for waveforms designs with the
maximum slew rate supported by the MRI unit we can reduce the nerve stimulation
(PNS-nulling) by adding the linear constraint:

R(t) = n(t) ∗ ∂G(t)
∂t

< PLimit = 1, (3.8)

where the PNS limit (PLimit) is established by the International Electrotechnical
Commission (IEC-60601-2-33).

In the present Thesis dissertation:

• ODGD-Mn-PNS where n∈[0, 1, 2] stands for ODGD with nth order moment-
nulling with Peripheral Nerve Stimulation (PNS)-nulling.

3.2.5 Additional Constraints

DW-MRI sequences need to satisfy additional hardware constraints such as the
limitation on the maximum gradient intensity (GMax) and maximum slew rate
(SRMax) of each gradient axes (note that the effective GMax and SRMax may be
increased for oblique diffusion directions, i.e., when several gradient axes are active
simultaneously). Further, diffusion-weighting gradient waveforms need to be zero
at certain times during the pulse sequence (e.g., during the RF pulses). In this
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work, we will only focus on the constraints imposed by the Spin Echo (SE) DWI
sequence shown in Figure 2.7 (Aliotta et al., 2017):

G(TRF−90) = 0 (3.9)

G(TRF−180) = 0 (3.10)

G(TEPI) = 0 (3.11)

|G(t)| ≤ GMax (3.12)

∣∣∣∣∂G(t)
∂t

∣∣∣∣ ≤ SRMax (3.13)

where TRF−90 corresponds to the excitation pulse and TRF−180 corresponds to the
refocusing pulse. TEPI is the time needed by the EPI echo train to reach the center
of k-space. In summary, the diffusion-weighting waveform may begin immediately
after the excitation pulse, is zero during the refocusing pulse, and needs to finish
before the beginning of the EPI echo train.

3.2.6 Proposed Formulation

The proposed ODGD formulation seeks to maximize the achievable b-value for a
given TE. The b-value is given by

b = γ2
∫ TDiff

0
F (t)2∂t (3.14)

where

F (t) =
∫ t

0
G(τ)∂τ (3.15)

Therefore, the maximization is performed directly over the b-value formulation by
optimizing the diffusion-weighting gradient waveform for any direction subject to
the constraints in Eqs. (3.1)-(3.13). Hence, the objective function is formulated as
follows:

G(t) = arg max
G

b(G) (3.16)

For the sake of clarity, Table 3.1 summarizes the constraints of the ODGD for-
mulation. Note that G(t) can be a gradient waveform in any of the three axes,
since there is no spatial dependence in the CG-nulling approach introduced in
this work via Eq. (3.4). Importantly, it is generally of interest to minimize the
TE for a given b-value (rather than to maximize the b-value for a given TE). To
achieve the minimum TE for a given b-value, ODGD iteratively implements the
maximization described in Eq. (3.16) at several TEs following a similar solution
strategy as described in Figure 2 of Aliotta et al. (2017).
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3.2.7 Optimization Algorithm

In this work, Eq. (3.16) is directly solved using a Sequential Quadratic Programming
(SQP) algorithm subject to upper and lower bounds (Eq. (3.12)), linear equality
constraints (Eqs. (3.1), (3.6), and (3.9) - (3.11)), linear inequality constraints
(Eqs. (3.8) and (3.13)), and a quadratic equality constraint (Eq. (3.4)). This
optimization is performed in MATLAB (MathWorks, Natick, MA) using the fmincon
built-in function. ODGD optimization MATLAB code is available for download
from https://github.com/opennog/ODGD.
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4.1 Experimental work

In this Chapter we validate the performance of the Optimized Diffusion-weighting
Gradient Waveform Design (ODGD) formulation introduced in previous Chapter 3.
We focus on the validation of the proposed ODGD formulation to increase the
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quality of the diffusion-weighted images and the corresponding diffusion-related
parametric maps by reducing the artefacts introduced by the lengthy Diffusion-
Weighted Imaging (DWI) acquisitions, patient motion, and the Concomitant
Gradients (CGs).

4.1.1 ODGD Simulations

The performance of the proposed ODGD method and previous waveform designs
were compared by assessing the Echo Time (TE) needed to achieve a given b-value
for each waveform. Specifically, gradient waveforms were compared for a broad
range of b-values (20 b-values in the range of 100 - 2000 s/mm2 separated in steps
of 100 s/mm2). Additionally, because the achievable TE also depends on the time
needed by the Echo Planar Imaging (EPI) echo train to reach the center of k-space
(which will itself depend on the desired spatial resolution and degree of partial
Fourier acquisition), different EPI readout times to the center of k-space (7 TEPI
readout times in the range of 16.4 - 46.4 ms separated in steps of 5 ms) were
considered for each b-value. Diffusion-weighting gradient waveforms were designed
using the following hardware and time constraints: excitation radiofrequency pulse
duration of TRF−90 = 5.3 ms; refocusing pulse duration of TRF−180 = 4.3 ms;
maximum gradient strength of GMax = 49 mT/m; maximum slew rate of SRMax =
100 T/m/s; unless otherwise stated, only one gradient axis was considered active for
the computation of the b-values (note that Concomitant Gradient (CG)-effects will
depend on the diffusion-weighting direction). All waveform designs were computed
with a time resolution of 0.5 ms to optimize the waveforms in moderate computation
times.

For each TEPI and b-value, the following gradient waveforms were designed:

1. Monopolar (MONO) (Zhou et al., 1998).

2. BIPOLAR Ozaki et al. (2013).

3. Motion-Compensated (MOCO) diffusion-encoding gradient waveforms (Stoeck
et al., 2016).

4. Three Convex Optimized Diffusion Encoding (CODE) (Aliotta et al., 2017)
waveforms, one for each of the motion-nulling moments (CODE-Mn, where
n = 0, 1, 2).

5. the proposed ODGD formulation for each of the motion-nulling moments
(ODGD-Mn, where n = 0, 1, 2) without and with CG-nulling (ODGD-Mn-CG,
where n = 0, 1, 2).

Crusher gradients around the refocusing radiofrequency pulse were not included in
the design of ODGD or Convex Optimized Diffusion Encoding (CODE) waveforms
for non-zero b-values. In this study, the optimization algorithm for ODGD-Mn
waveforms was initialized with a constant waveform, and the optimization of ODGD-
Mn-CG waveforms was initialized with the corresponding ODGD-Mn waveform.
Figure 4.1 shows examples of each of the waveforms designed for the experiments
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ODGD-M0 (TE=70.5ms)

ODGD-M0-CG (TE=77ms)

CODE-M0 (TE=70.5ms)

ODGD-M1 (TE=86ms)

ODGD-M1-CG (TE=97.5ms)

CODE-M1 (TE=87.5ms)

ODGD-M2 (TE=103.5ms)

ODGD-M2-CG (TE=109.5ms)

CODE-M2 (TE=110.5ms)

MONO (TE=78.5ms) BIPOLAR (TE=110.5ms) MOCO (TE=116.5ms)

G(t)RF

a)

b)

c)

d)

Figure 4.1: Set of diffusion-weighting gradient waveforms. Traditional waveforms (a),
Convex Optimized Diffusion Encoding (CODE) gradient waveforms (b), and Optimized
Diffusion-weighting Gradient Waveform Designs (ODGD) without (c) and with (d) Con-
comitant Gradients (CGs) nulling for b = 1000 s/mm2 and TEPI = 26.4 ms. CODE
and ODGD waveforms without and with CG-nulling reduced the TE of the traditional
waveforms (MONO, BIPOLAR, and MOCO) in all cases. These traditional waveforms
have equivalent or symmetric shapes before and after the refocusing pulse, and there-
fore lead to dead times between the Radio Frequency (RF) pulses (due to the need for
additional time for the EPI readout between the end of the diffusion waveform and the
echo time). In contrast, the CODE framework and the ODGD formulation seek to use
the available time optimally in order to minimize the TE. Note that the ODGD-based
diffusion gradients have the same waveform along the three main gradient axes, although
generally with different scaling depending on the diffusion direction. Therefore, only one
gradient axis is considered active for the optimization of these waveforms.
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grouped as traditional designs, CODE waveforms, and ODGD waveforms without
and with CG-nulling.

4.1.2 Evaluation of SNR Increase

4.1.2.1 Acetone phantom experiments

A ten-vial acetone-based diffusion phantom was constructed using mixtures of pure
acetone (as a signal source), H2O (to control the Apparent Diffusion Coefficient
(ADC) of acetone without producing Magnetic Resonance (MR) signal), and MnCl2
(to control the T2 of acetone) (Wang et al., 2017). The total volume of mixture
in each vial was of 50 ml. The ten vials were designed to form two T2 groups of
approximately 40 and 90 ms, respectively, with five different ADC values each.
Specific vial compositions and expected approximate ADC values included:

1. 19.38 mM of MnCl2 with a 9% v/v of H2O for ADC = 2.1×10−3 mm2/s.

2. 8.42 mM of MnCl2 with a 9% v/v of H2O for ADC = 2.1×10−3 mm2/s.

3. 17.50 mM of MnCl2 with a 12% v/v of H2O for ADC = 1.8×10−3 mm2/s.

4. 7.60 mM of MnCl2 with a 12% v/v of H2O for ADC = 1.8×10−3 mm2/s.

5. 15.94 mM of MnCl2 with a 15% v/v of H2O for ADC = 1.5×10−3 mm2/s.

6. 6.92 mM of MnCl2 with a 15% v/v of H2O for ADC = 1.5×10−3 mm2/s.

7. 13.89 mM of MnCl2 with a 20% v/v of H2O for ADC = 1.2×10−3 mm2/s.

8. 6.03 mM of MnCl2 with a 20% v/v of H2O for ADC = 1.2×10−3 mm2/s.

9. 11.02 mM of MnCl2 with a 30% v/v of H2O for ADC = 0.9×10−3 mm2/s.

10. 4.78 mM of MnCl2 with a 30% v/v of H2O for ADC = 0.9×10−3 mm2/s.

The number before the MnCl2 concentration represents the vial number.

Diffusion-weighted images of the diffusion phantom were acquired under 0◦C ice-
water bath with an eight-channel head coil in a 3T scanner (MR 750, GE Healthcare,
Waukesha, WI). The specific constraints of the optimization formulation are TEPI
= 23 ms, TRF−90 = 5.5 ms, TRF−180 = 6 ms, GMax = 49 mT/m and SRMax =
100 T/m/s. Twelve different diffusion-weighting gradient waveforms with these
constraints were designed with MONO, BIPOLAR, MOCO, CODE-Mn (n = 0, 1,
2), ODGD-Mn (n = 0, 1, 2) and ODGD-Mn-CG (n = 0, 1, 2), respectively. Axial
images were acquired using different waveforms with Field-of-View (FOV) = 26 ×
26 cm, in-plane resolution = 2.0 × 2.0 mm, slice thickness = 5 mm, Repetition Time
(TR) = 6 s, parallel imaging acceleration of 2 and no partial-Fourier acquisitions.
Diffusion encoding was performed in all three orthogonal directions with b-values
= [100(1), 400(1), 600(2), 800(4), 1000(6)] s/mm2, where the number in brackets
represents the number of averages for each b-value. Note that crusher gradients
are not used around the refocusing Radio-Frequency (RF) pulse in any of the
implementations of this chapter.
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In order to perform T2 mapping, 2D Spin Echo (SE) images were acquired with
FOV = 26 × 15.6 cm, matrix size of 256 x 160, slice thickness of 10 mm, TR =
2 s, parallel imaging acceleration factor of 2, and TE = [6, 20, 60, 120, 240] ms.
T2 measurements were obtained in order to fully describe the acetone phantom
used in the experiments, as well as to be able to further characterize the Signal-to-
Noise-Ratio (SNR) values of each vial. T2 maps were estimated with least squares
fitting.

In order to compare SNR across different acquisitions, SNR maps were calculated
for each acquisition using a Rician non-stationary noise model (Aja-Fernández and
Vegas-Sánchez-Ferrero, 2016), with spatially-varying noise standard deviation σ(x).
SNR maps were computed from the averaged composite magnitude images (e.g.,
complex images from different coils merged into one single magnitude image) using
a Rician expectation–maximization estimator (Aja-Fernández et al., 2015; DeVore
et al., 2000):

SNR(x) = Â(x)
σ̂(x)

, (4.1)

where Â(x) and σ̂(x) are the estimates of the signal amplitude and noise standard
deviation, respectively, obtained from an iterative process (Aja-Fernández et al.,
2015). Local parameters were estimated using 3 × 3 windows and a total of 20
iterations. For the evaluation of SNR, a 0.9 cm2 Region of Interest (ROI) was
drawn in each vial, co-localized across the different acquisitions.

4.1.2.2 In-vivo acquisitions

This study including healthy volunteers was performed with Institutional Review
Board (IRB) approval and informed written consent.

Brain DWI: Ten healthy volunteers were recruited for brain DWI. Brain DWI
was acquired with the same waveform designs and constraints as the diffusion
phantom experiment described in the previous section with the eight-channel head
coil, and on the same 3T scanner. The acquisition parameters were FOV = 26 ×
26 cm, in-plane resolution = 2.0 × 2.0 mm, slice thickness = 5 mm, TR = 2.5 s,
parallel imaging acceleration factor = 2 and full k-space acquisitions. Diffusion
encoding was performed in all three directions with b-values(averages) = [100(1),
200(1), 600(2), 800(4), 1000(6)] s/mm2. SNR maps were calculated with Eq. (4.1).
For SNR analysis, four circular ROIs of size 38 - 50 mm2 were drawn in the left
and right cerebral white matter. ROIs in the images from different acquisitions
were co-localized and SNR measurements within each subject were averaged prior
to statistical comparison between different waveforms (see ‘Statistical Analysis’,
Section 4.1.4 below for details).

Liver DWI: Ten healthy volunteers were scanned with a 30-channel torso coil
(GE Healthcare, Waukesha, WI) in the same 3T scanner for liver DWI. Slices
covering the superior portion of the liver, including through the right and left
lobes were acquired. Full liver coverage was not obtained due to time constraints
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for the acquisition. The constraints used for the waveform optimization were
TEPI = 18.5 ms, TRF−90 = 5.5 ms, TRF−180 = 6.5 ms, GMax = 49 mT/m, and
SRMax = 100 T/m/s. Different diffusion-weighting gradient waveforms with these
parameters were designed with MONO, MOCO, CODE-M2, ODGD-M2 and
ODGD-M2-CG. Axial images were acquired with respiratory triggering. Other
acquisition parameters are FOV = 36 × 36 cm, in-plane resolution = 2.8 × 2.8 mm,
slice thickness = 6 mm, parallel imaging factor of 2 and full k-space acquisitions.
Diffusion encoding was performed in the R/L direction with b-values (averages)
= [100(4), 500(10)] s/mm2. SNR maps were calculated with Eq. (4.1) and ADC
maps were estimated with least-squares fitting. For SNR analysis, circular ROIs of
50 - 100 mm2 were drawn on the superior portion of the liver in segments VII and
VIII of the right lobe, and segment IV of the left lobe. For each waveform, SNR
measurements within each subject were averaged prior to statistical comparison
between different waveforms. For motion compensation analysis, one ROI was
set on segment II since it is typically severely impacted by cardiac motion and
might contain signal voids with traditional diffusion waveforms. Care was taken to
avoid large vessels and blurred regions. Further, to measure liver T2, a multi-TE
multi-TR Stimulated Echo Acquisition Mode (STEAM) sequence (Hamilton et al.,
2015) with voxel size of 20 × 20 × 20 mm was applied to all volunteers on the right
lobe of the liver carefully avoiding large vessels.

4.1.3 Evaluation of CG-nulling

4.1.3.1 Simulations and phantom experiments

Water phantom simulations: Simulations were performed in a synthetic water
phantom with full k-space acquisition and same FOV, in-plane resolution, slice
thickness, and waveform designs as the acetone phantom experiments. CG-related
signal dephasing effects for different diffusion-weighting directions were simulated,
including x, y, z, x-y, x-z, y-z and x-y-z to assess the through-plane dephasing effects.
Further, the synthetic water phantom approximated the shape, dimensions and
ADC value (2×10−3 mm2/s) of the following water phantom, which is described
next.

Water phantom: A 7.5 L cylindrical water phantom doped with NaCl and
NiCl2 (Imaging, 1997) was imaged at room temperature with the same acquisition
setup and the same waveform designs as the acetone phantom experiment to evaluate
the CG correction effect. Seven diffusion-weighting directions were acquired,
including x, y, z, x-y, x-z, y-z and x-y-z. Coverage in the slice (z) inferior-direction
of 12 cm was applied to evaluate the slice dependent CG-effect, especially for slices
that are away from the isocenter. ADC maps were estimated for each diffusion-
weighting direction and for each diffusion-weighting waveform with a maximum
likelihood estimator (Sijbers et al., 1998).
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4.1.3.2 In-vivo acquisitions

Brain DWI: Average trace ADC maps were estimated from trace Diffusion-
Weighted (DW) images from the previously described brain DW acquisitions with
a maximum likelihood estimator (Sijbers et al., 1998). Hereinafter in this Chapter,
the average trace ADC map and the trace DW images are denoted as ADC maps
and DW images, respectively. ROIs measured within slices between 4.5 and 7
cm from isocenter (among the ROIs drawn on the previously described brain
DW acquisitions) were considered to assess the effect of CG-related bias in ADC
measurements. For each waveform, ADC measurements within each subject were
averaged prior to statistical comparison between different waveforms.

4.1.4 Statistical Analysis

All ROIs of the phantom experiments were first tested for normality using the
Kolmogorov-Smirnov test. Homoscedasticity across variances was then tested using
the Ansari-Bardley test. If both tests yielded normality and homoscedasticity,
pairwise comparisons were made between co-localized ADC acquired with different
waveforms using the one-way sample t-test. From these comparisons, p-value < 0.05
(P) was considered significant. Similarly, for each waveform of the in-vivo experi-
ments, all ROI SNR and ADC measurements within each subject were averaged
and then tested using the same analysis as in the phantom experiments.

4.2 Results

4.2.1 ODGD Simulations

ODGD waveforms reduce or equalize the minimum TE of the traditional (MONO,
BIPOLAR, and MOCO) and recently proposed waveforms (CODE-Mn, where n =
0, 1, 2) for any given b-value, EPI readout time, and moment-nulling order. ODGD
with CG-nulling constraints also results in shorter TE compared to the traditional
waveforms. The relationship between previously proposed CODE versus the
proposed ODGD solution depends on the specific constraints: CODE waveforms
are sometimes the same as ODGD, sometimes a different local optimum resulting
in a longer TE, and sometimes not even a local optimum (results not shown).
The residues achieved by the ODGD optimization in terms of b-value and CG
dephasing are null (up to our numerical precision). Computation times of ODGD
ranged between a few seconds for low b-value and zeroth-order moment-nulling
(ODGD-M0) to ≈10 minutes for high b-values, second-order moment-nulling, and
CG-nulling (ODGD-M2-CG).

Moment Constraints ODGD-Mn, where n=0,1,2, outperforms the traditional
waveforms as well as the recently proposed CODE-Mn gradient waveforms as shown
in Figure 4.2. Figure 4.2.a) depicts the optimal TE for a range of b-values and
TEPI = 26.4 ms. Figure 4.2.b) shows the TE difference between CODE-Mn and
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Figure 4.2: Minimum TE achieved for the range of b-values 100 - 2000 s/mm2 in steps
of 100 s/mm2 and TEPI (EPI readout time to the center of k-space) of 26.4 ms for
ODGD-Mn, CODE-Mn, and the traditional waveforms (MONO, BIPOLAR, and MOCO)
for different moment constraints, M0, M1, and M2, respectively (a). TE reduction (∆TE)
achieved using ODGD-Mn compared to CODE-Mn for the same range of b-values and
TEPI in the range of 16.4 - 46.4 ms in steps of 5 ms (b). There is no TE reduction
(∆TE = 0) for zeroth-order moment-nulling (M0), but there is TE reduction for first- and
second-order moment-nulling (M1 and M2, respectively). The TE reduction is greater
for higher b-values, longer TEPI, and higher-order moment-nulling. Note that only one
gradient axis is considered active for the optimization of these waveforms.

ODGD-Mn waveforms for the range TEPI = 15 - 50 ms. There is no TE reduction
of ODGD-M0 compared to CODE-M0, but there is a TE reduction between 0
- 3.57% for M1, and between 0.63 - 10.14% for M2. Relative to the traditional
waveforms, ODGD results in TE reductions between 1.91 - 17.84% compared to
MONO, 9.20 - 29.22% compared to BIPOLAR, and 1.88 - 26.97% compared to
MOCO.

Concomitant Gradients Constraints ODGD-Mn-CG, where n=0,1,2, reduces
the TE of traditional CG-compensated waveforms (MONO, BIPOLAR, and
MOCO, which cancel the CG phase accrual due to their symmetry around the
RF180), as illustrated in Figure 4.3. Figure 4.3.a) shows the minimum TE achieved
for a given range of b-values and TEPI = 26.4 ms of the traditional waveform
designs and the proposed ODGD waveforms. Figure 4.3.b) shows the difference
between the minimum TE achieved by the traditional and ODGD waveforms for
the same range of b-values and TEPI = 15 - 50 ms. Namely, ODGD-Mn-CG, where
n = 0, 1, 2, results in TE reductions between 0 - 4.02% compared to MONO, 7.53
- 16.74% compared to BIPOLAR, and 0.77 - 12.54% compared to MOCO.
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Figure 4.3: Minimum TE achieved for a range of b-values 100 - 2000 s/mm2 in steps of 100
s/mm2 and TEPI (EPI readout time to the center of k-space) of 26.4 ms for ODGD-Mn-CG
and the traditional waveforms (MONO, BIPOLAR, and MOCO) for different moment
constraints, M0, M1, and M2, respectively (a). TE reduction (∆TE) achieved using
ODGD-Mn-CG compared to the traditional waveforms for the same range of b-values
and TEPI in the range of 16.4 - 46.4 ms in steps of 5 ms (b). ∆TE is larger for higher
b-values and TEPI, and larger for the M1 constraint than for M0, or M2. Note that only
one gradient axis is considered active for the optimization of these waveforms.
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4.2.2 Evaluation of SNR Increase

4.2.2.1 Acetone phantom experiments

Experimentally measured T2 are 39.5±0.7 and 83.5±1.5 ms, and measured ADC
in a slice at the isocenter with respect to each of the T2 and vial number are 1)
2.22±0.16 and 2) 2.28±0.02 × 10−3 mm2/s, 3) 1.99±0.09 and 4) 1.94±0.02 × 10−3

mm2/s, 5) 1.69±0.07 and 6) 1.69±0.02 × 10−3 mm2/s, 7) 1.36±0.06 and 8)
1.35±0.01 × 10−3 mm2/s, and 9) 0.84±0.06 and 10) 0.92±0.02 × 10−3 mm2/s. No
bias was found in these ADC measurements.

There is a 6% TE reduction in ODGD-M2 over CODE-M2 (TE: 118.5 ms and
126.5 ms, respectively), which generally increases the SNR in each of the diffusion
phantom vials, as shown in Figure 4.4. Mean SNR for each of the vials is T2 and
ADC dependent, but there is an increase of 4%, -15%, 18%, 44%, 11% for each of
the vials with T2 = 39.5±0.7 ms (vial numbers 1, 3, 5, 7 and 9, respectively), and
29%, -4%, 25%, 17%, 8% for each of the vials with T2 = 83.5±1.5 ms (vial numbers
2, 4, 6, 8 and 10, respectively) as shown in Figure 4.4.c)-d). Statistical significance
(P < 0.05) is found in every vial pairwise comparison except for vial 4) T2 ≈ 83.5
ms and ADC = 1.94±0.02 × 10−3 mm2/s. ODGD-M0 and ODGD-M1 waveforms
are the same as the corresponding CODE waveforms under the implemented spatial
resolution (TEPI = 23.32 ms), achieving no TE reduction, and therefore no SNR
increase.

4.2.2.2 In-vivo acquisitions

Brain DWI: Brain DWI results, including SNR and ADC measurements, are
shown in Figure 4.5. ODGD-M1 and ODGD-M1-CG reduce the TE by 16.3% and
10.9% as compared with BIPOLAR (BIPOLAR: 119.5 ms, ODGD-M1-CG: 106.5
ms, ODGD-M1: 100.0 ms). There is no TE reduction of ODGD-M1 compared to
CODE-M1. The TE reduction relative to BIPOLAR results in visually apparent
increased signal (see Fig. 4.5.a) ). ODGD-M1 leads to higher SNR than BIPOLAR
and ODGD-M1-CG, P < 1 x 10−6 and P < 0.05, respectively. ODGD-M1-CG also
leads to higher SNR than BIPOLAR with P < 0.005.

Liver DWI: The results from the liver acquisitions, with mean measured liver
T2 = 24.38±11.4 ms, are shown in Figures 4.6 and 4.7. ODGD-M2 and CODE-M2
waveforms result in ADC maps that are visually more homogeneous than MONO,
suggesting higher motion robustness (see Fig. 4.6). ADC values on a ROI on
segment II of the liver of a representative volunteer are 2.46±0.38 × 10−3 mm2/s
for MONO, 1.85±0.2 × 10−3 mm2/s for CODE-M2, and 1.53±0.21 × 10−3 mm2/s
for ODGD-M2.

ODGD-M2 increases the TE by 47.7% as compared to MONO (from 65.3 to 96.5
ms). ODGD-M2 (TE = 96.5 ms) reduces the TE by 8.5% and 6% as compared with
MOCO (105.5 ms) and CODE-M2 (102.5 ms), respectively. ODGD-M2-CG (TE =
99 ms) reduces the TE by 6% and 3.5% as compared with MOCO and CODE-M2.
This TE reduction results in visually apparent increased diffusion-weighted signal
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Figure 4.4: Diffusion-weighted images of the acetone phantom experiments acquired with
CODE-M2 and ODGD-M2 at b-value 1000 s/mm2 in a slice at the isocenter of the magnet
(a). SNR of the same images (b). Top row of the set of 10 vials have short T2 ≈ 39.5
ms (vial numbers 1, 3, 5, 7, 9), and bottom row have long T2 ≈ 83.5 ms (vial numbers 2,
4, 6, 8, 10). Distribution of the SNR values of each vial grouped by T2 ≈ 39.5 ms (c),
and T2 ≈ 83.5 ms (d). From left to right, distributions are ordered as vials in (a). Red
boxes show the distribution of CODE-M2 and black boxes the distribution of ODGD-M2.
There is a statistically significant (P < 0.05) SNR increase for every vial of ODGD-M2
compared to CODE-M2 except for vials with ADC = 1.9×10−3 mm2/s.

77



Chapter 4: ODGD for motion compensation and CG-nulling

0

1

-1

BIPOLAR
(TE = 119.5 ms)

ODGD-M1

(TE = 100 ms)

ODGD-M1-CG
(TE = 106.5 ms)

ADCBIPOLAR ADCODGD-M1-CG-ADCBIPOLAR

a)

b)

D
W

I
A

D
C

c)

65

BIPOLAR ODGD-M1 ODGD-M1-CG

d)

M
e

a
n

 W
M

 

 S
N

R

e)

M
e

a
n

 W
M

 

 A
D

C

8

7

6.5

x10-4

BIPOLAR ODGD-M1 ODGD-M1-CG

mm2/s

x
1

0
-4

 m
m

2
/s1

2

0.5

1.5

ADCODGD-M1-ADCBIPOLAR

55

45

35

7.5

8.5

500

1500

2500

x
1

0
-3

 m
m

2
/s

Figure 4.5: Axial trace diffusion-weighted images (DWI) acquired at 4.5 cm from isocenter
of a representative brain are shown acquired with BIPOLAR, ODGD-M1, and ODGD-
M1-CG with a b-value of 100 s/mm2 (a). Corresponding average trace ADC map of
the BIPOLAR acquisition (b). ODGD-M1 and ODGD-M1-CG average trace ADC maps
pixelwise subtracted with the BIPOLAR average trace ADC map (c). Mean ± 95% CI
SNR values of the trace DW images (d), and average trace ADC values (e) across ROIs set
on white matter of the 10 volunteers. ODGD-M1 leads to higher statistically significant
SNR than BIPOLAR and ODGD-M1-CG, P < 1 x 10−6 and P < 0.05, respectively.
ODGD-M1-CG also leads to statistically significant higher SNR than BIPOLAR with
P < 0.005. ODGD-M1 average trace ADC map is positively biased (P < 0.005) with
respect to BIPOLAR. There is no statistically significant difference between the average
trace ADC maps of ODGD-M1-CG and BIPOLAR. Note that for this set of waveforms
ODGD-M1 and CODE-M1 are the same.
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Figure 4.6: Axial diffusion-weighted images of a representative liver are shown acquired
with MONO, CODE-M2, and ODGD-M2 with a b-value of 500 s/mm2 (a). Corresponding
ADC maps (b). MONO ADC maps have heterogeneous positive bias throughout the liver
due to intravoxel signal dephasing at b-value of 500 s/mm2 produced by bulk motion.
ODGD-M2 and CODE-M2 waveforms achieve more spatially homogeneous DW images
and ADC maps than MONO, showing better motion robustness. ADC values on a ROI
on segment II of the liver (blue ROI) of a representative volunteer are 2.46±0.38 × 10−3

mm2/s for MONO, 1.85±0.2 × 10−3 mm2/s for CODE-M2, and 1.53±0.21 × 10−3 mm2/s
for ODGD-M2.

and SNR (Fig. 4.7). ODGD-M2 and ODGD-M2-CG have significantly higher
SNR than MOCO and CODE-M2 (ODGD-M2 = 12.3±3.6, ODGD-M2-CG =
12.0±3.5 versus MOCO = 9.7±2.9 and CODE-M2 = 10.2±3.4, both with P < 0.05).
There is no statistically significant difference between the SNRs of ODGD-M2 and
ODGD-M2-CG.

4.2.3 Evaluation of CG-nulling

4.2.3.1 Water phantom simulations and experiments

Figure 4.8 shows the in-plane CG-related dephasing effects for the x-y-z diffusion-
weighting gradient direction in the water phantom experiments. ODGD-M0 suffers
from diffusion-weighting direction-dependent k-space shifting at the slice 4.5 cm
from isocenter. Further, it also shows that ODGD-M0 suffers from k-space blurring
(i.e., larger full-width-half-maximum along the y direction, FWHMy) at isocenter
(0 cm) and at 4.5 cm from isocenter. In contrast, MONO and ODGD-M0-CG
suffer from slight k-space shifting and their FWHMy is similar at both slice
positions.

From simulations and phantom experiments, through-plane dephasing effects pro-
duced by CGs are demonstrated in Figure 4.9. Figure 4.9.b) and c) show the
direction-dependent patterns of ADC bias produced by the CG-effects of ODGD-M1
waveforms in simulations and in the water phantom experiments. Importantly,
BIPOLAR and ODGD-M1-CG waveforms, both with CG-nulling, show improved
homogeneity of ADC maps and tightly distributed histograms around the expected
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Figure 4.7: Axial diffusion-weighted images of the liver are shown acquired with MOCO,
CODE-M2, ODGD-M2, and ODGD-M2-CG with a b-value of 100 s/mm2 (a). Signal-
to-noise ratio (SNR) maps of these acquisitions (smoothed with an average filter for
better representation) (b). Liver SNR measurements in the 10 volunteers, for each of the
diffusion waveforms (c). ODGD-M2 and ODGD-M2-CG lead to statistically significant
(P < 0.05) higher SNR than MOCO and CODE-M2. There is no statistically significant
difference between ODGD-M2 and ODGD-M2-CG.
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Figure 4.8: Cropped k-space of the water phantom experiments of slices at isocenter
(0 cm) and 4.5 cm from isocenter with MONO, ODGD-M0, and ODGD-M0-CG, b-
value of 1000 s/mm2, and diffusion-weighting direction Dxyz, (a) and (b), respectively.
FWHMy indicates the full-width-half-maximum along the phase-encoding direction (y-
axes). Shifting indicates the displacement of the k-space from its center. ODGD-M0
shows broader FWHMy than MONO and ODGD-M0-CG, and k-space shifting towards
the upper left corner at 4.5 cm from isocenter. MONO and ODGD-M0-CG show little
blurring and no k-space shifting. Note that for this set of waveforms ODGD-M0 and
CODE-M0 are the same.
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room-temperature water diffusion coefficient (nearly 2 × 10−3 mm2/s).

4.2.3.2 In-vivo acquisitions

Brain DWI: ADC results from the brain acquisitions are shown in Figure 4.5.
The ADC map of ODGD-M1 pixelwise subtracted from the BIPOLAR ADC map
shows visually positive general bias (see Fig. 4.5.c) ). No bias is apparent in
the pixelwise subtraction of ODGD-M1-CG and BIPOLAR ADC maps. ODGD-
M1 leads to statistically significant higher ADC than BIPOLAR (P < 0.005)
while there is no statistically significant difference between the ADC measured
from ODGD-M1-CG versus BIPOLAR (BIPOLAR ADC = 0.71±0.02 x 10−3

mm2/s, ODGD-M1 ADC = 0.73±0.03 x 10−3 mm2/s, and ODGD-M1-CG ADC
= 0.71±0.01 x 10−3 mm2/s)

4.3 Discussion

We have presented a novel Optimized Diffusion-weighting Gradient Waveform
Design (ODGD) formulation as a quadratic constrained optimization problem.
The ODGD formulation allows the design of diffusion-weighting gradient waveforms
to diminish bulk motion effects and null Concomitant Gradient (CG) effects while
minimizing the TE of diffusion-weighted acquisitions. ODGD equalized or reduced
the achievable TE compared to the traditional moment-nulled waveforms and the
recently proposed Convex Optimized Diffusion Encoding (CODE) formulation.
Generally, TE reductions are greater at higher b-values, k-space resolutions (i.e.,
longer TEPI), and high-order moment-nulling. This TE reduction may enable
increased signal-to-noise ratio in Diffusion-Weighted Magnetic Resonance Imaging
(DW-MRI) by avoiding T2-related signal losses. Additionally, optimized motion-
compensated waveforms have been implemented in a different Magnetic Resonance
Imaging (MRI) vendor and platform from the previous implementation (Aliotta
et al., 2017) demonstrating feasibility and reproducibility of optimized motion-
compensated diffusion waveforms on different platforms.

Motion-compensated waveforms have promising applications in organs that experi-
ence substantial physiological motion, such as heart or liver, by enabling improved
DW image quality and improved accuracy of quantitative diffusion parameter
maps (Murphy et al., 2013). Further, CG-nulling waveforms may be important for
quantitative diffusion imaging in applications requiring a large anatomical coverage,
when implementing partial Fourier acquisitions, and for Diffusion Tensor Imaging
(DTI) acquisitions. In addition, improvements on multi-shot DW-EPI (Chen et al.,
2013; Holdsworth et al., 2008) might be achieved by using ODGD-Mn waveforms
due to the potential for reduced motion-induced phase variations across multiple
shots.

It has been shown that ODGD-Mn results in equal or shorter TE than CODE-Mn
for a given b-value. This TE reduction is likely due to the direct solution of the
nonlinear optimization problem for gradient waveform design in ODGD, compared
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Figure 4.9: Measured ADC maps along each gradient direction combination (Dn) of the
water phantom experiment with the BIPOLAR waveform (a). Measured ADC maps of
the simulated acquisition of the water phantom experiment for ODGD-M1 (b). Measured
ADC maps of the waveforms ODGD-M1 (c) and ODGD-M1-CG (d). The reference ADC
value of 1.98× 10−3 mm2/s, dotted line, was measured as the average of Dx, Dy and Dz of
the BIPOLAR acquisition. Acquisitions with BIPOLAR and ODGD-M1-CG waveforms
considerably reduced the bias of the ADC maps introduced by the concomitant gradients.
Note that for this set of waveforms ODGD-M1 and CODE-M1 are the same.
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to the approximate linear formulation of the objective function used in (Aliotta
et al., 2017). CG-nulling waveforms also shortened the achievable TE compared
to the traditional symmetric MONO, BIPOLAR, and MOCO waveforms. This
was likely achieved due to the elimination of dead times between radiofrequency
pulses leading to more efficient use of the diffusion encoding time. Interestingly, the
proposed CG-nulling formulation leads to novel smoothed asymmetric waveforms
with the same squared area before versus after the refocusing RF pulse.

This work has several limitations. For oblique diffusion-weighting directions, ODGD-
CG restricts the waveforms along each axis to be scaled versions of the optimized
G(t) waveform. Also, the proposed formulation does not consider the contribution
to the b-value of the imaging gradients (Güllmar et al., 2005), although this con-
tribution is often not accounted for in the design of diffusion-weighting gradient
waveforms. Further, in this work the computation of ODGD waveforms was
performed offline and then loaded on the scanner. Next steps will include accel-
erated computation to achieve finer time resolution with reasonable computation
times, and online implementation of ODGD waveforms for better sequence design
flexibility.

Additionally, we have employed full k-space sampling for better illustration of the
different formulations. Further studies may use partial k-space sampling, as it
is often acquired in many applications. In addition, rapidly moving blood spins
(e.g., in liver acquisitions) might also be compensated by the motion-compensated
waveforms, especially for low b-values, which results in high ADC values for
CODE and ODGD in/near blood vessels. Finally, the overall CG-related ADC
bias patterns on Figure 4.9 is generally consistent between simulations and phantom
experiments. However, there is some remaining spatially dependent ADC bias in
BIPOLAR and ODGD-M1-CG. We speculate that this remaining bias, as well as
differences between the ODGD-M1 phantom acquisition and the simulation, may be
due to gradient non-linearity effects (Bammer et al., 2003; Tan et al., 2013).

4.4 Conclusions

We have proposed a novel method, termed Optimized Diffusion-weighting Gradi-
ent Waveform Design (ODGD), to design motion-compensated and CG-nulling
diffusion-weighting gradient waveforms that optimize the TE for a given b-value.
Theoretical results, simulations, as well as experiments in phantoms and healthy
volunteers, demonstrated that ODGD motion-compensated diffusion-weighting
gradient waveforms resulted in reduced TEs, increased SNR, increased motion
robustness, and reduced ADC bias compared to the state-of-the-art.
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5.1 Experimental work

In this Chapter we continue with the validation of the proposed Optimized Diffusion-
weighting Gradient Waveform Design (ODGD) formulation introduced in Chapter 3
and partly validated in Chapter 4. We now focus on the validation of the proposed
formulation to increase the quality of the diffusion-weighted images by reducing
the artefacts introduced by the Eddy Currents (ECs) and to reduce the effects
of Peripheral Nerve Stimulation (PNS) while preserving all properties already
validated in the previous Chapter.
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5.1.1 ODGD Simulations

The performance of the proposed ODGD-EC and ODGD-PNS method and previous
waveform designs were compared by assessing the Echo Time (TE) needed to achieve
a given b-value for each waveform. Specifically, gradient waveforms were compared
for a broad range of b-values (20 b-values in the range of 100 - 2000 s/mm2 separated
in steps of 100 s/mm2). Additionally, because the achievable TE also depends on
the time needed by the Echo Planar Imaging (EPI) echo train to reach the center
of k-space (which will itself depend on the desired spatial resolution and degree of
partial Fourier acquisition), different EPI readout times to the center of k-space (7
TEPI readout times in the range of 16.4 - 46.4 ms separated in steps of 5 ms) were
considered for each b-value. Diffusion-weighting gradient waveforms were designed
using the following hardware and time constraints: excitation radiofrequency pulse
duration of TRF−90 = 5.5 ms; refocusing pulse duration of TRF−180 = 5.5 ms;
maximum gradient strength of GMax = 70 mT/m; waveforms without PNS-nulling
were computed with maximum slew rate of SRMax = 100 T/m/s (limit usually
used to avoid PNS-effects) and with PNS-nulling with SRMax = 150 T/m/s
(hardware limit); unless otherwise stated, only one gradient axis was considered
active for the computation of the b-values (note that EC-effects will depend on
the diffusion-weighting direction). On the one hand, ODGD-EC waveform designs
were computed with a time resolution of 0.5 ms to optimize the waveforms in
moderate computation times. On the other hand, ODGD-PNS waveform designs
were computed with a time resolution of 40 µs to increase resolution during ramp-up
and ramp-down times when switching the diffusion-weighting gradients.

For each TEPI and b-value, the following gradient waveforms for the Spin Echo
(SE) Diffusion-Weighted Imaging (DWI) sequence were designed:

1. Monopolar (MONO) (Zhou et al., 1998).

2. BIPOLAR Ozaki et al. (2013).

3. Motion-Compensated (MOCO) diffusion-encoding gradient waveforms (Stoeck
et al., 2016).

4. The proposed ODGD formulation for each of the motion-nulling moments
(ODGD-Mn, where n = 0, 1, 2) without and with EC-nulling (ODGD-Mn-EC,
where n = 0, 1, 2) and PNS-nulling (ODGD-Mn-PNS, where n = 0, 1, 2).

5. Diffusion-weighting gradient waveforms for the Twice Refocused Spin Echo
(TRSE) DWI (Reese et al., 2003) sequence for the same set of parameters
were also computed.

In this study, the optimization algorithm for ODGD-Mn-EC and ODGD-Mn-PNS
waveforms were initialized with a constant waveform except when the Concomitant
Gradient (CG)-nulling constraint was also considered in the optimization In these
cases the corresponding ODGD-Mn-CG waveform was used. Figure 5.1 shows
examples of some of the waveforms designed for the experiments grouped as
traditional designs, ODGD waveforms without and with CG-nulling, and ODGD
waveforms without and with Eddy Current (EC)-nulling and PNS-nulling.
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5.1.2 Phantom Experiments

5.1.2.1 3T MRI

A 7.5L cylindrical water phantom doped with NaCl and NiCl2 (Imaging, 1997)
was scanned with a forty eight-channel head coil at a 3T scanner (Signa Premier,
GE Healthcare, Waukesha, USA). Diffusion-weighting imaging of the diffusion
phantom were acquired with a SE EPI sequence. Acquisition parameters were
Repetition Time (TR) = 4 s, slice thickness = 5 mm, Field-of-View (FOV) = 24 x
24 cm, in-plane resolution = 1.88 x 1.88 mm, full k-space, six diffusion-weighting
directions (±A/P, ±R/L, ±S/I), and b-values(averages) = [0(1), 100(2), 1000(4)]
s/mm2. The specific constraints of the optimization formulation are TEPI = 11.2
ms, TRF−90 = 5.5 ms, TRF−180 = 5.5 ms, GMax = 70 mT/m and SRMax = 100
T/m/s. The PNS-nulling waveforms were designed with a hardware limit of the
SRMax = 150 T/m/s. Eight different diffusion-weighting gradient waveforms with
these constraints were designed with MONO, BIPOLAR, CODE-Mn (n = 0, 1),
ODGD-Mn-EC (n = 0, 1) and ODGD-Mn-PNS (n = 0, 1), respectively. Note that
crusher gradients are not used around the refocusing Radio-Frequency (RF) pulse
in the implementations of this phantom experiment. In order to compare Signal-
to-Noise-Ratio (SNR) across different acquisitions, SNR maps were computed
following (Aja-Fernández et al., 2015) through Eq. (4.1). For evaluation of SNR,
the threshold mask of Figure 5.4.b) was used.

5.1.2.2 1.5T MRI

A 2L cylindrical water phantom doped with NaCl and NiSO4 was scanned with
a twenty-channel head coil at a 1.5T scanner (Aera 1.5T, Siemens, Erlangen,
Germany). Diffusion-weighting imaging of the diffusion phantom were acquired with
a spin-echo EPI sequence. Acquisition parameters were TR = 5 s, slice thickness =
2.5 mm, FOV = 24 x 24 cm, in-plane resolution = 3.75 x 3.75 mm, full k-space, six
diffusion-weighting directions (±A/P, ±R/L, ±S/I), and b-values(averages) = [0(1),
500(1)] s/mm2. The specific constraints of the optimization formulation are TEPI
= 28.5 ms, TRF−90 = 2.6 ms, TRF−180 = 11.2 ms, GMax = 32 mT/m and SRMax =
150 T/m/s. Further, a TRSE sequence (Reese et al., 2003) was also implemented
using the same parameters but with the second radiofrequency refocusing pulse with
TRF−180 = 17.16 ms, to better satisfy the Carr-Purcell-Meiboom-Gill (CPMG)
conditions (Carr and Purcell, 1954), and GMax = 28 mT/m, due to safety reasons
with the duty cycle of the Magnetic Resonance (MR) scanner. Three different
diffusion-weighting gradient waveforms for previous sequences and constraints were
designed with MONO, TRSE DWI sequence, and ODGD-M0-EC, respectively.
In order to compare SNR across different acquisitions, SNR maps were computed
as aforementioned. For evaluation of SNR, the threshold mask of Figure 5.6.b)
was used.
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5.2 Results

5.2.1 ODGD Simulations

5.2.1.1 Eddy Current Constraint

ODGD-Mn-EC waveforms (where n = 0, 1, 2) reduce the minimum TE of the
corresponding traditional waveforms with same nth moment-order nulling and EC-
nulling properties such as BIPOLAR or the TRSE DWI sequence for any given
b-value and EPI readout time. ODGD with CG-nulling and EC-nulling waveforms
generally also reduce the TE of the corresponding traditional BIPOLAR waveforms.
Compared to ODGD-Mn and ODGD-Mn-CG, the TE of the ODGD-Mn-EC is
increased. The residues achieved by the ODGD optimization in terms of b-value,
CG- and EC-nulling are null (up to our numerical precision). Computation times
of ODGD-EC waveforms ranged between seconds for low b-value and zeroth-order
moment-nulling (ODGD-M0-EC) to ≈30 minutes for high b-values, second-order
moment-nulling, and CG-nulling (ODGD-M2-CG-EC).

ODGD-Mn-EC waveforms (where n = 0, 1) outperform the traditional BIPOLAR
waveforms and the TRSE DWI sequence as shown in Figure 5.2. Figure 5.2.a)
depicts the optimal TE for a range of b-values and TEPI = 26.4 ms. Figure 5.2.b)
shows the TE difference between ODGD-M1-CG-EC and ODGD-M1-CG, and
ODGD-M1-EC without and with CG-nulling compared to BIPOLAR for the range
TEPI = 15 - 50 ms. Figure 5.2.c) shows the TE difference between ODGD-M0-
CG-EC and ODGD-M0-CG, and ODGD-M0-EC without and with CG-nulling
compared to the TRSE sequence for the same range of TEPI. ODGD-M0-CG
results in TE reductions between 3.1 - 18.7% compared to ODGD-M0-CG-EC.
ODGD-M1-CG results in TE reductions between 3.8 - 14.7% compared to ODGD-
M1-CG-EC. Relative to BIPOLAR, ODGD-M1-EC and ODGD-M1-CG-EC result
in TE reductions between 1.9 - 27.9%, and -7.0 - 11.2%, respectively. Relative to
the TRSE DWI sequence, ODGD-M0-EC and ODGD-M0-CG-EC result in TE
reductions between -6.9 - 31.3%, and -12.1 - 20.6%, respectively

5.2.1.2 Peripheral Nerve Stimulation Constraint

ODGD-Mn-PNS waveforms (where n = 0, 1, 2) reduce the minimum TE of the
traditional (MONO, BIPOLAR, and MOCO) and previously proposed waveforms
(ODGD-Mn) for any given b-value, EPI readout time, and nth moment-nulling
order. Computation times of ODGD-PNS waveforms ranged between minutes for
low b-value and zeroth-order moment-nulling (ODGD-M0-EC) to ≈50 minutes for
high b-values, and second-order moment-nulling (ODGD-M2-PNS).

ODGD-Mn-PNS waveforms (where n = 0, 1, 2) outperform the ODGD-Mn wave-
forms as shown in Figure 5.3. Figure 5.3 shows the TE difference between ODGD-
Mn and ODGD-Mn-PNS for the range TEPI = 15 - 50 ms. Ramp-up and ramp-down
times of ODGD-Mn-PNS are different to those from ODGD-Mn resulting in TE
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reductions between 0 - 0.94%, 0 - 0.74%, and 0 - 0.75% for M0, M1, and M2
respectively.

5.2.2 Phantom Validation

5.2.2.1 3T MRI

There is a TE decrease of 8.4% and 9.e5% of the ODGD-M1 waveform compared
to BIPOLAR and ODGD-M1-EC (TEs of 76.5, 83.5, and 84.5, respectively), which
increases the SNR of the ODGD-M1 compared to the other two waveform designs.
Mean SNR(± std) of each of the acquisitions is 225.63 (±69.21), 185.04 (±58.34),
181.61 (±57.60), and 178.58 (±57.79) for the MONO, ODGD-M1, BIPOLAR, and
the ODGD-M1-EC waveforms.

Figure 5.4.a) shows the difference between Diffusion-Weighted (DW) images of
opposite diffusion-weighting polarity (±A/P), at b-value = 1000 s/mm2, and TEPI
= 11 ms for the same waveforms than before. The MONO acquisition is visually
severely affected by eddy currents induced distortions showing strong mismatch
between DW images of opposite polarity. On the contrary, ODGD-M1, BIPOLAR
and ODGD-M1-EC show more homogeneous difference between DW images of
opposite polarity despite their longer TE. Figure 5.4.c) shows the distribution
of the difference between diffusion-weighted images acquired at three opposite
DW directions (±A/P, ±R/L, ±S/I) separating between the border and phantom
masks shown in Figure 5.4.b). ODGD-M1, BIPOLAR and ODGD-M1-EC show
tighter confidence intervals and lower height at both masks proving better EC
performance than MONO. Nevertheless, ODGD-M1-EC shows similar variability
to the ODGD-M1 and BIPOLAR between opposite DW images (width of the
phantom mask) and no bias despite its longer TE.

Further, there is neither visual difference nor SNR difference between ODGD-M0
and ODGD-M0-PNS, nor between ODGD-M1 and ODGD-M1-PNS as shown in
Figure 5.5.

5.2.2.2 1.5T MRI

There is a TE increase of 2.1% and 14.3% of the MONO waveform compared to
ODGD-M0-EC and the TRSE DWI sequence (TEs of 93.0, 95.0, and 106.3 ms,
respectively). The TE reduction of the ODGD-M0-EC compared to the TRSE
DWI sequence is of 11.9%. These TE differences provide the following SNR
variations for each of the acquisitions: 43.95 (±8.86), 43.07 (±8.68), and 29.39
(±5.82) for the MONO, and ODGD-M0-EC waveforms and the TRSE DWI
sequence.

Figure 5.6.a) shows the difference between DW images of opposite diffusion-
weighting polarity (±A/P), at b-value = 500 s/mm2, and TEPI = 28.5 ms for the
three previous acquisitions. The MONO acquisition is visually severely affected by
eddy currents induced distortions showing strong mismatch between DW images
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MONO (TE = 78.5 ms)

BIPOLAR (TE = 111.5 ms)
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ODGD-M1-CG (TE = 97 ms)

ODGD-M1-EC (TE = 98.5 ms)
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ODGD-M0-PNS (TE = 68.96 ms)
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Figure 5.1: Set of diffusion-weighting gradient waveforms. Traditional waveforms (a),
first-order moment-nulled (M1) Optimized Diffusion-weighted Gradient waveform Designs
(ODGD-M1) without and with CG-nulling (Peña-Nogales et al., 2019b) (b), ODGD-M1
waveforms with EC-nulling for a time constant of τ = 10 ms without and with CG-nulling
(c), ODGD-M0 waveforms and their slew rate without and with PNS-nulling (d) and (e),
respectively. (a-c) waveform designs were computed with a time resolution of 0.5 ms and
(d-e) with 0.04 ms. All waveforms were designed for b-value = 1000 s/mm2 and TEPI
of 24.6 ms. ODGD-M0 and ODGD-M0-PNS were computed with SRMax of 100 T/m/s
(limit used to avoid PNS-effects) and 150 T/m/s (hardware limit), respectively. Note the
different slew rate of ODGD-M0-PNS compared to ODGD-M0.
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Figure 5.2: Minimum TE achieved for a range of b-values 100 - 200 s/mm2 and TEPI = 26.4
ms for ODGD-Mn, ODGD-Mn-CG, ODGD-Mn-EC, ODGD-Mn-CG-EC, the traditional
waveforms (MONO, BIPOLAR, and MOCO) for M0, M1, and M2 moment constraint,
respectively, and the TRSE DWI sequence (a). TE reductions (∆TE) achieved using
ODGD-M1-CG compared to ODGD-M1-CG-EC, and ODGD-M1-EC and ODGD-M1-
CG-EC compared to BIPOLAR for the same range of b-values and TEPI in the range of
16.4 - 46.4 ms (b). TE reductions (∆TE) achieved using ODGD-M0-CG compared to
ODGD-M0-CG-EC, and ODGD-M0-EC and ODGD-M0-CG-EC compared to the TRSE
DWI sequence for the same range of b-values and TEPI (c). EC-nulling waveforms were
designed to null time constants of τ = 10ms. ODGD waveforms with EC-nulling achieve
higher minimum TE than the corresponding ODGD waveform without EC-nulling. In
these cases, ∆TE is larger for higher b-values and lower TEPI. Compared to BIPOLAR
and the TRSE DWI sequence, ∆TE of ODGD waveforms with EC-nulling is larger for
higher TEPI.
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Figure 5.3: TE reductions (∆TE) achieved using ODGD-Mn-PNS compared to ODGD-Mn
for b-values 100 - 2000s/mm2 and TEPI in the range of 16.4 - 46.4 ms for M0 (a), M1
(b) and M2 (c) moment constraints, respectively. There is a TE reduction between 0 -
0.94%, 0 - 0.74% and 0 - 0.75% for M0, M1 and M2, respectively. TE reductions are
comparable throughout b-value, TEPI ranges, and nth-order moment-nulling. ODGD-Mn
and ODGD-Mn-PNS were computed with SRMax of 100 T/m/s (limit found on the
literature to avoid PNS-effects) and 150 T/m/s (hardware limit), respectively.

of opposite polarity. On the contrary, ODGD-M0-EC and the TRSE DWI se-
quence show more homogeneous difference between DW images of opposite polarity
despite their longer TE and lower SNR. Figure 5.6.c) shows the distribution of
the difference between diffusion-weighted images acquired at three opposite DW
directions (±A/P, ±R/L, ±S/I) separating between the border and phantom masks
shown in Figure 5.6.b). ODGD-M0-EC and the TRSE DWI sequence show tighter
confidence intervals and lower height at both masks proving better EC performance
than MONO. It is to be noted that the performance of the ODGD-M0-EC and the
TRSE DWI sequence to diminish EC image distortions is comparable albeit having
the TRSE DWI sequence a 12% reduction of the maximum diffusion-weighting
gradient strength (33 mT/m vs. 28 mT/m).

5.3 Discussion

We have presented the novel Optimized Diffusion-weighting Gradient Waveform
Design (ODGD) formulation. The ODGD formulation allows the design of
diffusion-weighting gradient waveforms to diminish Eddy Current (EC) induced
image distortions and to reduce Peripheral Nerve Stimulation (PNS) while min-
imizing the TE of diffusion-weighted acquisition, reducing bulk motion effects
and nulling Concomitant Gradient (CG) effects. The ODGD-Mn-EC, with n =
0, 1, 2, generally reduced the TE of state-of-the-art diffusion-weighting gradient
waveforms and sequences with similar EC-nulling properties (i.e,. BIPOLAR
waveforms and TRSE DWI sequence). This TE reduction tends to be higher
for higher k-space resolutions (i.e., longer TEPI) and enables an increase of the
SNR in Diffusion-Weighted Magnetic Resonance Imaging (DW-MRI) by avoiding
T2-related signal losses. Nevertheless, TE increases and SNR decreases when
compared to the traditional MONO non EC-nulling waveform. On the other hand,
the ODGD-Mn-PNS waveforms achieve similar TE reduction for any b-value - TEPI
combinations, with no SNR increase.
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Figure 5.4: Difference between diffusion-weighted images acquired with opposite diffusion-
weighting polarity (±A/P), b-value = 1000 s/mm2, and TEPI = 11 ms with waveforms
MONO, ODGD-M1, BIPOLAR, and ODGD-M1-EC of the phantom experiment at 3T
(a). Masks for ROI analysis (b). Distribution of the difference between diffusion-weighted
images acquired with the three opposite diffusion-weighting directions (c). Red and black
boxes show the distribution of the phantom and border masks, respectively. MONO is
severely affected by eddy currents induced distortions showing strong mismatch between
opposite DW images (higher height and wide confidence interval). At the phantom’s
border, ODGD-M1 is slightly affected by EC induced distortions. ODGD-M1, BIPOLAR,
and ODGD-M1-EC show more homogeneous difference between opposite DW images than
MONO. Compared to ODGD-M1, BIPOLAR and ODGD-M1-EC show similar variability
between opposite DW images despite their longer TE.
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Figure 5.5: Diffusion-weighted images acquired with ODGD-Mn, where n = 0, 1, without
and with PNS-nulling. Zeroth-order motion-compensated waveforms (a). First-order
motion-compensated waveforms (b). There is no visual difference between ODGD wave-
forms without and with PNS-nulling.

Diffusion-weighting gradient waveforms with EC-nulling have promising applica-
tions in DWI by improving DW image quality and improved quantification of the
parametric maps. Further, PNS-nulling waveforms may have important applica-
tions in Magnetic Resonance Imaging (MRI) of the fetus where reduced nerve
stimulation is essential. The potential of both EC- and PNS-nulling waveforms
is of added importance in brand-new high gradient MRI scanners (i.e., Connec-
tome MRI scanners) which are able to drive ultra- high-gradient strengths and
one-of-a-kind high-slew rates (Jones et al., 2018).

This work has several limitations. The ODGD waveforms with EC-nulling were
designed for a medium EC time constant on two different scanners without pre-
viously measuring the most significant EC time constants of the scanner. Thus,
tuning of the time EC constant on the ODGD formulation might lead to further
image distortion reduction reducing the border artefacts of Figures 5.4 and 5.6.
The ODGD waveforms with PNS-nulling were feasibly implemented in the scanner.
However, nerve stimulation effects only appear in in-vivo acquisitions, thus their
PNS-nulling properties could not be tested. As a result, the proposed ODGD
formulation needs to be further validated in brain, liver, and heart in-vivo studies
in volunteers and in patients. Additionally, an extension of the formulation to
optimize the imaging gradients in addition to the diffusion gradients (Schulte and
Noeske, 2015), and application to other DWI sequences is also desirable.
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Figure 5.6: Difference between diffusion-weighted images acquired with opposite diffusion-
weighting polarity (±A/P), b-value = 500 s/mm2, and TEPI = 28.5 ms with waveforms
MONO, ODGD-M0-EC, and the TRSE DWI sequence of the phantom experiment at
1.5T(a). Masks for ROI analysis (b). Distribution of the difference between diffusion-
weighted images acquired with the three opposite diffusion-weighting directions (c). Red
and black boxes show the distribution of the phantom and border masks, respectively.
MONO is severely affected by eddy currents induced distortions showing strong mismatch
between opposite DW images in both masks (higher height and wide confidence interval).
ODGD-M0-EC and the TRSE DWI sequence show comparable performance to reduce
the EC induced distortions showing more homogeneous difference between opposite DW
images and tighter confidence intervals at both the border and the phantom mask.
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5.4 Conclusion

We have proposed the novel Optimized Diffusion-weighting Gradient Waveform
Design (ODGD) method to design motion-compensated, CG-, EC- and/or PNS-
nulled diffusion-weighting gradient waveforms that optimize the TE for a given
b-value. Theoretical results and phantom experiments on scanners from two
different vendors demonstrated that the ODGD formulation has the potential to
improve image quality compared to standard DW-MRI methods.

96



Part III

Contribution II:

Diffusion-Weighting b-value
Optimization

97





6
b-Value Optimization: Motivation and
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6.1 Introduction

The standard procedure to measure diffusion-related parametric maps is by apply-
ing a monoexponential model to the diffusion-weighted signal decay as previously
indicated in Subsection 2.2.3. Such model provides a quantitative diffusion value,
known as Apparent Diffusion Coefficient (ADC), which can be used to characterize
the tissue (Koh and Thoeny, 2010; Padhani et al., 2009a; Taouli et al., 2016).
However, this value jointly describes the diffusion originating from multiple com-
partments, which hinders its interpretation and determines its lack of physical
significance (Le Bihan et al., 1991). This is of particular interest in abdominal
organs such as the liver due to their comprehensive vascular network (Dijkstra et al.,
2012; Yamada et al., 1999). To overcome this limitation, the Intravoxel Incoherent
Motion (IVIM) biexponential diffusion-weighted signal model was developed by
Le Bihan et al. (1988). This signal model, also introduced in Subsection 2.2.3,
separates the contribution of the Diffusion-Weighted (DW) signal into two terms.
The first one corresponds to the signal of the diffusing spins, and the second one
corresponds to the signal of the spins undergoing translational displacements due to
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the microcirculation or pseudodiffusion of the blood flow in the capillary network.
The latter effect translates into a fast decrease of the diffusion-weighted signal
at low b-values. This implies that for high b-values the signal from the capillary
network diminishes and only the signal from diffusing spins remains.

In the past decades, it has been proven how the estimation of the ADC and of the
IVIM parametric maps such as the pseudodiffusion and the diffusion maps can
aid tissue characterization. For example, multiple authors have showed how the
ADC decreases in liver metastasis reflecting the cellularity of the tumour (Koh
and Thoeny, 2010; Padhani et al., 2009a), Luciani et al. (2008) showed that
pseudodiffusion is lower in cirrhotic livers than in healthy livers, and Chow et al.
(2012) indicated that IVIM analysis may be a valuable tool in liver fibrosis detection
and characterization. However, the estimation of the ADC and of the IVIM
parametric maps is affected by several confounding factors (i.e., bias, lack of
repeatability, and/or lack of reproducibility) that hinder their establishment as
quantitative imaging biomarkers. The influence of all these factors, together with the
lack of standardization of acquisition parameters, may contribute to the variability of
the diffusion values found in the literature (Taouli and Koh, 2009). Moreover, these
confounding factors are particularly severe in liver Diffusion-Weighted Imaging
(DWI), due to several additional imaging challenges including respiratory and
cardiac motion (Taouli and Koh, 2009). For example, several studies (Bruegel et al.,
2008b; Gourtsoyianni et al., 2008; Kim et al., 1999; Namimoto et al., 1997; Taouli
et al., 2003) show that the ADC varies between 0.69 - 1.83 × 10−3 mm2/s in normal
liver, between 0.97 - 1.38 × 10−3 mm2/s in hepatocellular carcinomas, and between
2.55 - 3.63 × 10−3 mm2/s in cysts (see Table 2.2 for more details). Quantitative
diffusion Magnetic Resonance Imaging (MRI) in the liver has important potential
applications in research and in the clinic (Colagrande et al., 2010; Koh and Thoeny,
2010). However, in order to enable the widespread dissemination of quantitative
diffusion MRI for the measurement of quantitative imaging diffusion biomarkers,
there is an unmet need to improve and characterize its accuracy (lack of bias),
precision (low variance), reproducibility (low variability across sites and platforms),
and robustness (insensitivity to platform scan parameters and estimation algorithm)
as previously indicated in Section 1.1.

Diffusion-related parametric map estimation is also affected by aspects such as DW
image quality, Signal-to-Noise-Ratio (SNR), and the weighting of the DWI sequence.
Multiple approaches have been proposed to increase DW image quality (Le Bihan
et al., 2006; Norris, 2001; Peña-Nogales et al., 2019b), and even though low SNR
can bias the estimations (Koay et al., 2009), this bias can be reduced if using the
appropriate estimator as shown by Sijbers et al. (1998). On the other hand, one of
the best approaches to increase the precision of the diffusion-related parametric
maps is through the application of the appropriate diffusion weighting, which is
generally defined as the set of b-values that is acquired. The b-value definition
was initially established by Stejskal and Tanner back in 1965 (Stejskal and Tanner,
1965). Withal, the optimal set of b-values for both the monoexponential and the
IVIM signal models remains unclear (Guiu and Cercueil, 2011; Koh and Collins,
2007), in spite of the fact that it has substantial effects on the estimated diffusion-
related parametric maps as shown in Figure 6.1 for the ADC. The optimization of
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Figure 6.1: Estimated Apparent Diffusion Coefficient (ADC) map and its variance of the
quantitative diffusion phantom (Imaging, 1997). (a) Diffusion-weighted images of the 13
vials quantitative diffusion phantom acquired at b-values of 0, 250, 500, 750, 1000, and
1500 s/mm2. (b) Corresponding ADC map. Distribution of the ADC values of a Region
of Interest (ROI) set on each vial (c). For this specific set of b-values, vials with low ADC
(vials 1 to 4) have higher noise performance (i.e., ADC maps have low variance) than
vials with higher ADC (vials 9 to 13).

the set of b-values has been an important question since the early stages of DWI,
when Xing et al. (1997) proposed a propagation of error formulation to optimize the
set of b-values for ADC mapping. Subsequently, other authors have also tackled
this optimization problem, such as (Jones et al., 1999; Kingsley and Monahan,
2004), and (Zhang et al., 2012) for IVIM DWI. Yet, all of these previous works
considered the signal to be affected by Gaussian distributed noise by assuming
a high SNR. This way, classical estimation tools could directly be applied to
the problem formulation. However, in MRI, other statistical distributions are
usually considered for noise, specially in low SNR scenarios, as in body DWI. As
indicated in Section 2.5.1 the most accepted model is to consider that MRI images
are corrupted by Rician distributed noise, which is a valid assumption for single-
coil acquisitions and some multi-coil parallel imaging methods such as Sensitivity
Encoding (SENSE) (Aja-Fernández and Vegas-Sánchez-Ferrero, 2016). Saritas
et al. (2011) applied precisely Rician noise statistics to the diffusion estimates to
optimize the b-values for a two sample measurement. Albeit using a more accurate
noise formulation, their proposal lacked of generalization since they assumed that
the ADC is estimated from only a two-point measurement scheme of nth-averaged
DW images, which is not necessarily the case in the clinical routine. Further, their
optimized set of b-values was not empirically validated.

Monte-Carlo simulations have also been employed to obtain the optimized set of
b-values in body DWI, as proposed by Jambor et al. (2014); Lemke et al. (2011);
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Merisaari and Jambor (2015); Senegas et al. (2012). However, this technique is
markedly computationally expensive, which limits its utility. Finally, an alternative
approach to optimize the set of b-values is through the Cramér-Rao Lower Bound
(CRLB), which is described in detail next in Section 6.2. The CRLB provides a
theoretical framework to obtain the lower bound on the variance of any unbiased
estimator. Therefore, by minimizing the CRLB, which depends on the chosen
set of b-values, we can obtain the set that optimizes the noise performance of the
estimated maps (i.e., maximize the precision and minimize the variance). The
CRLB approach has been previously used for the monoexponential model in the
brain (Brihuega-Moreno et al., 2003), and for the IVIM model in the liver (Alberich-
Bayarri et al., 2014; Jalnefjord et al., 2019; Leporq et al., 2015). Nevertheless,
in these approaches the authors again considered DW images to be affected by
Gaussian distributed noise. In addition, in (Alexander, 2008; Poot et al., 2010) the
authors used the CRLB to optimize the gradient settings for diffusion kurtosis
imaging and for microstructure imaging in the brain under Rician distributed
noise. However, due to the high dimensionality of their optimization problems,
optimizations were performed through a stochastic method, which is only guaranteed
to find an approximate optimal combination of gradient settings. Further, their
optimizations were not validated through empirical experiments.

Therefore, in this part of the Thesis dissertation we derive the Cramér-Rao Lower
Bound (CRLB) of both the monoexponential and the IVIM isotropic diffusion
signal models used in liver DWI under the assumption that magnitude images
are affected by Rician distributed noise. In addition, we propose a formulation
to obtain, for a given scenario (target diffusion values, SNR and total number
of b-values to be employed), optimized sets of b-values that maximize the noise
performance of the estimated diffusion-related parametric maps (i.e., maximize the
precision and minimize the variance). The theoretical foundation of the CRLB is
described in this chapter, and is completed in the following Chapters 7 and 8 to
derive the CRLB of the monoexponential and the IVIM signal models, respectively.
In Chapter 7 the proposed formulation for the monoexponential signal model is
experimentally validated using synthetic data, phantoms, and in-vivo liver DWI
acquisitions. Further, the CRLB-based optimized set of b-values for both signal
models for in-vivo liver DWI are compared with other sets of b-values proposed in
the literature in their corresponding chapters.

6.2 Cramér-Rao Lower Bound Theory

Suppose that we have a noise free quantity, S, which depends on the parameters θ.
If we have a set of noisy observations, S̃ = {S̃1, . . . , S̃K} with a probability density
function, p(S̃|θ), and a log-likelihood, log p(S̃|θ). Then, the Fisher Information
Matrix (FIM), I, of these set of measurements is given by Van den Bos (2007)
as:

I(θ0) = E

{(
∂ log p(S̃|θ)

∂θ

)T (
∂ log p(S̃|θ)

∂θ

) ∣∣∣∣∣
θ=θ0

}
, (6.1)
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where θ0 is the true value of θ. Then, the minimum variance, i.e., highest precision,
with which a certain parameter can be estimated using an unbiased estimator is
given by the CRLB inequality:

cov(θ̂) ≥ I−1(θ0) (6.2)

where cov(θ̂) is the covariance matrix of the estimator θ̂. Therefore, considering a
Diffusion-Weighted Magnetic Resonance Imaging (DW-MRI) sequence with a set
of K b-values, and assuming the simpler case where the noise is equally distributed
along every diffusion-weighted image (σ = σk), an element of the FIM is given
by

I(θ) = E


(

K∑
k=1

∂ log p(S̃|θ)
∂Sk

∂Sk
∂θ

)T ( K∑
k=1

∂ log p(S̃|θ)
∂Sk

∂Sk
∂θ

)
=

K∑
k=1

(
∂Sk
∂θ

)T (
∂Sk
∂θ

)
In(Sk, σ),

(6.3)

where Sk is the diffusion-weighted signal model, In(Sk, σ) is the Fisher Information
of a statistical variable, and n depends on the noise distribution.

Particularly, In(Sk, σ) for the Gaussian noise distribution is

IGauss(Sk, σ) = σ−2 (6.4)

and for the Rician noise distribution is, according to Karlsen et al. (1999):

IRice(Sk, σ) =
∫ ∞
Ŝ=0

 ŜI1

(
SkŜ
σ2

)
σ2I0

(
SkŜ
σ2

) − Sk
σ2

2

×
Ŝe

(
−
S2
k

+Ŝ2

2σ2

)
I0

(
SkŜ
σ2

)
σ2 dŜ (6.5)

where I1 and I0 are the modified Bessel functions of the first kind of order 1 and 0
respectively.
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Chapter 7: b-Value optimization for ADC mapping

7.1 Theory

In the monoexponential Diffusion-Weighted Imaging (DWI) isotropic model, as
shown in Eq. (2.27) of Section 2.2.3, the measured signal is described (Stejskal and
Tanner, 1965) as:

S(b) = S0e
−b ADC, (7.1)

where b is the b-value, S0 is the signal intensity when no diffusion-weighting gradient
is applied, and ADC is the Apparent Diffusion Coefficient. Generally, the estimation
of the Apparent Diffusion Coefficient (ADC) is performed by voxelwise fitting the
previous model to a set of weighted measurements, S(bk) where k ∈ [1, . . .,K].
Therefore, we seek to maximize the precision and noise performance of ADC
estimations through the selection of the optimized set of b-values via the Cramér-
Rao Lower Bound (CRLB) theory introduced in Chapter 6 under a Rician noise
assumption (see Section 2.5.1 for details). This formulation is presented below
followed by the methods used to optimize the set of b-values.

7.1.1 Cramér-Rao Lower Bound of the monoexponential DWI
signal model

The Cramér-Rao Lower Bound (CRLB) provides a lower bound on the variance
of any unbiased estimator as indicated in Section 6.2. Particularly, the Maximum
Likelihood (ML) estimator is asymptotically unbiased and efficient under Rician
distributed noise (Sijbers et al., 1998). Therefore, the variance of its estimates will
reach the CRLB asymptotically (i.e., for a large number of samples).

In Diffusion-Weighted Magnetic Resonance Imaging (DW-MRI), given the noise
free model in Eq. (7.1) with the set of parameters θ = {S0,ADC} and any noise
distribution, the Fisher Information Matrix (FIM) (Van den Bos, 2007) is:

I(θ) =


K∑
k=1

e−2·bk·ADC In(S(bk), σ) −
K∑
k=1

S0bke
−2·bk·ADC In(S(bk), σ)

−
K∑
k=1

S0bke
−2·bk·ADC In(S(bk), σ)

K∑
k=1

S2
0b

2
ke
−2·bk·ADC In(S(bk), σ)

 ,
(7.2)

where K is the number of b-values in the set, σ the covariance, and In() depends
on the noise distribution (i.e., Gaussian (Karlsen et al., 1999) or Rician (Karlsen
et al., 1999; Poot et al., 2010) ).

Therefore, the CRLB of the DW-MRI monoexponential model is given by in-
verting Eq. (7.2) as shown in the CRLB inequality (Section 6.2), (Karlsen et al.,

106



7.2. Experimental work

1999):

cov(θ̂) ≥ I−1(θ), (7.3)

where cov(θ̂) is the covariance matrix of the estimator θ̂. As shown in the previous
equations, the CRLB will depend on the set of b-values, the total number of
b-values (K) of the set, the actual ADC, S0, σ and the noise distribution as shown
in Chapter 6.

7.2 Experimental work

7.2.1 Determination of the optimized set of b-values

The computation of the optimized set of b-values for a given set of parameters,
θ = {S0,ADC}, is achieved by minimizing the elements of the right hand side of
the CRLB inequality (Eq. (7.3)).

In the inverse of the FIM (Eq. (7.2)), the elements of the diagonal correspond
to the lower bound of any unbiased estimator for a set of b-values and a unique
set of parameters θ. Top left element (I−1(b,θ)11) corresponds to the CRLB of
the S0 (CRLBS0), and the bottom right element (I−1(b,θ)22) corresponds to the
CRLB of the ADC (CRLBADC). On the other hand, the off-diagonal elements
correspond to the covariance between both parameters (Karlsen et al., 1999). In
order to obtain the optimized set of b-values that maximize the noise performance
of the ADC maps (i.e., maximize the precision and minimize the variance), in
this work, we only consider CRLBADC in the minimization process. Thus, the
optimized set of b-values is obtained through the minimization of the following
objective function:

b̂ = arg minb I−1(b,θ)22 = arg minb CRLBADC(b) (7.4)

In general, and depending on the total number of desired b-values (K), this
minimization process can be computationally expensive, or even infeasible in
practice. In order to overcome this challenge, we propose two alternative methods
to perform the minimization by selecting the optimal b-values from a large pool of
N candidates:

Greedy algorithm: Starting from an initial set of b-values composed only of
one b-value (b = 0 s/mm2), the algorithm iteratively adds to the set the b-value
that achieves minimum CRLBADC among the pool of N candidates. The algorithm
iterates until a set of K b-values is completed. This approach was previously
implemented by Lemke et al. (2011).

Two b-value search: In this case, the optimized set is restricted to be composed
of only two b-values. The first of them is fixed to be b= 0 s/mm2 to have
measurements with maximum Signal-to-Noise-Ratio (SNR) (it is to be noted that
for some liver DWI applications the lowest b-value might be b= 100 s/mm2 to
avoid too much contamination from Intravoxel Incoherent Motion (IVIM) (Taouli
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et al., 2016)), whereas the second one is chosen among the pool of N-1 candidates
(notice that the previously chosen b-value is removed from the pool of candidates).
Then an exhaustive search is performed to find the optimized set of K b-values,
where k1 b-values will be equal to 0 s/mm2 and k2 will be different, but always
the same b-value (k1 + k2 = K). The [k1, k2] combination of the pair of b-values
that achieve minimum CRLBADC is considered optimal. Hereinafter, the sets of
b-values obtained using these two CRLB-based analysis are called CRLB-based
b-value sets.

Table 7.1, Table 7.2, and Table 7.3 show the ADC, SNR of the S0 image, and
b-value pool of candidates used to obtain the CRLB-based b-value sets under both
methodologies assuming Rician and Gaussian distributed noise. For the greedy
algorithm, the CRLB-based b-value sets obtained from Table 7.1 were composed of
K = 13 b-values, and the sets of Table 7.2 and Table 7.3 were composed of K = 16
b-values. For the two b-value search algorithm, the CRLB-based b-value sets were
obtained for all K in the range of 2 to 16. For the sake of clarity, these experiments
to obtain optimized CRLB-based b-value sets are described in Table 7.4.

In addition, to study the convergence properties of the two b-value search algorithm
to provide fast computation of the CRLB-based b-value sets, it was applied to ADC
values of 2.1, 1.2, and 0.9 mm2/s, and SNR values of 100, 50, 20, and 10 assuming
both Gaussian and Rician noise distributions. Two b-value pool of candidates were
composed of N = 701 and 2001 b-values uniformly distributed between 0 and 700,
and 0 and 2000 s/mm2, respectively. All optimized sets were computed for K in
the range of 2 to 60.

7.2.2 Experimental data

In order to validate the proposed methods (i.e., greedy algorithm and two b-value
search), we need to study whether these two methods are able to obtain sets of
b-values that effectively yield the lowest possible variance on the estimated ADC
maps. To that end, we compare the CRLB-based optimized b-value sets obtained
with the previous two methods to those obtained experimentally from synthetic
data, phantoms, and in-vivo liver DWI experiments (these b-value sets obtained
experimentally are later described in Section 7.2.3). Therefore, two phantom
acquisitions and an in-vivo liver acquisition were carried out as described in the
following subsections. Further, in order to have realistic synthetic data, and to
facilitate the assessment of the CRLB-based analysis, synthetic DWI images were
generated from the estimated features of Regions of Interest (ROIs) drawn on both
phantom acquisitions as subsequently described in the Experimental validation
Subsection 7.2.3.

7.2.2.1 Quantitative diffusion phantom

A High Precision Devices’ (HPD) Quantitative Diffusion Phantom (Bolder, CO,
USA) with 13 vials of aqueous solutions doped with various concentrations of
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Chapter 7: b-Value optimization for ADC mapping

polyvinylpyrrolidone (Imaging, 1997) was imaged under a 0◦C ice-water bath with
an 8-channel head coil in a 1.5T scanner (GE Healthcare, Waukesha, WI). Axial
diffusion-weighted images were acquired with a Field-of-View (FOV) of 24 × 24
cm, matrix size of 144 × 144, slice thickness of 5 mm, Repetition Time (TR)
= 2 s, Echo Time (TE) = 111 ms, and parallel imaging acceleration factor of 2.
Acquisitions were performed with N = 41 b-values uniformly distributed between
0 and 2000 s/mm2. Further, this acquisition was repeated 16 consecutive times
to enable voxel-wise determination of ADC and SNR statistics. The first three
repetitions were discarded to avoid steady-state effects.

In order to perform T2 mapping, 2D spin-echo images were acquired with FOV
= 24 × 24 cm, matrix size of 128 × 96, slice thickness of 6 mm, TR = 1 s, and
TE = [6, 50, 200] ms.

SNR of the S0 images was computed voxel-wise by calculating the ratio between
the mean signal intensity and the standard deviation across the 13 repetitions
considered. Ground truth ADC was obtained with a maximum likelihood estimator
(initialized with a least squares estimation) using all the diffusion-weighted images
and b-values in the range 0 - 1000 s/mm2. T2 maps were estimated with a least
square fitting. For the evaluation of SNR, ADC, and T2, a 3.15 cm2 Region of
Interest (ROI) was drawn in each vial, co-localized across the different acquisitions.
All parametric maps were obtained to fully describe the quantitative diffusion
phantom used in the experiments. Mean SNR, mean ground truth ADC, mean
T2 values of each vial, and pool of N b-values used on the acquisitions are shown
in Table 7.1. It is worth noticing that this phantom contains vials for a large
range of ADC values although they have unrealistic and long T2 values (300 to
900 ms).

7.2.2.2 Acetone phantom

Axial diffusion-weighted images of the same ten-vial acetone-based diffusion phan-
tom constructed in Chapter 4 (Peña-Nogales et al., 2019b; Wang et al., 2017) were
acquired under a 0◦C ice-water bath with an 8-channel head coil on the same
1.5T scanner as before. The acquisition parameters were: FOV of 20 × 10 cm,
matrix size of 64 × 64, slice thickness of 10 mm, TR = 1 s, and parallel imaging
acceleration factor of 2. Diffusion-weighting was performed with N = 15, 21, 27, 31
and 41 b-values uniformly distributed between 0 and 700 (TE = 70 ms), 0 and 1000
(TE = 75.9 ms), 0 and 1300 (TE = 80.8 ms), 0 and 1500 (TE = 83.6 ms), and 0
and 2000 s/mm2 (TE = 89.7 ms), respectively. All acquisitions were repeated 16
consecutive times to enable voxel-wise determination of ADC and SNR statistics.
No repetition was discarded due to steady-state effects.

In order to perform T2 mapping, 2D Spin Echo (SE) images were also acquired
with FOV = 26 × 15.6, matrix size of 256 × 160, slice thickness of 10 mm, TR
= 1 s, and TE = [9, 14, 65, 139, 300] ms.

The same procedures as with the previous quantitative diffusion phantom were
carried out to compute the SNR, ground truth ADC (in this case, only using the
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Table 7.4: Experiments carried out on each dataset to obtain optimized CRLB-based
b-value sets.

Dataset CRLB-based
b-value sets

Number of b-values
of the set (K)

Number of b-values of
the pool of candidates (N)

Table 7.1 Greedy algorithm 13 41

Table 7.2 Greedy algorithm 16 15, 21, 27, 31, 41Two b-value search 2 - 16

Table 7.3 Greedy algorithm 16 11Two b-value search 2 - 16

acquisition with TE = 75.9 ms and maximum b-value of 1000 s/mm2) and T2.
For this phantom, a 2.5 cm2 ROI was drawn in each vial, co-localized across the
different acquisitions. All parametric maps were obtained to fully describe the
acetone phantom used in the experiments. Mean SNR, mean ground truth ADC,
mean T2 values of each vial, and the pool of N b-values used on the acquisitions
are shown in Table 7.2. This phantom contains vials for a limited range of ADC
values but they have realistic and short T2 values (around 37 and 86 ms).

7.2.2.3 In-vivo liver DWI

One healthy volunteer (female, 23 years old) was scanned with institutional review
board approval and informed written consent. The acquisition was done with a
16-channel torso coil in a 3T scanner (Philips Healthcare, Best, The Netherlands).
Axial diffusion-weighted images were acquired including liver segments III to VIII
with respiratory triggering. Other acquisition parameters were: FOV = 22 × 20
cm, matrix size of 100 × 92, slice thickness of 7 mm, space between slices of 7 mm,
TR = 911 ms, TE = 65.66 ms, and parallel imaging factor of 2. N = 11 b-values
were employed, uniformly distributed between 0 and 1000 s/mm2. The whole
acquisition was repeated 16 consecutive times to enable voxel-wise determination
of ADC and SNR statistics. A T2 weighted sequence was not applied due to time
constraints.

SNR maps and ground truth ADC were calculated as in the quantitative diffusion
phantom experiment. Three 30 mm2 ROIs were drawn on each slice. In addition,
another larger ROI was drawn with full liver coverage. In both cases, ROIs were
co-localized across the different acquisitions. Care was taken to avoid large vessels.
All parametric maps were obtained to fully describe the liver acquisition used in
the experiments. Mean SNR, mean ground truth ADC values of each ROI, and
the pool of b-values used on the acquisitions are shown in Table 7.3.

7.2.3 Experimental validation

Based on the previous acquisitions, four different experiments were performed for
the validation of the proposed methods. The first three constitute a procedure
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to experimentally obtain an optimized set of K b-values selected from a pool of
N candidates, so that it can be compared to the proposed CRLB-based b-value
sets. The last experiment is designed to prove the superiority of the proposed
CRLB-based b-value sets compared to sets of b-values proposed on the literature
for liver DWI.

• Experiment 1: For each DWI acquisition considered, several ROIs were
delineated. Then, for each ROI of each acquisition we iteratively obtained
the optimized set of K b-values by adding, at each iteration, the b-value that
achieved the minimum experimental mean CRLBADC among the available
b-value pool of candidates. The procedure is analogous to the one employed
in the proposed greedy algorithm, but now the CRLBADC is computed
voxel-wise, from voxel-wise ADC and SNR estimates within the ROI. This
experiment constitutes a procedure to experimentally obtain optimized sets
of K b-values with minimum CRLBADC for ROIs drawn on DW-MRI images,
so that they can be compared with the corresponding proposed CRLB-based
b-value sets.

• Experiment 2: Based on the mean SNR and mean ground truth ADC that
were estimated for each ROI of each acquisition, and their pool of b-values (see
Tables 7.1, 7.2, and 7.3), repeated synthetic Diffusion-Weighted (DW) images
were generated. Then, we iteratively obtained the optimized set of K b-values
by adding, at each iteration, the b-value that achieved minimum experimental
variance of the ADC estimation (σ2

ADC) on the synthetic DW images among
the available b-value pool of candidates. The procedure is analogous to the one
employed in the greedy algorithm, although now the estimated experimental
variance (σ2

ADC) is minimized instead of the CRLBADC. This experiment
constitutes a procedure to experimentally obtain optimized sets of K b-values
with minimum σ2

ADC for synthetic DW-MRI images, so that they can be
compared with the corresponding proposed CRLB-based b-value sets.

For both the quantitative diffusion and the acetone phantom acquisitions,
synthetic diffusion-weighted images of 10000 pixels per vial and SNR level
were created corresponding to the values given in Table 7.1 and 7.2. For the
former acquisition, diffusion-weighting was performed with N = 41 b-values
uniformly distributed between 0 and 2000 s/mm2. For the latter acquisition,
diffusion-weighting was performed with N = 15, 21, 27, 31, and 41 b-values
uniformly distributed between 0 and 700, 0 and 1000, 0 and 1300, 0 and 1500,
and 0 and 2000 s/mm2, respectively. All DW images were corrupted with
noise following a Rician distribution. These synthetic images were created 16
consecutive times.

• Experiment 3: For each DWI acquisition considered, several ROIs were
delineated. Then, for each ROI of each acquisition we iteratively obtained
the optimized set of K b-values by adding, at each iteration, the b-value that
achieved the minimum experimental variance of the ADC estimation (σ2

ADC)
among the available b-value pool of candidates for a particular ROI. The
procedure is analogous to the one employed in the validation through the
experiment 2 although with co-localized ROIs drawn on repeated phantom or
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Table 7.5: Validation experiments carried out on each DWI acquisition to validate the
optimized CRLB-based b-value sets.

DWI acquisitions Optimized b-value sets Validation Experiments

Quantitative diffusion
phantom experiments

CRLB-based b-value sets:
- Greedy algorithm

Experiment 1
Experiment 2
Experiment 3

Acetone phantom experiments
CRLB-based b-value sets: Experiment 1
- Greedy algorithm Experiment 2
- Two b-value search Experiment 3

In-vivo liver experiments
CRLB-based b-value sets: Experiment 1

Experiment 3- Greedy algorithm
- Two b-value search

in-vivo DWI data. This experiment constitutes a procedure to experimentally
obtain optimized sets of K b-values with minimum σ2

ADC for ROIs drawn
on DW-MRI images, so that they can be compared with the corresponding
proposed CRLB-based b-value sets.

In all previous three methods, ADC maps were obtained with a ML estimator
initialized with a least squares estimation. Further, when a b-value was repeated
on the selected set, equivalent number of DW images of the consecutive repetitions
were selected for ADC estimation. It is worth noticing that the quantitative
diffusion phantom acquisition, the acetone phantom acquisition, and the in-vivo
liver DWI acquisition were repeated 13, 16, and 16 consecutive times, respectively.
For the sake of clarity, these approaches are described in Figure 7.1, and Table 7.5
summarizes which experimental validation methods were employed to validate the
proposed b-value determination methods for each of the three types of experimental
data.

• Experiment 4: Given a set of b-values, DW images of a DWI acquisition
were selected for ADC estimation. However, if a b-value was repeated on
the selected set, an equivalent number of DW images of the consecutive
repetitions were selected (it is to be noted that as described in Section 7.2.2.3,
the whole DWI acquisition, with its 11 uniformly distributed b-values, was
repeatedly acquired 16 consecutive times). Hence, this method was repeated
16 times, one for each acquisition, obtaining a total set of 16 different ADC
maps. Then, we obtained the voxelwise standard deviation statistics (σADC)
and the mean ADC map across all the estimated maps. ADC was estimated
as described in the previous three experiments. This experiment constitutes
a procedure to experimentally compare the achieved noise performance (i.e.,
σADC) of various b-value sets.

7.2.4 Statistical analysis

Provided a set of maps obtained through experiment 4 (i.e., σADC maps or mean
ADC maps) for various sets of b-values, we computed the statistics described next.
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7.3. Results

Separately, slices of the ROI with full liver coverage were tested for normality
using the Kolmogorov-Smirnov test. Next, the non-parametric Kruskal-Wallis
test was applied to reject the null hypothesis that all sets of maps come from
the same distribution. Then, we pairwise compared the control maps (the ones
obtained through the proposed optimized CRLB-based b-value sets under the
Rician noise assumption) with the other sets of maps to test if the distributions
were different using a paired, two-sided Wilcoxon signed rank test. Finally, the
Bonferroni multiple-comparison post-hoc correction was used when comparing
multiple times the same control map. Therefore, for a single comparison the
p-value < 0.05 (P ) was considered significant, while for multiple comparisons it
was p-value < 0.05/8 = 0.006. In addition, to quantify the difference between maps
we computed the standardized absolute effect size corresponding to the Wilcoxon
signed rank test.

7.3 Results

7.3.1 Quantitative diffusion phantom experiments

Figure 7.2 shows a color-coded comparison of the optimized CRLB-based K = 13
b-value sets of the 13-vial quantitative diffusion phantom, and the optimized
validation sets of K = 13 b-values obtained through experiments 1, 2, and 3. Each
column shows the optimized set of b-values found for a vial, where the color code
indicates how many times a certain b-value was included in the set. Optimized
sets of b-values of vials with lowest ADC (i.e., vials 1 - 4) are constrained by the
maximum b-value of the pool of candidates. On the other hand, optimized sets of
vials 5 to 13 are within the range of the b-value pool of candidates. Higher ADC
values achieved a lower optimized set of b-values. Overall, there is good agreement
between the optimized CRLB-based b-value sets and the optimized validation sets
from all three experiments.

7.3.2 Acetone phantom experiments

Similarly to the previous phantom, Figure 7.3 shows a color-coded comparison of
the optimized CRLB-based K = 16 b-value sets for each of the five acquisitions with
different maximum b-value of the 10-vials acetone phantom (Figure 7.3.a) ), and
the optimized validation sets of K = 16 b-values obtained through experiments 1, 2,
and 3 (Figure 7.3.b)-d) ). Each column of each sub-figure shows the optimized set
found for a vial. Optimized CRLB-based b-value sets and the optimized validation
b-value sets from experiments 1 and 2 of vials 1 to 3 and 8 to 10 on the acquisition
with maximum b-value of 700 s/mm2 (TE = 70 ms), and vials 1 and 10 on the
acquisition with maximum b-value of 1000 s/mm2 (TE = 75.9 ms) are constrained
by the maximum b-value of the pool of candidates. Further, experiment 1 shows
that vials 6 and 7 have lower SNR and marginally higher ADC values than vials
5 and 4 (see Table 7.2), respectively. However, the b-values of their optimized
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Chapter 7: b-Value optimization for ADC mapping

Figure 7.2: Optimized b-value sets. Optimized CRLB-based K=13 b-value sets of the
13-vials quantitative diffusion phantom, and optimized validation sets of K=13 b-values
obtained from experiment 1, 2, and 3. Each column shows the optimized set of b-values
found for each vial, where the color code indicates how many times a certain b-value was
included in the optimized set. Black background color represents zero number of b-values.
Optimizations were performed via the greedy algorithm. Vials characteristics to obtain
the CRLB-based b-value sets and to perform experiment 2 are given in Table 7.1. There
is good agreement between the optimized CRLB-based b-value sets and the optimized
validation sets of all three experiments.

sets are lower. Similarly, vials 8, 9, and 10 have lower SNR and marginally lower
ADC values than vials 3, 2, and 1, respectively. However, the b-values of their
optimized sets are similar. Overall, there is good agreement between the optimized
set of b-values obtained with the proposed CRLB-based analysis and the optimized
validation sets from all three experiments.

Figure 7.4 illustrates the evolution of the CRLBADC and the evolution of the
variance of the ADC (σ2

ADC) for each b-value of the pool of candidates and the 15
first iterations of the greedy algorithm. Figure 7.4.a) depicts both, the CRLBADC
evolution to obtain the optimized CRLB-based K = 16 b-value set, and the same
evolution of experiment 1 when applied to vial 4 of the acquisition with maximum
b-value = 2000 s/mm2 (TE = 89.7 ms). Further, it also shows the σ2

ADC evolutions
of experiments 2 and 3 for the same vial. The number of b-values (k) corresponds
to the number of b-values of the set at each iteration of the greedy algorithm.
Figure 7.4.a) also depicts the CRLBADC of the two b-value search algorithm for K
b-values and same vial. The CRLB-based analysis through the greedy algorithm and
experiment 1 achieves a similar CRLBADC evolution. At each iteration, their local
optimum coincides with the optimal CRLBADC of the CRLB-based analysis through
the two b-value search algorithm for the same number of b-values. The σ2

ADC
evolution of experiment 3 shows strong agreement with the σ2

ADC of experiment 2,
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Figure 7.3: Optimized b-value sets. (a) Optimized CRLB-based K=16 b-value sets
for each of the five acquisitions with different maximum bvalue of the 10-vials acetone
phantom, and (b) optimized validation sets of K=16 b-values obtained from experiment 1,
(c) experiment 2, and (d) experiment 3. Each column of each subfigure shows the optimized
set of b-values found for each vial, where the color code indicates how many times a
certain b-value was included in the optimized set. Black background color represents
zero number of b-values. Optimizations were performed via the greedy algorithm. Vials
characteristics to obtain the CRLB-based b-value sets and to perform experiment 2 are
given in Table 7.2. There is good agreement between the optimized CRLB-based b-value
sets and the optimized validation sets of all three experiments.

and the CRLBADC evolution of the CRLB-based analysis and experiment 1.

7.3.3 In-vivo liver DWI experiments

Figure 7.5 shows a color-coded comparison of the optimized CRLB-based K = 16
b-value sets for all ROIs of the liver DWI acquisition obtained under both the
Gaussian and Rician noise assumptions Figure 7.5.a) and b), respectively, and the
optimized validation sets of K = 16 b-values obtained through experiment 1 and
3 (Figure 7.5.c) and d), respectively). ROIs with similar SNR level and different
ADC (i.e., ROIs 15 - 30, and 1 - 7, see Table 7.3) have different optimized sets of
b-values, obtaining lower b-values for higher ADC values. ROIs with same ADC
and different SNR (i.e., ROIs 7 - 9, 10 - 23, and 22 - 14) have different optimized
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sets of b-values, obtaining lower b-values for lower SNR levels. In general, there is
good agreement between the proposed optimized CRLB-based b-value sets under
both noise assumptions and the optimized validation sets from experiments 1 and 3.
However, the optimized b-values obtained under the Gaussian noise assumption are
higher than those obtained with a Rician assumption, and more differences can be
found with respect to the values obtained in experiment 3 (i.e., ROIs 22-27)

Figure 7.4.b) illustrates both the CRLBADC evolution of the greedy algorithm to
obtain the CRLB-based K = 16 b-value set and the same evolution for experi-
ment 1 for ROI 8. Further, it also presents the σ2

ADC evolution of experiment 3.
Figure 7.4.b) also depicts the CRLBADC of the two b-value search algorithm for
K b-values and same ROI. The CRLBADC evolution to obtain the CRLB-based
analysis through the greedy algorithm is lower than the CRLBADC of experiment 1,
and at each iteration, it achieves a similar local optimal than the two b-value search
algorithm. Further, on iterations with k ≥ 5, the σ2

ADC evolution of experiment 3
is similar but higher than the CRLBADC of experiment 1. Contrary, on iterations
with k < 5 the σ2

ADC evolution is similar, and sometimes lower, than the CRLBADC
evolution of both, the CRLB-based analysis and experiment 1.

Figure 7.6 shows the performance comparison in terms of the voxelwise standard
deviation reductions (i.e., σADC−σADC-RicianσADC

) between the proposed optimized CRLB-
based b-value set obtained under the Rician noise assumption and the b-value
sets proposed in the literature for in-vivo liver DWI. The sets of b-values found
in the literature are described in Table 7.6 entrances 2 to 9). The σADC and the
mean ADC for each set of b-values were computed as described in experiment 4.
The proposed set achieves lower voxelwise standard deviation (σADC-Rician) than
any other set of the literature as shown in Figure 7.6.b)-i). Figure 7.6.j and k)
further confirm that the standard deviation of the estimated ADC, and therefore
the variance, of the proposed set of b-values is lower than in the other eight
literature cases. Particularly, the boxplot of the σADC has the lowest median with
the narrowest Interquartile Range (IQR) as shown in Table 7.7 and Figure 7.6.j).
Namely, the σADC reduction of the proposed set of b-values compared to the other
literature sets is of 6.25%, 21.05%, 31.82%, 54.55%, 42.31%, 50.00%, 44.44%, and
48.28%, respectively, for each of the entries of Table 7.7. Similarly, in Figure 7.6.k)
the boxplot of the mean ADC has the narrowest IQR (see Table 7.7). The IQR
reduction of the proposed set of b-values compared to the other literature sets is of
24.74%, 17.05%, 38.14%, 68.40%, 68.80%, 70.33%, 17.98%, and 48.59%, respectively.
The values of both boxplots were taken from the corresponding slice of the full
liver coverage ROI. Further, statistically significant differences (P < 0.006) were
found between the σADC maps computed with the proposed b-value set (Rician)
and all the other literature cases. On the other hand, with the mean ADC maps
statistically significant differences were found between the proposed set and all the
other literature cases except for Koc and Erbay (2014) (P = 0.79), Kaya and Koc
(2014) (P = 0.42), and Taouli and Koh (2009) (P = 0.10). However, it is to be
noted that the reduction of the Rician mean ADC IQR compared to those three
cases is around 70% (see Table 7.7). Moreover, as described by the standardized
effect size shown in Table 7.8, the differences between the σADC comparisons can
be described between medium and small. Further, standardized effect sizes of the
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7.3. Results

Table 7.6: Sets of b-values recommended on the literature for healthy in-vivo liver DWI.
The sets proposed by Xing et al. (1997) and Brihuega-Moreno et al. (2003) are equivalent to
those obtained under the Gaussian noise assumption for the two b-value search algorithm.

Manuscript b-values (NEX∗)
1) Proposed optimized CRLB-based b-value set 0(4) 600(12)
2) Xing et al. (1997) and Brihuega-Moreno et al. (2003) 0(3) 700(13)
3) Saritas et al. (2011) 0(4) 500(12)
4) Goshima et al. (2008) 0(8) 400(8)
5) Koc and Erbay (2014) 0(2) 100(2) 200(2) 400(2) 600(2) 800(3) 1000(3)
6) Kaya and Koc (2014) 0(3) 100(3†) 600(3) 800(3) 1000(4)
7) Taouli and Koh (2009) 0(3) 100(4†) 500(3) 700(3) 1000(3)
8) Padhani et al. (2009b) 100(4) 200(4) 500(4) 700(4)
9) Koh and Collins (2007) 0(2) 100(5†) 300(3†) 500(3) 800(3†)
∗ b-Value sets are composed of K = 16 b-values. Therefore, the b-values recommended in the literature were
repeated until a set of K = 16 was achieved. If K was not a multiple of the number of b-values proposed in
the set, priority was given to the higher b-values as recommended by Padhani et al. (2009b).
† Some or all of these repeated b-values where rounded to allow ADC estimation with the b-values available
in the current in-vivo liver DWI experiment.

mean ADC comparisons are also between medium and small for all cases except
for the comparisons with Koc and Erbay (2014), Kaya and Koc (2014), and Taouli
and Koh (2009) which are very small according to Cohen (2013).

7.3.4 b-Value optimization

The two b-value search algorithm and the greedy algorithm achieve similar optimal
CRLBADC as shown in Figure 7.4 for the acetone phantom experiment and the
in-vivo liver experiment. The optimized CRLB-based b-value sets obtained with
the two b-value search algorithm are composed of k1 equal b-values to 0 s/mm2,
and k2 equal b-values different to 0 s/mm2 (hereinafter so called optimized b-value),
where k1 + k2 = K, as shown in Table 7.9. Various relationships between the
optimized b-value, K, k1, target ADC, SNR level, noise distribution, and b-value
pool of candidates are shown in Figure 7.6. Figure 7.6.a) depicts the product
between the optimized b-value and the target ADC for SNR levels of 100, 50, 20,
and 10, target ADC values of 2.1, 1.2, and 0.9 mm2/s, pool of candidates with N
= 2001 b-values uniformly distributed between 0 and 2000 s/mm2, and assuming a
Rician noise distribution. The product between the optimized b-value and target
ADC is the same independently of the target ADC, however, it decreases for low
SNR levels under a Rician noise distribution assumption. For SNR levels of 100
and 10, the ratio converges to 1.274 and 1.203, respectively. Figure 7.6.b) shows
the ratio between K and k1 for the same parameters than Figure 7.6.a). K/k1
ratio is the same independently of the target ADC, however, it decreases for low
SNR levels under a Rician noise distribution assumption. For SNR levels of 100
and 10, the ratio converges to 4.545 and 4.347, respectively. Further, convergence
product and ratio values change when the lowest b-value of the pool of candidates
increases (results not shown).

Figure 7.7.c) and 7.7.d) show the same ratio K/k1 for the same SNR levels,
pool of candidates with N = 701 b-values uniformly distributed between 0 and
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Chapter 7: b-Value optimization for ADC mapping

Table 7.7: Median (Interquartile Range (IQR) ) of the σADC, and the mean ADC of each
of the set of b-values of Table 7.6 on a representative slice of the liver. σADC, and the
mean ADC were computed as described in experiment 4. The values considered for the
computation of the medians and the IQRs were taken from the corresponding slice of
the full liver coverage ROI. It is to be noted that the σADC obtained by the proposed
optimized CRLB-based b-value set under the Rician noise assumption achieves the lowest
median, and the mean ADC achieves the lowest dispersion (i.e., lowest IQR).

Manuscript σADC Mean ADC
Median (IQR) [× 10−3 mm2/s]

1) Proposed optimized CRLB-based b-value set 0.15 (0.15) 1.78 (0.73)
2) Xing et al. (1997) and Brihuega-Moreno et al. (2003) 0.16 (0.19) 1.75 (0.97)
3) Saritas et al. (2011) 0.19 (0.17) 2.04 (0.88)
4) Goshima et al. (2008) 0.22 (0.23) 2.23 (1.18)
5) Koc and Erbay (2014) 0.33 (3.21) 1.44 (2.31)
6) Kaya and Koc (2014) 0.26 (2.74) 1.53 (2.34)
7) Taouli and Koh (2009) 0.30 (3.37) 1.62 (2.46)
8) Padhani et al. (2009b) 0.27 (0.40) 1.37 (0.89)
9) Koh and Collins (2007) 0.29 (1.38) 1.35 (1.42)

700 s/mm2, assuming a Rician noise distribution, and target ADC values of 1.2
and 0.9 mm2/s, respectively. In these two cases, the optimized b-value corresponds
to the highest b-value of the pool of candidates (i.e., 700 s/mm2) for any K.
However, K/k1 ratio depends on the target ADC as shown in Figure 7.7.c)-d).
Further, for all SNR levels the ratio converge to 3.333 and 2.857 for both ADC
values, respectively. In addition, for target ADC of 2.1 mm2/s, and b-value
pool of candidates between 0 and 700 s/mm2, the product ratio are as shown in
Figure 7.7.a)-b), respectively.

Finally, neither the product between the optimized b-value and the target ADC nor
theK/k1 ratio depend on the SNR level under a Gaussian noise assumption. In this
case, all products and ratios are the same as for a high SNR under the Rician noise
distribution as shown for various optimized b-value sets given in Table 7.9.

7.4 Discussion

In this chapter, we derived the Cramér-Rao Lower Bound (CRLB) of the mo-
noexponential diffusion isotropic model under a realistic noise assumption. This
formulation provides an optimized set of b-values that maximize the noise per-
formance (i.e., maximize the precision and minimize the variance) of Apparent
Diffusion Coefficient (ADC) mapping in liver DWI. Optimized CRLB-based b-
value sets tend to be composed of two groups of b-values as shown by both the
greedy and the two b-value search algorithms. In our in-vivo liver DWI experiment
with one healthy subject, these two approaches attain similar CRLB, and the
two b-value search algorithm generally obtains a better performance. However,
this in-vivo experiment is not conclusive to distinguish between both optimization
algorithms. Particularly, the two b-value set algorithm can be used to quickly
compute an optimized set of b-values given the number of b-values of the set (K),
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7.4. Discussion

Table 7.8: Effect size (P -value) of the σADC, and the mean ADC resulting from the
Wilcoxon signed rank test comparison between the proposed optimized CRLB-based
b-value set (element 1) of Table 7.6 and the sets of b-values proposed in the literature
(elements 2) to 9) of Table 7.6 on a representative slice of the liver. σADC, and the mean
ADC were computed as described in experiment 4. The standardized absolute effects
size is |Z|/

√
N , where Z is the Z-statistic of the test, and N the total number of samples.

Effect sizes of the σADC comparisons can be described between medium and small, while
effects sizes of the mean ADC comparisons are also between medium and small for all
cases except for the comparisons with Koc and Erbay (2014), Saritas et al. (2011), and
Taouli and Koh (2009) which are very small.

Rician vs. Manuscript Effect Size (P -value)
σADC Mean ADC

2) Xing et al. (1997) and Brihuega-Moreno et al. (2003) 0.12 (<0.006) 0.10 (<0.006)
3) Saritas et al. (2011) 0.28 (<0.006) 0.37 (<0.006)
4) Goshima et al. (2008) 0.24 (<0.006) 0.40 (<0.006)
5) Koc and Erbay (2014) 0.49 (<0.006) 0.01 (=0.79)
6) Kaya and Koc (2014) 0.36 (<0.006) 0.01 (=0.42)
7) Taouli and Koh (2009) 0.41 (<0.006) 0.03 (=0.10)
8) Padhani et al. (2009b) 0.36 (<0.006) 0.30 (<0.006)
9) Koh and Collins (2007) 0.41 (<0.006) 0.24 (<0.006)

target ADC, SNR and noise distribution. This is due to the convergence of the
product between the optimized b-value (higher b-value of the set) and the target
ADC, and the convergence of the ratio between the number of b-values = 0 s/mm2

on the set (k1) and the total number of b-values (K).

Even though formally establishing the clinical relevance of these results for a specific
application is out of the scope of this chapter, since it would need a number of
acquisitions to be carried out in patients with that specific application in mind,
the potential clinical implications of our contribution can be discussed. First, our
approach for obtaining of optimized sets of b-values may have an important role
in body DWI (particularly in liver DWI), where there is a lack of consensus in
the literature (Guiu and Cercueil, 2011) about the optimal set to be employed.
Increased quality in ADC estimation does not only facilitate visual discrimination
between healthy and diseased tissue, but may also be a key component for quanti-
tative imaging applications focused on characterizing pathological tissues, such as
Radiomics (Jeong et al., 2019). Further, this contribution is also a step towards
standardization of liver DWI acquisitions, in order to facilitate comparison between
studies, and improve noise performance of ADC mapping. In order to pave the way
of this standardization process, in Table 7.10 we provide the optimized CRLB-based
b-value sets of various healthy and pathological body tissues at various SNR levels
under the Rician noise assumption. In addition, the proposed b-value sets may
shorten the DWI scan time through the trade off between lower CRLB and number
of b-values of the optimized set, and help with the development of tissue-specific
DWI sequences.

It has been shown how the optimized CRLB-based K b-value sets are composed
of two b-values repeated k1 and k2 times respectively, where k1 + k2 = K, as
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Chapter 7: b-Value optimization for ADC mapping

Table 7.9: Optimized CRLB-based b-values for different target ADCs, SNR, and number
of K b-values of the optimized set. The optimization was performed with the two b-value
search algorithm under both Rician and Gaussian noise distribution assumptions with
a pool of b-values including 2001 b-values uniformly distributed between 0 and 2000
s/mm2. The optimized sets obtained under the Gaussian noise assumption are equivalent
to those proposed by Xing et al. (1997) and Brihuega-Moreno et al. (2003). It is worth
noticing that the optimized CRLB-based b-values under the Gaussian noise distribution
assumption are SNR-independent and the same than the ones optimized under the Rician
noise distribution assumption for high SNR scenarios.

Noise → Rician Gauss
Target ADC SNR∗ SNR∗
([mm2/s]) 100 50 20 10 -

K
=
8
b-
va
lu
es

(k
2†
)

2.1×10−3 594(6) 593(6) 587(6) 565(6) 594(6)

1.2×10−3 1039(6) 1038(6) 1027(6) 988(6) 1040(6)

0.9×10−3 1385(6) 1383(6) 1369(6) 1318(6) 1386(6)

K
=
15

b-
va
lu
es

(k
2†
)

2.1×10−3 618(12) 617(12) 610(12) 586(12) 618(12)

1.2×10−3 1081(12) 1080(12) 1068(12) 1025(12) 1082(12)

0.9×10−3 1442(12) 1439(12) 1424(12) 1367(12) 1442(12)

K
=
30

b-
va
lu
es

(k
2†
)

2.1×10−3 601(23) 600(23) 594(23) 571(23) 601(23)

1.2×10−3 1052(23) 1050(23) 1040(23) 1000(23) 1052(23)

0.9×10−3 1402(23) 1400(23) 1386(23) 1333(23) 1403(23)
∗ SNR corresponds to the SNR of the S0 images.
† The lower optimized b-value of the sets is always 0 s/mm2, and k1 = K
- k2.

previously shown through the error propagation formulation by (Fleysher et al.,
2008; Kingsley and Monahan, 2004; Saritas et al., 2011; Xing et al., 1997) and
with the CRLB formulation by (Brihuega-Moreno et al., 2003). However, most of
previous studies only considered DW images to be affected by Gaussian distributed
noise. Under that condition, the product between the optimized b-value and the
target ADC and the ratio K/k1 have been shown to be around 1.3 and around 4.6,
respectively, by (Brihuega-Moreno et al., 2003; Xing et al., 1997). These previous
results are in agreement with our convergence rates for high SNR under the Rician
noise distribution assumption. However, at lower SNR both convergence rates
decrease, which implies that there is a decrease on the optimized b-value, as well
as an increase on the number of times the b-value 0 s/mm2 (k1) is repeated in the
optimized set to increase data SNR and assist parameter estimation. In general,
the proposed optimized CRLB-based set of b-values achieves lower ADC voxelwise

124



7.4. Discussion

Ta
bl
e
7.
10

:
O
pt
im

iz
ed

C
R
LB

-b
as
ed

b-
va
lu
es

fo
r
di
ffe

re
nt

ta
rg
et

tis
su
es
,S

N
R
,a

nd
nu

m
be

ro
fK

b-
va
lu
es

of
th
e
op

tim
iz
ed

se
t.

T
he

op
tim

iz
at
io
n

w
as

pe
rf
or
m
ed

w
ith

th
e
tw

o
b-
va
lu
e
se
ar
ch

al
go
rit

hm
un

de
r
th
e
R
ic
ia
n
no

is
e
di
st
rib

ut
io
n
as
su
m
pt
io
n.

C
om

m
on

A
D
C

va
lu
es

of
th
e
di
ffe

re
nt

ti
ss
ue

ty
pe

s
ha

ve
be

en
ex
tr
ac
te
d
fr
om

(K
oh

an
d
C
ol
lin

s,
20
07
;L

ee
et

al
.,
20

08
;T

ao
ul
ia

nd
K
oh

,2
00

9)
,
an

d
fr
om

ou
r
in
-v
iv
o
liv

er
D
W

I
ac
qu

isi
tio

n.
If

th
e
M
R
I
sc
an

ne
r
do

es
no

t
su
pp

or
t
so
m
e
in
te
ge
r
va
lu
es
,b

-v
al
ue

s
sh
ou

ld
be

ro
un

de
d
to

th
e
cl
os
es
t
m
ul
tip

le
of

50
or

10
0.

It
is

to
be

no
te
d
th
at

th
e
lo
w
er

th
e
SN

R
th
e
lo
w
er

ar
e
th
e
op

tim
iz
ed

b-
va
lu
es
.

Ta
rg
et

T
iss

ue
(A

D
C

[m
m

2 /
s])

K
=

8
b-
va
lu
es

(k
2∗
)

K
=

15
b-
va
lu
es

(k
2∗
)

K
=

30
b-
va
lu
es

(k
2∗
)

SN
R
†

SN
R
†

SN
R
†

50
20

10
50

20
10

50
20

10
Liver

H
ea
lth

y
66

7(
6)

66
0(
6)

63
5(
6)

69
4(
12

)
68

6(
12

)
65

9(
12

)
67

5(
23

)
66

8(
23

)
64

2(
23

)
(1
.8
6×

10
−

3 )
H
C
C
s‡

10
00

(6
)

10
00

(6
)

10
00

(6
)

10
00

(1
1)

10
00

(1
1)

10
00

(1
1)

10
00

(2
3)

10
00

(2
3)

10
00

(2
3)

(1
.1
6×

10
−

3 )
H
em

an
gi
om

as
62

7(
6)

62
0(
6)

59
7(
6)

65
2(
12

)
64

5(
12

)
61

9(
12

)
36

4(
23

)
62

8(
23

)
60

4(
23

)
(1
.9
8×

10
−

3 )
C
ys
ts

43
7(
6)

43
2(
6)

41
6(
6)

45
5(
12

)
45

0(
12

)
43

2(
12

)
44

2(
23

)
43

8(
23

)
42

1(
23

)
(2
.8
5×

10
−

3 )

Prostate

Pe
rip

he
ra
lZ

on
e

69
9(
6)

69
2(
6)

66
6(
6)

72
7(
12

)
71

9(
12

)
69

0(
12

)
70

7(
23

)
70

0(
23

)
67

3(
23

)
(1
.7
8×

10
−

3 )
C
en
tr
al

G
la
nd

83
2(
6)

82
4(
6)

79
2(
6)

86
6(
12

)
85

6(
12

)
82

2(
12

)
84

2(
23

)
83

3(
23

)
80

1(
23

)
(1
.4
9×

10
−

3 )
C
an

ce
r

96
0(
6)

95
0(
6)

91
4(
6)

99
9(
12

)
98

8(
12

)
94

8(
12

)
97

2(
23

)
96

2(
23

)
92

5(
23

)
(1
.2
9×

10
−

3 )

Pancreas

H
ea
lth

y
76

9(
6)

76
1(
6)

73
2(
6)

80
0(
12

)
79

1(
12

)
75

9(
12

)
77

8(
23

)
77

0(
23

)
74

0(
23

)
(1
.6
2×

10
−

3 )
A
de

no
ca
rc
in
om

a
99

9(
6)

98
9(
6)

95
2(
6)

10
00

(1
2)

10
00

(1
2)

98
7(
12

)
10

00
(2
3)

10
00

(2
3)

96
3(
23

)
(1
.2
4×

10
−

3 )
C
ys
t

49
8(
6)

49
3(
6)

47
4(
6)

51
8(
12

)
51

3(
12

)
49

2(
12

)
50

4(
23

)
49

9(
23

)
48

0(
23

)
(2
.5
0×

10
−

3 )

Kidneys

C
or
te
x

68
0(
6)

67
4(
6)

64
8(
6)

70
8(
12

)
70

0(
12

)
67

2(
12

)
68

9(
23

)
68

2(
23

)
65

5(
23

)
(1
.8
3×

10
−

3 )
M
ed

ul
la

66
6(
6)

65
9(
6)

63
4(
6)

69
3(
12

)
68

5(
12

)
65

8(
12

)
67

4(
23

)
66

7(
23

)
64

1(
23

)
(1
.8
7×

10
−

3 )
∗
T
he

lo
w
er

op
tim

iz
ed

b-
va
lu
e
of

th
e
se
ts

is
al
w
ay
s
0
s/
m
m

2 ,
an

d
k

1
=
K

-k
2.

†
SN

R
co
rr
es
po

nd
s
to

th
e
SN

R
of

th
e
S

0
im

ag
es
.

‡
H
C
C
s
st
an

ds
fo
r
H
ep

at
oc
el
lu
la
r
ca
rc
in
om

as
.

125



Chapter 7: b-Value optimization for ADC mapping

standard deviation and also has lower dispersion around the mean ADC than
various sets of b-values proposed in the literature for in-vivo liver DWI (Koh
and Collins, 2007; Padhani et al., 2009b; Taouli and Koh, 2009) (i.e., mean ADC
absolute differences are of 0.16, 0.40, and 0.43 × 10−3 mm2/s, respectively) as
shown in Figure 7.6. The reductions of the σADC of the proposed set of b-values are
of 50.00%, 44.44%, and 48.28%, respectively, while the dispersion reduction around
(i.e., IQR) of the mean ADC is of 70.33%, 17.98%, and 48.59%, respectively.

This work has several limitations. To obtain a CRLB-based b-value set there needs
to be a rough prior knowledge of the target ADC and scan SNR. Nevertheless, the
former one is tissue-specific, and the latter one can be estimated from an initial
pre-scan as done by Saritas et al. (2011); Xing et al. (1997). Although there may
be some spatial variations of noise levels in parallel acquisitions (Aja-Fernández
and Vegas-Sánchez-Ferrero, 2016), we assume the SNR is constant throughout
the DW images. In addition, in regions where the actual ADC is very different
from the target ADC (such as blood vessels inside the liver), the performance of
the proposed b-value sets can be worse than that of alternative methods (see for
instance the greenish regions in Figure 7.6.c-i). In order to tackle within-tissue
heterogeneity, which could be important in the case of focal lesions, for instance,
the formulation could be extended through a minimax approach or by averaging
the CRLBADC prior minimization of the objective function similarly to (Alexander,
2008; Poot et al., 2010).

Additionally, all b-values from a pool of candidates were acquired including b-values
higher than the optimized ones unnecessary reducing the SNR of the DWI images
due to T2 effects. However, even though the T2 exponential decay is not directly
included in the formulation, in practice, it is equivalent to decrease the SNR of
the S0 images needed for the computation of the CRLB.

Further, bias, precision, and reproducibility of ADC mapping should be considered
together to achieve quantitative diffusion Magnetic Resonance Imaging (MRI).
In this work, however, we focus on precision, while we indirectly address bias
through the choice of a suitable estimator. Particularly, in this work ADC mapping
was performed through a maximum likelihood estimator, which will reach the
CRLB limit asymptotically for a large number of samples. Nevertheless, for a small
number of samples poor initializations and low SNR might hinder the estimation by
stopping at local minima producing bias and low estimated ADC variances.

Finally, due to the lack of patients in this study we were not able to prove
the clinical relevance of the proposed approach. However, future work includes
further validation in liver DWI, in both healthy volunteers and patients of several
pathologies.

7.5 Conclusion

We have derived the Cramér-Rao Lower Bound (CRLB) of the monoexponential
diffusion-weighted signal model under a Rician distribution noise assumption, and
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7.5. Conclusion

proposed a formulation to obtain the optimized set of b-values that maximize the
noise performance of the estimated ADC maps (i.e., maximize the precision and
minimize the variance). The good agreement between the optimized CRLB-based
b-value sets and the optimized validation b-value sets of experiments 1, 2, and 3
may help to optimize and standardize liver DW-MRI acquisitions.
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Figure 7.4: Minimization process to obtain the optimized set of b-values. Evolution of
the Cramér-Rao Lower Bound of the ADC (CRLBADC) obtained from the CRLB-based
analysis through the greedy algorithm to obtain an optimized K=16 b-value set (blue line),
and from experiment 1 (dashed cyan line). Evolution of the variance of the ADC (σ2

ADC)
obtained from experiment 2 (red line), and experiment 3 (green line). The CRLBADC and
the σ2

ADC are shown for each b-value of the pool of candidates and the 15 first iterations of
the optimization algorithm. Further, CRLBADC of the optimized set of b-values obtained
with the two b-value search algorithm for each set of K b-values (black crosses). Crosses
are placed on the middle of each k iteration for convenience. (a) CRLBADC and σ2

ADC
computed for vial 4 of the acetone phantom experiment for the acquisition with TE=89.7
ms and maximum b-value of 2000 s/mm2. (b) CRLBADC and σ2

ADC computed for ROI 8
of the liver DWI acquisition.
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Figure 7.5: Optimized b-value sets. (a and b) Optimized CRLB-based K=16 b-value
sets of the 30 ROIs drawn on the in-vivo liver DWI acquisition. (a) Optimized under a
Gaussian noise assumption. (b) Optimized under a Rician noise assumption. (c) Optimized
validation sets of K=16 b-values obtained from experiment 1, and (d) experiment 3. Each
column shows the optimized set of b-values found for each ROI, where the color code
indicates how many times a certain b-value was included in the optimized set. Black
background color represents zero number of b-values. Optimizations were performed
via the greedy algorithm. Vials characteristics to obtain the CRLB-based b-value sets
are given in Table 7.3. There is good agreement between the optimized CRLB-based
b-value sets obtained under both noise assumptions and the optimized validation sets
of experiments 1 and 3. However, the optimized b-values obtained under the Gaussian
noise assumption are higher than those obtained with a Rician assumption, and more
differences can be found with respect to the values obtained in experiment 3 (i.e., ROIs
22-27).

129



Chapter 7: b-Value optimization for ADC mapping

Figure 7.6: Performance comparison between the proposed CRLB-based b-value set
obtained under the Rician noise assumption and eight sets of b-values found in the
literature (sets 2 to 9) of Table 7.6). a) Diffusion-weighted image at b-value = 0 s/mm2.
b-i) Voxelwise standard deviation reductions, (i.e., σADC−σADC-Rician

σADC
), where σADC-Rician

and σADC corresponds to the voxelwise standard deviation of each of the set of b-values
of Table 7.6 computed as described in experiment 4. j-k) Corresponding boxplots of the
σADC, and the mean ADC values of each set of b-values on the corresponding slice of the
liver, respectively. Notice that in (j) it is also included a zoomed version of the boxplots
of the proposed b-value set, Xing et al. (1997), Saritas et al. (2011), and Goshima et al.
(2008), in order to facilitate visual inspection of the results. The proposed set achieves
lower voxelwise standard deviation σADC-Rician and narrower estimated mean ADC than
any other set of the literature (see medians and Interquartile Ranges (IQRs) reported in
Table 7.7). The values of both boxplots were taken from the corresponding slice of the
full liver coverage ROI. Further, statistical significant differences (P < 0.006) were found
between the σADC maps computed with the proposed b-value set (Rician) and all the
other literature cases. On the other hand, with the mean ADC maps statistical significant
differences were found between the proposed set and all the other literature cases except
for Koc and Erbay (2014) (P = 0.79), Kaya and Koc (2014) (P = 0.42), and Taouli and
Koh (2009) (P = 0.10). However, it is to be noted that the reduction of the Rician mean
ADC IQR compared to those three cases is around 70% (see Table 7.7 and Table 7.8 for
details).
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Figure 7.7: b-Value convergence ratios. (a) Product between the optimized b-value (i.e.,
the k2 equal b-values different to 0 s/mm2) and target ADC of the two b-value search
algorithm for SNR levels of 100, 50, 20, and 10, target ADC values of 2.1, 1.2, and 0.9
mm2/s, pool of candidates with N = 2001 b-values uniformly distributed between 0 and
2000 s/mm2, and assuming a Rician noise distribution. (b) Under the same parameters,
ratio between the number of b-values of the optimized set (K), and the number of b-values
equal to 0 s/mm2 (k1). Ratio between K and k1 for SNR levels of 100, 50, 20, and 10,
pool of candidates with N = 701 b-values uniformly distributed between 0 and 700 s/mm2,
assuming a Rician noise distribution, and target ADC values of 1.2 and 0.9 mm2/s, (c)
and (d), respectively.
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8.1 Theory

In the Intravoxel Incoherent Motion (IVIM) biexponential diffusion-weighted signal
model introduced in Eq.(2.28) of Section 2.2.3, the measured signal is described
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as:

S(b) = S0

[
fe−b·D

∗
+ (1− f)e−b·ADC

]
, (8.1)

where b is the b-value, S0 is the signal intensity when no diffusion-weighting gradient
is applied, D∗ is the pseudodiffusion coefficient, D is the diffusion coefficient, and
f is the perfursion fraction. Generally, the estimation of the IVIM parameters is
performed by voxelwise fitting the previous model to a set of weighted measurements,
S(bk) where k ∈ [1, . . .,K]. Therefore, we seek to maximize the precision and noise
performance of D∗, D, and f estimations through the selection of the optimized
set of b-values via the Cramér-Rao Lower Bound (CRLB) theory introduced in
Chapter 6 under a Rician noise assumption (see Section 2.5.1 for details). This
formulation is presented below followed by the methods used to optimize the set of
b-values.

8.1.1 Cramér-Rao Lower Bound of the IVIM signal model

Given the noise free model in Eq. (8.1) with the set of parameters θ = {S0, D
∗, D, f}

and any noise distribution, the Fisher Information Matrix (FIM) (Van den Bos,
2007) is:

I(θ) =



K∑
k=1

[fe−bk·D∗ + (1− f)e−bk·D]2In(S(bk), σ) −
K∑
k=1

S(bk)(1− f)bke−bkDIn(S(bk), σ)

−
K∑
k=1

S(bk)(1− f)bke−bk·DIn(S(bk), σ)
K∑
k=1

S2
0(1− f)2b2ke

−2·bk·DIn(S(bk), σ)
K∑
k=1

S(bk)[e−bk·D∗ − e−bk·D]In(S(bk), σ) −
K∑
k=1

S2
0(1− f)bk[e−bk·D∗ − e−bk·D]e−bk·DIn(S(bk), σ)

−
K∑
k=1

S(bk)fbke−bk·D
∗In(S(bk), σ)

K∑
k=1

S2
0(f − f2)b2ke−bk·(D+D∗)In(S(bk), σ)

K∑
k=1

S(bk)[e−bk·D∗ − e−bk·D]In(S(bk), σ) −
K∑
k=1

S(bk)fbke−bk·D
∗In(S(bk), σ)

−
K∑
k=1

S2
0(1− f)bk[e−bk·D∗ − e−bk·D]e−bk·DIn(S(bk), σ)

K∑
k=1

S2
0(f − f2)b2ke−bk·(D+D∗)In(S(bk), σ)

K∑
k=1

S2
0 [e−bk·D∗ − e−bk·D]2In(S(bk), σ) −

K∑
k=1

S2
0fbk[e−bk·D∗ − e−bk·D]e−bk·D∗In(S(bk), σ)

−
K∑
k=1

S2
0fbk[e−bk·D∗ − e−bk·D]e−bk·D∗In(S(bk), σ)

K∑
k=1

S2
0f

2b2ke
−2·bk·D∗In(S(bk), σ)


(8.2)

where K is the number of b-values in the set, σ the covariance, and In(•) depends
on the noise distribution (i.e., Gaussian (Karlsen et al., 1999) or Rician (Karlsen
et al., 1999; Poot et al., 2010) ) as shown in Chapter 6.

Therefore, the CRLB (Section 6.2) of the IVIM biexponential Diffusion-Weighted
Imaging (DWI) signal model is given by inverting Eq. (8.2) as shown in the CRLB
inequality (6.2). The CRLB will depend on the set of b-values, the total number of
b-values (K) of the set, the actual D∗, D, f , S0, σ and the noise distribution.
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8.2 Experimental work

8.2.1 Determination of the optimized set of b-values

The computation of the optimized set of b-values for a given set of parameters,
θ = {S0, D

∗, D, f}, is achieved by minimizing the elements of the right hand side
of the CRLB inequality (6.2).

The I−1(b,θ)11 element of the inverse of the FIM of Eq. (8.2) corresponds to
the CRLB of the S0 (CRLBS0), the I−1(b,θ)22 corresponds to the CRLB of the
D (CRLBD), the I−1(b,θ)33 corresponds to the CRLB of the f (CRLBf), and
the I−1(b,θ)44 corresponds to the CRLB of the D∗ (CRLBD∗). The off-diagonal
elements of the inverse of the FIM correspond to the covariance between the
different parameters (Karlsen et al., 1999). In order to obtain the optimized set of
b-values that maximize the noise performance of the estimated IVIM parametric
maps, we minimize the CRLBD, CRLBf and the CRLBD∗ separately, and jointly
with the CRLB of the following figure of merit (CRLBΓ):

Γ =
√
CRLBD

D
+
√
CRLBf

f
+
√
CRLBD∗

D∗
, (8.3)

Thus, the optimized set of b-values is obtained through the minimization of the
following four objective functions:

b̂D = arg minb I−1(b,θ)22 = arg minb CRLBD(b) (8.4)

b̂f = arg minb I−1(b,θ)33 = arg minb CRLBf(b) (8.5)

b̂D∗ = arg minb I−1(b,θ)44 = arg minb CRLBD∗(b) (8.6)

b̂Γ = arg minb CRLBΓ(b) (8.7)

Previous minimization processes can be computationally expensive and even infea-
sible. Hence, based on the number of parameters of IVIM signal model of Eq. (8.1),
we propose an iterative minimization method for the optimization of the optimal
set of b-values from a large pool of N candidates:

Four b-value search: The optimized set of b-values is restricted to be composed
of only four different b-values repeated k0, k1, k2, and k3 times, respectively. The
first of them is fixed to be b = 0 s/mm2 to have measurements with maximum
Signal-to-Noise-Ratio (SNR), whereas the other three (low, middle, and high) are
chosen among the pool of N-1 candidates (note that the previously chosen b-value
is removed from the pool of candidates). Then, an exhaustive search is performed
to find the optimized set of K b-values (k0+k1+k2+k3=K). Finally, the [zero(k0),
low(k1), middle(k2), high(k3)] combination of the b-value set that achieves minimum
CRLBD, CRLBf, CRLBD∗ , or CRLBΓ is considered optimal.
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Table 8.1: Parameters of interest used to obtain their CRLB-based b-value sets through
all their combinations with the proposed four b-value search algorithm under the Rician
noise assumption.

Parameters for the computation of the CRLB-based b-value sets
D [0.50, 0.70, 1.00, 2.00, 3.00, 4.00, 5.00, 6.00, 7.00] × 10−3 mm2/s
f [0.20, 0.30 0.40 0.50]
D∗ [20.00 30.00 40.00 50.00 60.00] × 10−3 mm2/s
SNR [200, 50, 10]

Hereinafter, the sets of b-values obtained using this CRLB-based analysis are called
CRLB-based b-value sets. Table 8.1 shows the D, f , D∗, and SNR of the S0 image
used to obtain the CRLB-based b-value sets under the Rician noise assumption.
Optimized sets were obtained for all K in the range of 4 to 34 and b-value pool of
candidates was composed of N = 101 b-values uniformly distributed between o and
1000 s/mm2.

8.2.2 Experimental data

In order to validate the proposed four b-value search method, we need to study
whether this method is able to obtain the sets of b-values that effectively yield the
lowest possible variance on the estimated IVIM parametric D, D∗ and f maps. To
that end, we compared the variance of the estimated maps with the CRLB-based
optimized b-value sets and other sets proposed in the literature.

8.2.2.1 In-vivo liver IVIM

One healthy volunteer (female, 24 years old) was scanned with institutional review
board approval and informed written consent. The acquisition was done with a
20-channel torso coil in a 3T scanner (Philips Healthcare, Best, The Netherlands).
Axial diffusion-weighted images were acquired with respiratory triggering. Other
acquisition parameters were: Field-of-View (FOV) = 22 × 20 cm, matrix size of
100 × 92, slice thickness of 7 mm, space between slices of 7 mm, Repetition Time
(TR) = 2000 ms, Echo Time (TE) = 65.66 ms, and parallel imaging factor of 2.
The N = 17 employed b-values were: [0, 25, 50, 75, 100, 125, 150, 175, 200, 250,
300, 400, 500, 600, 700, 850, 1000] s/mm2. The whole acquisition was repeated 16
consecutive times to enable voxel-wise determination of the D, D∗, f and SNR
statistics. No repetition was discarded due to steady-state effects.

SNR of the S0 images was computed voxel-wise by calculating the ratio between
the mean signal intensity and the standard deviation across the 16 repetitions
considered. Ground truth D, D∗ and f were obtained with a maximum likelihood
estimator using all the diffusion-weighted images and b-values of the acquisition.
For evaluation of SNR, D, D∗, and f , a 30 mm2 Region of Interest (ROI) was
drawn on each slice. In addition, another large ROI was drawn with full liver
coverage. In both cases, ROIs, were co-localized across different acquisitions. Care
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Table 8.2: Characterization of the liver IVIM DWI acquisition. Mean ground truth
parametric map (± standard deviation), and mean SNR (± standard deviation) of the S0
image. Ground truth parametric maps were computed from all DW images and b-values
of the liver IVIM DWI acquisition.

In-vivo liver IVIM DWI acquisition
D 1.04 ± 0.23 × 10−3 mm2/s
f 0.21 ± 0.05
D∗ 70.97 ± 19.20 × 10−3 mm2/s
SNR 9.68 ± 8.60

was taken to avoid large vessels. All parametric maps were obtained to fully describe
the liver acquisition used in the experiment. Mean SNR, mean ground truth D,
D∗, and f values of the acquisition are shown in Table 8.2.

8.2.3 Experimental validation

Based on the previous acquisition, the following experiment is performed to prove
the superiority (i.e., lower estimation variance) of the proposed CRLB-based b-
value sets compared to sets of b-values proposed on the literature for liver IVIM
DWI.

• Given a set of b-values, Diffusion-Weighted (DW) images of a DWI acquisition
were selected for IVIM parametric maps estimation (D, D∗ and f) with a
Maximum Likelihood (ML) estimator. However, if a b-value was repeated
on the selected set, an equivalent number of DW images of the consecutive
repetitions were selected (it is to be noted that as described in Section 8.2.2.1,
the whole DWI acquisition, with its 17 distinct b-values, was repeatedly
acquired 16 consecutive times). Hence, this method was repeated 16 times,
one for each acquisition, obtaining a total set of 16 different IVIM parametric
maps. Then, we obtained the voxelwise standard deviation statistics of
each parametric map (σD, σD∗ , σf) across all the estimated maps. This
experiment constitutes a procedure to experimentally compare the achieved
noise performance (i.e., σD, σD∗ , σf) of various b-value sets.

8.3 Results

8.3.1 b-Value optimization

The four b-value search algorithm obtained an optimized set of four b-values
composed of k0 b-values equal to 0 s/mm2, and other three low, middle, and
high b-values repeated k1, k2, and k3 times, respectively, as shown in Figure 8.1.
Figure 8.1 shows the distribution of the optimized CRLB-based K = 13 b-value
sets of all parameter combinations of Table 8.1 grouped by zero (black), low

137



Chapter 8: b-Value optimization for IVIM parameter mapping

(green), middle (blue) and high (red) b-values. These were optimized by minimizing
the four objective functions described in Eqs. (8.4) (minimizing CRLBD), (8.5)
(minimizing CRLBf), (8.6) (minimizing CRLBD∗), and (8.7) (minimizing CRLBΓ)
for an SNR level of 10. These distributions stablish that the low b-values should
be approximately in the range of 10 - 60 s/mm2, the middle b-values should be
approximately in the range of 60 - 200 s/mm2, and the high b-values should be
approximately greater than > 200 s/mm2. For higher SNR under the Rician noise
distribution assumption and for the Gaussian noise distribution assumption, the
lower limit for the high b-values slightly increases (i.e., > 250 s/mm2 at SNR of
200) while the other ranges stay approximately similar.

Figure 8.1: Distribution of the b-values of the optimal sets (K=13) obtained from
parameters of Table 8.1 at SNR = 10 when minimizing CRLBD (a), CRLBD∗ (b), CRLBf
(c), and CRLBΓ (d). The color-code groups the b-values by zero, low, middle, and high
b-values indicating that to minimize the estimation variance (i.e., maximize the noise
performance) of the IVIM parameter maps, the low b-value should be in the range of
10-60s/mm2, the middle b-value in the range of 60 - 200 s/mm2, and the high b-value
should be greater than > 200 s/mm2.

Figure 8.2 shows the ratio between the number of times each b-value is repeated
(ki, where i = 0, 1, 2, 3) in the optimized set and total number of b-values (K),
when minimizing each of the four objective functions for the set of parameters D
= 7 × 10−3mm2/s, f = 0.3, D∗ = 20 × 10−3 mm2/s, SNR values of 200, 50, and
10, and K from 4 to 34. The convergence limit of each ratio of each optimization
is different, and they also vary for a different set of parameters. However, in most
cases, at lower SNR there is a decrease of the times the high b-values are repeated
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and an increase of the times the other three b-values are repeated on the optimized
set, being the lower b-values always repeated less times than the higher b-values
(i.e., k0 < k1 < k2 < k3).
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Figure 8.2: Ratio between the number of times each b-value is repeated (ki) on the optimal
set and total number of b-values of the set (K), when minimizing CRLBD (a), CRLBf (b),
CRLBD∗ (c), and CRLBΓ (d) for SNR = [200, 50, 40]. Optimal b-value sets obtained for
D = 7 x 10−3 mm2/s, f = 0.3, D∗ = 20 x 10−3 mm2/s, SNR=[200, 50, 10], and K from
4 to 34. b-Value sets depend on the SNR, and the minimization (i.e., CRLBD, CRLBf,
CRLBD∗ , and CRLBΓ ). Generally, at low SNR there is a decrease of the times the high
b-value of the set is repeated and an increase of the times the other three b-values are
repeated.

8.3.2 In-vivo liver IVIM experiments

Figure 8.3 shows the performance comparison in terms of the voxelwise stan-
dard deviation reduction (i.e., σD−σD-Rician

σD
, σD∗−σD∗−Rician

σD∗ , σf−σf-Rician
σf

) between
the proposed optimized CRLB-based b-value set obtained under the Rician noise
assumption when minimizing the CRLBΓ and the b-value sets proposed in the
literature for in-vivo liver IVIM DWI. The proposed set of b-values and the
sets found in the literature are described in Table 8.3. The σD, σD∗ , and the σf
were computed as described in the experimental validation Subsection 8.2.3. The
proposed optimized CRLB-based b-value set achieves lower voxelwise standard
deviation σD-Rician, σD∗−Rician, and σf-Rician than any other set of the literature
as shown in Figure 8.3.b)-d). Figure 8.3.e-g) further confirms that the standard
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Table 8.3: Sets of b-values recommended on the literature for healthy in-vivo IVIM liver
DWI.

Manuscript b-values (NEX∗)
1) Proposed optimized IVIM 0(2) 25(4) 100(5) 1000(2)

CRLB-based b-value set†
2) Lemke et al. (2011)‡ 0(3) 50(1) 100(2) 175(1) 200(1)

250(1) 400(1) 600(1) 700(1) 1000(1)
3) Koh et al. (2011) 0(1) 25(1) 50(1) 75(2) 100(2)

250(2) 500(2) 850(2‡)
4) Luciani et al. (2008) 0(2) 25(2‡) 50(1) 75(1‡) 100(1)

200(2) 400(2) 850(2‡)
∗ b-Value sets are composed of K = 13 b-values. Therefore, the b-
values recommended in the literature were repeated and shorted until
a set of K = 13 was achieved. If K was not a multiple of the number of
b-values proposed in the set, priority was given to the higher b-values
as recommended by Padhani et al. (2009b).
† The proposed optimized IVIM CRLB-based b-value set was obtained
by minimizing the CRLBΓ.
‡ Some or all of these repeated b-values where rounded to allow IVIM
parametric maps estimation with the b-values available in the current
in-vivo liver DWI experiment.

deviation of the estimated IVIM parametric maps, and therefore the variance,
of the proposed set of b-values is lower than in the other three literature cases.
Particularly, boxplots of the σD, σD∗ , and the σf have the lowest median with
the narrowest Interquartile Range (IQR) as shown in Table 8.4. Namely, the σD
reduction of the proposed set of b-values compared to the other literature sets is of
38.86%, 22.97% and 28.30%, the σD∗ reduction is of 80.02%, 52.69% and 42.51%,
and the σf reduction is of 62.50%, 57.14% and 62.50%, for each of the entries of
Table 8.4. The values of the boxplots were taken from the corresponding slice of
the full liver coverage ROI.

8.4 Discussion

In this chapter, we derived the Cramér-Rao Lower Bound (CRLB) of the biexpo-
nential Intravoxel Incoherent Motion (IVIM) diffusion-weighted model under a
realistic noise assumption. This formulation provides an optimized set of b-values
that maximize the noise performance (i.e., maximize the precision and minimize the
variance) of IVIM parametric D, D∗, and f maps for liver IVIM DWI. Optimized
CRLB-based b-value sets are composed of four groups of b-values. In our in-vivo
liver IVIM DWI experiment with one healthy volunteer, the optimized set of
b-values under the Rician noise distribution assumption estimated the IVIM para-
metric maps with lower variability than other state-of-the-art b-value sets. However,
compared to the Gaussian distribution assumption, the optimized set of b-values is
identical due to the IVIM set of parameters and the SNR of the acquisition. Note
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Table 8.4: Median (Interquartile Range (IQR) ) of the σD, σD∗ , and the σf of each of the
set of b-values of Table 8.3 on a representative slice of the liver. σD, σD∗ , and the σf were
computed as described in experiment the experimental validation Subsection 8.2.3. The
values considered for the computation of the medians and the IQRs were taken from the
corresponding slice of the full liver coverage ROI. It is to be noted that the variances
of the IVIM parametric maps obtained by the proposed optimized IVIM CRLB-based
b-value set under the Rician noise assumption achieves the lowest median with the lowest
dispersion (i.e., lowest IQR).

Manuscript σD σD∗
σfMedian (IQR) [× 10−3 mm2/s]

1) Proposed optimized IVIM 0.114 (0.08) 66.21 (0.18) 0.03 (0.02)
CRLB-based b-value set

2) Lemke et al. (2011) 0.175 (1.27) 331.44 (0.62) 0.08 (0.05)
3) Koh et al. (2011) 0.148 (0.07) 139.96 (0.33) 0.07 (0.03)
4) Luciani et al. (2008) 0.159 (0.09) 114.46 (0.37) 0.08 (0.04)

that in Figure 8.1, for an SNR of 10 under the Rician noise distribution assumption,
the optimized b-value sets of many parameter configuration resulted in repeated
high b-values at the maximum b-value of the pool of candidates (i.e., b-value of
1000 s/mm2). Thus, in order to obtain different optimized b-value sets for higher
SNR levels or for the Gaussian noise distribution assumption, a higher maximum
b-value from the pool of candidates would have been required. Nevertheless, the
maximum b-value we used was of 1000 s/mm2 because it is commonly used in the
literature (Dijkstra et al., 2012; Koh et al., 2011).

The proposed approach to optimize the set of b-values may be helpful to increase
the quality of the estimated IVIM parametric D, f , and D∗ maps, particularly
in IVIM of the liver, where the estimation of the pseudodiffusion coefficient has
very low precision (Taouli et al., 2016) under clinical viable times. Additionally, it
may also help standardization of body IVIM DWI acquisitions, where the multiple
methodologies (and even terminology) employed hinder its widespread application
and complicate the comparison between studies.

Simulations show the optimized b-value set depends on the D, f , D∗, SNR and on
the minimization objective function (minimization of CRLBD, CRLBf, CRLBD∗

or CRLBΓ). Further, the optimized b-values can be grouped as the color-coded
representation of Figure 8.1, which groups the b-values in four clusters. The number
of k0 and k1 of the zero and low b-value groups is higher for the minimization of
the CRLBD∗ , the number of k2 of the middle group is higher for the minimization
of the CRLBf, and the number of k3 of the high b-value group is higher for the
minimization of the CRLBD. Correspondingly, the number k0, k1, k2, and of k3 for
the minimization of the CRLBΓ is a mixture of the previous three minimizations
as shown in Figure 8.2. In general, the proposed optimized CRLB-based set of
b-values achieves IVIM parametric maps with lower voxelwise standard deviation
than various sets of b-values proposed in the literature for in-vivo liver IVIM
DWI ((Koh et al., 2011; Lemke et al., 2011; Luciani et al., 2008)) as shown in
Figure 8.3.
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This work has several limitations. We need to have prior knowledge of the target
set of D, f , D∗ and scan SNR. Nevertheless, IVIM parameters are tissue specific
and the SNR can be computed from initial pre-scans (Saritas et al., 2011; Xing
et al., 1997). On the other hand, the clinical relevance of the proposed method
could not be established, since only one acquisition of a healthy volunteer, with a
limited set of b-values, was available. Thus, further validation is still required with
both in-vivo healthy and diseased subjects, and a larger pool of b-values.

8.5 Conclusion

We have derived the Cramér-Rao Lower Bound (CRLB) of the Intravoxel Incoherent
Motion (IVIM) biexponential diffusion-weighted model under a Rician distribution
noise assumption, and proposed a formulation to obtain the optimized set of b-
values that maximize the noise performance of the estimated IVIM parametric
maps (D, D∗, and f). b-Value optimization is crucial to reduce the estimation
variance (i.e., maximize precision and noise performance) of IVIM parameters.
Thus, the proposed approach may help optimize and standardize IVIM liver
Diffusion-Weighted Magnetic Resonance Imaging (DW-MRI) acquisitions.
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Figure 8.3: Performance comparison between the optimal b-value set obtained with the
proposed approach minimizing the figure of merit (CRLBΓ) and three sets of b-values
found in the literature (see Table 2). (a) DWI with no weighting. (b-d) Voxel-wise
standard deviation reductions for each of the estimated IVIM parameter maps. (e-g)
Corresponding boxplots of the σD, σD∗ , and σf of each b-value set on the corresponding
slice of the liver. The proposed optimal b-value set achieves lower voxel-wise standard
deviation on all estimated parameters than the literature sets.
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9.1 Conclusions

DW-MRI was first introduced in the mid 80’s as an imaging modality with poor
quality due to its slowness and strong sensitivity to motion and other confound-
ing factors. These drawbacks initially slowed down its utilization, but with the
advancement of:

• Magnetic Resonance Imaging (MRI) hardware (i.e., the progress in gradient
coils).

• Sequence acquisitions (i.e., rapid imaging techniques).

• Image postprocessing (i.e., reconstruction methods).

• Parameter estimation methods.

DW-MRI has gained considerable credit within the Magnetic Resonance (MR)
community, and nowadays is an extensively used technique for diagnosis. Neverthe-
less, despite the multiple advances DWI, still remains technically challenging due to
its multiple artefacts, limitations and pitfalls as shown in Section 2.4. Moreover, the
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different MR scanners, acquisition sequences, and postprocessing and estimation
methods introduce high variability to both the acquired images and the diffusion-
related parametric maps, hindering their interpretation and the standardization
of DWI. This Thesis dissertation addressed some of the issues concerning the
optimization of the DWI acquisition sequence and estimation techniques of the
diffusion-related parametric maps in order to grant viable quantitative imaging
biomarkers computation.

A standard DWI sequence is based on a Spin Echo (SE) sequence in which
powerful diffusion-weighting gradients have been introduced. These gradients, as
well as making the sequence sensitive to Brownian motion, make it sensitive to
physiological bulk motion (i.e., respiratory or cardiac motion), may introduce Eddy
Currents (ECs) and Concomitant Gradients (CGs) artefacts and may stimulate
peripheral nerves due to the large currents driven in the coils. Also, these gradients
lengthen the DWI acquisition sequence (i.e., the TE) due to the hardware physical
restrictions and the strong diffusion-weighting requirements. Note that nowadays
the diffusion-weighting b-values can be up to several thousands [s/mm2]. As
a result, all these effects may contribute to undesired signal attenuation, may
produce phase variations which could introduce image distortions and bias on the
estimated diffusion-related parametric maps and may also cause patient discomfort.
Consequently, there is an interest in designing diffusion-weighting gradients able
to diminish the aforementioned artefacts, limitations and pitfalls. Thus, we have
focused on comprehending the physical and physiological artefacts and limitations
of DWI in whose origin the diffusion-weighting gradient waveforms take a key role
in order to develop a formulation able to jointly diminish them through the witty
design of such gradient waveforms. Thus, in Part II of this Thesis dissertation,
with the objective of enhancing DW image quality and parametric map estimation,
we have developed and validated a novel nonlinear formulation termed Optimized
Diffusion-weighting Gradient Waveform Design (ODGD). It allows the design of
optimized diffusion-weighting gradient waveforms based on the b-value formulation
in which previous DWI artefacts and limitations can be directly reduced by
adjusting the corresponding linear and/or nonlinear constraints. The proposed
formulation has been proved to produce diffusion-weighting gradient waveforms
that diminish bulk motion effects and null the Concomitant Gradient (CG) and
Eddy Current (EC) effects while minimizing the TE of the diffusion-weighted
acquisitions. Further, it has been shown to be implementable in MR scanners of
two different vendors with different static magnetic field B0 proving feasibility and
reproducibility. Compared to the state-of-the-art waveforms, ODGD reduced or
equalized the minimum TE for a given b-value while maintaining the waveform
properties. The TE reduction is larger at higher b-values, k-space resolutions
and high-order moment nulling. This TE reduction further translates into an
SNR increase, which added to the motion compensation and the reduced image
distortions provide the ODGD waveforms with outstanding capabilities for the
application of DW-MRI in the clinical routine and the computation of quantitative
imaging biomarkers.

The SE DWI sequence with monopolar diffusion-weighting gradient waveforms is
presumably present in every MR scanner. The preparation of the DWI sequence
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prior to the acquisition requires the selection of the TE, TR, diffusion-weightings,
i.e., set of b-values, and other sequence parameters to be applied. However, the
broad design flexibility of the DWI sequence introduces large variability in the set
of b-values used for each target tissue among clinicians and scientists of different
institutions. These variations complicate comparison between studies. In addition,
the chosen set of b-values also affects the precision and the noise performance of
the estimated diffusion-related parametric maps, which further complicates DWI
interpretation. Consequently, there is an interest in standardizing DWI acquisitions
by selecting the set of b-values that increase the noise performance of the estimated
diffusion-related parametric maps. Thus, in Part III of this Thesis dissertation,
with the objective of increasing the noise performance (i.e., increasing the precision
and minimizing the variance) of the estimated diffusion-related parametric maps,
we have developed and validated a formulation based on the CRLB and on the
realistic Rician noise distribution assumption to optimize the set of b-values for a
target tissue. These sets depends on its expected diffusion-related coefficient and
the expected SNR of the DWI acquisition. The formulation has been developed
for the two prevalent diffusion-weighting signal models in body DWI, namely, the
monoexponential signal model and the IVIM biexponentical signal model. It is
interesting to note that the optimized set of b-values tends to be composed of
two groups of b-values for the estimation of the Apparent Diffusion Coefficient
(ADC) of the monoexponential signal model, and of four groups for the estimation
of the IVIM diffusion-related parameters. The location of these groups depends on
the target SNR and on the diffusion parameters, but they will be closer together
and closer the the 0 s/mm2 b-value for lower SNR and larger diffusivities. The
validity of the optimized set of b-values has been proven on two different in-vivo
liver DWI acquisitions where the proposed optimized sets achieve higher or similar
parametric maps precision than the state-of-the-art b-value sets. As a result,
the proposed formulation for the optimization of the set of b-values might have
important applications for the specialization and standardization of DWI as well
as for the computation of quantitative diffusion-related imaging biomarkers.

9.2 Future work

Throughout this Thesis dissertation we have developed the ODGD formulation to
increase image quality of the SE DWI sequence. With the proposed formulation,
we have jointly tackled a number of artefacts and pitfalls common in liver DWI.
However, the proposed formulation could still be extended to diminish other
confounding factors such as the bright signal originating from blood vessels, as
already tackled in our Zhang et al. (2019) continuation, the acoustic noise generated
by the diffusion-weighting gradients or the power consumption of the MR scanner.
Acoustic noise is generated by fast varying currents in the gradient coils, which
generate Lorentz forces resulting in vibrations and acoustic noise. Particularly,
each gradient coil has an specific acoustic response that depends on the frequency
response function of the gradient. As such, acoustic noise could be limited or reduced
by extending the ODGD formulation to design diffusion-weighting gradients to
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have resonance frequencies on the minimums of the gradient frequency response
function. The acoustic noise reduction may increase the usability of DWI in fetal
imaging. On the other hand, the power consumption of the MR scan during the
application of a DWI sequence is directly proportional to the current used to
generate the diffusion-weighting gradient waveforms. As a result, reducing the
strength of the gradients will inherently reduce power consumption. However,
this straightforward reduction may create suboptimal diffusion-weighting gradient
waveforms. Hence, power consumption could be limited or reduced by extending
the ODGD formulation to design diffusion-weighting gradient waveforms with low
energy consumption.

Importantly, we have aimed our attention at the optimization of the SE DWI
sequence, but the proposed ODGD formulation could be adapted to optimize the
diffusion-weighting gradient waveforms of other DWI sequences such as Twice
Refocused Spin Echo (TRSE) or Stimulated Echo (STE). It could also be adapted
to optimize the gradients of other imaging techniques such as the velocity encoding
gradients of the flow and motion sensitive 4D Flow sequence. This extension may
facilitate accurate control of the encoded phase shifts. Further, the ODGD formu-
lation could also be extended to optimize any gradient used in MRI such as the
imaging encoding gradients or the slice selection gradients, which might help reduce
the scanning time of any MR sequence and increase their tolerance to artefacts.
Finally, throughout the experiments of this Thesis dissertation the ODGD wave-
forms were pre-computed offline and then loaded into the MR scanner. However,
in order to increase usability online implementation should be considered.

Another line of future work will be based on the applications of the proposed
ODGD formulation. Despite having focused in this Thesis on liver DWI, the
optimized waveforms could be applied to any target tissue. In particular it could
be applied to those suffering from strong motion such as the heart or the fetus. In
those, the application of the ODGD formulation may increase image quality by
reducing motion-related artefacts and bias on the estimated ADC and Diffusion
Tensor Imaging (DTI) maps. Additionally, the proposed formulation might achieve
improvements on multi-shot DW-Echo Planar Imaging (EPI) due to the potential
for reduced motion-induced phase variations across multiple shots.

Another significant future line of research will consist on the extension of the
CRLB formulation for the optimization of the set of b-values of DWI. We have
focused our attention on the traditional monoexponential diffusion-weighting signal
model and the biexponential IVIM diffusion-weighting signal model. Nevertheless,
the Kurtosis and the Stretched Exponential diffusion-weighting signal models are
gaining popularity in liver DWI. These extensions would require the derivation of
the CRLB of the corresponding model under a realistic noise assumption and the
subsequent development of a formulation for the computation of the optimized set
of b-values. Similarly, the derivation of the CRLB and the corresponding optimized
set of b-values of the diffusion-weighting signal models for a joint estimation of the
T2 map and the corresponding diffusion-related parametric maps may be critical
for their precise estimation in multiparametric MRI. It would also be of interest
to extend the formulation to obtain the optimal set of b-values for heterogeneous
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tissues or tissues where focal lesions are present. Nevertheless, the extension
of the CRLB formulation to optimize sets of b-values under the assumption of
DW images affected by more complex noise distributions (i.e., the non-central chi
noise distribution present in the composite images of Generalized Autocalibrating
Partially Parallel Acquisition (GRAPPA) acquisitions) might not be needed. This
lack of necessity comes from the few expected differences we hypothesize may arise
compared to the Rician noise distribution assumption.

We have studied the precision of the estimated diffusion-related parametric maps,
but accuracy, repeatability and precision should be studied together in order to
establish quantitative imaging biomarkers, specially for complex diffusion-weighting
signal models. Also, in many cases radiologists base their diagnosis on the contrast
between tissues, thus, the contrast-to-noise-ratio needs additional attention. Finally,
the optimized set of b-values needs further research within more acquisitions both
on healthy and diseased subjects, as well as within more target tissues in order to
be able to obtain clinical viable conclusions.

Last unequivocal future line of research consists in the acquisition of DW images
of the optimized set of b-values proposed by the CRLB-based approaches whose
diffusion-weighting gradients have been designed with the proposed ODGD formu-
lation. The joint application of both methods may increase DW image quality and
increase the accuracy of the estimated diffusion-related parametric maps paving
the way towards the development of quantitative diffusion imaging biomarkers and
speeding the awaited standardization of DW-MRI.

9.3 Contributions

In this Thesis dissertation we have focused on the optimization of liver DWI
acquisition sequence and estimation techniques to increase image quality and the
precision of the estimated diffusion-related parametric maps.

The main scientific contributions are listed next:

1. Development of a formulation for the design of optimized diffusion-weighting
gradient waveforms of the SE DWI sequence to increase DW image quality.
The optimized diffusion-weighting gradient waveforms maximize the SNR of
the acquisition by minimizing the TE of a given b-value, the bulk motion-
related artefacts, CGs dephasing effects, ECs induced distortions and the
Peripheral Nerve Stimulation (PNS).

2. Derivation of the CRLB of the monoexponential DWI signal model under a
realistic noise assumption and development of a formulation for the determi-
nation of the optimized set of b-values that maximize the noise performance
(i.e., minimize the variance and maximize the precision) of the estimated
ADC maps.

3. Derivation of the CRLB of the biexponential IVIM signal model under a
realistic noise assumption and development of a formulation for the determi-
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nation of the optimized set of b-values that maximize the noise performance
(i.e., minimize the variance and maximize the precision) of the estimated
IVIM parametric diffusion, pseudodiffusion and perfusion fraction maps.

152



Bibliography

Abart, J., Eberhardt, K., Fischer, H., Huk, W., Richter, E., Storch, T., Zeitler, E., et al.,
1997. Peripheral nerve stimulation by time-varying magnetic fields. Journal of Computer
Assisted Tomography 21 (4), 532–538.

Adrion, W. R., 1993. Research methodology in software engineering. In: Summary of
the Dagstuhl Workshop on Future Directions in Software Engineering” Ed. Tichy,
Habermann, and Prechelt, ACM Software Engineering Notes, SIGSoft. Vol. 18. pp.
36–37.

Aja-Fernández, S., Pie, T., Vegas-Sánchez-Ferrero, G., et al., 2015. Spatially variant noise
estimation in MRI: A homomorphic approach. Medical Image Analysis 20 (1), 184–197.

Aja-Fernández, S., Vegas-Sánchez-Ferrero, G., 2016. Statistical Analysis of Noise in MRI.
Modeling, Filtering and Estimation. Springer International Publishing.

Alberich-Bayarri, A., Sanz-Requena, R., García-Martí, G., Martí-Bonmatí, L., et al., 2014.
Optimisation of b-values in MR diffusion-weighted acquisitions through information
theory: a mathematical justification for consensus. In: European Congress of Radiology
2014. European Society of Radiology, pp. B–0580.

Alexander, A. L., Tsuruda, J. S., Parker, D. L., 1997. Elimination of eddy current
artifacts in diffusion-weighted echo-planar images: the use of bipolar gradients. Magnetic
Resonance in Medicine 38 (6), 1016–1021.

Alexander, D. C., 2008. A general framework for experiment design in diffusion MRI and
its application in measuring direct tissue-microstructure features. Magnetic Resonance
in Medicine 60 (2), 439–448.

Aliotta, E., Moulin, K., Ennis, D. B., 2018. Eddy current–nulled convex optimized diffusion
encoding (EN-CODE) for distortion-free diffusion tensor imaging with short echo times.
Magnetic Resonance in Medicine 79 (2), 663–672.

Aliotta, E., Wu, H. H., Ennis, D. B., 2017. Convex optimized diffusion encoding (CODE)
gradient waveforms for minimum echo time and bulk motion–compensated diffusion-
weighted MRI. Magnetic Resonance in Medicine 77 (2), 717–729.

Anderson, A. W., Gore, J. C., 1994. Analysis and correction of motion artifacts in diffusion
weighted imaging. Magnetic Resonance in Medicine 32 (3), 379–387.

Bammer, R., Markl, M., Barnett, A., Acar, B., Alley, M., Pelc, N., Glover, G., Moseley,
M., 2003. Analysis and generalized correction of the effect of spatial gradient field
distortions in diffusion-weighted imaging. Magnetic Resonance in Medicine 50 (3),
560–569.

153



Bibliography

Barbieri, S., Donati, O. F., Froehlich, J. M., Thoeny, H. C., 2016. Impact of the calculation
algorithm on biexponential fitting of diffusion-weighted MRI in upper abdominal organs.
Magnetic Resonance in Medicine 75 (5), 2175–2184.

Baron, C., Lebel, R., Wilman, A., Beaulieu, C., 2012. The effect of concomitant gradient
fields on diffusion tensor imaging. Magnetic Resonance in Medicine 68 (4), 1190–1201.

Bennett, K. M., Schmainda, K. M., Bennett, R., Rowe, D. B., Lu, H., Hyde, J. S.,
2003. Characterization of continuously distributed cortical water diffusion rates with a
stretched-exponential model. Magnetic Resonance in Medicine 50 (4), 727–734.

Bernstein, M. A., King, K. F., Zhou, X. J., 2004. Handbook of MRI pulse sequences.
Elsevier.

Bernstein, M. A., Zhou, X. J., Polzin, J. A., King, K. F., Ganin, A., Pelc, N. J., Glover,
G. H., 1998. Concomitant gradient terms in phase contrast MR: analysis and correction.
Magnetic Resonance in Medicine 39 (2), 300–308.

Birenbaum, D., Bancroft, L. W., Felsberg, G. J., 2011. Imaging in acute stroke. Western
Journal of Emergency Medicine 12 (1), 67.

Blaimer, M., Breuer, F., Mueller, M., Heidemann, R. M., Griswold, M. A., Jakob, P. M.,
2004. SMASH, SENSE, PILS, GRAPPA: how to choose the optimal method. Topics in
Magnetic Resonance Imaging 15 (4), 223–236.

Bloch, F., 1946. Nuclear induction. Physical Review 70 (7-8), 460.

Brihuega-Moreno, O., Heese, F. P., Hall, L. D., 2003. Optimization of diffusion measure-
ments using Cramer-Rao lower bound theory and its application to articular cartilage.
Magnetic Resonance in Medicine 50 (5), 1069–1076.

Bruegel, M., Gaa, J., Waldt, S., Woertler, K., Holzapfel, K., Kiefer, B., Rummeny, E. J.,
2008a. Diagnosis of hepatic metastasis: comparison of respiration-triggered diffusion-
weighted echo-planar MRI and five T2-weighted turbo spin-echo sequences. American
Journal of Roentgenology 191 (5), 1421–1429.

Bruegel, M., Holzapfel, K., Gaa, J., Woertler, K., Waldt, S., Kiefer, B., Stemmer, A.,
Ganter, C., Rummeny, E. J., 2008b. Characterization of focal liver lesions by ADC
measurements using a respiratory triggered diffusion-weighted single-shot echo-planar
MR imaging technique. European Radiology 18 (3), 477–485.

Buckler, A. J., Bresolin, L., Dunnick, N. R., Sullivan, D. C., Group, 2011. Quantitative
imaging test approval and biomarker qualification: interrelated but distinct activities.
Radiology 259 (3), 875–884.

Carr, H. Y., Purcell, E. M., 1954. Effects of diffusion on free precession in nuclear magnetic
resonance experiments. Physical Review 94 (3), 630.

Chen, N.-k., Guidon, A., Chang, H.-C., Song, A. W., 2013. A robust multi-shot scan
strategy for high-resolution diffusion weighted MRI enabled by multiplexed sensitivity-
encoding (MUSE). Neuroimage 72, 41–47.

Chow, A. M., Gao, D. S., Fan, S. J., Qiao, Z., Lee, F. Y., Yang, J., Man, K., Wu, E. X.,
2012. Liver fibrosis: an intravoxel incoherent motion (IVIM) study. Journal of Magnetic
Resonance Imaging 36 (1), 159–167.

Cohen, J., 2013. Statistical power analysis for the behavioral sciences. Routledge.

154



Bibliography

Colagrande, S., Pasquinelli, F., Mazzoni, L. N., Belli, G., Virgili, G., 2010. MR-diffusion
weighted imaging of healthy liver parenchyma: Repeatability and reproducibility of
apparent diffusion coefficient measurement. Journal of Magnetic Resonance Imaging
31 (4), 912–920.

Constantinides, C. D., Atalar, E., McVeigh, E. R., 1997. Signal-to-noise measurements in
magnitude images from NMR phased arrays. Magnetic Resonance in Medicine 38 (5),
852–857.

Den Boer, J., Bakker, R., Ham, C., Smink, J., 1999. Generalization to complex stimulus
shape of the nerve stimulation threshold based on existing knowledge of its relation to
stimulus duration for rectangular stimuli. In: Proceedings of the International Sociecty
of Magnetic Resonace in Medicine. Vol. 7. International Society of Magnetic Resonance
in Medicine, p. 108.

Den Boer, J. A., Bourland, J. D., Nyenhuis, J. A., Ham, C. L., Engels, J. M., Hebrank,
F. X., Frese, G., Schaefer, D. J., 2002. Comparison of the threshold for peripheral nerve
stimulation during gradient switching in whole body MR systems. Journal of Magnetic
Resonance Imaging 15 (5), 520–525.

DeVore, M. D., Lanterman, A. D., O Sullivan, J. A., 2000. ATR performance of a Rician
model for SAR images. In: Proceedings of the SPIE - The International Society for
Optical Engineering. International Society for Optical Engineering, pp. 34–47.

Dijkstra, H., Baron, P., Kappert, P., Oudkerk, M., Sijens, P. E., 2012. Effects of microper-
fusion in hepatic diffusion weighted imaging. European Radiology 22 (4), 891–899.

Dolui, S., Kuurstra, A., Michailovich, O. V., 2012. Rician compressed sensing for fast
and stable signal reconstruction in diffusion MRI. In: Medical Imaging 2012: Image
Processing. Vol. 8314. International Society for Optics and Photonics, p. 83144Q.

Feldman, R. E., Hardy, C. J., Aksel, B., Schenck, J., Chronik, B. A., 2009. Experimental
determination of human peripheral nerve stimulation thresholds in a 3-axis planar
gradient system. Magnetic Resonance in Medicine 62 (3), 763–770.

Finsterbusch, J., 2009. Eddy-current compensated diffusion weighting with a single
refocusing RF pulse. Magnetic Resonance in Medicine 61 (3), 748–754.

Finsterbusch, J., 2010. Double-spin-echo diffusion weighting with a modified eddy current
adjustment. Magnetic Resonance Imaging 28 (3), 434–440.

Fleysher, R., Fleysher, L., Gonen, O., 2008. The optimal MR acquisition strategy for
exponential decay constants estimation. Magnetic Resonance Imaging 26 (3), 433–435.

Geethanath, S., Vaughan Jr, J. T., 2019. Accessible magnetic resonance imaging: a review.
Journal of Magnetic Resonance Imaging 49 (7), e65–e77.

Glass, R. L., 1995. A structure-based critique of contemporary computing research. Journal
of Systems and Software 28 (1), 3–7.

Glover, P., 2009. Interaction of MRI field gradients with the human body. Physics in
Medicine & Biology 54 (21), R99.

Goshima, S., Kanematsu, M., Kondo, H., Yokoyama, R., Kajita, K., Tsuge, Y., Watanabe,
H., Shiratori, Y., Onozuka, M., Moriyama, N., 2008. Diffusion-weighted imaging of the
liver: optimizing b value for the detection and characterization of benign and malignant
hepatic lesions. Journal of Magnetic Resonance Imaging 28 (3), 691–697.

155



Bibliography

Gourtsoyianni, S., Papanikolaou, N., Yarmenitis, S., Maris, T., Karantanas, A., Gourt-
soyiannis, N., 2008. Respiratory gated diffusion-weighted imaging of the liver: value
of apparent diffusion coefficient measurements in the differentiation between most
commonly encountered benign and malignant focal liver lesions. European Radiology
18 (3), 486–492.

Griswold, M. A., Jakob, P. M., Heidemann, R. M., Nittka, M., Jellus, V., Wang, J.,
Kiefer, B., Haase, A., 2002. Generalized autocalibrating partially parallel acquisitions
(GRAPPA). Magnetic Resonance in Medicine 47 (6), 1202–1210.

Guiu, B., Cercueil, J.-P., 2011. Liver diffusion-weighted MR imaging: the tower of Babel?
European Radiology 21 (3), 463–467.

Güllmar, D., Haueisen, J., Reichenbach, J. R., 2005. Analysis of b-value calculations in
diffusion weighted and diffusion tensor imaging. Concepts in Magnetic Resonance Part
A 25 (1), 53–66.

Guo, Y., Cai, Y.-Q., Cai, Z.-L., Gao, Y.-G., An, N.-Y., Ma, L., Mahankali, S., Gao,
J.-H., 2002. Differentiation of clinically benign and malignant breast lesions using
diffusion-weighted imaging. Journal of Magnetic Resonance Imaging 16 (2), 172–178.

Haider, M. A., Van Der Kwast, T. H., Tanguay, J., Evans, A. J., Hashmi, A.-T., Lockwood,
G., Trachtenberg, J., 2007. Combined T2-weighted and diffusion-weighted MRI for
localization of prostate cancer. American Journal of Roentgenology 189 (2), 323–328.

Ham, C., Engels, J., Van de Wiel, G., Machielsen, A., 1997. Peripheral nerve stimulation
during MRI: effects of high gradient amplitudes and switching rates. Journal of Magnetic
Resonance Imaging 7 (5), 933–937.

Hamilton, G., Middleton, M. S., Hooker, J. C., Haufe, W. M., Forbang, N. I., Allison, M. A.,
Loomba, R., Sirlin, C. B., 2015. In vivo breath-hold 1H MRS simultaneous estimation
of liver proton density fat fraction, and T1 and T2 of water and fat, with a multi-TR,
multi-TE sequence. Journal of Magnetic Resonance Imaging 42 (6), 1538–1543.

Hanson, L. G., 2008. Is quantum mechanics necessary for understanding magnetic reso-
nance? Concepts in Magnetic Resonance Part A 32 (5), 329–340.

Harvey, P. R., Mansfield, P., 1994. Avoiding peripheral nerve stimulation: gradient
waveform criteria for optimum resolution in echo-planar imaging. Magnetic Resonance
in Medicine 32 (2), 236–241.

Haselgrove, J. C., Moore, J. R., 1996. Correction for distortion of echo-planar images used
to calculate the apparent diffusion coefficient. Magnetic Resonance in Medicine 36 (6),
960–964.

Herrmann, C., Annekristin, R., 2012. Magnetic resonance equipment (MRI)-study on
the potential for environmental improvement by the aspect of energy efficiency. PE
INTERNATIONAL AG, Report.

Herrmann, J., Schoennagel, B. P., Roesch, M., Busch, J. D., Derlin, T., Doh, L. K.,
Petersen, K. U., Graessner, J., Adam, G., Habermann, C. R., 2013. Diffusion-weighted
imaging of the healthy pancreas: ADC values are age and gender dependent. Journal
of Magnetic Resonance Imaging 37 (4), 886–891.

Hidalgo-Tobon, S., 2010. Theory of gradient coil design methods for magnetic resonance
imaging. Concepts in Magnetic Resonance Part A 36 (4), 223–242.

156



Bibliography

Holdsworth, S. J., Skare, S., Newbould, R. D., Guzmann, R., Blevins, N. H., Bammer,
R., 2008. Readout-segmented EPI for rapid high resolution diffusion imaging at 3T.
European Journal of Radiology 65 (1), 36–46.

Hoult, D., Lauterbur, P. C., 1979. The sensitivity of the zeugmatographic experiment
involving human samples. Journal of Magnetic Resonance 34 (2), 425–433.

Hutter, J., Price, A. N., Cordero-Grande, L., Malik, S., Ferrazzi, G., Gaspar, A., Hughes,
E. J., Christiaens, D., McCabe, L., Schneider, T., et al., 2018. Quiet echo planar
imaging for functional and diffusion MRI. Magnetic Resonance in Medicine 79 (3),
1447–1459.

Imaging, B., 1997. 150028 USA Instruments INC. SNR Phantom for GE
MRI. https://parts.blockimaging.com/150028-USA-Instruments--INC.
-SNR-Phantom-for-GE-MRI-for-GE--Closed-MRI/, [Online; accessed 07-January-
2018].

Jalnefjord, O., Montelius, M., Starck, G., Ljungberg, M., 2019. Optimization of b-value
schemes for estimation of the diffusion coefficient and the perfusion fraction with
segmented intravoxel incoherent motion model fitting. Magnetic Resonance in Medicine
82 (4), 1541–1552.

Jambor, I., Merisaari, H., Aronen, H. J., Järvinen, J., Saunavaara, J., Kauko, T., Borra,
R., Pesola, M., 2014. Optimization of b-value distribution for biexponential diffusion-
weighted MR imaging of normal prostate. Journal of Magnetic Resonance Imaging
39 (5), 1213–1222.

Janke, A., Zhao, H., Cowin, G. J., Galloway, G. J., Doddrell, D. M., 2004. Use of spherical
harmonic deconvolution methods to compensate for nonlinear gradient effects on MRI
images. Magnetic Resonance in Medicine 52 (1), 115–122.

Jensen, J. H., Helpern, J. A., Ramani, A., Lu, H., Kaczynski, K., 2005. Diffusional
kurtosis imaging: the quantification of non-gaussian water diffusion by means of
magnetic resonance imaging. Magnetic Resonance in Medicine 53 (6), 1432–1440.

Jeong, W. K., Jamshidi, N., Felker, E. R., Raman, S. S., Lu, D. S., 2019. Radiomics and
radiogenomics of primary liver cancers. Clinical and Molecular Hepatology 25 (1), 21.

Jezzard, P., Barnett, A. S., Pierpaoli, C., 1998. Characterization of and correction for eddy
current artifacts in echo planar diffusion imaging. Magnetic Resonance in Medicine
39 (5), 801–812.

Jones, D. K., Alexander, D. C., Bowtell, R., Cercignani, M., Dell’Acqua, F., McHugh, D. J.,
Miller, K. L., Palombo, M., Parker, G. J., Rudrapatna, U., et al., 2018. Microstructural
imaging of the human brain with a ‘super-scanner’: 10 key advantages of ultra-strong
gradients for diffusion mri. NeuroImage 182, 8–38.

Jones, D. K., Horsfield, M. A., Simmons, A., 1999. Optimal strategies for measuring
diffusion in anisotropic systems by magnetic resonance imaging. Magnetic Resonance
in Medicine 42 (3), 515–525.

Karlsen, O. T., Verhagen, R., Bovee, W. M., 1999. Parameter estimation from Rician-
distributed data sets using a maximum likelihood estimator: Application to T1 and
perfusion measurements. Magnetic Resonance in Medicine 41 (3), 614–623.

Kay, S. M., 1993. Fundamentals of statistical signal processing. Prentice Hall PTR.

157

https://parts.blockimaging.com/150028-USA-Instruments--INC.-SNR-Phantom-for-GE-MRI-for-GE--Closed-MRI/
https://parts.blockimaging.com/150028-USA-Instruments--INC.-SNR-Phantom-for-GE-MRI-for-GE--Closed-MRI/


Bibliography

Kaya, B., Koc, Z., 2014. Diffusion-weighted MRI and optimal b-value for characterization
of liver lesions. Acta Radiologica 55 (5), 532–542.

Kim, T., Murakami, T., Takahashi, S., Hori, M., Tsuda, K., Nakamura, H., 1999. Diffusion-
weighted single-shot echoplanar MR imaging for liver disease. American Journal of
Roentgenology 173 (2), 393–398.

Kingsley, P. B., Monahan, W. G., 2004. Selection of the optimum b factor for diffusion-
weighted magnetic resonance imaging assessment of ischemic stroke. Magnetic Resonance
in Medicine 51 (5), 996–1001.

Koay, C. G., Özarslan, E., Basser, P. J., 2009. A signal transformational framework for
breaking the noise floor and its applications in MRI. Journal of Magnetic Resonance
197 (2), 108–119.

Koc, Z., Erbay, G., 2014. Optimal b Value in Diffusion-Weighted Imaging for Differentia-
tion of Abdominal Lesions. Journal of Magnetic Resonance Imaging 40 (3), 559–566.

Koch, M., Norris, D. G., 2000. An assessment of eddy current sensitivity and correction
in single-shot diffusion-weighted imaging. Physics in Medicine & Biology 45 (12), 3821.

Koh, D.-M., Collins, D. J., 2007. Diffusion-weighted MRI in the body: applications and
challenges in oncology. American Journal of Roentgenology 188 (6), 1622–1635.

Koh, D.-M., Collins, D. J., Orton, M. R., 2011. Intravoxel incoherent motion in body
diffusion-weighted MRI: reality and challenges. American Journal of Roentgenology
196 (6), 1351–1361.

Koh, D.-M., Thoeny, H. C., 2010. Diffusion-weighted MR imaging: applications in the
body. Springer Science & Business Media.

Lauterbur, P. C., 1973. Image formation by induced local interactions: examples employing
nuclear magnetic resonance. nature 242 (5394), 190–191.

Le Bihan, D., 2007a. Le Bihan, Denis: Diffusion MRI: A Historical Account. eMagRes.

Le Bihan, D., 2007b. The ‘wet mind’: water and functional neuroimaging. Physics in
Medicine and Biology 52 (7), R57.

Le Bihan, D., 2013. Apparent diffusion coefficient and beyond: what diffusion MR imaging
can tell us about tissue structure.

Le Bihan, D., Breton, E., 1985. Imagerie de diffusion in vivo par résonance magnétique
nucléaire. Comptes rendus de l’Académie des sciences. Série 2, Mécanique, Physique,
Chimie, Sciences de l’univers, Sciences de la Terre 301 (15), 1109–1112.

Le Bihan, D., Breton, E., Lallemand, D., Aubin, M., Vignaud, J., Laval-Jeantet, M.,
1988. Separation of diffusion and perfusion in intravoxel incoherent motion MR imaging.
Radiology 168 (2), 497–505.

Le Bihan, D., Breton, E., Lallemand, D., Grenier, P., Cabanis, E., Laval-Jeantet, M., 1986.
MR imaging of intravoxel incoherent motions: application to diffusion and perfusion in
neurologic disorders. Radiology 161 (2), 401–407.

Le Bihan, D., Poupon, C., Amadon, A., Lethimonnier, F., 2006. Artifacts and pitfalls in
diffusion MRI. Journal of Magnetic Resonance Imaging 24 (3), 478–488.

158



Bibliography

Le Bihan, D., Turner, R., Moonen, C. T., Pekar, J., 1991. Imaging of diffusion and
microcirculation with gradient sensitization: design, strategy, and significance. Journal
of Magnetic Resonance Imaging 1 (1), 7–28.

Lee, S. S., Byun, J. H., Park, B. J., Park, S. H., Kim, N., Park, B., Kim, J. K., Lee,
M.-G., 2008. Quantitative analysis of diffusion-weighted magnetic resonance imaging of
the pancreas: usefulness in characterizing solid pancreatic masses. Journal of Magnetic
Resonance Imaging 28 (4), 928–936.

Lemke, A., Stieltjes, B., Schad, L. R., Laun, F. B., 2011. Toward an optimal distribution
of b values for intravoxel incoherent motion imaging. Magnetic Resonance Imaging
29 (6), 766–776.

Leporq, B., Saint-Jalmes, H., Rabrait, C., Pilleul, F., Guillaud, O., Dumortier, J., Scoazec,
J.-Y., Beuf, O., 2015. Optimization of intra-voxel incoherent motion imaging at 3.0 Tesla
for fast liver examination. Journal of Magnetic Resonance Imaging 41 (5), 1209–1217.

Lewin, M., Poujol-Robert, A., Boëlle, P.-Y., Wendum, D., Lasnier, E., Viallon, M., Gué-
chot, J., Hoeffel, C., Arrivé, L., Tubiana, J.-M., et al., 2007. Diffusion-weighted magnetic
resonance imaging for the assessment of fibrosis in chronic hepatitis c. Hepatology
46 (3), 658–665.

Liau, J., Lee, J., Schroeder, M. E., Sirlin, C. B., Bydder, M., 2012. Cardiac motion in
diffusion-weighted MRI of the liver: artifact and a method of correction. Journal of
Magnetic Resonance Imaging 35 (2), 318–327.

Luciani, A., Vignaud, A., Cavet, M., Tran Van Nhieu, J., Mallat, A., Ruel, L., Laurent, A.,
Deux, J.-F., Brugieres, P., Rahmouni, A., 2008. Liver cirrhosis: intravoxel incoherent
motion MR imaging—pilot study. Radiology 249 (3), 891–899.

Luna, A., Martín, T., González, J. S., 2012. Diffusion-weighted imaging in the evaluation
of lung, mediastinum, heart, and chest wall. In: Diffusion MRI Outside the Brain.
Springer, pp. 279–306.

Ma, D., Gulani, V., Seiberlich, N., Liu, K., Sunshine, J. L., Duerk, J. L., Griswold, M. A.,
2013. Magnetic resonance fingerprinting. Nature 495 (7440), 187–192.

Malyarenko, D. I., Ross, B. D., Chenevert, T. L., 2014. Analysis and correction of gradient
nonlinearity bias in apparent diffusion coefficient measurements. Magnetic Resonance
in Medicine 71 (3), 1312–1323.

Mansfield, P., 1977. Multi-planar image formation using NMR spin echoes. Journal of
Physics C: Solid State Physics 10 (3), L55.

Mansfield, P., Grannell, P. K., 1973. NMR’diffraction’in solids? Journal of Physics C:
Solid State Physics 6 (22), L422.

Matoba, M., Tonami, H., Kondou, T., Yokota, H., Higashi, K., Toga, H., Sakuma, T.,
2007. Lung carcinoma: diffusion-weighted MR imaging—preliminary evaluation with
apparent diffusion coefficient. Radiology 243 (2), 570–577.

McKenzie, C. A., Yeh, E. N., Ohliger, M. A., Price, M. D., Sodickson, D. K., 2002.
Self-calibrating parallel imaging with automatic coil sensitivity extraction. Magnetic
Resonance in Medicine 47 (3), 529–538.

Meier, C., Zwanger, M., Feiweier, T., Porter, D., 2008. Concomitant field terms for

159



Bibliography

asymmetric gradient coils: Consequences for diffusion, flow, and echo-planar imaging.
Magnetic Resonance in Medicine 60 (1), 128–134.

Merisaari, H., Jambor, I., 2015. Optimization of b-value distribution for four mathematical
models of prostate cancer diffusion-weighted imaging using b-values up to 2000 s/mm2:
Simulation and repeatability study. Magnetic Resonance in Medicine 73 (5), 1954–1969.

Michailovich, O., Rathi, Y., Dolui, S., 2011. Spatially regularized compressed sensing
for high angular resolution diffusion imaging. IEEE Transactions on Medical Imaging
30 (5), 1100–1115.

Moseley, M., Kucharczyk, J., Mintorovitch, J., Cohen, Y., Kurhanewicz, J., Derugin,
N., Asgari, H., Norman, D., 1990. Diffusion-weighted MR imaging of acute stroke:
correlation with T2-weighted and magnetic susceptibility-enhanced MR imaging in cats.
American Journal of Neuroradiology 11 (3), 423–429.

Moya-Sáez, E., Peña-Nogales, Ó., Sanz-Estébanez, S., de Luis-Garcia, R., Alberola-López,
C., 2020. CNN-based synthesis of T1, T2 and PD parametric maps of the brain with
a minimal input feeding. In: Proceedings of the International Sociecty of Magnetic
Resonace in Medicine. International Society of Magnetic Resonance in Medicine, p.
3806.

Murphy, P., Wolfson, T., Gamst, A., Sirlin, C., Bydder, M., 2013. Error model for
reduction of cardiac and respiratory motion effects in quantitative liver DW-MRI.
Magnetic Resonance in Medicine 70 (5), 1460–1469.

Murtz, P., Flacke, S., Traber, F., van den Brink, J. S., Gieseke, J., Schild, H. H., 2002.
Abdomen: diffusion-weighted MR imaging with pulse-triggered single-shot sequences.
Radiology 224 (1), 258–264.

Namimoto, T., Yamashita, Y., Sumi, S., Tang, Y., Takahashi, M., 1997. Focal liver masses:
characterization with diffusion-weighted echo-planar MR imaging. Radiology 204 (3),
739–744.

Nomori, H., Mori, T., Ikeda, K., Kawanaka, K., Shiraishi, S., Katahira, K., Yamashita, Y.,
2008. Diffusion-weighted magnetic resonance imaging can be used in place of positron
emission tomography for N staging of non–small cell lung cancer with fewer false-positive
results. The Journal of Thoracic and Cardiovascular Surgery 135 (4), 816–822.

Norris, D. G., 2001. Implications of bulk motion for diffusion-weighted imaging experiments:
Effects, mechanisms, and solutions. Journal of Magnetic Resonance Imaging 13 (4),
486–495.

Norris, D. G., Hutchison, J. M., 1990. Concomitant magnetic field gradients and their
effects on imaging at low magnetic field strengths. Magnetic Resonance Imaging 8 (1),
33–37.

Ozaki, M., Inoue, Y., Miyati, T., Hata, H., Mizukami, S., Komi, S., Matsunaga, K.,
Woodhams, R., 2013. Motion artifact reduction of diffusion-weighted MRI of the liver:
Use of velocity-compensated diffusion gradients combined with tetrahedral gradients.
Journal of Magnetic Resonance Imaging 37 (1), 172–178.

Padhani, A. R., Liu, G., Mu-Koh, D., Chenevert, T. L., Thoeny, H. C., Takahara, T., Dzik-
Jurasz, A., Ross, B. D., Van Cauteren, M., Collins, D., et al., 2009a. Diffusion-weighted
magnetic resonance imaging as a cancer biomarker: consensus and recommendations.
Neoplasia 11 (2), 102–125.

160



Bibliography

Padhani, A. R., Liu, G., Mu-Koh, D., Chenevert, T. L., Thoeny, H. C., Takahara, T., Dzik-
Jurasz, A., Ross, B. D., Van Cauteren, M., Collins, D., et al., 2009b. Diffusion-weighted
magnetic resonance imaging as a cancer biomarker: consensus and recommendations.
Neoplasia 11 (2), 102–125.

Papoulis, A., 1977. Generalized sampling expansion. IEEE Transactions on Circuits and
Systems 24 (11), 652–654.

Papoulis, A., Pillai, S. U., 2002. Probability, random variables, and stochastic processes.
Tata McGraw-Hill Education.

Parikh, T., Drew, S. J., Lee, V. S., Wong, S., Hecht, E. M., Babb, J. S., Taouli, B., 2008.
Focal liver lesion detection and characterization with diffusion-weighted MR imaging:
comparison with standard breath-hold T2-weighted imaging. Radiology 246 (3), 812–
822.

Park, B. K., Lee, H. M., Kim, C. K., Choi, H. Y., Park, J. W., 2008. Lesion localization
in patients with a previous negative transrectal ultrasound biopsy and persistently
elevated prostate specific antigen level using diffusion-weighted imaging at three Tesla
before rebiopsy. Investigative Radiology 43 (11), 789–793.

Peña-Nogales, Ó., Ellmore, T. M., de Luis-García, R., Suescun, J., Schiess, M. C.,
Giancardo, L., 2019a. Longitudinal connectomes as a candidate progression marker for
prodromal Parkinson’s disease. Frontiers in Neuroscience 12, 967.

Peña-Nogales, Ó., Hernando, D., Aja-Fernández, S., de Luis-Garcia, R., 2020. Determina-
tion of optimized set of b-values for Apparent Diffusion Coefficient mapping in liver
Diffusion-Weighted MRI. Journal of Magnetic Resonance 310, 106634.

Peña-Nogales, Ó., Zhang, Y., Wang, X., de Luis-Garcia, R., Aja-Fernández, S., Holmes,
J. H., Hernando, D., 2019b. Optimized Diffusion-Weighting Gradient Waveform De-
sign (ODGD) formulation for motion compensation and concomitant gradient nulling.
Magnetic Resonance in Medicine 81 (2), 989–1003.

Planchuelo-Gómez, Á., García-Azorín, D., Guerrero, Á. L., Aja-Fernández, S., Rodríguez,
M., de Luis-García, R., 2020. Structural connectivity alterations in chronic and episodic
migraine: A diffusion magnetic resonance imaging connectomics study. Cephalalgia
40 (4), 367–383.

Poot, D. H., Arnold, J., Achten, E., Verhoye, M., Sijbers, J., 2010. Optimal experimental
design for diffusion kurtosis imaging. IEEE Transactions on Medical Imaging 29 (3),
819–829.

Pruessmann, K. P., Weiger, M., Scheidegger, M. B., Boesiger, P., 1999. SENSE: sensitivity
encoding for fast MRI. Magnetic Resonance in Medicine 42 (5), 952–962.

Purcell, E. M., Torrey, H. C., Pound, R. V., 1946. Resonance absorption by nuclear
magnetic moments in a solid. Physical Review 69 (1-2), 37.

Ravi, K., Geethanath, S., Vaughan, J., 2019. PyPulseq: A Python Package for MRI Pulse
Sequence Design. Journal of Open Source Software 4 (42), 1725.

Ravi, K. S., Potdar, S., Poojar, P., Reddy, A. K., Kroboth, S., Nielsen, J.-F., Zaitsev, M.,
Venkatesan, R., Geethanath, S., 2018. Pulseq-Graphical Programming Interface: Open
source visual environment for prototyping pulse sequences and integrated magnetic
resonance imaging algorithm development. Magnetic resonance imaging 52, 9–15.

161



Bibliography

Reese, T., Heid, O., Weisskoff, R., Wedeen, V., 2003. Reduction of eddy-current-induced
distortion in diffusion MRI using a twice-refocused spin echo. Magnetic Resonance in
Medicine 49 (1), 177–182.

Reilly, J. P., 1989. Peripheral nerve stimulation by induced electric currents: exposure
to time-varying magnetic fields. Medical and Biological Engineering and Computing
27 (2), 101.

Roy, S., Carass, A., Bazin, P.-L., Resnick, S., Prince, J. L., 2012. Consistent segmentation
using a Rician classifier. Medical Image Analysis 16 (2), 524–535.

Saritas, E. U., Lee, J. H., Nishimura, D. G., 2011. SNR dependence of optimal parameters
for apparent diffusion coefficient measurements. IEEE Transactions on Medical Imaging
30 (2), 424–437.

Schulte, R. F., Noeske, R., 2015. Peripheral nerve stimulation-optimal gradient waveform
design. Magnetic Resonance in Medicine 74 (2), 518–522.

Senegas, J., Perkins, T. G., Keupp, J., Stehning, C., Hussain, S., 2012. Organ-specific
optimization of b-values for the simplified IVIM model of diffusion. In: Proceedings of
the 29th ESMRMB - The European Society for Magnetic Resonance in Medicine and
Biology. European Society for Magnetic Resonance in Medicine and Biology, p. 45196.

Shinya, S., Sasaki, T., Nakagawa, Y., Guiquing, Z., Yamamoto, F., Yamashita, Y., 2009.
The efficacy of diffusion-weighted imaging for the detection and evaluation of acute
pancreatitis. Hepato-gastroenterology 56 (94-95), 1407–1410.

Sica, C. T., Meyer, C. H., 2007. Concomitant gradient field effects in balanced steady-state
free precession. Magnetic Resonance in Medicine 57 (4), 721–730.

Sijbers, J., den Dekker, A. J., Scheunders, P., Van Dyck, D., 1998. Maximum-likelihood
estimation of Rician distribution parameters. IEEE Transactions on Medical Imaging
17 (3), 357–361.

Simonetti, O. P., Wendt, R. E., Duerk, J. L., 1991. Significance of the point of expansion
in interpretation of gradient moments and motion sensitivity. Journal of Magnetic
Resonance Imaging 1 (5), 569–577.

Smith, J. J., Sorensen, A. G., Thrall, J. H., 2003. Biomarkers in imaging: realizing
radiology’s future. Radiology 227 (3), 633–638.

Stejskal, E. O., Tanner, J. E., 1965. Spin diffusion measurements: spin echoes in the
presence of a time-dependent field gradient. The Journal of Chemical Physics 42 (1),
288–292.

Stoeck, C. T., Von Deuster, C., Genet, M., Atkinson, D., Kozerke, S., 2016. Second-order
motion-compensated spin echo diffusion tensor imaging of the human heart. Magnetic
Resonance in Medicine 75 (4), 1669–1676.

Tan, E. T., Marinelli, L., Slavens, Z. W., King, K. F., Hardy, C. J., 2013. Improved
correction for gradient nonlinearity effects in diffusion-weighted imaging. Journal of
Magnetic Resonance Imaging 38 (2), 448–453.

Taouli, B., Beer, A. J., Chenevert, T., Collins, D., Lehman, C., Matos, C., Padhani, A. R.,
Rosenkrantz, A. B., Shukla-Dave, A., Sigmund, E., et al., 2016. Diffusion-weighted
imaging outside the brain: Consensus statement from an ISMRM-sponsored workshop.
Journal of Magnetic Resonance Imaging 44 (3), 521–540.

162



Bibliography

Taouli, B., Koh, D.-M., 2009. Diffusion-weighted MR imaging of the liver 1. Radiology
254 (1), 47–66.

Taouli, B., Vilgrain, V., Dumont, E., Daire, J.-L., Fan, B., Menu, Y., 2003. Evaluation of
liver diffusion isotropy and characterization of focal hepatic lesions with two single-shot
echo-planar MR imaging sequences: prospective study in 66 patients. Radiology 226 (1),
71–78.

Thunberg, P., Zetterberg, P., 2007. Noise distribution in SENSE-and GRAPPA-
reconstructed images: a computer simulation study. Magnetic Resonance Imaging
25 (7), 1089–1094.

Trouard, T. P., Sabharwal, Y., Altbach, M. I., Gmitro, A. F., 1996. Analysis and
comparison of motion-correction techniques in diffusion-weighted imaging. Journal of
Magnetic Resonance Imaging 6 (6), 925–935.

Van den Bos, A., 2007. Parameter estimation for scientists and engineers. John Wiley &
Sons.

Wang, X., Reeder, S. B., Hernando, D., 2017. An acetone-based phantom for quantitative
diffusion MRI. Journal of Magnetic Resonance Imaging 46 (6), 1683–1692.

Weissenberger, V., Jan. 1 2002. Method of acquiring eddy currents that are caused by
switched magnetic field gradients of a magnetic resonance apparatus and that contain
cross-terms. US Patent 6,335,620.

Welsh, C. L., DiBella, E. V., Hsu, E. W., 2015. Higher-order motion-compensation for in
vivo cardiac diffusion tensor imaging in rats. IEEE Transactions on Medical Imaging
34 (9), 1843–1853.

Woodhams, R., Matsunaga, K., Kan, S., Hata, H., Ozaki, M., Iwabuchi, K., Kuranami,
M., Watanabe, M., Hayakawa, K., 2005. ADC mapping of benign and malignant breast
tumors. Magnetic Resonance in Medical Sciences 4 (1), 35–42.

Wu, X., Bricq, S., Collet, C., 2011. Brain MRI segmentation and lesion detection using
generalized Gaussian and Rician modeling. In: Medical Imaging 2011: Image Processing.
Vol. 7962. International Society for Optics and Photonics, p. 796236.

Xing, D., Papadakis, N. G., Huang, C. L.-H., Lee, V. M., Carpenter, T. A., Hall, L. D.,
1997. Optimised diffusion-weighting for measurement of apparent diffusion coefficient
(ADC) in human brain. Magnetic Resonance Imaging 15 (7), 771–784.

Xu, D., Maier, J. K., King, K. F., Collick, B. D., Wu, G., Peters, R. D., Hinks, R. S.,
2013. Prospective and retrospective high order eddy current mitigation for diffusion
weighted echo planar imaging. Magnetic Resonance in Medicine 70 (5), 1293–1305.

Yamada, I., Aung, W., Himeno, Y., Nakagawa, T., Shibuya, H., 1999. Diffusion coefficients
in abdominal organs and hepatic lesions: evaluation with intravoxel incoherent motion
echo-planar MR imaging. Radiology 210 (3), 617–623.

Zhang, B., Yen, Y.-F., Chronik, B. A., McKinnon, G. C., Schaefer, D. J., Rutt, B. K.,
2003. Peripheral nerve stimulation properties of head and body gradient coils of various
sizes. Magnetic Resonance in Medicine 50 (1), 50–58.

Zhang, J. L., Sigmund, E. E., Rusinek, H., Chandarana, H., Storey, P., Chen, Q., Lee,
V. S., 2012. Optimization of b-value sampling for diffusion-weighted imaging of the
kidney. Magnetic Resonance in Medicine 67 (1), 89–97.

163



Bibliography

Zhang, Y., Peña-Nogales, Ó., Holmes, J. H., Hernando, D., 2019. Motion-robust and
blood-suppressed M1-optimized diffusion MR imaging of the liver. Magnetic Resonance
in Medicine 82 (1), 302–311.

Zhou, X., Jun. 23 1998. Method for measuring and compensating for spatially and
temporally varying magnetic fields induced by eddy currents. US Patent 5,770,943.

Zhou, X., Maier, J. K., Reynolds, H. G., Jan. 26 1999. Method to reduce eddy current
effects in diffusion-weighted echo planar imaging. US Patent 5,864,233.

Zhou, X. J., Tan, S. G., Bernstein, M. A., 1998. Artifacts induced by concomitant magnetic
field in fast spin-echo imaging. Magnetic Resonance in Medicine 40 (4), 582–591.

164


	I Background
	Introduction
	Motivation
	Objectives
	Methodology
	Materials: MRI scanners
	List of Publications
	Thesis Overview

	Background
	Introduction to Magnetic Resonance Imaging
	MR physics
	MR image formation
	Rapid Imaging Techniques
	Fundamental MR pulse sequences

	Diffusion-Weighted Imaging
	Diffusion definition
	Diffusion Sensitive Sequences
	Diffusion Models

	Medical Applications of DWI
	Artefacts, Limitations, and Pitfalls
	Parameter estimation
	Noise in MRI
	Estimation Theory



	II Contribution I:  20px Diffusion-Weighting Gradient Waveform Design
	Optimized Diffusion-Weighting Gradient Waveform Design (ODGD): Motivation and Theory
	Introduction
	Theory
	Moments
	Concomitant Gradients
	Eddy Currents
	Peripheral Nerve Stimulation
	Additional Constraints
	Proposed Formulation
	Optimization Algorithm


	Validation of ODGD for Motion Compensation and Concomitant Gradient Nulling
	Experimental work
	ODGD Simulations
	Evaluation of SNR Increase
	Acetone phantom experiments
	In-vivo acquisitions

	Evaluation of CG-nulling
	Simulations and phantom experiments
	In-vivo acquisitions

	Statistical Analysis

	Results
	ODGD Simulations
	Evaluation of SNR Increase
	Acetone phantom experiments
	In-vivo acquisitions

	Evaluation of CG-nulling
	Water phantom simulations and experiments
	In-vivo acquisitions


	Discussion
	Conclusions

	Validation of ODGD for reduced Eddy Current induced image distortions and Peripheral Nerve Stimulation
	Experimental work
	ODGD Simulations
	Phantom Experiments
	3T MRI
	1.5T MRI


	Results
	ODGD Simulations
	Eddy Current Constraint
	Peripheral Nerve Stimulation Constraint

	Phantom Validation
	3T MRI
	1.5T MRI


	Discussion
	Conclusion


	III Contribution II:  20px Diffusion-Weighting b-value Optimization
	b-Value Optimization: Motivation and Theory
	Introduction
	Cramér-Rao Lower Bound Theory

	Determination of optimized set of b-values for Apparent Diffusion Coefficient mapping in liver Diffusion-Weighted MRI
	Theory
	Cramér-Rao Lower Bound of the monoexponential DWI signal model

	Experimental work
	Determination of the optimized set of b-values
	Experimental data
	Quantitative diffusion phantom
	Acetone phantom
	In-vivo liver DWI

	Experimental validation
	Statistical analysis

	Results
	Quantitative diffusion phantom experiments
	Acetone phantom experiments
	In-vivo liver DWI experiments
	b-Value optimization

	Discussion
	Conclusion

	Determination of the optimal set of b-values for Intravoxel Incoherent Motion (IVIM) parameter mapping in liver Diffusion-Weighted MRI
	Theory
	Cramér-Rao Lower Bound of the IVIM signal model

	Experimental work
	Determination of the optimized set of b-values
	Experimental data
	In-vivo liver IVIM

	Experimental validation

	Results
	b-Value optimization
	In-vivo liver IVIM experiments

	Discussion
	Conclusion


	IV Backmatter
	Conclusions, future work and contributions
	Conclusions
	Future work
	Contributions



