
 
 
 

 

 
 

Escuela de Ingenierías Industriales 
 

Departamento de Ingeniería de Sistemas y Automática 
 

 
 

TESIS DOCTORAL: 
 

AGENT-BASED MODELLING AND SWARM 
INTELLIGENCE IN SYSTEMS ENGINEERING 

 
 

 
 

Presentada por María Pereda García para optar al 
grado de doctora por la Universidad de Valladolid 

 
 
 
 

Dirigida por: 
Dr. Jesús M. Zamarreño Cosme 

  



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Valladolid, Noviembre de 2013. 
  



 
 
 
 

 
 

School of Industrial Engineering 
 

Department of System Engineering and Automatic Control 
 
 
 

PHD THESIS: 
 

AGENT-BASED MODELLING AND SWARM 
INTELLIGENCE IN SYSTEMS ENGINEERING 

 
 

 
 

A Thesis submitted by María Pereda García for the 
degree of Doctor of Philosophy in the University of 

Valladolid 
 
 
 
 

Supervised by: 
Jesús M. Zamarreño Cosme, PhD 

  



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Valladolid, November 2013. 
 
 
 
 
 



Reach for the sky
cause tomorrow may never come.





Acknowledgements

In this lines I want to remember and thank to all the people that has con-
tributed to this thesis in some way.

This thesis would not have been possible without the help of my advisor,
Jesús M. Zamarreño. I want to thank him for his tremendous dedication, his
motivational skills and his effort spent in helping me with valuable comments
and advices and guiding me during these four years.

I also want to thank to my partners of the System Engineering and
Automatic Control department, and specially to my PhD colleagues for the
good times in meetings and conferences. I wish them all the best.

I would also like to express my deepest gratitude to Marta Ginovart, for
her advices and valuable contributions, and also for her hospitality during
my stay in Barcelona.

I also gratefully acknowledge the research grants program Ayuda para la
Formación de Personal Investigador from the University of Valladolid and
the research projects DPI2009-14410-C02-02 and DPI 2012-39381-C02-02.

I also want to remember and give thanks to my friend Josema, for the
advices and reading material he suggested me.

I cannot forget my dear friends, I want to thank them the support, the
chats, the good moments together... They make life happier.

I want to thank to my love, Manu, for everything, for being a reason to
live for.

And thank you to my family: mom, dad and brother, for your uncondi-
tional support, and for making home a sweet home.

Thank you,

María

vii





Summary

A smooth sea never made a skilled

mariner.

English Proverb

Agent-based modelling is a modelling methodology that has revolution-
ized the field of modelling and simulation of complex systems, being a reli-
able alternative to traditional lumped parameter models, phenomenological
or empirical. This technique aims to obtain models of systems representing
the constituents of such systems. It is a bottom-up approximation where the
properties of the systems are the result (emerge) from the aggregation of the
properties of the system elements and the relations between these elements,
the agents. This technique has been successfully applied in various fields:
economics, social sciences, medicine, biology, etc.

The Process systems engineering field is responsible for modelling com-
plex systems whose dynamic nature implies that this process is not a simple
task, resulting in nonlinear models, models in which we must take into ac-
count the presence of disturbances, past states dependencies, etc. This mod-
elling technique (agent-based modelling) is pretty adequate to modelling
complex systems. The processes of wastewater treatment have a complex
dynamic due to variations in the flow rate and composition of the influ-
ent of the wastewater treatment plants and the large number of processes
and microorganisms involved, which makes the control of these plants rather
complicated. This makes the activated sludge process an ideal system to ap-
ply agent-based modelling. The developed model has allowed us to confirm
the decisive influence the composition and flow of the influent to a wastew-
ater treatment plant has in its dynamics. The model, once validated with
respect to a real plant, could be incorporated, for example, into a model
based predictive control scheme, where predictions given by the model could
be employed to obtain the best control actions to be applied to the system
(with respect to certain optimization objectives). Examples of these ob-
jectives are: to avoid undesirable sewage flows outside the main sewers, to
minimize the control energy (the energy cost of the movements of regulation
gates), to maximize sewage treatment, to reduce the volume in the tanks

ix



x Summary

in anticipation for upcoming rainstorms, etc [93]. Control of the activated
sludge process involves keeping the substrate concentration below a certain
level established by law, maintaining enough concentration of biomass to
allow degradation of the substrate, and maintaining enough oxygen to allow
these reactions but minimizing it since it implies a cost. The main difficul-
ties in controlling this process are the lack of measurable information online
(estimators would be needed) and the complexity of the process (flow and
load variations, weather influence) [88].

In this thesis we have applied agent-based modelling to the activated
sludge process, which takes place in the process of sewage treatment. We
have studied the methodology, the different options of implementation, de-
veloped a model (a simplified version of the process with one type of bacteria
and one type of substrate), and developed a notation to complement the cur-
rent representation standard.

In addition, in this thesis we have worked with the Swarm Intelligence
paradigm, that is, patterns and macroscopic behaviours that result from
the collaboration of small entities with simple rules and without a leader-
ship figure, for example, ant colonies, flock of birds, etc ... Based on this
Swarm philosophy, somehow related with the agent-based modelling, some
techniques arise. In this thesis we have worked with optimization algorithms,
testing the Particle Swarm Optimization and designing our own algorithm,
the Hiker, which shows promising results, as seen in this document.

Usually, in the systems engineering and automatic control field, it is
needed that algorithms and models are executed as fast as possible to be
used in real time. Motivated by the need of reducing this computational
time, in this thesis we have worked with code parallelization techniques,
and in particular, parallel code to run on graphics cards. These techniques
have been used both in agent-based modelling and in swarm optimization
algorithms.

In summary, we have applied agent-based modelling to the activated
sludge process, commonly used in the secondary treatment of the wastewater
treatment plants, system in which the Control y Supervisión de Procesos
research group in which I include myself has extensive experience toward
getting an optimal plant control. We have also presented an optimization
algorithm with promising results, based on Swarm Intelligence philosophy.

From a process control point of view, we have explored three topics of
interest: agent-based modelling, swarm optimization and GPU (Graphics
Processing Unit) computation.



Resumen

Con el tiempo y la paciencia se adquiere

la ciencia.

Proverbio español.

El modelado basado en agentes (en inglés, agent-based modelling) es una
técnica de modelado que ha revolucionado el campo del modelado y simula-
ción de sistemas complejos, siendo una alternativa fiable a los tradicionales
modelos de parámetros concentrados, fenomenológicos o empíricos. Esta téc-
nica trata de obtener modelos de los sistemas a través de la representación
de los elementos que componen dichos sistemas. Se trata de un modelado
de abajo hacia arriba, donde las propiedades agregadas de los sistemas son
consecuencia (emergen) de las propiedades de los elementos que los com-
ponen y de las relaciones entre estos elementos, los agentes. Esta técnica
se ha aplicado satisfactoriamente en diferentes campos: economía, ciencias
sociales, medicina, biología, etc.

El campo de la Ingeniería de Procesos y Sistemas se encarga de modelar
procesos complejos cuya naturaleza dinámica hace que no suela ser una tarea
sencilla, obteniéndose modelos no lineales, modelos en los que hay que tener
en cuenta la presencia de perturbaciones, dependencias de estados pasados,
etc. Esta técnica de modelado (modelado basado en agentes) se adecúa per-
fectamente al modelado de sistemas complejos. En esta tesis vamos, por lo
tanto, a aplicar esta técnica al proceso de fangos activados, que tiene lugar
en el proceso de depuración de aguas residuales. Los procesos de depuración
de aguas residuales tienen una dinámica compleja debido a las variaciones
en el caudal y composición del mismo a la entrada de las plantas de aguas
residuales y la gran cantidad de procesos y microorganismos involucrados,
lo cual hace que el control de estas plantas sea bastante complicado. Esto
hace que el proceso de fangos activados sea un sistema idóneo para aplicar
la técnica de modelado basado en agentes. El modelo desarrollado nos ha
permitido comprobar la decisiva influencia que la composición y caudal de
entrada a una planta de tratamiento de aguas residuales tiene en su dinámi-
ca. El modelo, una vez validado con respecto a una planta real, podría ser
incorporado, por ejemplo, en un esquema de control predictivo basdado en

xi



xii Resumen

modelos, donde las predicciones dadas por el modelo podrían ser usadas para
obtener las acciones de control óptimas a aplicar al sistema (con respecto a
ciertos objetivos de optimización). El problema de control de los sistemas de
depuración de aguas tiene diferentes objetivos con distinta prioridad y que
dependen además del diseño del sistema. Ejemplo de estos objetivos son:
evitar fugas y caudales de aguas residuales fuera de los colectores, minimizar
la energía de control (el coste energético de mover las válvulas y compuertas
de regulación), maximizar el tratamiento aplicado para minimizar los conta-
minates presentes en el agua, reducir el volumen en los tanques en previsión
de posibles tormentas futuras, etc [93]. Respecto al control del proceso de
fangos activados, este consiste en mantener la concentración de sustrato ba-
jo un cierto nivel establecido por ley, mantener la concentración de biomasa
suficiente que permita la degradación del sustrato, y mantener el oxígeno
suficiente que permita estas reacciones pero minimizándolo ya que supone
un coste de energía. Las principales dificultades que presenta el control de
este proceso son la falta de información medible en línea (se necesita em-
plear estimadores) y la propia complejidad del proceso (variaciones de carga
y caudal, influencia meteorológica) [88].

En esta tesis se ha aplicado la técnica de modelado basado en agentes
al proceso de fangos activados, que tiene lugar en una estación depuradora
de aguas. Hemos estudiado la metodología y las diferentes opciones de im-
plementación de este tipo de modelos, hemos desarrollado un modelo (una
versión simplificada del proceso con un solo tipo de bacteria y un solo tipo
de sustrato), y hemos desarrollado una notación que complementa al actual
estándar de representación de este tipo de modelos.

Además, en esta tesis se ha trabajado en las técnicas englobadas bajo
el nombre de Swarm Intelligence, que podríamos definir como inteligencia
colectiva. Hace referencia a los patrones de comportamiento y comporta-
mientos macroscópicos que son consecuencia de la colaboración de pequeñas
entidades con reglas sencillas y sin una figura de liderazgo, por ejemplo, las
colonias de hormigas, el vuelo de los pájaros, etc... Basado en esta filosofía,
en cierto modo relacionada con los modelos basados en agentes, surgen un
conjunto de técnicas Swarm, y en concreto en esta tesis hemos trabajado
con algoritmos de optimización, probando el Particle Swarm Optimization y
diseñando nuestro propio algoritmo, el Hiker, que presenta resultados muy
prometedores, como se puede observar en este documento.

Habitualmente, en el campo de la ingeniería de sistemas y automática se
persigue que los algoritmos y modelos se ejecuten lo más rápido posible para
poder ser utilizados en tiempo real. Motivados por la necesidad de reducción
de tiempos, en esta tesis hemos trabajado con técnicas de paralelización de
código, y en concreto, código paralelo para ejecutar sobre tarjetas gráficas.
Estas técnicas se han empleado tanto en el modelado basado en agentes como
en los algoritmos de optimización swarm.



Resumen xiii

En resumen, se han aplicado las técnicas de modelado basado en agentes
al proceso de fangos activados, uno de los procesos más utilizados en el
tratamiento secundario en las plantas de depuración de aguas residuales,
sistema en que el grupo de investigación de Control y Supervisión de Procesos
en el que me incluyo tiene una amplia trayectoria y experiencia para obtener
un control óptimo de la planta. Se ha presentado, asimismo, un algoritmo
de optimización con resultados prometedores, basado en la filosofía Swarm
Intelligence.

Desde un punto de vista de control de procesos, hemos explorado tres
elementos de interés: modelado basado en agentes, optimización Swarm y
computación en GPU (Graphics Processing Unit).

Objetivos

El objetivo general de esta tesis es aplicar la teoría de Swarm Intelligence y la
técnica de modelado basado en agentes en el campo de ingeniería de sistemas
y control automático, lo que implica explorar estas técnicas desde una nueva
perspectiva, así como la aplicación de estas herramientas a sistemas donde no
se han utilizado tradicionalmente. Los sistemas que se modelan en nuestro
grupo de investigación son intrínsecamente dinámicos y complejos, por lo
que la naturaleza de estos sistemas justifica la idoneidad de la aplicación de
estas técnicas. Por lo tanto, los principales objetivos de esta tesis son:

1. Aprender y adquirir habilidades en la técnica de modelado basado en
agentes. El primer objetivo comprende las etapas de investigación y
documentación del estado del arte, la revisión de las propuestas de
metodología de diferentes autores, así como ejemplos de aplicación en
la literatura. La técnica se adquiere también con la práctica, lo cual se
relaciona con el objetivo 4.

2. Seleccionar una plataforma software adecuada para desarrollar un mo-
delo basado en agentes para el proceso de fangos activados.

3. Entender el proceso de fangos activados desde el punto de vista de
sus constituyentes microscópicos y sus relaciones. Este objetivo tiene
en cuenta la investigación en microbiología necesaria para entender el
proceso antes de modelar.

4. Desarrollar un modelo basado en agentes para el proceso de fangos
activados. Este modelo tiene por objeto representar la dinámica del
proceso, desde el punto de vista de las entidades involucradas en el
mismo. Se debe presentar una representación más realista del proceso
que facilitará la comprensión del mismo. En este objetivo se utilizan
los conocimientos adquiridos en los objetivos anteriores y se pone en
práctica la técnica de modelado basado en agentes.



xiv Resumen

5. Utilizar el modelo basado en agentes desarrollado para tener una me-
jor comprensión del sistema y para generar nuevos conocimientos y
conclusiones que podrían facilitar el control del sistema.

6. Desarrollar técnicas de optimización basadas en la filosofía Swarm In-
telligence para mejorar la eficiencia en la búsqueda de soluciones a
problemas de optimización. Este objetivo persigue además desarrollar
un nuevo algoritmo de optimización, inspirado en el algoritmo Particle
Swarm Optimization.

7. Probar las diferentes alternativas de programación en paralelo sobre
tarjeta gráfica (toolboxes de MATLAB, código nativo CUDA) y selec-
cionar la más adecuada para las implementaciones de esta tesis.

8. Aplicar la computación en paralelo sobre tarjeta gráfica a los desarro-
llos de esta tesis para reducir el tiempo de ejecución de simulaciones y
algoritmos. Este objetivo transversal incluye la aplicación de la compu-
tación en paralelo al modelado basado en agentes, la exploración de las
diferentes posibilidades de uso, así como la paralelización del algoritmo
swarm desarrollado.

El modelo basado en agentes y el algoritmo de optimización desarrollados
son dos de las piezas claves de un esquema de control predictivo basado en
modelos, en el cual el grupo de investigación tiene amplia experiencia. Para su
aplicación en tiempo real, el tercer elemento serían técnicas de programación
paralela sobre GPU para acelerar la ejecución del código. La integración de
estos tres elementos (modelo, optimizador y ejecución sobre GPU) a un caso
real queda ya fuera del alcance de esta tesis.

Tratamiento de aguas residuales

El capítulo 4 explica el proceso de depuración de aguas residuales, y en
concreto el proceso de fangos activados (proceso que se ha modelado en esta
tesis). El proceso de fangos activados es un tipo de proceso biológico que
se lleva a cabo en el tratamiento secundario de las aguas residuales en una
planta depuradora. En esta parte de la planta se trata de reducir la materia
orgánica degradable biológicamente, de las aguas residuales industriales o
urbanas. El proceso de lodos activos consiste en:

• Un tanque de aireación (reactor biológico) donde los lodos activos y
la alimentación (contaminación o sustrato contenido en el agua) se
mezclan y airean durante un cierto período de tiempo.

• Un sistema de separación del lodo activo y el efluente tratado (decan-
tador secundario o clarificador).



Resumen xv

• Una recirculación del lodo activo hacia el tanque de aireación.

• Un sistema de tratamiento y evacuación de los lodos producidos (pur-
ga).

Al reactor biológico o cuba de aireación llega el agua residual a tratar, donde
tiene lugar el desarrollo de un cultivo biológico. La población bacteriana se
debe mantener en un determinado nivel para llegar a un equilibrio entre la
carga orgánica (sustrato) a eliminar y la cantidad de microorganismos (bio-
masa) en el reactor. Es necesario un sistema de aireación y agitación que
proporcione el oxígeno necesario para la acción de las bacterias aerobias,
que evite la sedimentación de los fangos en el reactor y que permita la ho-
mogeneización de los fangos activos. En este capítulo se introducen además
ciertos conceptos de microbiología necesarios para el correcto entendimiento
del documento. Además se incluye un estado del arte sobre modelado de
tratamiento de aguas residuales, incluyendo modelado basado en agentes.

Metodología

Modelado basado en agentes

Los sistemas multiagente (MAS) son considerados tradicionalmente como
un campo de la Inteligencia Artificial Distribuida (DAI), y junto con los
sistemas basados en agente son una de las áreas de investigación más pro-
metedoras dentro del área de Tecnologías de la Información y Computación.
Actualmente no existe un consenso en la definición de agente. Las principales
teorías al respecto se muestran en la sección 2.2.

Un sistema multiagente se puede definir como un conjunto de agentes
autónomos, heterogéneos e independientes, que viven en un ambiente, inter-
actuando con él y con los demás, con sus propios objetivos, capacidades y
conocimientos.

Modelado basado en agentes es una metodología computacional que
permite a los investigadores crear, analizar y experimentar con modelos com-
puestos de agentes que interactúan dentro de un entorno. La principal carac-
terística de estos sistemas es que existe una correspondencia directa entre las
entidades en el sistema y en el modelo, y entre las interacciones en el sistema
y en el modelo, como se muestra en la figura 2.2 en el capítulo 2. En este
capítulo se incluyen además las ventajas y desventajas de esta metodología,
las áreas de aplicación, un resumen sobre herramientas software para realizar
este tipo de modelado, y una sección sobre estándares de representación.



xvi Resumen

Swarm Intelligence

Son una colección de algoritmos inspirados en la conducta social de los in-
dividuos en la naturaleza, dentro del campo de la computación evolutiva de
la disciplina de inteligencia artificial (AI). Se trata de algoritmos basados
en población inspirados por el comportamiento colectivo de sistemas des-
centralizados y auto-organizados, como las colonias de hormigas, termitas,
abejas, y avispas, las bandadas de aves o bancos de peces. Este grupo de
individuos con reglas simples que interactúan unos con otros, obtienen como
consecuencia comportamientos colectivos emergentes o decisiones óptimas
para el grupo, por ejemplo, dónde vivir, la formación de estructuras durante
el vuelo, etc . En el capítulo 3 se presenta esta filosofía, ejemplos de aplica-
ción, y se explica el algoritmo Particle Swarm Optimization, uno de los más
famosos basados en este paradigma.

Computación paralela sobre tarjeta gráfica

En esta tesis se han aplicado técnicas de computación paralela sobre tarjeta
gráfica para tratar de reducir los tiempos de ejecución de las implementacio-
nes desarrolladas. Estas técnicas de paralelización se explican en el capítulo
5, mostrando un ejemplo sencillo, y los campos en los que se ha aplicado
hasta la fecha.

Principales resultados del trabajo

En esta tesis se ha trabajado en acercar el campo de la ingeniería de sistemas
y control automático al modelado basado en agentes y la teoría de Swarm
Intelligence. Hemos estudiado el proceso de lodos activados desde el punto
de vista de sus constituyentes microscópicos. Las conclusiones resultantes de
este trabajo son:

• Hemos resumido los pasos de la metodología del modelado basado en
agentes para que un recién llegado puede utilizar el capítulo 2 como
guía inicial sobre el tema.

• Hemos propuesto una nueva notación SSABR para representar modelos
basados en agentes, que está más cerca del campo de la ingeniería de
sistemas y atestigua el carácter dinámico del comportamiento de los
agentes a través de una representación en el espacio de estados. Se han
incluido ejemplos de aplicación para ilustrar la utilidad y aplicación
del SSABR. Esta notación se podría utilizar para enseñar modelado
basado en agentes en ingeniería y también para compartir resultados
de investigación, junto con el protocolo ODD.



Resumen xvii

• Hemos desarrollado un modelo basado en agentes para el proceso de
fangos activados, que permite probar la influencia de diferentes proto-
colos de operación del reactor y una población de bacterias configura-
ble.

• Hemos confirmado la influencia significativa que las oscilaciones y las
variaciones en la composición del caudal de entrada a una estación de-
puradora de aguas residuales tienen en un proceso de fangos activados.
Nuestro modelo permite probar diferentes escenarios para estudiar la
dinámica del sistema.

• Hemos proporcionado la posibilidad de lanzar cientos de simulaciones
en paralelo, para estudiar, por ejemplo, la influencia de la estocastici-
dad de la población bacteriana en el comportamiento macroscópico del
sistema.

• Hemos desarrollado un algoritmo de optimización, el Hiker, inspirado
en la teoría de Swarm Intelligence, con resultados prometedores de en
rendimiento.





Contents

Acknowledgements vii

Summary ix

Resumen xi

I Introduction 1

1 Introduction and Objectives 3
1.1 Motivation and Background . . . . . . . . . . . . . . . . . . . 3

1.2 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Document Structure . . . . . . . . . . . . . . . . . . . . . . . 6

II Fundamentals 9

2 Agent-Based Modelling 11
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3 Application areas . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.4 Strengths and weaknesses . . . . . . . . . . . . . . . . . . . . 18

2.5 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.5.1 Agents and their Environment . . . . . . . . . . . . . 19

2.5.2 Agent Methods and Interactions . . . . . . . . . . . . 20

2.5.3 Implementation . . . . . . . . . . . . . . . . . . . . . . 21

2.5.4 Verification, validation and calibration . . . . . . . . . 23

2.5.5 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.6 Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.7 Standards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

In the next chapter . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3 Swarm Intelligence 29

xix



xx Índex

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.2 Particle Swarm Optimization . . . . . . . . . . . . . . . . . . 30

3.2.1 Basic Particle Swarm Optimization . . . . . . . . . . . 31

3.2.2 Implementation Aspects . . . . . . . . . . . . . . . . . 34

3.3 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

In the next chapter . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4 Wastewater Treatment 37

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.2 Wastewater Treatment . . . . . . . . . . . . . . . . . . . . . . 38

4.3 The Activated Sludge Process . . . . . . . . . . . . . . . . . . 38

4.4 Microbiological concepts . . . . . . . . . . . . . . . . . . . . . 42

4.5 ABM in microbiology . . . . . . . . . . . . . . . . . . . . . . . 43

In the next chapter . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5 Parallel Computing on the GPU with CUDA 47

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.2 What is the CUDA architecture . . . . . . . . . . . . . . . . . 48

5.3 CUDA program structure . . . . . . . . . . . . . . . . . . . . 49

5.4 The NVIDIA GPU hardware . . . . . . . . . . . . . . . . . . 51

5.5 Example of a CUDA C program . . . . . . . . . . . . . . . . . 51

5.6 Choosing a NVIDIA GPU for computing . . . . . . . . . . . . 54

5.7 The Parallel Computing Toolbox from MATLAB . . . . . . . 55

5.8 Swarm intelligence and ABM applications of GPU computing 55

III Developments 57

6 The State Space Agent-Based Representation 59

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

6.2 Mathematical Description . . . . . . . . . . . . . . . . . . . . 60

6.3 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

6.3.1 Segregation model . . . . . . . . . . . . . . . . . . . . 62

6.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

In the next chapter . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

7 Agent-Based Model of the Activated Sludge Process 67

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

7.2 Activated Sludge Batch Reactor Model. NetLogo version . . . 68

7.2.1 Description . . . . . . . . . . . . . . . . . . . . . . . . 68

7.2.2 SSABR Description . . . . . . . . . . . . . . . . . . . 72

7.2.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . 76



Índex xxi

7.2.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . 83

7.3 Activated Sludge Batch Reactor Model. MATLAB version . . 84

7.3.1 Description . . . . . . . . . . . . . . . . . . . . . . . . 85

7.3.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . 87

7.4 Activated Sludge Reactor Model. Improved MATLAB version 89

7.4.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . 93

7.4.2 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . 104

7.5 CUDA implementations . . . . . . . . . . . . . . . . . . . . . 110

In the next chapter . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

8 Swarm Intelligence: The Hiker algorithm 115
8.1 The Hiker optimization algorithm . . . . . . . . . . . . . . . . 115

8.2 Implementation Aspects . . . . . . . . . . . . . . . . . . . . . 118

8.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

8.3.1 Comparison of implementations in MATLAB . . . . . 120

8.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

IV Conclusions and Future Work 123

9 Conclusions and Future Work 125
9.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

9.2 Summary of contributions . . . . . . . . . . . . . . . . . . . . 126

9.3 Future directions . . . . . . . . . . . . . . . . . . . . . . . . . 127

V Appendices 129

A SSABR application examples 131
A.1 Hilltopping behaviour in butterflies . . . . . . . . . . . . . . . 131

A.1.1 Simulation example . . . . . . . . . . . . . . . . . . . . 134

A.2 Sugarscape 1 Immediate Growback . . . . . . . . . . . . . . . 135

A.2.1 Simulation example . . . . . . . . . . . . . . . . . . . . 138

A.3 Particle Swarm Optimization Algorithm . . . . . . . . . . . . 138

B Application of GPGPU in Optimization 143
B.1 The multi-start optimization method . . . . . . . . . . . . . . 143

Bibliography 149





List of Figures

2.1 Agent research areas . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 Correspondence between the modelled system and ABM . . . 14

2.3 Flowchart of a generic agent based model scheduling. . . . . . 23

4.1 Typical activated sludge processes . . . . . . . . . . . . . . . 40

4.2 Temporal evolution of the concentrations . . . . . . . . . . . . 41

5.1 Thread organization . . . . . . . . . . . . . . . . . . . . . . . 50

5.2 Execution of a CUDA program . . . . . . . . . . . . . . . . . 50

5.3 Memory structure of a NVIDIA GPU . . . . . . . . . . . . . . 51

6.1 Evolution of turtle states. . . . . . . . . . . . . . . . . . . . . 65

7.1 Screenshot of the Netlogo model interface. . . . . . . . . . . . 70

7.2 Temporal evolution of the concentrations . . . . . . . . . . . . 77

7.3 Temporal evolution of bacteria reproduction process . . . . . 78

7.4 Temporal evolution of bacteria deaths in the ABM. . . . . . . 78

7.5 Concentrations if size_percentage is decreased by 50% . . . 78

7.6 Monod model Vs. experiment (µmax=1, Ks=200) . . . . . . . 79

7.7 ABM model Vs. experiment (unit_growth=0.1) . . . . . . . 80

7.8 ABM model Vs. experiment (rep_size=4.5) . . . . . . . . . . 80

7.9 Monod model Vs. experiment (Kd=0.1) . . . . . . . . . . . . 81

7.10 Monod model Vs. experiment (Y =0.65) . . . . . . . . . . . . 81

7.11 Concentrations if max_age is decreased by 20% . . . . . . . 81

7.12 Bacteria deaths if max_age is decreased by 20% . . . . . . . 82

7.13 ABM model Vs. experiment (i_energy_by_eating=2.5) . . . 82

7.14 ABM model Vs. experiment (d_energy_by_starving=1.4) . 83

7.15 ABM model Vs. experiment (max_energy=12) . . . . . . . . 83

7.16 ABM in MATLAB, alternatives . . . . . . . . . . . . . . . . . 85

7.17 Graphic User Interface in MATLAB. . . . . . . . . . . . . . . 87

7.18 Evolution of concentration of agents over time. Nominal case. 87

7.19 Concentration of agents in experiments. . . . . . . . . . . . . 88

xxiii



xxiv Ĺist of figures

7.20 Dynamic behaviours of the four operating protocols . . . . . . 94

7.21 Comparison of ABM and Monod model behaviours. . . . . . . 96

7.22 Concentration of biomass and substrate. µmax effect . . . . . 97

7.23 Concentration of agents. rep_size parameter effect. . . . . . 98

7.24 Concentration of agents. uptake parameter effect in the ABM. 99

7.25 Concentration of agents. availability parameter effect . . . . 100

7.26 Concentration of agents. yield parameter effect from the ABM.101

7.27 Modifying viability parameter from the ABM . . . . . . . . . 102

7.28 Comparison of the steady state . . . . . . . . . . . . . . . . . 105

7.29 Change in the concentration of substrate in the influent . . . 106

7.30 Change in the concentration of biomass in the influent . . . . 107

7.31 Change in the influent flow . . . . . . . . . . . . . . . . . . . 108

7.32 Comparison of sequential and Jacket implementations. . . . . 110

7.33 Parallel launch scheduling . . . . . . . . . . . . . . . . . . . . 112

7.34 50 Parallel ABM simulations. . . . . . . . . . . . . . . . . . . 112

8.1 Sketch of a hiker generating possible points in three directions. 116

8.2 rmin value in function of ratio value. . . . . . . . . . . . . . . 117

8.3 Representation of the Hiker algorithm during the optimization 118

A.1 Representation of a simulation of the model. . . . . . . . . . . 134

A.2 Evolution of four turtles sugar states. . . . . . . . . . . . . . 138

B.1 Peaks function representation. . . . . . . . . . . . . . . . . . . 145

B.2 Two-dimensional Rosenbrock function representation. . . . . . 145

B.3 ROM algorithm execution time. . . . . . . . . . . . . . . . . . 146

B.4 MROM algorithm execution time. . . . . . . . . . . . . . . . . 146



List of Tables

2.1 Agent-based Modeling Applications . . . . . . . . . . . . . . . 17

2.2 Questions to Ask Before Developing an Agent-based Model . 22

6.1 Turtle states in the Segregation Model . . . . . . . . . . . . . 63

6.2 Parameters of the Segregation Model . . . . . . . . . . . . . . 63

7.1 ABM Parameters explanation. . . . . . . . . . . . . . . . . . . 71

7.2 Agent states in the ABM of the activated sludge process . . . 74

7.3 Monod model parametrization. . . . . . . . . . . . . . . . . . 76

7.4 ABM parametrization. . . . . . . . . . . . . . . . . . . . . . . 77

7.5 Simulation time (seconds) comparison of implementations. . 86

7.6 Improved MATLAB ABM Parameters explanation. . . . . . . 91

7.7 Monod model parametrization . . . . . . . . . . . . . . . . . . 95

7.8 ABM model parametrization. . . . . . . . . . . . . . . . . . . 95

8.1 PSO parametrization. . . . . . . . . . . . . . . . . . . . . . . 121

8.2 Hiker parametrization. . . . . . . . . . . . . . . . . . . . . . . 121

8.3 Optimization solutions to several functions . . . . . . . . . . . 121

8.4 Stop iteration of the optimization process of several functions. 121

8.5 Execution times of the optimization of several functions. . . . 122

A.1 Agent states for the Hilltopping model . . . . . . . . . . . . . 132

A.2 Parameters for the Hilltopping model . . . . . . . . . . . . . . 133

A.3 States for the Sugarscape model . . . . . . . . . . . . . . . . . 136

A.4 Parameters for the Sugarscape model . . . . . . . . . . . . . . 136

A.5 Particle states for the PSO . . . . . . . . . . . . . . . . . . . 140

A.6 Parameters for the PSO . . . . . . . . . . . . . . . . . . . . . 140

B.1 Acceleration factor. Peaks function. . . . . . . . . . . . . . . . 147

B.2 Acceleration factor. Rosenbrock function. . . . . . . . . . . . 147

xxv





Part I

Introduction

This part contains the introduction, background, objectives, and document
structure.





Chapter 1

Introduction and Objectives

The more extensive a man’s knowledge of

what has been done, the greater will be

his power of knowing what to do.

Benjamin Disraeli

Summary: This chapter introduces the motivation and establishes

the objectives of this thesis.

1.1 Motivation and Background

This work has been carried out within the Process Control and Supervision
(CSP) research group of the University of Valladolid. Members of this group
mainly belong to the System Engineering and Automatic Control depart-
ment.

The activities of the CSP research group are classified into several re-
search lines, where the process modelling and simulation research line is the
relevant one for the scope of this thesis. This is one of the main research
areas of the group, with wide experience in sugar processes, petrochemical
processes, wastewater treatment processes and renewable energies. Main
topics are:

• Real-time process simulators.

• Distributed simulation.

• Development of process libraries.

• Languages for automatic modelling.

3



4 Chapter 1. Introduction and Objectives

Thus, the research group makes its best efforts in developing models with a
high level of detail that will be used afterwards in simulators or internally
for model based controllers or for model supervision (e.g. fault diagnosis
detection).

In certain type of processes, such as chemical reactors or biological pro-
cesses, where the macroscopic models are usually obtained from empirical
knowledge, a bottom-up approximation would obtain better results in terms
of the representation of the underlying process.

Some members of the group have been working, in cooperation with
a research group of the University of Salamanca, in the project Técnicas
avanzadas de supervisión y control para la operación óptima de EDARS (ref.
DPI2006− 151716−C02− 02), where the objective was to apply advanced
techniques for control and supervision of wastewater treatment plants.

One of the main biological processes in a wastewater treatment plant is
the activated sludge process. This is an adequate test bench where modelling
from a microscopic level would bring a better understanding of the process
dynamics (and consequently a better control). Large variations in the influ-
ent wastewater flow rate, concentration and composition make wastewater
treatment processes inherently dynamic. These variations are difficult to
control and the adaptive behaviour of the involved microorganisms imposes
further difficulties in terms of time-varying process parameters. Computer
models and simulations are necessary to describe and control these systems,
but this can result in highly complex models, sometimes difficult to apply
from an operational point of view.

Modelling from the microscopic entities point of view is encompassed in
the Agent-Based Modelling or Individual-Based Modelling techniques. This
is the main topic of this dissertation, from the point of view of the system
engineering field. Agent-based modelling is a suitable tool to study complex
systems, formed by many interacting entities and non-linear interactions
among them. They may have several stationary states, the resulting outcome
may depend on the previous history and perturbations, they behave in non-
stationary ways, show periodic or non-periodic oscillations, etc.

A collection of microscopic individuals with simple behaviours can be
seen as a swarm. This swarm can exhibit some kind of intelligence at a
macroscopic level (e.g. flock of birds). Taken into account the experience
of the research group in the artificial intelligence fields, it is also interesting
to explore what is called Swarm Intelligence, as it is related, somehow, with
Agent-Based Modelling. Particle swarm optimization is a powerful tool, easy
to understand and to implement, and also computationally efficient. This
qualities encourages us to use this tool and have inspired us to develop our
genuine idea of the Hiker algorithm.



1.2. Objectives 5

1.2 Objectives

The general objective of this dissertation is to apply the Swarm Intelligence
and Agent-Based Modelling (ABM) techniques to the system engineering
and automatic control field, which implies exploring these techniques with
a new perspective and also applying these tools where they have not been
traditionally used. The systems that are modelled in our research group are
intrinsically dynamic and complex, so the nature of these systems justifies
the suitability of application of these techniques.

Thus, the main objectives of this thesis are:

1. To learn and acquire abilities in the agent-based modelling technique.
The first objective encompasses the steps of research and documenta-
tion of the state of the art, reviewing the methodology proposals from
different authors as well as application examples in the literature. The
technique is acquired with practise, which is related with objective 4.

2. To select a suitable software platform to develop an agent-based model
for the activated sludge process.

3. To understand the activated sludge process from the point of view of
its microscopic constituents and its relationships. This objective takes
into account the research to be done in microbiology to understand the
process before modelling it.

4. To develop an agent-based model for the activated sludge process. This
model aims to represent the dynamics of the process from the point
of view of the entities involved in the process. It should present a
more realistic representation of the process that also facilitates the
understanding of the system. This objective groups the knowledge
acquired from previous objectives and put in practise the agent-based
modelling technique to develop a model of the activated sludge process.

5. To use the developed ABM to have a better understanding of the sys-
tem and to generate new insights and conclusions that could facilitate
the control of the system.

6. To develop optimization techniques based on the philosophy of swarm
intelligence to improve efficiency in the search for solutions to optimiza-
tion problems. This objective aims to apply the swarm intelligence to
develop a new optimization algorithm, inspired in the Particle Swarm
Optimization.

7. To test the different alternatives of parallel programming over GPU
(Graphic Processing Units) (MATLAB toolboxes, CUDA native code)
and select the most adequate for the thesis implementations.



6 Chapter 1. Introduction and Objectives

8. To apply the parallel computing over GPU technique to the develop-
ments of this dissertation to reduce the execution time of simulations
and algorithms. This transversal objective includes the application of
parallel computing to agent-based modelling, exploring the different
possibilities of use, and also parallelizing the swarm intelligence algo-
rithm developed.

The agent-based model and the optimization algorithm developed as part
of this work are two of the main blocks of a model based predictive controller,
where our research group has wide experience. For its application in real
time, the third element would be the parallel programming techniques over
GPU for speeding up code execution. Integration of these three elements
(model, optimizer and execution over GPU) and application to a real case is
out of the scope of this thesis.

1.3 Document Structure

The document is organized in four parts: part one introduces the work devel-
oped in this dissertation and states its objectives, the second one summarizes
some fundamental concepts to facilitate the comprehension of the thesis; the
third one exposes the developments of this dissertation, and the forth in-
cludes the conclusions and future work directions.

Inside part two, chapter 2 introduces Agent-Based Modelling, the prin-
cipal progress about this methodology, the application areas, the strengths
and weaknesses, the software used in this thesis, and the main representa-
tion standard. Chapter 3 explains some fundamentals about Swarm Intel-
ligence, exposes applications of this paradigm, and introduces the Particle
Swarm Optimization algorithm. Chapter 4 introduces the field of wastew-
ater treatment, the principal models used in the field, the activated sludge
process (process used in this dissertation), and also explains some microbi-
ological concepts needed when describing the activated sludge process from
the point of view of its microscopic components, bacteria. Chapter 5 deals
with fundamentals about parallel computing using graphic processing units
(GPUs).

In part three, chapter 6 presents our proposal of representation for agent-
based models; an example of application is introduced in the chapter, and
three additional examples in appendix A. The next chapter 7 covers the
agent-based models for the activated sludge process, outcomes of this dis-
sertation. It also includes our efforts in parallelizing the model to improve
its performance. The next chapter 8 presents a new optimization algorithm
based on the swarm intelligence theory.

In part four, chapter 9 exposes the main conclusions of this dissertation
(section 9.1), collects the contributions during this thesis (section 9.2), and



1.3. Document Structure 7

presents some future work directions (section 9.3).





Part II

Fundamentals

In this part of the thesis, some theoretical notions about the techniques
and the application field of this thesis are introduced. This part is divided
in four chapters with fundamentals about agent-based modelling, swarm
intelligence, wastewater treatment, and parallel computing on GPU.





Chapter 2

Agent-Based Modelling

Learn from yesterday, live for today,

hope for tomorrow. The important thing

is to not stop questioning.

Albert Einstein, Relativity: The Special

and the General Theory.

Summary: This chapter is focused on agent-based modelling, the

central methodology of the thesis. We briefly introduce this concept

and give some historical background. We then explain the structure of

the methodology and the key aspects of application including a short

introduction to the programming environments used in this thesis.

2.1 Introduction

Agent-based modelling (ABM) is a modelling approach that has gained in-
creasing attention over the past years. This methodology has become so
widespread due to the increasingly complex world where we live. We have
the chance to analyse more and more complex systems than before, where
traditional models are no longer applicable, for example, the deregulation of
the electric power industry, as Macal and North [76] show. Doyne Farmer
and Duncan Foley encourage a revision of traditional models in their article
The economy needs agent-based modelling [29], where they summarize this
need frankly and with no reservations in the sentence "the leaders of the
world are flying the economy by the seat of their pants".

In the past, the models where limited by mathematical tractability, mod-
els needed to be simple enough to be solved mathematically. This limitation
has been solved due to computer simulation. Nowadays we live in the so

11



12 Chapter 2. Agent-Based Modelling

called information society, where more and more data are available, orga-
nized into databases at finer levels of granularity. And also the computational
power of computers continues increasing, providing the scientific community
with more and more support to compute large-scale simulation that were
not plausible years before.

ABM has historical roots in the developments of automata approaches
and complex adaptive systems (CAS) and the underlying notion that "sys-
tems are built from the bottom-up" [84]. The CAS field studies the arise of
complex behaviours, adaptation and emergence of complex systems.

Before we start talking about ABM, it is essential to clarify what an agent
and agent-based modelling are. Thus, next section 2.2 is about definitions.
Then, in section 2.3 we review the application areas of this methodology. Sec-
tion 2.4 summarizes the principal strengths and weaknesses of ABM. Section
2.5 exposes some guidelines about how to develop agent-based models. Sec-
tion 2.6 exposes a brief review of ABM tools. The last section 2.7 reviews
the current standards in the field.

2.2 Definitions

Multi-agent systems (MAS) are traditionally considered a sub-field of Dis-
tributed Artificial Intelligence (DAI) field, and together with agent-based
systems are one of the most promising investigation areas inside the infor-
mation technologies and computation field.

Although the term agent is widely used, there is no universal accepted
definition inside the multi-agent field in general, neither the agent-based
modelling community in particular. The term agent appears in a diverse
range of sub-disciplines of information technology with slightly different
meanings. There are many articles that try to clarify what characteristics
an agent should own to be considered a so called agent. The same occurs
with the term "multi-agent system". In order to take a further look into this
subject we do recommend reading [32, 46]. In the following, we summarize
some definitions.

From a practical standpoint, an agent can be defined as Macal and North
[75] show:

• An agent is identifiable, a discrete individual with a set of character-
istics and rules governing its behaviours and decision-making capabil-
ity. Agents are self-contained. The discreteness requirement implies
that an agent has a boundary and one can easily determine whether
something is part of an agent, is not part of an agent, or is a shared
characteristic.

• An agent is situated, living in an environment with which it inter-
acts along with other agents. Agents have protocols for interaction



2.2. Definitions 13

with other agents, such as for communication, and the capability to
respond to the environment. Agents have the ability to recognize and
distinguish the traits of other agents.

• An agent may be goal-directed, having goals to achieve (not necessarily
objectives to maximize) with respect to its behaviours. This allows an
agent to compare the outcome of its behaviour relative to its goals.

• An agent is autonomous and self-directed. An agent can function in-
dependently in its environment and in its dealings with other agents,
at least over a limited range of situations that are of interest.

• An agent is flexible, having the ability to learn and adapt its behaviours
based on experience. This requires some form of memory. An agent
may have rules that modify its rules of behaviour.

There are several features that are common to most agent theories. These
are: autonomy, heterogeneity, active/pro-active, reactive, bounded rational-
ity, communicative, learning... An explanation of these features can be found
at [54].

According to Torsun [126], a multi-agent system consist of autonomous,
heterogeneous and independent agents, living in an environment, interacting
with it and with each other with their own goals, capabilities and knowledge.

Multi-agent systems are applied in many disciplines. Luck et al. [72]
classify the main agent research areas in three categories: agents as design
metaphor (as a way of structuring software development), agents as a source
of technologies (including different techniques and algorithms for dealing
with interactions in dynamic, open environments), and agents as simula-
tion (for representing complex dynamic systems. Agent-based modelling is
included in this category), as Figure 2.1 summarizes.

 !"#$%
&!'()*+,

-!.*%+/+$#!"

0#12/('#+%

Figure 2.1: Agent research areas. Based on [72].



14 Chapter 2. Agent-Based Modelling

Entities                                            Agents

Entities  interactions                       Agents interactions

Figure 2.2: Correspondence between the modelled system (left) and ABM
(right). Based on [33].

Agent-based models consist of agents that interact within an environ-
ment. Formally, agent-based modelling is a computational method that
enables a researcher to create, analyse and experiment with models composed
of agents that interact within an environment [34]. The models represent
the simultaneous operation and interactions between multiple agents in an
attempt to recreate the behaviour of a complex phenomenon.

Models are often aimed at obtaining insights about some aspects about
a given real system for a specific purpose. In order to facilitate this un-
derstanding and focus on the gist of the process, parts of the complexity of
the target system are intentionally lost in the construction of a model. For
instance, when modelling the wind resistance of a car, we deliberately do not
consider the colour or the scent of the piece, we just pay attention to those
aspects of the real system that are considered essential and we disregard the
rest of the details. This simplifying process, retaining only those features
that are considered relevant and making assumptions about unknown as-
pects, is called abstraction. However, as Galán et al point out [33], if an
abstraction does not in any way represent its modelling target, it would be
inappropriate to call it a model. In contrast with other modelling paradigms
in which it is not always easy to find the link between the analysed system
and its modelled representation, ABM facilitates this process since there is a
direct correspondence between entities in the model and entities in the mod-



2.2. Definitions 15

elled system, and interactions in the model and interactions in the modelled
system, as Figure 2.2 shows.

A review of the literature reveals many different terms being used to de-
scribe what we have in this thesis so far called agent-based modelling. These
terms include agent-based modelling [10], multi-agent-based simulation [22],
individual-based modelling [54, 52, 41], etc. An interesting attempt to clarify
these terms is conducted by Hare and Deadman [46]. Also Heppenstall et
al. show at [54] the differences between Cellular Automata, individual-based
models and microsimulation (MSM): A CA is a discrete dynamic system, the
behaviour of which is specified in terms of local relations. The space in a CA
system is divided into a lattice or grid of regularly-space cells of the same size
and shape, usually square. Each cell has a value either 0 or 1 or on a scale
from 0 to 1. The state of a cell and its behaviour is determined by the state
of other cells in close proximity at a previous time step, by a set of local rules
and by the cell itself. An important feature of a CA is that the automata’s
location does not move; they can only change their state. The position of the
cells and their neighbourhood relations remain fixed over time. In contrast,
agents can be either fixed in location or free to ’roam’ around their environ-
ment. Unlike agents, CAs cannot have more than one attribute; for example,
a cell could be occupied or unoccupied, but the cell could not contain multiple
attributes such as building type, date built, etc. MSM is a well established
methodology that works on the principle of creating small area microdata at
a point in time, and then generating future microdata from that basis. Cru-
cially in contrast to ABM, MSM only models one-direction interactions: the
impact of the policy on the individuals, but not the impact of individuals on
the policy and interactions between individuals are not simulated. Further-
more MSM models do not have the behavioural modelling capability of ABM.
For these authors, individual-based modelling (IBM) is a category grouping
ABM, CA and MSM; it is not so in Ecology, where IBM is used as equivalent
to ABM.

Agent-based modelling can be presented as "magic", but it is not more
than a formal model, that, in fact, can be expressed as a compact set of
mathematical equations (although this work is not trivial). Leombruni and
Richiardi [68], present a mathematical formalism able to describe both tra-
ditional analytical models and agent-based ones. Once a model has been
completely defined, we can derive the logical implications consequence of
the assumptions of the model. This process is called inference. Many for-
mal models typically infer these results deductively, however, in the case
of ABM, models are often so complicated that it is not feasible to obtain
compact close form solutions to explore the implications. In these cases we
have to resort to computer simulation as inference tool. From the subset
of the simulated cases modellers inductively derive general properties of the
results. Since in the majority of the models the study is done by simulation,



16 Chapter 2. Agent-Based Modelling

the term agent-based modelling and agent-based simulation are sometimes
used interchangeably. As Galán and Izquierdo [33] point out, it is important
to realise that a computer program is a formal model that can be expressed in
mathematical language, e.g. as a set of stochastic or deterministic equations,
and computer simulation is an inference tool that enables us to study it in
ways that go beyond mathematical tractability.

A number of researchers think that the alternative to ABM is traditional
differential equation modelling, but they should be seen as complementary
approaches to the study of formal systems. Agent-based modelling and sim-
ulation allows to explore the properties of certain formal models that are
intractable using traditional formal analysis, providing new knowledge, giv-
ing us the opportunity to explore inductively models which are difficult to
solve analytically.

An important characteristic of complex systems that can be captured us-
ing ABM is the emergent phenomena, that is, stable macroscopic patterns
arising from local interaction of individual entities. By definition, emergent
phenomena cannot be reduced to the systems’ parts; the whole is more than
the sum of the parts. It is said that the process to represent (macroscopic
level) emerges from the microscopic level, i.e., the interaction of relatively
simple behaviours leads to complex behaviour from a global perspective.
Phenomena such as flocks of birds, school of fish, and the complex biological
systems of cells are good examples of how systems with simple goals can
show complex emergent behaviours as a result of the communication with
neighbouring agents.

One of the first models illustrating the emergent phenomena is the Boids
Model, developed by Craig Reynolds [109], which simulates the flocking be-
haviour of birds. In this model, each agent is governed by three rules: sepa-
ration, alignment and cohesion, that lead to a coordinated flight.

2.3 Application areas

Bonabeau [13] has identified a list of conditions in which it is appropriate to
use ABM to capture the emergent behaviour:

• Agents exhibit complex behaviour, including learning and adaptation
in their behaviour.

• The behaviour of individuals cannot clearly be defined through aggre-
gate transition rates.

• Agents interactions are complex, non-linear and present heterogeneity,
and the interactions are dynamic.

• The modelled population is heterogeneous.



2.3. Application areas 17

• Agent behaviour is stochastic. Points of randomness can be applied
strategically within agent-based models, rather than a noise term added
more or less arbitrarily to an aggregate equation.

• When it is important that agents form organizations or groups, and
when it is relevant to model adaptation and learning not at individual
level but at organization level.

• Agents spatial distribution is important.

ABMs have been developed for a wide diverse range of subject areas,
from economics, ecology, social science, microbiology, environmental mod-
elling, etc. Reviews of different applications can be found in almost any
introductory guide to ABM. To see some examples of application areas the
reader can review: [54, 75, 46, 125].

In [75] we can find the following summary (table 2.1) of ABM applica-
tions.

Business and Organizations Society and Culture
Manufacturing Operations Ancient civilizations
Supply chains Civil disobedience
Consumer markets Social determinants of terrorism
Insurance industry Organizational networks

Economics Military
Artificial financial markets Command and control
Trade networks Force-on-force

Infrastructure Biology
Electric power markets Population dynamics
Transportation Ecological networks
Hydrogen infrastructure Animal group behaviour
Crowds Cell behaviour and subcellular processes
Pedestrian movement
Evacuation modelling

Table 2.1: Agent-based Modeling Applications. From [75]

As Tesfatsion [125] points out in his online repository about ACE (Agent-
based Computational Economics), there are four strands differentiated by
objective in which ABM research can be divided. These are: empirical un-
derstanding, normative understanding, qualitative insight and theory gen-
eration, and methodological advancement. This implies that ABM can be
used to explain systems, extend the understanding of the system, and also
to generate new knowledge about systems.



18 Chapter 2. Agent-Based Modelling

2.4 Strengths and weaknesses

The mayor advantages of ABM are [11, 13, 27]:

• It facilitates the abstraction since there is a direct correspondence be-
tween entities in the model and entities in the modelled system, and
interactions in the model and interactions in the modelled system.

• It allows the representation of interactions and spatial distribution of
entities and also the study of the bidirectional relations between indi-
viduals and groups.

• It provides the possibility to model heterogeneity almost by definition.

• It leads to formal yet more natural and transparent descriptions of the
target system.

• It improves the understanding of systems.

• It can capture emergent behaviour.

• It can be used as virtual experiments in order to predict the behaviour
of a system under certain conditions, that is, it is suited for detailed
hypothesis-testing, i.e. for the study of the consequences of hypotheses
regarding the interactions of agents.

There are also some weaknesses in applying this modelling approach:

• ABMs are very sensitive to initial conditions and to small variations
in interaction rules, this path dependence means that using ABM for
prediction can be challenging [49, 54].

• In most of the cases, the models cannot be solved deductively, as a
consequence simulations must be run to study the behaviour of the
model [13].

• The process of calibrating an ABM with the correct parameter values
to fit the behaviour of the target system is challenging; it is usually
necessary to use optimization tools.

• These models can have a high computational load.

2.5 Methodology

The process of developing an ABM is carried out by three different roles
according to Drogoul et al. [22, 25, 33]: the thematician, the modeller, and
the computer scientist.



2.5. Methodology 19

The thematician’s work is to abstract the target system identifying the
purpose of the model and hence the different individuals of the target sys-
tem and its relationships. In order to fulfil the task, the thematician has to
be an expert in the domain but not necessarily a modelling expert. Conse-
quently, the conceptualization of the model (abstraction step), output of this
stage, is usually a non-formal model in which many of the processes are not
fully specified. The following is the design step, where the modeller trans-
forms this conceptualization into a complete and formal set of specifications.
Finally, the approximation process is conducted by the computer scientist,
which must find a suitable (formal) approximation to the modeller’s model
that can be executed in a computer. The goodness of the approximation
may be quantified by the effect in the results, the less impact the better.

The modelling scheme described upwards can be embedded in a more gen-
eral methodology which includes the design and development of the ABM
model, but also its proper use, e.g. the simulation, analysis, validation or
interpretation of the model. Although the details can depend on the context
and goals of the model, typically this approach involves five different steps.
Firstly, the definition of the agents involved, their characteristics, the en-
vironment they live in (subsection 2.5.1), and the relationships between all
of them (subsection 2.5.2). Even though in practice, research teams do not
divide clearly their work according to the diverse roles and very often several
roles may correspond to the same person, these tasks may be attributed to
the thematician and the modeller. The following is the model implementa-
tion by the role of computer scientist using a software platform (subsection
2.5.3). The next is the verification, calibration and validation processes (sub-
section 2.5.4). Finally, simulations can be performed (subsection 2.5.5).

2.5.1 Agents and their Environment

The first step is to identify the agent types along with their attributes.
The agent types are the different species of individuals (entities in general)
playing an important role in the model. The agents are characterized by
their attributes. Attributes can be grouped into:

• Spatial location: identifying the position of the agents in the envi-
ronment. Sometimes it is not used; for example, if the topology of
the agents is a network, or if the spatial position of the agents is not
relevant.

• Appearance characteristics: for visualization purposes. Agents can
have different visualization properties, such as: shape, colour, visibility,
label, trail, etc.

• Custom attributes, depending on the system to be modelled, such as:
age, temperature, sex, etc.



20 Chapter 2. Agent-Based Modelling

The agents can have two types of attributes, static ones (also called
parameters), and dynamic ones that change over time (also known as agent
states).

Some ABM [124] add learning processes to the agents, making use of
different techniques. These include reinforcement learning algorithms, neural
networks, genetic algorithms, genetic programming, and a variety of other
algorithms that attempt to capture aspects of inductive learning.

Macal et al. [76] group the relationships between agents in five categories
according to its spatial distribution:

1. Soup. A nonspatial model in which agents have no locational attribute.

2. Grid or lattice. Cellular automata represent agent interaction patterns
and available local information by a grid or lattice; cells immediately
surrounding an agent are its neighbourhood. Geographic information
systems (GIS) of raster type, where agents move over realistic geospa-
tial landscapes [34], are included in this category.

3. Euclidean space. Agents roam in 2D or 3D spaces; vectorial GIS can
also be used [34].

4. Networks. Networks may be static (links pre-specified) or dynamic
(links determined endogenously). Sometimes a multidimensional model
can be developed, where different network layers can affect each other;
an example of these networks is multiplex networks [45].

They also emphasize the idea that the fact that agents only interact with
a limited group of agents in their surroundings is most important than the
spatial distribution of agents itself.

2.5.2 Agent Methods and Interactions

In this subsection the most common process for the specification of the
methods of updating the agents attributes, in response to the interaction
with other agents or the environment is exposed, although there can be
other modelling paradigms, such as SDML (strictly declarative modelling
language) [89].

Agents can interact with each other and amongst themselves and with
the environment. Relationships may be specified in a variety of ways, from
simply reactive (i.e. agents only perform actions when triggered to do so by
some external stimulus e.g. actions of another agent) to goal-directed (i.e.
seeking a particular goal) [54]. The methods can be classified into:

• Movement methods: jump, turn...

• Appearance change: size, colour, shape change...



2.5. Methodology 21

• Custom changes according to the agents attributes.

These methods are based on published literature, expert knowledge or data
analysis [54]. They are also known as rules or submodels in the literature
depending on the field.

Moreover, the methods to control which agents interact, the order and
timing must be specified. These methods usually follow if-else statements
based on the agents states (values of their attributes) carrying out an action
once a specified condition has been satisfied.

To develop these methods, parameters related to the agents and the
environment must be defined.

Both Macal and North [76] and Railsback and Grimm [106] present a set
of questions to be answered before an ABM is designed. Table 2.2 shows the
version of Macal and North.

2.5.3 Implementation

Once you have the executable model [33], that is, having completed the mod-
elling steps of abstraction, design and approximation, the next step is the
implementation of the model in a computational software, using a program-
ming language or using a higher-level agent-based toolkit. There are several
software platforms available which will be mentioned in section 2.6.

The model implementation is composed by several parts:

• Memory allocation, initialization of parameter values and agents states.

• The program would iterate between the different actions and through
all the agents, sequentially checking if the requirements to happen are
met; if then, the action occurs. For example, if an agent reaches a fixed
value for reproduction, it could reproduce as a function of a statistical
distribution if the model is stochastic.

• Calculate the aggregated variables that represent the macroscopic emer-
gent behaviour of the model. These variables are expressed by means
of relationships between the agent states and the parameters of the
agents and of the environment.

• At every iteration, time must be evolved. If time is modelled by discrete
time steps, an step counter is incremented.

• It is checked if the termination condition is satisfied.

The algorithmic description is shown in figure 2.3.

The behaviour of the agents can be scheduled to take place synchronously
(i.e. every agent performs actions at each discrete time step, all changes oc-
cur simultaneously), or asynchronously (i.e. agent actions are scheduled



22 Chapter 2. Agent-Based Modelling

Model Purpose and Value-added of Agent-based Modelling:
What specific problem is the model being developed to address?
What specific questions should the model answer?
What kind of information should the model provide to help make or
support a decision?
Why might agent-based modelling be a desirable approach?
What value-added does agent-based modelling bring to the problem that
other modelling approaches cannot bring?

All About Agents:
What should the agents be in the model?
Who are the decision makers in the system?
What are the entities that have behaviours?
Where might the data come from, especially on agent behaviours, for such
a model?

Agent Data:
What data on agents is simply descriptive (static attributes, parameters)?
What agent attributes are calculated endogenously by the model
and updated for the agents (dynamic attributes, states)?
What is the agents’ environment?
How do the agents interact with the environment?
Is agent mobility through space an important consideration?

Agent Behaviours:
What agent behaviours are of interest?
What decisions do the agents make and what information is required to
make such decisions?
What behaviours are being acted upon?
What actions are being taken by the agents?
How would we represent the agent behaviours? By If-Then rules? By
adaptive probabilities, such as in reinforcement learning? By regression
models or neural networks?

Agent Interactions:
How do the agents interact with each other?
How do the agents interact with the environment?
How expansive or focused are agent interactions?

Agent Recap:
How do we design a set of experiments to explore the importance of
uncertain behaviours, data and parameters?
How might we validate the model, especially the agent behaviours and
the agent interaction mechanisms?

Table 2.2: Questions to Ask Before Developing an Agent-based Model [106]



2.5. Methodology 23

Initialization

Methods and interactions 
(iterate through all the agents) 

Calculate aggregated 
variables 

t = t+1 

End
condition? 

End

No 

Yes 

Figure 2.3: Flowchart of a generic agent based model scheduling.

by the actions of other agents, and/or with reference to a clock) [54]. In
the model’s schedule is also important to define how variables are updated,
asynchronous (a state variable is immediately assigned a new value as soon
as that value is calculated by a process) or synchronous (the new value is
stored until all agents have executed the process, and then all are updated
at once). Most ABMs represent time simply by using time steps, but time
can be represented in other ways [43].

2.5.4 Verification, validation and calibration

Once there is a first working version of the model, it must be checked whether
it accomplishes the objectives for what it was designed.

The first set of tests is called verification, also called internal validation
[123, 9, 22], program validation [110] or face validation [64]. It is checked
that the simulation performs as planned to do. Here some coding errors
(called ’errors’) can appear or design errors or modelling mismatch (called
’artefacts’) [33] may appear. When this occurs, the results of the simulations
may be erroneous. A great recommended read on the subject is [33].

Then, the process of validation must be performed, ensuring that the
behaviour of the model does correspond to the behaviour of the system
modelled.

If there is the need to adjust the model to a real case, there must be a
process of calibration where the values of the parameters are tuned so that



24 Chapter 2. Agent-Based Modelling

the output of the model fits real data.

These three processes are explained in more detail in [64].

2.5.5 Simulation

A simulation is the process of running an experiment in a computational
model. A set of entries is given, which are the initialization values of the
states and the values of the parameters. These values depend on the ex-
periment that is going to be performed. After the experiment, the data
generated as a result must be analysed.

If the model is stochastic, two agent-based simulations can generally
bring different results even if the underlying model is exactly the same.

2.6 Software

Nowadays, there are many software options for implementing an ABM. The
general criteria for selecting one or another are: the easiness of developing
the model/using the system; the size of the community using the system;
the availability of help or support (most probably from the user commu-
nity); the size of the community familiar with the programming language
in which the system is implemented (if a programming language is neces-
sary to implement the model); if the system is still maintained and/or up-
dated; the availability of demonstration or template models; the technical
and how-to documentation; and the licensing policy (open source, share-
ware/freeware, or proprietary). There are other criteria related to the ABM
modelling process: number of agents that can be modelled; degree of interac-
tion between agents; ability to represent multiple organisational/hierarchical
levels of agents; variety of model environments available (network, raster,
and vector); possible topological relationship between agents; management
of spatial relationships between agents, and agents with their environment;
mechanisms for scheduling and sequencing events, etc. All these topics are
covered in the book Agent-Based Models of Geographical Systems [54] under
the chapter Guidelines for Choosing a Simulation/Modelling System, and
in the article (in Spanish) Modelado basado en agentes para el estudio de
sistemas complejos [98], and we also recommend to review [50, 54, 75, 76] to
have a more extended knowledge on the subject.

Open source software is that whose source code is public and, enabling
anyone to copy, modify and redistribute the system without paying royal-
ties. Under this classification we can find well known toolkits: MASON
[73], Repast [18], Swarm [86] (Swarm was the first ABM software devel-
opment environment, launched in 1994 at the Santa Fe Institute.), SeSAm
[63], NetLogo [129], etc. Proprietary software is developed by an organisa-
tion that exercises control over its distribution and use and requires a licence



2.7. Standards 25

(AgentSheets [108], AnyLogic [7]).

An ABM can also be implemented using spreadsheets, general computa-
tional mathematical systems: (MATLAB [81], Mathematica [131]) or general
programming languages.

In this thesis we have tested three ABM environments: SeSAm, An-
droMeta [6] and NetLogo.

SeSAm is short for Shell for Simulated Agent Systems. It is a generic en-
vironment for the development and simulation of Multi-Agent models. The
main focus is to enable scientists to construct models by visual programming.
The main advantage of multi-agent simulation is that the agent paradigm
is very intuitive, especially when modelling societies. Moreover it has some
valuable properties, like the possibility for formulating flexible interaction be-
tween agents, multi-level interaction, adaptivity, etc. SeSAm was developed
at the University of Wurzburg and applied in several projects in different ap-
plication domains. SeSAm is open source (LGPL) and available to download
for free.

AndroMeta is a software platform for technical and scientific computing
which spans a diverse range of fields: from machine learning and artificial
intelligence (AI) in general, distributed and concurrent computing, language
design, modelling and simulation, etc, all of them are unified into an ad-
vanced yet easy-to- use C++ framework. The website of the manufacturer
is not reachable nowadays.

NetLogo is an open source programmable modelling environment for sim-
ulating natural and social phenomena. It was authored by Uri Wilensky in
1999 and has been in continuous development ever since at the Center for
Connected Learning and Computer-Based Modeling. It is used by tens of
thousands of students, teachers and researchers worldwide. It also powers
HubNet participatory simulations. It comes with an extensive models li-
brary including models in a variety of domains, such as economics, biology,
physics, chemistry, psychology, system dynamics... NetLogo allows explo-
ration by modifying switches, sliders, choosers, inputs, and other interface
elements. Beyond exploration, NetLogo allows authoring of new models and
modification of existing ones.

2.7 Standards

The most popular standard for describing an agent-based model is the ODD
Protocol, proposed by Volker Grimm et al. [42]. Its objective is to standard-
ize the descriptions of individual-based and agent-based models, to make
model descriptions more understandable and complete, thereby making ABMs
less subject to criticism for being irreproducible. The ODD is organized
around the three main components to be documented about a model: Overview,
Design concepts, and Details ; these sections must be written in a certain or-



26 Chapter 2. Agent-Based Modelling

der. These sections encompass seven elements that must be documented in
sufficient depth for the model’s purpose and design to be clear and replicable
for a third party: Purpose, State Variables and Scales, Process Overview and
Scheduling, Design Concepts, Initialization, Input, and Submodels.

• The Overview section aim is to sketch the model, describing: the en-
tities in the model, the methods and interactions, and the model’s
schedule. The Purpose subsection is intended to explain the goal of
the model and its future use and application. The State variables and
scales subsection outlines the structure of the model at a high level, but
also at a low level, specifying all the variables that constitute the state
of the model. The Process overview and scheduling subsection lists all
the processes that occur in the model and how they are scheduled.

• The Design concepts section does not describe the model itself, but the
general concepts about it that are characteristic of ABMs. They group
some of the following subsections (not necessary all): Basic principles,
Emergence, Adaptation, Objectives, Learning, Prediction, Sensing, In-
teraction, Stochasticity, Collectives, and Observation.

• The Details section should allow a complete re-implementation of the
model. Initialization describes the starting state of the model. Input
data describes any outside data that is input into the model. The Sub-
models subsection explains in detail the processes listed in the Process
overview and scheduling subsection within the Overview section.

In addition to the original 2006 publication, Grimm et al. have continued
to publish updates to the protocol with examples of its application to research
projects [43].

In the literature, another proposal to describe an agent based model can
be found; Hinkelmann et al. [56] propose an addition to the ODD protocol:
an algebraic structure to describe an ABM as a dynamical system using
polynomials.

In this thesis we propose a complementary approach for representing
agent based models. Our notation provides a new approach for represent-
ing the agents in the model, the environment, and the relationships between
agents with other agents, and agents with the environment, which lead to dif-
ferent patterns and emergent behaviours. We propose a notation inspired by
the State Space representation of systems, since this work has been developed
in the System engineering and automatic control field and from our point
of view, agents are dynamical systems whose states evolve in time within
a state space domain, as a result of complex relations between agents and
agents with the environment. The State Space Agent-Based Representation

will be described at chapter 6.



In the next chapter. . . 27

In the next chapter. . .

In the next chapter we are going to introduce the concept of Swarm Intelli-
gence in the context of this thesis.





Chapter 3

Swarm Intelligence

It is possible to make things of great

complexity out of things that are very

simple. There is no conservation of

simplicity.

Stephen Wolfram

Summary: In this chapter the fundamentals of Swarm Intelligence

are reviewed. Also the Particle Swarm Optimization algorithm and

the variation used in this thesis are explained.

3.1 Introduction

Swarm Intelligence is a collection of algorithms inspired by the social be-
haviour of individuals in nature, within the field of evolutionary computa-
tion inside the artificial intelligence (AI) discipline. They are population
based algorithms inspired by the collective behaviour of decentralized and
self-organizing systems. Examples of such systems which have fascinated
scientists for many years are ants, termites, bees, and wasps, the flocks of
birds or schools of fish. This group of individuals with simple rules that
interact with each other produce, as a consequence, emergent collective be-
haviours or decisions that are optimal for the group, for example, where to
forage, where to live, the formation of structures during the flight, etc... A
good introduction to Swarm Intelligence with explanation of several natural
collective behaviours can be found at [12].

As in the agent-based modelling approach, the foundation of this paradigm
is the collective behaviour of decentralized individuals with predefined rules
that cooperate. Even though the single members of these colonies (swarms)
are non-sophisticated individuals, they are able to achieve complex tasks in

29



30 Chapter 3. Swarm Intelligence

cooperation. Coordinated colony behaviour emerges from relatively simple
actions or interactions between the colonies’ individual members.

A swarm can be defined as a structured collection of interacting or-
ganisms (or agents). Swarm Intelligence can be defined as ’the emergent
collective intelligence of groups of simple agents’ [14]. ’Self-organization
is a set of dynamical mechanisms whereby structures appear at the global
level of a system from interactions of its lower-level components’ [14].

Mark Millonas [85], at Santa Fe Institute, who develops this kind of
swarm models for applications in artificial life, has articulated five basic
principles of swarm intelligence:

• The proximity principle: The population should be able to carry out
simple space and time computations.

• The quality principle: The population should be able to respond to
quality factors in the environment.

• The principle of diverse response: The population should not commit
its activity along excessively narrow channels.

• The principle of stability: The population should not change its mode
of behaviour every time the environment changes.

• The principle of adaptability: The population must be able to change
behaviour mode when it’s worth the computational price.

3.2 Particle Swarm Optimization

Particle swarm optimization (PSO) was originally introduced by Eberhart
and Kennedy [23, 24, 61]. The PSO algorithm is a population based search
algorithm inspired by the social behaviour of bird flocking or fish schooling.

In this algorithm, every individual (particle) in the swarm represents a
potential candidate solution and it is represented by a multidimensional vec-
tor. Each particle has a position vector and a velocity vector. The algorithm
determines the rules to update both the velocity and position vectors. The
update is conditioned to the best position the entire population has visited.
The degree of optimality is measured by a fitness function defined by the
user. The PSO process then is iterated a fixed number of times or until a
minimum error based on desired performance index is achieved.

Although it is a simple model, it has shown great results with difficult
optimization problems efficiently. It was originally developed for real valued
spaces but nowadays the PSO algorithm has different variants according to
the nature of the problem to solve:



3.2. Particle Swarm Optimization 31

• single solution PSO: to find a single solution to unconstrained, static
continuous optimization problems;

• niching PSO: to locate more than one solution to an optimization prob-
lem;

• constrained PSO: to solve constrained optimization problems;

• multi-objective PSO: to solve problems with multiple conflicting sub-
objectives;

• dynamic environment PSO: to locate and track optima in dynamically
changing search spaces;

• discrete PSO: to solve problems defined over discrete search spaces.

Since its introduction in 1995, particle swarm optimization has seen many
improvements and applications. Most modifications to the basic PSO are
directed towards improving convergence of the PSO and increasing the di-
versity of the swarm. Based on the single solution PSO, there are several
variations that modify the basic version to improve the performance, such
as the introduction of the velocity clamping or inertia weight.

3.2.1 Basic Particle Swarm Optimization

The following description of the basic PSO and the inertia weight variation
can be found at [26]:

Let ~ui(t) denote the position of particle i in the search space
at time step t ; unless otherwise stated, t denotes discrete time
steps. The position of the particle is changed by adding a velocity,
~vi(t), to the current position, i. e.

~ui(t+ 1) = ~ui(t) + ~vi(t+ 1) (3.1)

with ~ui(0) ∼ U(~umin, ~umax).

The velocity component drives the optimization process weighting the
experiential knowledge of the particle (usually called cognitive component)
and the knowledge of the entire swarm (called social component). The social
component differs depending on the size of neighbourhoods of the particles.
There are two main algorithms: the global best algorithm (gbest), where
there is only one neighbourhood that is the entire swarm; and the local
best PSO (lbest), with several neighbourhoods that can present different
topologies.

In the next section we present the Global Best PSO (gbest), using the
variation with inertia weight.



32 Chapter 3. Swarm Intelligence

3.2.1.1 Global Best PSO

For the gbest PSO, the neighbourhood for each particle is the entire swarm.
The social network employed by the gbest PSO is the star topology, that is,
each particle has information of all particles in the swarm knowing the best
position visited by the entire swarm ~̂µ(t). ~̂µ(t) is the best of all best personal
positions of all particles.

From [26]:

For gbest PSO, the velocity of a particle i is calculated as:

vid(t+1) = vid(t)+k1r1d(t)[µid(t)−uid]+k2r2d(t)[µ̂d(t)−uid(t)]
(3.2)

where vid(t) is the velocity of particle i in dimension d =
1, ..., nx at time step t, uid(t) is the position of particle i in di-
mension d at time step t, k1 and k2 are positive acceleration
constants used to scale the contribution of the cognitive and so-
cial components respectively, r1d(t), r2d(t) ∼ U(0, 1) are random
values in the range [0,1], sampled from a uniform distribution.
These random values introduce a stochastic element to the algo-
rithm.

The personal best position, ~µi(t), associated with particle i is
the best position the particle has visited since the first time step.
Considering minimization problems, the personal best position
at the next time step, t+1, is calculated as

~µi(t+ 1) =

{

~µi(t) if f(~ui(t+ 1)) ≥ f(~µi(t))
~ui(t+ 1) if f(~ui(t+ 1)) < f(~µi(t))

(3.3)

where f : Rnx → R is the fitness function.

The fitness function measures the quality of the solution found (best particle
position), that is, evaluates the success of the optimization process.

From [26]:

The global best position, ~̂µ(t), at time step t, is defined as

~̂µ(t) ∈ {~µ1(t), ..., ~µns(t)} |f(~̂µ(t)) = min {f(~µ1(t)), ..., f(~µns(t))}
(3.4)

where ns is the total number of particles in the swarm.

The gbest PSO is summarized in Algorithm 1, from [26].



3.2. Particle Swarm Optimization 33

Algorithm 1 gbest PSO

Create and initialize an nx−dimensional swarm;
repeat

for each particle i = 1, ..., ns do
// set the personal best position
if f(~ui) < f(~µi) then
~µi = ~ui

end if
//set the global best position
if f(~µi) < f(~̂µ) then
~̂µ = ~µi

end if
end for
for each particle i = 1, ..., ns do

update the velocity using equation 3.2
update the position using equation 3.1

end for
until stopping condition is true;

3.2.1.2 The Inertia Weight variation

In an optimization process, a balance between exploration (exploring new
search space regions) and exploitation (in-depth exploring promising regions
already found) is required. The inertia coefficient ω was designed to trade-
off between this two objectives. It was introduced by Shi and Eberhart
[117] as an alternative to velocity clamping (another variation to control the
global exploration of particles and avoid particles leaving the boundaries of
the search space). This coefficient weights the contribution of the previous
velocity ωvid(t).

From [26]:

For the gbest PSO, the velocity equation changes from equa-
tion 3.2 to

vid(t+1) = ωvid(t)+k1r1d(t)[µid(t)−uid]+k2r2d(t)[µ̂d(t)−uid(t)]
(3.5)

The main disadvantage of using the inertia weight component is that the
optimal value of ω is problem dependent. If ω<1, the velocity of particles
decreases until zero, facilitating the exploitation. On the contrary, if ω>1 the
particles are accelerated to explore new regions. Smaller values of ω involve
a major influence of social and cognitive components in the new velocity.

Van den Bergh and Engelbrecht [127] remark the importance of the re-
lation between the value of ω and the values of the acceleration coefficients



34 Chapter 3. Swarm Intelligence

k1, k2. They stated the following recommendation to ensure convergence of
the PSO:

ω >
1

2
(k1 + k2)− 1 (3.6)

3.2.2 Implementation Aspects

As algorithm 1 indicates, the optimization process is iterative.

The first step of the PSO algorithm, as usually, is the initialization pro-
cess. The variables that have to be initialized are:

• The acceleration constants k1, k2.

• The inertia weight ω.

• The position of particles. It must be ensured that particles cover all
the search space, since these initial positions do influence the efficiency
of the algorithm.

• It is recommendable to initialize the velocities to zero, as an analogy
with physical objects [26].

• The personal best position for each particle is initialized to the parti-
cle’s position at time step t = 0.

The algorithm ends when a stopping condition is satisfied. There are
different options in the literature:

• Terminate when a maximum number of iterations, or FEs (function
evaluations), has been reached.

• Terminate when an acceptable solution has been found.

• Terminate when no improvement is observed over a number of itera-
tions.

• Terminate when the normalized swarm radius is close to zero.

• Terminate when the objective function slope is approximately zero.

It is important to select a stopping criterion that does not cause pre-
mature convergence of the algorithm. Traditionally, another criterion for
selecting the stopping criteria had been minimizing the number of function
evaluations, since they increase the computation time; but nowadays this is
not such a problem due to the use of parallel computing, as it is supported
in this thesis.

In order to take a further look into this subject we do recommend reading
[26], where all this information has been extracted from.



3.3. Applications 35

3.3 Applications

Scientists have applied these swarm intelligence principles mainly in opti-
mization [23, 24], in control of robots [47, 48], for finding optimal routes
[79], scheduling [17], power system controller designs [59], and image [15]
and data analysis [77].

In the optimization field, the Swarm is a population of individuals (po-
tential candidate solutions) cooperating among themselves and statistically
becoming better and better over time and eventually finding good enough
solutions. The main two optimization algorithms based on Swarm Intelli-
gence are Particle Swarm Optimization (PSO) and Ant Colony Optimization
(ACO).

The PSO algorithm has been applied to many disciplines. For example,
in machine learning, to train artificial neural networks [4, 107] and in fuzzy
cognitive maps learning [95]. In operations research, it has been applied
to scheduling problems [70], and continuous review inventory optimization
[96]. It has also been applied to multiobjective optimization [55], minimax
optimization [67], constrained optimization [69, 58], etc.

The PSO was originally developed for static environments, but rarely real
problems are static. Sometimes the objective function varies over time as a
result of the changing environment. Other times, these changes are caused by
noise of imprecise information about the variables or the objective function.
In the System engineering and automatic control field, a popular control
strategy that works successfully with dynamic environments, both in theory
and practice, is the Model Based Predictive Control (MBPC). The MBPC
uses a model of the system to calculate predictions of the behaviour of the
system and optimize the control actions to apply to the system. Since the
environment is dynamic, the control action and the predictions are calculated
on every time step. The PSO has been successfully applied to dynamic
environments [16, 94, 97] (with some changes in the algorithm [26]), and has
also been used with the MBPC strategy [60, 134, 8, 132].

In the next chapter. . .

In the next chapter the process of wastewater treatment is explained and
also the activated sludge process. Moreover, some brief fundamentals about
microbiology are introduced, which are of interest for understanding the
ABM developed at chapter 7.





Chapter 4

Wastewater Treatment

An expert is a person who has made all

the mistakes that can be made in a very

narrow field.

Niels Bohr

Summary: This chapter encompasses concepts from sewage treat-

ment to more specific concepts of microbiology used in this disserta-

tion.

4.1 Introduction

Water is one of the most fundamental natural resources, and together with
air, land and energy are the four bases that support the development. Wastew-
ater or sewage is the polluted water generated by the communities after its
use in residential and industrial establishments. Wastewater engineering is
a branch of environmental engineering that face the issues associated with
the treatment and reuse of wastewater.

The techniques and steps to treat the wastewater are reviewed in section
4.2. Then in section 4.3 the activated sludge process and some of the mod-
elling approaches applied until now are reviewed. After that, in sections 4.4
and 4.5 we face the problem from the point of view of the individuals, that is,
microorganisms involved in the process. Some concepts of microbiology are
reviewed as well as different modelling approaches (ABM included) under
this perspective.

37



38 Chapter 4. Wastewater Treatment

4.2 Wastewater Treatment

The main objective of a wastewater treatment plant (WWTP) is to elimi-
nate the contaminants present in wastewater to facilitate its reuse, avoid the
production of malodorous gases or the development of pathogenic microor-
ganisms.

Although there can be some variations, generally wastewater treatment
in a WWTP follows the following steps: primary treatment, secondary treat-
ment and tertiary treatment.

Primary Treatment
The objectives of this phase are preparing the influent for the biological
treatment (in the secondary treatment) and preventing damage to pumps
and other equipment. Large solids present in wastewater are eliminated by
screening. Oils, grease and suspended solids are eliminated by means of a
combination of flotation, sedimentation, coagulation and filtration processes.
The pH of the influent is adjusted if required.

Secondary Treatment
This process removes the organic matter in wastewater by using biological
treatment processes, in general, microorganisms that are able to break down
and metabolize the main contaminants present in wastewater. In the last
stage of this treatment, the microorganisms are allowed to settle down in a
clarifier and a fraction of the microorganisms is retired from the effluent to
be reused.

Tertiary Treatment
The tertiary treatment aims to generate a higher quality effluent and re-
move specific types of residuals. Different processes are carried out, such as
filtration, to remove suspended or colloidal solids; adsorption and chemical
oxidation, to remove organics; disinfection by ozonation or chlorination, etc.

4.3 The Activated Sludge Process

The Activated sludge was first introduced in England in early 1900’s and
became common in the United States in 1940’s.

An activated sludge can be defined as a microbial mass produced when
the wastewater is aerated continuously. That mass is made up of microor-
ganisms that are able to break down and metabolize the main contaminants
in the wastewater. The activated sludge process is a type of biological pro-
cess that takes place in the secondary treatment of sewage at a wastewater
treatment plant.

Nowadays it is considered as the most important biological wastewater
treatment process due to its reliability, flexibility, the high quality effluent it



4.3. The Activated Sludge Process 39

generates, having low construction cost and reasonable operation and main-
tenance costs, and small land requirement.

The basic activated sludge process, as illustrated on figure 4.1, consists
of the following three basic components:

1. An aeration tank (bioreactor) where the activated sludge and wastewa-
ter are mixed and aerated for a certain period of time. The microorgan-
isms in the tank are mostly bacteria, although there are other species
such as protozoa, fungi, algae, etc.

2. A system of separation of activated sludge and treated effluent (called
secondary clarifier or clarifier).

3. A recirculation of activated sludge to the aeration tank.

4. A system of treatment and disposal of the sludge produced (purge).

The term activated sludge is used because microorganisms reused from
the clarifier are in a "hungry" or activated condition, after being for a period
of time in the clarifier where there is no substrate.

In this thesis we start modelling a simplified version of the process in a
batch reactor, i.e., an isolated reactor in which an initial charge is introduced
and provided with adequate ventilation conditions for the optimal develop-
ment of the reactions of substrate-biomass interaction, in order to better
focus on the interaction substrate-biomass.

Under these conditions (batch reactor), the temporal evolution of the con-
centrations of substrate and biomass takes place as shown in Figure 4.2. The
growth curve is obtained by a count of the number of living cells (biomass)
over time. The biomass curve consists of several phases. The microorgan-
isms must first accommodate to their environment and available food. This
accommodation period is called lag phase, and varies in size depending on
the history of seeded microorganisms. If microorganisms are adapted to the
environment, the lag phase will be very brief. Once growth has begun, it
will continue rapidly. When maximum growth is occurring, the behaviour
is logarithmic; this is why this phase is called the logarithmic phase. Maxi-
mum growth cannot continue indefinitely: the food available may be ended
up, environmental conditions may change (e.g., overpopulation, accumula-
tion of waste products, etc.), and a population of predators can be developed.
Cells that are unable to obtain food from outside sources initiate endogenous
catabolism, i.e., they catabolize the protoplasm stored to maintain their en-
ergy. Other cells die or break releasing their protoplasm, which is added to
the food available. This stage is represented in Figure 4.2 with the name
of stationary phase, and represents the time along which the production of
new cell material is roughly compensated by death and endogenous respira-
tion. Whereas in the stationary phase there is still some reproduction, the



40 Chapter 4. Wastewater Treatment

Plant view of 
aeration tank 

Influent 

Primary 
clarifier 

Secondary 
clarifier 

Effluent 

Return of activated sludge Sludge 

(a) Activate Sludge Reactor. Configuration 1

Aeration 
tank 

Influent 

Primary 
clarifier 

Secondary 
clarifier 

Effluent 

Return of activated sludge Sludge 

(b) Activate Sludge Reactor. Configuration 2

Influent Air 

Effluent 

Fill                           React / aeration                        Settle                               Decant 

(c) Activate Sludge Reactor. Configuration 3

Figure 4.1: Typical activated sludge processes with different types of reac-
tors: (a) schematic flow diagram of plug-flow process and view of plug-flow
reactor, (b) schematic flow diagram of a complete-mix process and view
of complete-mix activated sludge reactor, and (c) schematic diagram of se-
quencing batch reactor process and view of sequencing batch reactor (Based
on [83])



4.3. The Activated Sludge Process 41

PHASES

1   2          3                 4

1 Lag phase

g
/l

)

1.Lag phase

2.Logarithmic phase

o
n

 (
m

g

3.Stationary phase

4 Endogenous phase

en
tr

a
ti

o 4.Endogenous phase

C
o
n

ce Biomass

SubstrateSubstrate

Time

Figure 4.2: Temporal evolution of the concentrations of substrate and
biomass.

endogenous respiration and death dominate the fourth phase, called endoge-
nous phase. In this last phase, the biomass decreases slowly, asymptotically
approaching the horizontal axis.

There are numerous models for the wastewater treatment process, but
the most used and generally accepted as a standard in the field of biological
modelling of the activated sludge is model ASM1 for the simulation of or-
ganic matter removal and biological nitrification and denitrification. Model
ASM1 was proposed by the group of mathematical modelling of the Inter-
national Water Association (IWA). In the book [53], Hence et al. give an
overview of the Activated Sludge Model (ASM), presenting ASM1, and the
later variations ASM2, ASM2d and ASM3; where the main disadvantage of
these models is described as Practical applicability of these models is limited
by the non-availability of activated sludge process data (kinetic coefficients
and wastewater characteristics) for a specific wastewater.

In order to mathematically describe the kinetics of the reactions taking
place in a biological reactor, practically all models are based on the two
fundamental processes discussed above, that is, microbial growth (µX) and
decay (−KdX), usually described mathematically as in equation 4.1:

dX

dt
= µX −KdX (4.1)

where X is the biomass concentration, µ is the specific growth rate and
Kd is the decay coefficient. Process stoichiometry is then used to relate
substrate (S) utilization to microbial growth, as:



42 Chapter 4. Wastewater Treatment

dS

dt
= − µ

Y
X (4.2)

where Y is the yield coefficient, commonly referred to as the substrate-
to-biomass yield, which is used to convert between cell growth rate dX/dt
and substrate utilization rate dS/dt.

A major issue has been how to mathematically describe the specific
growth rate for a continuous culture of microorganisms growing in wastew-
ater on a mixture of organic and inorganic substrates. The most commonly
recognized rate expression is the hyperbolic expression proposed by Monod
(1942; 1949 [87]), as an empirical deduction from pure culture studies, i.e.,

µ = µmax
S

Ks + S
(4.3)

where µmax is the maximum specific growth rate, KS is the half-saturation
constant (the value of S when µ/µmax = 0.5), and S is the concentration of
the growth-limiting substrate.

The Monod expression is developed as an acceptable mathematical de-
scription of experiments conducted with pure bacterial cultures growing on
single substrates. In wastewater treatment practice, the biomass concentra-
tion is substituted with non-specific parameters like BOD (biological oxygen
demand) or COD (chemical oxygen demand). Although they are mathe-
matically treated as single substrate components, these parameters include
a great variety of organic compounds with different biodegradation char-
acteristics. The influent wastewater also contains artificially manufactured
chemical compounds and toxic materials, to which various organisms respond
differently. Furthermore, conditions like the dissolved oxygen (DO) concen-
tration and the pH may vary within the treatment plant. Consequently, in
the biological reactors used for the removal of the mixture of organic com-
pounds in wastewaters, there is no way to select a given microbial species,
since a mixed microbial community develops as an enriched culture, resulting
from natural selection.

4.4 Microbiological concepts

Microorganisms are microscopic organisms consisting of a single cell or
cell cluster. Despite of their small size, microorganisms are an essential part
of earth. Bacteria represent 50% of the carbon and 90% of the nitrogen and
phosphorous of our planet’s biomass.

Microbiology is the science that studies microorganisms. It deals not
only with the basic biology behind then, but also with many practical prob-
lems in medicine, agriculture and industry that are related to microorgan-
isms. Microbial communities are complex systems hardly explained by re-



4.5. ABM in microbiology 43

duction. Laboratory and field experiments with microorganisms are costly
and often unfeasible. Nearly 99% of the known microbial species have not
yet been successfully cultured in vitro.

Bacteria are unicellular microorganisms. They are procaryotic cells,
that is, they lack nuclei, mitochondria and chloroplasts. The procaryotic
cells constitute the largest portion of the biomass on Earth. A bacterial cul-
ture is the growth of these microorganisms in a culture medium, carried out
in a laboratory under controlled conditions. The batch culture is a specific
kind of culturing in which the bacteria grow in a system of a fixed volume
without the addition or removal of the medium. Bacteria divide through
binary fission; this results in exponential growth. The growth cycle of a bac-
terial culture is commonly represented through the growth curve, which is
the plot of the bacterial concentration over time. It is usually represented
on a semilogarithmic plot, in order to identify the exponential growth. We
find different phases in the growth curve, depending on the bacteria charac-
teristics and the growth conditions. We may define four phases: lag phase,
exponential phase, stationary phase and death phase, as explained at Section
4.3 for the activated sludge process.

The totality of the bacteria of a culture is called population. Usually,
the term population is used to refer to the total number of cells or the cell
density. The biomass is the mass of the bacteria, and the total biomass is
the mass of the bacteria’s population.

These concepts are discussed further in the Thesis of C.P. Soler [105]
from which these introductory concepts have been obtained.

4.5 ABM in microbiology

Traditionally, the field of microbiology has always been focused on the de-
scription of microbial populations as a whole, adopting a holistic view as
opposed to the reductionist view (the properties of a system can be derived
from the properties and interrelations of its constituent elements). Until
recently, the experimental tools available to microbiology studied bacterial
growth on a population scale. The appreciation of the role of individual cells
in population dynamics has driven quite some research in the last decades,
for a large part because the tools and techniques to study single cells were
not available before.

The ABM, or IbM (Individual-based Modelling) as is sometimes known in
the microbiology field, can be regarded as an application of the reductionist
view. While this view has been routinely applied in other non-biological
scientific domains such as particle physics or astronomy, it only started to
be applied occasionally in the biological realm in the late 1970s.

Research has clearly shown that individual cell behaviour within a mi-
crobial population can be surprisingly diverse, even when the population



44 Chapter 4. Wastewater Treatment

responses are regular and reproducible. At the lowest level, gene expression
is an intensely stochastic process. One of the objectives of current research
in the cell population dynamics is the intention to elucidate the pheno-
typic cell-to-cell variation observed in an isogenic cell population even
under the same environmental conditions, that is, the intra-population vari-
ability than can be produced either by random noises at molecular lever or
stochasticities in the cell division process. Another research line is to ex-
plore the consequences of spatial heterogeneity. Macroscopic approaches
often do not consider the principle of locality, that is, microorganisms are
primarily affected by its spatial-temporal neighbourhood. Macroscopic ap-
proaches are mostly used for predictive purposes due to its simplicity and
computational efficiency. ABM allows modelling population heterogeneities
(intra-population variability) and this has demonstrated to yield different
predictions to the traditional macroscopic approaches [116, 44, 52]. These ap-
plications (ABM) have revealed potential deficiencies in conventional lumped-
typed (macroscopic) approaches and provided new insights [116].

ABM modelling is being increasingly applied in the field of microbiol-
ogy during the last decade. Examples of application are modelling bacterial
colony [38, 65] and biofilm formation [66], and the application in the field of
predictive microbiology, the study of prokaryotic cells [38, 65], the study of
eukaryotic cells [35, 30], temporal complexity [38, 20, 21], spatial complexity
[39], structural complexity [36], etc. The main two ABMs in this field are
INDISIM (INDividual DIScrete SIMulations) [38] from the Modelling and
Computer Simulation of Biological Systems (MOSIMBIO) group of the Uni-
versitat Politècnica de Catalunya, and BacSim [65], both modelling bacteria
cells.

In relation to wastewater treatment systems, the models of the IWA:
ASM1, AMS2 and ASM3 are the current standards, as we mentioned in sec-
tion 4.3. In ASM2 and ASM3, cell internal storage compounds terms were
introduced, which make some scientists to question the validity of such mod-
els: applying kinetic models to the average composition of activated sludge will
not necessarily lead to the same model prediction as the sum of all individual
behaviors [44]. ABM has been applied to the study of structures in biolfilms
or flocs for the attached-grow processes, and to study the diversity within
populations in suspended-grow processes [116, 44, 52]. As Schuler mentions
in [116], the future research lines are in modelling evolution/adaptation of
bacteria in wastewater treatment systems, validation of heterogeneity pre-
dictions of ABM models, the combined use of ABM and computational fluid
dynamics, etc. Currently the two main ABM models are the one proposed
by Gujer [44] for continuous and batch suspended growth systems, and the
DisSimulator IBM from Schuler [115] which is more complete and complex
than the one from Gujer.



In the next chapter. . . 45

In the next chapter. . .

In the next section we review some concepts about general purpose program-
ming with graphics processing units (GPUs).





Chapter 5

Parallel Computing on the

GPU with CUDA

The world is round and the place which

may seem like the end may also be the

beginning.

Ivy Baker Priest

Summary: In this chapter some concepts about parallel computing

using the power of graphic cards are going to be reviewed, as well as

some fundamentals about the programming architecture from NVIDIA

cards, the so called CUDA.

5.1 Introduction. Parallel computing revolution has

already happened.

Historically, the method to increase the performance of computing devices
has been to speed up the processor’s clock. First computers had central pro-
cessing units (CPUs) with internal clocks operating around 1MHz. Nowa-
days, 30 years later, these clock speeds range between 1GHz and 4GHz. As
it is said in [19]: "one of the problems with today’s modern processors is
they have hit a clock rate limit at around 4 GHz. At this point they just
generate too much heat for the current technology and require special and
expensive cooling solutions. This is because as we increase the clock rate,
the power consumption rises. In fact, the power consumption of a CPU, if
the voltage is fixed, is approximately the cube of its clock rate. To make
things worse, as the heat generated by the CPU is increased, for the same
clock rate, the power consumption also increases due to the properties of the

47



48 Chapter 5. Parallel Computing on the GPU with CUDA

silicon. This conversion of power into heat is a complete waste of energy.
This increasingly inefficient use of power eventually means you are unable
to either power or cool the processor sufficiently and you reach the thermal
limits of the device or its housing, the so-called "power wall". In 2005, the
leading CPU manufacturers began offering processors with two computing
cores instead of one, to increase the computing power of new computers.

In the late 90s, computer scientists from various fields started using GPUs
to accelerate a range of scientific applications. They tried to take advantage
of the computing power of a device made up of hundreds of cores. This
movement was called GPGPU (General-Purpose computation on GPU). It
was not an easy thing to do; scientists had to manage to code their programs
into pixels and vertex operations, using specific tools.

NVIDIA recognized the potential of bringing this performance for the
larger scientific community and, in November 2006, NVIDIA introduced
CUDA (Compute Unified Device Architecture), a general purpose parallel
computing architecture, with a new parallel programming model and in-
struction set architecture. The GeForce 8800 GTX was the first GPU to be
built with NVIDIA’s CUDA architecture. This architecture included several
new components designed strictly for GPU computing and aimed to allevi-
ate many of the limitations that prevented previous graphics processors from
being legitimately useful for general-purpose computation [113]. In 2010, a
NVIDIA GPU-based machine was listed as the second most powerful com-
puter in the world, according to the top 500 list (http://www.top500.org).
In 2011, NVIDIA CUDA-powered GPUs went on to claim the title of the
fastest supercomputer in the world [19].

The most widely used parallel programming languages today are Message
Passing Interface (MPI) for scalable cluster computing, OpenMP for shared-
memory multiprocessor systems, CUDA for the GPU computing on NVIDIA
cards and OpenCL, standardized programming model developed between the
major manufacturers (Intel, AMD/ATI, and NVIDIA).

5.2 What is the CUDA architecture

CUDA is a parallel computing platform and programming model that enables
dramatic increases in computing performance by harnessing the power of the
graphics processing unit (GPU) [91]

The CUDA architecture was a revolution in the technique used to pro-
gram GPUs, outstripping the need to make the problem to look like a com-
puter graphics task.

NVIDIA provided their new family of GPUs with ALUs (Arithmetic
Logic Units) that complied with IEEE requirements for single-precision floating-
point arithmetic in order to be used for general-purpose computations.

NVIDIA also developed a language, CUDA C, the first language specif-



5.3. CUDA program structure 49

ically designed by a GPU company to facilitate general-purpose computing
on GPU. CUDA C adds a set of instructions and keywords to the stan-
dard ANSI C, reducing the learning curve for C programmers. NVIDIA also
provides a specialized hardware driver to exploit the CUDA architecture.

Nowadays, a lot of applications are benefited from the CUDA speed up,
from medical imaging, to computational fluid dynamics, DNA sequencing,
etc.

5.3 CUDA program structure

A CUDA program consists of different parts that are executed sequentially
on either the host (the CPU) or in the device (a compatible GPU). The code
parts that exhibit little or no data parallelism are implemented in host code
and the ones that can be benefited of the parallelism of code are implemented
in device code. So, a CUDA program encompasses both host and device code.
The host code is straight ANSI C.

The device code follows the SIMD (Single Instruction, Multiple Data)
computing model, where the same instructions are massively executed over
a huge amount of data. The device code consists of kernel functions (or
simply kernels) that typically generate a large number of threads to exploit
data parallelism. All the threads generated by a kernel during an invocation
are collectively called a grid, and also this grid is divided in blocks. All blocks
in a grid have the same number of threads . To distinguish between threads,
they are identified with a code of coordinates (usually called index) composed
by the block identifier (block index within the grid) and the thread identifier
(thread index within the block). For example, for a 1-D dimensional block
we only use the x coordinate of the block and thread, composing the thread
global identificator as: index = blockIdx.x * blockDim.x + threadIdx.x. The
thread organization in a CUDA two dimensional grid is shown at Figure 5.1.

The execution of a CUDA program starts with host code, where memory
allocation and initializations are done. Then, the data is transferred from
host memory to device memory. Afterwards, the device functions are invoked
and a large number of threads are launched (the number of threads and its
configuration is defined in the invocation code), as it is illustrated in Figure
5.2. At last, the data is transferred back to the host.



50 Chapter 5. Parallel Computing on the GPU with CUDA

 

Figure 2-1. Grid of Thread Blocks 

 !"#$

 !"#$%&'(%') 

*+,-./%&0(%0) *+,-./%&'(%0) *+,-./%&1(%0)% *+,-./%&2(%0) 

 !"#$%&'()&*+  !"#$%&'*)&*+&  !"#$%&',)&*+& T!"#$%&'-)&*+ 

 !"#$%&'()&,+  !"#$%&'*)&,+  !"#$%&',)&,+  !"#$%&'-)&,+ 

 !"#$%&1(%')%&'()$*+,$+- %&'()$*.,$+- 

%&'()$*/,$.- %&'()$*+,$.-$%&'()$*.,$.-

Figure 5.1: Thread organization. Based on [91].

 !"#$%&'()#*+,%

-&',.

. . .

 !"#$%&'()#*+,%

. . .

-&',#/

-!"#0(&())%)#1%&2%)

###################3%&2%).444#555#6#7

-!"#0(&())%)#1%&2%)

###################3%&2%)/444##555#6#7

Figure 5.2: Execution of a CUDA program. Based on [62].



5.4. The NVIDIA GPU hardware 51

5.4 The NVIDIA GPU hardware

In general, a GPU is a device composed by hundreds of computational cores,
grouped in arrays that share some memory spaces. The computational cores
are called streaming processors (SPs), and they are grouped forming stream-
ing multiprocessors (SMs). The number of SPs in each SM depends on the
GPU model, and it ranges from 8 to 192 SPs.

There are different types of memory in a GPU. The global memory is
readable and writeable by all threads, and is the one that present longer
latencies because it is implemented with dynamic random access memory
(DRAM). Each block shares some memory faster than the global one (called
shared memory) and contains some registers (each thread can only access
its own registers). There is also some memory spaces only readable called
constant memory and texture memory, with faster access. Figure 5.3 is a
visual summary of this memory structure.

 !"#$%"&'()$*

+,-%.' /0'/& +,-%.' 10'/&

234)"*'5"6-)7

'8"9$:;"): ''8"9$:;"):

234)"*'5"6-)7

'8"9$:;"): '8"9$:;"):

<3)"4*' /0'/& '''<3)"4*' 10'/& '<3)"4*' /0'/& '<3)"4*' 10'/&

(,-B4,

5"6-)7E-:;

F-C:;4C;

5"6-)7

Figure 5.3: Memory structure of a NVIDIA GPU. Based on [62].

5.5 Example of a CUDA C program

In this section we present a simple example code in CUDA. The example
allocates an array and performs a simple operation on every element in the
array: element = 2 * index-of-the-element-in-the-array, and prints the result
on the screen.



52 Chapter 5. Parallel Computing on the GPU with CUDA

The standard C code for this example is:

#include <stdlib.h>

#include <stdio.h>

// Function 2*i

void 2timesi (int n, int *array)

{

for(int i=0; i<n; ++i)

array[i]= 2*i;

}

//Main function

int main(void)

{

int num_elements = 2560;

int num_bytes = num_elements * sizeof(int);

//pointer to the array

int* host_array=NULL;

//malloc the array

host_array = (int*)malloc(num_bytes);

//perform 2timesi on num_elements elements

2timesi(num_elements, *host_array)

// print out the result element by element

for(int i=0; i < num_elements; ++i)

{

printf("\%d ", host_array[i]);

}

// deallocate memory

free(host_array);

}

The CUDA C code for this example is:

#include <stdlib.h>

#include <stdio.h>

__global__ void twotimesi(int *array)



5.5. Example of a CUDA C program 53

{

int i = blockIdx.x * blockDim.x + threadIdx.x;

array[i]= 2*i;

}

int main(void)

{

int num_elements = 2560;

int num_bytes = num_elements * sizeof(int);

// pointers to host & device arrays

int *device_array = 0;

int *host_array = 0;

// malloc a host array

host_array = (int*)malloc(num_bytes);

// cudaMalloc a device array

cudaMalloc((void**)&device_array, num_bytes);

// Execution configuration

int block_size = num_elements;

int grid_size = 1;

//perform twotimesi on num_elements elements

twotimesi<<<grid_size,block_size>>>(device_array);

// download and inspect the result on the host:

cudaMemcpy(host_array, device_array, num_bytes, cudaMemcpyDeviceToHost);

// print out the result element by element

for(int i=0; i < num_elements; ++i)

{

printf("%d ", host_array[i]);

}

// deallocate memory

free(host_array);

cudaFree(device_array);

}

The differences between both implementations are:

• The CUDA code needs two allocations instead of one, one for the GPU



54 Chapter 5. Parallel Computing on the GPU with CUDA

memory and one for the CPU memory.

• The execution configuration determines the size of the grid (one block
in this example) and the size of the block (num_elements threads).

• The operation on every element of the array is performed in parallel
in the CUDA example.

• In the CUDA code, data has to be transferred back to the CPU memory
if you want to have it available for other calculus or visualization.

The operation twotimesi is performed over 2560 values (one for each array
element), with a duration of 0.017 seconds for the ANSI C code, and 0.005
for the CUDA C code. The acceleration for this simple example is 3.4x.

5.6 Choosing a NVIDIA GPU for computing

NVIDIA has three families of GPUs that support GPU computing. GeForce
family is designed for consumer graphics, Quadro is designed for professional
visualization, and Tesla is designed for parallel computing and programming
and offers exclusive high performance computing features. The performance
of the GPU is consistent with the price; GeForce are the cheapest, and Tesla
is a investment to value.

Tesla architecture was released in 2007, Fermi in 2009, and Kepler in
2012. The GPU architecture implies different features and also imposes
different programming limitations [71]. For example, Kepler allows dynamic
allocation of memory (not allowed in Fermi nor Tesla); Fermi increased the
number of SPs per SM from the previous Tesla architecture, and Kepler also
increased them over Fermi ’s; in Fermi, data could only be exchanged between
threads using shared memory (resulted in additional synchronization time);
Kepler allows the shuffle functions to exchange data between threads without
using shared memory; etc.

The GPUs are also grouped by compute capability [91] and by architec-
ture (Tesla, Fermi, Kepler):

The compute capability of a device is defined by a major re-
vision number and a minor revision number. Devices with the
same major revision number are of the same core architecture.
The major revision number is 3 for devices based on the Kepler
architecture, 2 for devices based on the Fermi architecture, and
1 for devices based on the Tesla architecture. The minor revision
number corresponds to an incremental improvement to the core
architecture, possibly including new features.

In this dissertation we have used a GeForce GTX 480, with Fermi archi-
tecture.



5.7. The Parallel Computing Toolbox from MATLAB 55

5.7 The Parallel Computing Toolbox from MAT-

LAB

The Parallel Computing Toolbox from MATLAB allows to execute parallel
code in the CPU cores and also in a compatible CUDA GPU.

For GPU computing, it provides a set of functions to be used directly in
the MATLAB command line and that are executed in parallel. You can allo-
cate an array, evaluate a function on each element of an array, etc. Although
it has some limitations, it is very easy to use and a good starting point. It
is under continuous development, and nowadays the MATLAB developers
team has joined the Accelereyes team (that offered a similar product years
ago [3]) to develop a unified and improved product for GPU computing in
MATLAB.

The supported GPUs are NVIDIA CUDA GPUs with compute capability
version 1.3 or higher. These GPUs support double-precision computations.

5.8 Swarm intelligence and ABM applications of

GPU computing

GPU computing has been recently used to accelerate swarm intelligence and
ABM applications. There are only a few works on the subject. A framework
for developing ABM with CUDA has been presented recently (2013); it is
called FLAME GPU [111] and is an extension to the FLAME framework
(Flexible Large-scale Agent Modelling Environment) [31], a generic agent-
based modelling system. Wenwu Tang has presented this year (2013) a
set of advices for ABM parallel modelling [121]. In the literature we can
find some works accelerating ABMs with GPU [1, 74, 122] and many works
implementing the Particle Swarm Optimization algorithm [90, 120, 133].





Part III

Developments

In this part, the development work carried out in this thesis is explained in
detail.





Chapter 6

The State Space Agent-Based

Representation

The best scientist is open to experience

and begins with romance - the idea that

anything is possible.

Ray Bradbury.

Summary: In this chapter we introduce a representation for agent-

based models, based on the state space representation of systems com-

monly used in system engineering, that can be applied as a complement

to the ODD protocol.

6.1 Introduction

The aim of this representation SSABR (State Space Agent-Based Represen-
tation) is to bring the methodology of ABM closer to the System Engineering
and Automatic Control field. It is based on the state space representation
and also in the black box representation of systems. Our objective is not
to substitute the current ODD protocol [41, 42, 43], but to provide a repre-
sentation based on the systems engineering approach. In this sense, it can
be considered as a complement to the ODD protocol, focused on the state
dynamics description.

The proposed notation (SSABR) is composed of a mathematical descrip-
tion of the dynamic states of the agents, a set of functional relationships
between states and parameters leading to the model dynamics, and a formu-
lation of output functions that leads to the measured aggregated variables
of the model.

59



60 Chapter 6. The State Space Agent-Based Representation

6.2 Mathematical Description

An ABM is composed of a population of agents (grouped into types or
‘breeds’) or by agents all of the same type. If there are different types,
these are identified by the superindex j, which ranges from 1 to the total
number of breeds (b).

Each agent ij of type j can be represented by a vector of its dynamic

states ~xjij (t) at time t, and all agents of the same type j are grouped into a

matrix of states vectors Xj(t).

In some models, the number of agents nj can change during the sim-
ulation; this is going to be expressed as a time dependency: nj(t). If the
number of agents is constant, this time dependency can be suppressed.

Each agent may also have some parameters ~pjij that influence its dynam-
ics.

In summary, the State of an agent at time t is represented by ~xjij (t),
with each component of the vector being the value of a dynamic attribute of
the agent.

j = 1, ..., b identifies the type of the agent (‘breed’)

ij = 1, ..., nj(t) identifies the agent of type j

nj(t) is the number of agents of type j at time t

~xjij (t) ∈ Rmj , mj is the number of states for type j

~pjij ∈ Rqj , qj is the number of parameters for type j

State of the set of agents j

Xj(t) =
(

~xj1(t) ... ~x
j
inj(t)

(t)
)

, Xj(t) ∈ Mmj×nj(t)(R)

Parameters of the set of agents j

P j =
(

~pj1 ... ~pjinj(t)

)

, P j ∈ Mqj×nj(t)(R)

Parameters of the environment
~α ∈ S ⊂ Rl, where l is the number of parameters related with the envi-

ronment.

From now on, for notation simplicity, we drop the dependency of ~xjij on

time t, that is, ~xjij ≡ ~xjij (t)

Dynamic methods
An agent ij of type j has an interaction ’a’ with other agents and/or with

the environment. This interaction is expressed by means of a method ’a’ that
depends on the states and parameters of all the agents (in general) and of the



6.2. Mathematical Description 61

parameters of the environment. This interaction causes the states of some of
the agents to change. The methods can also represent a consequence of time
passing, instead of representing an interaction; for example, the increment
on age of an agent.

It is not trivial to express the agent interactions in mathematical formu-
lation due to the fact that the interactions of some agents can affect other
agents.

We are only interested in the functional relationships between states and
parameters that arise from these interactions. If a complete description of the
methods is required, one would have to resort to an algorithmic description
or using more formal frameworks, such as language Z [104].

The evolution of the model at time t follows three steps. First, a copy
of the states matrix (Zj) of the agents and of the number of agents (cj) at
time t is made (step 1). Then (step 2), the states are evolved applying the
agent methods (see 2.5.2), that is, the agent states are updated (F j

ij ,a
is the

method representing the interaction ’a’ performed by the agent ij of type
j). This is performed over all types of agents, over all agents in the agent
set, and for every method. At last (step 3), once all methods at time t have
been applied, the states at time t+1 and the number of agents are updated
based on the copies.

Step 1:
{

Zj = Xj(t); cj = nj(t); j = 1, ..., b
}

.

Step 2:


























{

Z̄k; k = 1, ..., b
}

= F j
ij ,a

({

Zk; k = 1, ..., b
}

,
{

P k; k = 1, ..., b
}

,

~α)

Z̄k ∈ Mmk×c̄k(R); c̄k ∈ N new number of agents of type k

Substitute Zk by Z̄k and ck by c̄k; k = 1, ..., b
j = 1, ..., b

ij = 1, ..., cj
a = 1, ..., A A ∈ N: number of interactions

Step 3:
{

Xj(t+ 1) = Z̄j ; nj(t+ 1) = c̄j ; j = 1, ..., b
}

.

Aggregated variables
At each step of the simulation, the aggregated variables ~y(t) summariz-

ing the global behaviour of the model are computed. These variables are
expressed by means of relationships between the agent states and the pa-
rameters of the agents and of the environment. This functional relationship



62 Chapter 6. The State Space Agent-Based Representation

at time t can encompass past values of the states, parameters and even the
previous value of the aggregated variable (such as in an accumulator).

~y(t) = ~g(~y(t− 1),
{

Xj(τ); j = 1, ..., b; τ = 0, ..., t
}

,
{

P j ; j = 1, ..., b
}

, ~α)

~y(t) ∈ RS , S: number of aggregated variables

6.3 Examples

In this section we present a collection of simple ABM examples described
using the notation SSABR proposed in this work. Some comments are added
to clarify some particularities that can appear in the examples.

The first example is exposed at the subsection 6.3.1; the rest of them can
be developed in a similar way and is collected in the appendix A.

6.3.1 Segregation model

This model [128] comes from the Netlogo [129] library of examples. It is a
version of the Thomas Schelling segregation model, also known as Schelling
tipping model [114].

In the 1970s, Thomas Schelling proposed a simple population model to
illustrate how, even with minimal assumptions about individuals’ neighbour
preferences, an integrated city would evolve to a segregated city, even if all
individuals prefer integration. Schelling placed pennies and dimes on a chess
board, as agents representing any two groups in society, and moved them
around according to various rules. He interpreted the board as a city, with
each square of the board representing a house or a lot. The neighbourhood
of an agent occupying any location on the board consisted of the squares
adjacent to this location. Rules could be specified that determined whether
a particular agent was happy in its current location. If it was unhappy, it
would try to move to another location on the board. This model is one of
the firsts agent based models in the social science.

In the Netlogo implementation, there are two groups of agents, red turtles
and green turtles. Using the SSABR, we are going to define one type of
agents, the turtles, with three states: its coordinates in a two dimensional
grid environment (x_cell, y_cell) and a happiness state (happy?) as table
6.1 shows. To separate the turtles into two categories, red and green, we use
a parameter colour. They both have a percentage of similar neighbours that
make them feel happy, expressed by the parameter % − similar − wanted
(table 6.2).

Applying SSABR will lead to the following

Turtles
j = 1, turtle agent type



6.3. Examples 63

~x1i1 ∈ R3 i1 = 1, ..., n1

~x1i1 =





x cell
y cell
happy?





X1(t) =
(

~x11 ... ~x1n1

)

; X1(t) ∈ M3×n1(R)

We are going to make some partitions (x11(t), x
1
2(t), x

1
3(t)) from X1(t) for

convenience, that allows to select each state for all the agents in a separate
way.

X1(t) =





x11(t)
x12(t)
x13(t)



 ; x11(t), ..., x13(t) ∈ M1×n1(R)

~p1i1 ∈ R2

~p1i1 =

(

colour
%− similar − wanted

)

P 1 =
(

~p11 ... ~p1n1

)

; P 1 ∈ M2×n1(R)

Agent type State Description

Turtle x cell x coordinate of the cell where the agent is located
in the environment

Turtle y cell y coordinate of the cell where the agent is located
in the environment

Turtle happy? (boolean) true if %-similar-wanted of that tur-
tles’ neighbours are the same colour as itself

Table 6.1: Turtle states

Agent type Parameter Description

Turtle colour turtle colour can be red or green
Turtle %− similar − wanted percentage of same-colour turtles

that each turtle wants among its
neighbours

Table 6.2: Parameters

The environment
~α ∈ R2



64 Chapter 6. The State Space Agent-Based Representation

~α =

(

number − of − width− cells
number − of − height− cells

)

Dynamic methods
There is only one method (F 1

i1
) for each agent at time t. This project

models the behaviour of two types of turtles in a mythical pond. The red
turtles and green turtles get along with one another. But each turtle wants
to make sure that it lives near (z11 , z12) some of ’its own’ (p11), that is, each
red turtle wants to live near at least some red turtles, and each green turtle
wants to live near at least some (p12) green turtles. If turtles don’t have
enough (p12) same-colour (p11) neighbours, they are unhappy (z13), and they
jump to a nearby patch (z̄11 , z̄12) inside the environment limits (~α). If they
are happy (z13), they do nothing. The simulation stops when all turtles are
happy.

Step 1:

Z1 = X1(t) c1 = n1

Step 2:

Z1 =





z11
z12
z13



 Z̄1 =





z̄11
z̄12
z̄13





z11 , ..., z13 ∈ M1×c1(R); z̄11 , ..., z̄13 ∈ M1×c̄1(R)

Partitions in Z1 and Z̄1 for convenience, as in the definition of turtle agent
states.

P 1 =

(

p11
p12

)

p11, ..., p12 ∈ M1×c1(R) Partitions for convenience





z̄11
z̄12
z̄13



 = F 1
i1
(z11 , z12 , z13 , p11, p12, ~α) i1 = 1, ..., c1

Step 3:

X1(t+ 1) = Z̄1 n1 = c̄1

Aggregated variables
In this model there are two aggregated variables computed, so ~y(t) has

two dimensions (~y(t) ∈ R2).

The first aggregated variable y1(t) is the mean of the percentage of simi-
lar colour in the neighbourhood of each turtle.

y1(t) = g1(x
1
1(t), x12(t), p11)



6.3. Examples 65

−25 −20 −15 −10 −5 0 5 10 15 20
−25

−20

−15

−10

−5

0

5

10

15

20

25

X

Y

(a) Evolution of position states of four turtles.

0 2000 4000 6000 8000 10000 12000 14000 16000 18000
0

1

0 2000 4000 6000 8000 10000 12000 14000 16000 18000
0

1

0 2000 4000 6000 8000 10000 12000 14000 16000 18000
0

1

H
ap

py
? 

st
at

e:
 0

: f
al

se
, 1

: t
ru

e

0 2000 4000 6000 8000 10000 12000 14000 16000 18000
0

1

Time step

(b) Evolution of happy? states of four turtles.

Figure 6.1: Evolution of turtle states.

The second one, y2(t), is the percentage of unhappy turtles referred to the
total number of turtles.

y2(t) = g2(x
1
3)

6.3.1.1 Simulation example

We simulated the model with 800 turtles (400 green turtles and 400 red
turtles) and % − similar − wanted=62%. The dynamic evolution of the
states for four turtles is shown in figures 6.1a and 6.1b.



66 Chapter 6. The State Space Agent-Based Representation

6.4 Conclusions

A notation SSABR for representing agent-based models has been proposed,
which is closer to the state space representation in the systems engineering
field and points out the dynamic nature of agents’ behaviour through a state
space representation.

In the next chapter. . .

In the next chapter we present our agent-based model for the activated sludge
process.



Chapter 7

Agent-Based Model of the

Activated Sludge Process

All models are wrong, but some are

useful.

George E. P. Box, 1979.

Summary: In this chapter we present a model for the activated

sludge process. We summarize some steps of the modelling process and

we present three versions, from the preliminary earlier version to the

refined final one. We also present some of the experiments conducted

to test the models and some interesting results are presented at the

end.

7.1 Introduction

As it was stated before at section 1.2, the objective of this part is to apply
the agent-based modelling approach to a system typically used in the process
system engineering field, the activated sludge process.

The early stages of the modelling process needed some simplifications, so
some assumptions were made:

• We model the reactor, without the clarifier.

• In the first version of the model, we model the reactor in batch opera-
tion protocol, explained in section 4.3.

• A single population of bacteria is modelled, since the majority of mi-
croorganisms in an activated sludge process are bacteria.

67



68 Chapter 7. Agent-Based Model of the Activated Sludge Process

• We do not model the aeration system. The tank is supposed to have
such systems that provide the necessary oxygen for aerobic bacterial
action, and that prevents the sludge from settling providing its ho-
mogenisation.

The next step in the modelling process was the selection of the modelling
environment. The first software environment tested was NetLogo. It is a
great platform for beginners since its interface is easy to use, there are a
huge number of examples of models in the program (Models Library), the
documentation that it is distributed with the program is complete and easy-
to-use, and it is a well known environment in the field. This first version of
the model is explained at section 7.2.

After that, we decided to change the modelling environment to have more
control in the programming process and the possibility to use a variety of
toolboxes when using the model. MATLAB was chosen because it is a high
level scientific and engineering computational tool, a lot of specialized tool-
boxes can be incorporated, a custom graphic user interface can be easily
built so non-technical users can use it, it provides versatility and integration
with other tools (such as CUDA, optimization algorithms, neural network
toolbox...), and also because it has been used traditionally in the process
and system engineering field. This modelling environment offers a lot of
possibilities for modelling agents. We explored the different options for rep-
resenting agents and finally selected the vectorial programming paradigm.
This is exposed at section 7.3.

Once we had chosen the programming alternative in MATLAB, we de-
cided to eliminate one of the simplifications and construct a benchmark that
allows proving different operation protocols for the activated sludge model,
that is, a continuous flow process, a semi-batch process, and the previous
batch process. This is explained in more detail in section 7.4.

7.2 Activated Sludge Batch Reactor Model. NetL-

ogo version

The different versions of the model are described in this chapter with the
ODD protocol (section 2.7), since it is the currently most accepted standard
for presenting an ABM.

7.2.1 Description

7.2.1.1 Overview

Purpose. The purpose of the model is to simulate the behaviour of a pop-
ulation of bacteria in an activated sludge batch reactor to be use as an



7.2. Activated Sludge Batch Reactor Model. NetLogo version 69

alternative to the traditional equation-based models. The ABM technique
results in an adequate approach to model bacterial population variability
that is not possible with the traditional models. Moreover, this type of mod-
els allows a better understanding of the underlying process and interactions
between the components of the systems.

Entities, state variables, and scales. The basic entities of the model are bac-
teria, substrate units and spatial cells. Each bacterium is represented with
four variables: location (spatial cell where they are), size, age, and internal
energy. The substrate units are represented by agents with the state vari-
ables: location and size. The spatial cells have two coordinates: x and y
(the environment is two-dimensional). This is a non-parametrized version so
there is no scale to make a correspondence with real units. The parameters
b_density and s_density are scale factors in order to compare reactors of
different sizes; by default their value are set to 1 (no influence).

Process overview and scheduling. At each time step of the simulation the
following actions are performed: to shake, to eat, to reproduce, to die, to
update internal energy. The process of updating the state variables is asyn-
chronous (the asynchronous schedule was explained in subsection 2.5.3).

7.2.1.2 Design concepts

Emergence. The dynamics of the system are the result of the interaction
between bacteria and substrate. The structure of the bacterial population
(parametrized in the initialization process) determines the dynamics.

Adaptation. Bacteria reduce their internal energy (reduce their stored pro-
toplasm) when there is a lack of nutrient.

Sensing. Bacteria perceive the presence of substrate in their surroundings.

Interaction. Bacteria directly interact with the substrate metabolising it.
Interactions between bacteria are indirect as a result of the interaction be-
tween bacteria and substrate. There is no competition between bacteria.

Stochasticity. Stochasticity is used to provide the bacterial population with
heterogeneity characteristics, initializing their characteristics around mean
values, using a normal distribution (the most commonly encountered distri-
bution in nature). It is also used when applying the rules that govern the
model, modelling the stochasticity that is present in nature. Also, the order
in which the individuals perform the actions is random, avoiding privileging
first-acting consequences (NetLogo intrinsically provides this characteristic).

Observation. Data collected from the model corresponds to the evolution
of the following population variables: number of bacteria, number of sub-



70 Chapter 7. Agent-Based Model of the Activated Sludge Process

strate units, concentration of bacterial biomass, concentration of substrate,
reproductions and deaths (Figure 7.1).

Figure 7.1: Screenshot of the Netlogo model interface.

7.2.1.3 Details

Initialization. The initialization process is conducted by the user when press-
ing the setup button. The initialization of the model is as follows: read con-
figuration parameter values from the interface, assign values to the constants
of the model, create the agents and place them in the world, and assign initial
values of agent variable states. Initially, agents are placed randomly on the
environment as a uniform distribution. Bacterium agents are created with
initial energy values as a normal distribution N(max_energy, sd_energy),
initial age values as a normal distribution N(initial_age, sd_age), and con-
stant size initial_b_size. Substrate agents are created with constant size
initial_s_size. The inputs that have to be set up by the user in the in-
terface are: number of bacterium agents, number of substrate agents,
initial_b_size, initial_s_size, b_density, s_density, initial_age, sd_age,
max_energy, sd_energy, rep_size, size_percentage, i_energy_by_eating,
d_energy_ by_starving, unit_growth, max_age, sd_death_lmax, sd_
death_gmax, mean_death_by_starving. These parameters are explained
in table 7.1.

Submodels.

• To shake. At each step of the program, agents in the world are rear-
ranged in a random position, thus modelling a system that operates in
continuous stirred-tank reactor (CSTR) conditions, obtaining homoge-
neous characteristics in terms of substrate and biomass concentrations.



7.2.
A

ctivated
S
lu

d
ge

B
atch

R
eactor

M
o
d
el.

N
etL

ogo
version

71
Initialization parameter Value

number of bacterium agents Number of bacterium agents inside the reactor at time step zero.
number of substrate agents Number of substrate agents inside the reactor at time step zero.
initial_b_size Mean of bacterial initial size value.
initial_s_size Mean of substrate initial size value.
initial_age Mean of bacterial initial age value.
sd_age Standard Deviation of bacterial initial age value.
sd_energy Standard Deviation for energy at birth.

Model parameter Value

b_density Bacteria scale factor.
s_density Substrate scale factor.
max_energy Maximum energy value that a bacterium agent can reach.
rep_size Size from which bacteria are able to reproduce.
size_percentage Decrease of the size of a substrate agent eaten by a bacterium agent.
i_energy_by_eating Increase of energy of a bacterium agent by eating.
d_energy_by_starving Decrease of energy of a bacterium agent every iteration.
unit_growth Amount by which the size of a bacterium agent is increased when eating.
max_age Maximum age that a bacterium agent can reach.
sd_death_lmax Standard deviation for age deaths when a bacterium agent is younger than max_age.
sd_death_gmax Standard deviation for age deaths when a bacterium agent is older than max_age
mean_death_by_starving Mean of an exponential distribution for energy deaths.

Table 7.1: ABM Parameters explanation.



72 Chapter 7. Agent-Based Model of the Activated Sludge Process

• To eat. If a bacterium agent has a substrate agent in the same cell
as itself, it will eat a portion of substrate agent equal to its size mul-
tiplied by size_percentage. If not, it will look at neighbouring po-
sitions (north, south, east, west, north-east, north-west, south-east,
south-west) and randomly pick one of them and eat from it. The
bacterium agents that have eaten, increase its size by the quantity
it has eaten, and its internal energy by one (until a maximum value
of max_energy). The substrate agent eaten decreases its size by a
percentage (size_percentage) of the eating bacterium agent.

• To reproduce. Bacterium agents reproduce by bipartition creating 2
individuals of the same characteristics as the parent, size half of the
parent, according to a normal distribution N(rep_size, 1). The repro-
duction process follows the deterministic cell size division approach,
that is, bacteria divide once a biomass/size threshold is reached [51].
The reproduction process starts when the bacterial size is greater than
a value drawn from a normal distribution N(rep_size, 1).

• To die. Bacterium agents die by two causes: running out of internal
energy and age. At every step of the simulation, the bacterial age is
compared with a value drawn from a normal distribution N(max_age,
sd_death_lmax ) when the age of the bacteria is less than the maxi-
mum, or drawn from a normal distribution N(max_age, sd_death_gmax )
in the opposite case (an asymmetric Gaussian is defined). If the bacte-
rial age is greater than the calculated value, the bacterium agent dies.
The other cause of death is the total depletion of the bacterial internal
energy of bacteria after the endogenous catabolism process (process
explained in more detail at section 4.3), in which agents are unable
to obtain food and they catabolise the protoplasm stored to maintain
their energy. This death rate is modelled as an exponential distribution
which mean is mean_death_by_energy.

• To update internal energy. At each step of the program, the internal en-
ergy of each bacterium agent is decremented by d_energy_by_starving
and age increases by one.

7.2.2 SSABR Description

In this subsection, we present the description of the model using the SSABR.

In this model there are two types of agents, bacterium agents and sub-
strate agents. Bacterium agents have five states: x coordinate, y coordinate,
size, age, and internal energy, and eleven parameters explained at table
7.1. Substrate agents have three states: x coordinate, y coordinate, and
size; and only one parameter: s_density.



7.2. Activated Sludge Batch Reactor Model. NetLogo version 73

Bacterium Agents
j = 1, bacterium agent type

~x1i1 ∈ R5 i1 = 1, ..., n1(t)

~x1i1 =













x coordinate
y coordinate
size
age
internal energy













X1(t) =
(

~x11 ... ~x1
n1(t)

)

; X1(t) ∈ M5×n1(t)(R)

Partition for convenience:

X1(t) =













x11(t)
x12(t)
x13(t)
x14(t)
x15(t)













; x11(t), ..., x15(t) ∈ M1×n1(t)(R)

~p11 = ~p12 = ... = ~p1
n1(t)

≡ ~p1 All agents share the same set of parameters

~p1 ∈ R11

~p1 =







































max_energy
i_energy_by_eating
d_energy_by_starving
unit_growth
b_density
size_percentage
max_age
sd_death_lmax
sd_death_gmax
mean_death_by_energy
rep_size







































Descriptions of states and parameters’ meaning can be found at tables 7.2
and 7.1.

Substrate Agents
j = 2, Substrate Agent

~x2i2 ∈ R3 i2 = 1, ..., n2(t)

~x2i2 =





x coordinate
y coordinate
size





X2(t) =
(

~x21 ... ~x2
n2(t)

)

; X2(t) ∈ M3×n2(t)(R)



74 Chapter 7. Agent-Based Model of the Activated Sludge Process

Agent type State Description

bacterium /
substrate

x coordinate x coordinate of the position in the
environment

bacterium /
substrate

y coordinate y coordinate of the position in the
environment

bacterium /
substrate

size volume occupied by the agent in the
environment

bacterium age number of periods the agent has
lived

bacterium internal energy number of iterations the agent can
exist without eating and not dying

Table 7.2: Agent states

X2(t) =





x21(t)
x22(t)
x23(t)



 ; x21(t), ..., x23(t) ∈ M1×n2(t)(R)

~p21 = ~p22 = ... = ~p2
n2(t)

≡ ~p2; ~p2 ∈ R; ~p2 =
(

s_density
)

The environment
The environment is a two dimensional world, limited by its maximum

width and height dimensions.

~α ∈ R2

~α =

(

width
height

)

Dynamic methods There are five methods in this implementation.

Step 1:

Z1 = X1(t) c1 = n1(t)

Z2 = X2(t) c2 = n2(t)

Step 2:

Z1 =













z11
z12
z13
z14
z15













Z2 =





z21
z22
z23



 Z̄1 =













z̄11
z̄12
z̄13
z̄14
z̄15













Z̄2 =





z̄21
z̄22
z̄23





z11 , ..., z15 ∈ M1×c1(R); z21 , ..., z23 ∈ M1×c2(R); z̄11 , ..., z̄15 ∈ M1×c̄1(R);

z̄21 , ..., z̄23 ∈ M1×c̄2(R)

Method 1: To shake. At each time step, agents in the environment will be
rearranged in a random position inside the environment limits defined by ~α,



7.2. Activated Sludge Batch Reactor Model. NetLogo version 75

changing their states z̄11 , z̄
1
2 , z̄

2
1 , z̄

2
2 ; thus modelling a system that operates in

continuous stirred-tank reactor (CSTR) conditions, obtaining homogeneous
characteristics in terms of substrate and biomass concentrations.

(

z̄11
z̄12

)

= F 1
i1,1

(α1, α2)

(

z̄21
z̄22

)

= F 2
i2,1

(α1, α2)

Method 2: To eat. The bacterium agent will eat preferably from a sub-
strate in the same grid cell as itself (z11 , z

1
2); if that grid cell is empty, it will

look for neighbour substrate agents (z21 , z22) and select one randomly to eat
from. It will eat a portion of substrate agent equal to its size (z13) multiplied
by size_percentage (p16), decreasing the size of the substrate agent (from z23
to z̄23). Bacterium agents that have eaten, increase its size (from z13 to z̄13) by
the quantity unit_growth (p14), and its internal energy (from z15 to z̄15) by
i_energy_by_eating (p12) until a maximum max_energy (p11) is reached.
All bacterium agents decrease its internal energy by d_energy_by_starving
(p13) due to maintenance activities.





z̄13
z̄15
z̄23



 = F 1
i1,2

(

z11 , z12 , z13 , z15 , z21 , z22 , z23 , p11, p12, p13, p14, p16
)

Method 3: To reproduce. Bacterium agents will be divided in half creating
two individuals of the same characteristics as the parent, and half the size of
the parent modifying the states from z13 to z̄13 , according to the probability
of a random variable with normal distribution of mean rep_size (p111) and
variance 1. As a consequence, c1 would increase by one at every reproduction.

(

Z̄1
)

= F 1
i1,3

(

z13 , p111
)

Method 4: To die. It is checked whether bacterium agents will die from
one of the two causes in this model: age (z14), with a probability from a
normal distribution of mean max_age (p17) and different variances depend-
ing if the agent age is greater than max_age (sd_death_gmax (p19)) or
if the agent age is lower (sd_death_lmax (p18)); or running out of inter-
nal energy (z15), with a probability from a exponential distribution of mean
mean_death_by_energy (p110). If they meet the requirements for dying,
they die, becoming their mass part of the food present in the reactor. Con-
sequently, both bacterium (Z̄1) and substrate (Z̄2) sets of agents change in
the number of individuals, increasing c2 and decreasing c1.

(

Z̄1

Z̄2

)

= F 1
i1,4

(z14 , z15 , p17, p18, p19, p110)



76 Chapter 7. Agent-Based Model of the Activated Sludge Process

Parameter Value Parameter Value

S0(mg/l) 50 µmax(day
−1) 1.04

X0(mg/l) 10 Ks(mg/l) 100
Y (mg/l) 0.55 Kd(day

−1) 0.055

Table 7.3: Monod model parametrization.

Method 5: To age. At each time step, the bacterium agents age (z14) is
increased by one (z̄14).

(

z̄14
)

= F 1
i1,5

(z14)

Step 3:

X1(t+ 1) = Z̄1 n1(t+ 1) = c̄1
X2(t+ 1) = Z̄2 n2(t+ 1) = c̄2

Aggregated variables
In this model we are calculating two aggregated variables: biomass and

substrate concentrations (~y(t) ∈ R2).

Biomass concentration depends on the sum of the bacterium agent sizes
x13 multiplied by their density p15 and referred to the dimensions of the envi-
ronment ~α.

y1(t) = g1(x
1
3(t), p15, ~α)

Substrate concentration depends on the sum of the substrate agent sizes
x23 multiplied by their density p21 and referred to the dimensions of the envi-
ronment ~α.

y2(t) = g2(x
2
3(t), p21, ~α)

7.2.3 Results

The model was implemented in NetLogo. To validate the behaviour of the
model we have used model alignment [64], so we compared the dynamics of
the ABM with the dynamics of a worldwide accepted although simple model
for the process, the Monod model.

The simulations presented below show that an agent-based model is able
to represent the dynamics of certain type of processes with results as good
as traditional modelling paradigms, such as, in this case, the Monod model.
The aim of this work is, in terms of its microscopic constituents, to under-
stand the complex behaviour of the macroscopic system. For the Monod
model parametrization, we use typical values from [112], as table 7.3 shows.
The parameter values for the agent-based model were chosen using the trial
and error technique; they are shown at table 7.4. They were chosen so the



7.2. Activated Sludge Batch Reactor Model. NetLogo version 77

Parameter Value

number of bacterium agents 1090 rep_size 7
number of substrate agents 545 size_percentage 0.6
initial_b_size 1 i_energy_by_eating 1.7
initial_s_size 10 d_energy_by_starving 0.7
b_density 1 unit_growth 0.25
s_density 1 max_age 50
initial_age 1 sd_death_lmax 20
sd_age 1 sd_death_gmax 10
max_energy 10 mean_death_by_starving 2
sd_energy 2

Table 7.4: ABM parametrization.

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

Time

C
on

ce
nt

ra
tio

n

 

 

Biomass concentration. Monod model
Substrate concentration. Monod model
Biomass concentration. ABM model
Substrate concentration. ABM model

Figure 7.2: Temporal evolution of the concentrations of substrate and
biomass in ABM and Monod models.

model response behaves in a similar way as Monod model response. The
responses of both models are shown at figure 7.2. Moreover, figure 7.2 repro-
duces the different phases of the activated sludge process that were explained
before, except for the lag phase, because the microorganisms in this model
are initially accommodated to the environment.

Figure 7.3 and figure 7.4 show the evolution over time of bacteria repro-
duction process and bacteria deaths, respectively. The reproduction process
takes place from the twenty-three simulation step to the forty-seven, which
can be considered the 2-3 phases (section 4.3), as figure 7.3 shows. In figure
7.4 the two causes of death can be observed.

To test the model, a set of experiments were done, comparing the exper-
imental results with the expected behaviour and respect to the nominal case
(figure 7.2).

For example, if size_percentage parameter (percentage that applied to



78 Chapter 7. Agent-Based Model of the Activated Sludge Process

0 10 20 30 40 50 60 70 80 90 100
0

1

2

3

4

5

6

7

Time

N
um

be
r 

of
 r

ep
ro

du
ct

io
ns

 

 

Reproductions

Figure 7.3: Temporal evolution of bacteria reproduction process in the ABM.

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

Time

N
um

be
r 

of
 d

ea
th

s

 

 

Age deaths
Run out of energy deaths

Figure 7.4: Temporal evolution of bacteria deaths in the ABM.

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

 

 

Time

C
on

ce
nt

ra
tio

n

Biomass concentration. ABM model. Nominal case
Substrate concentration. ABM model. Nominal case
Biomass concentration. ABM model. Experiment 
Substrate concentration. ABM model. Experiment 

Figure 7.5: Temporal evolution of the concentrations if size_percentage is
decreased by 50%.



7.2. Activated Sludge Batch Reactor Model. NetLogo version 79

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

Time

C
on

ce
nt

ra
tio

n

 

 

Biomass concentration. Monod model. Nominal
Substrate concentration. Monod model. Nominal
Biomass concentration. Monod Model. Experiment
Substrate concentration. Monod model. Experiment

Figure 7.6: Comparison: Monod model base case dynamics Vs. experiment
(µmax=1, Ks=200).

the size of a bacterium agent indicates the amount that will decrease the size
of a substrate agent to be eaten by that bacterium agent) is decreased by
50%, the evolution of substrate and biomass concentrations is as shown in
figure 7.5. The bacterium agents eat a smaller portion of substrate each time
they eat, thus the food present in the environment (substrate) last longer
than in the nominal case. For this reason, the biomass concentration reaches
a higher maximum value than in the first case, being in the environment
more agents (if agents reach the reproduction size, they can reproduce, so the
more food, the more bacterium agents). When the substrate ends, stationary
phase starts, followed by the endogenous phase. The evolution of these two
phases is slower than in the nominal case because there are more bacterium
agents.

If we want to change the growth rate of bacteria, with the Monod model
we could manipulate the parameters µmax and Ks. These are empirical
coefficients of the Monod equation. They will differ between species and
based on the ambient environmental conditions. As they are related, we
must change both together. In figure 7.6 we performed a change from the
nominal values µmax = 1.04 and Ks = 100 to µmax = 1 and Ks = 200. The
new values cause a decrement in the bacteria growth rate, so the substrate
last longer than in the nominal case (figure 7.6).

With our ABM, we can influence the bacteria growth rate manipulating
the parameters unit_growth and rep_size.

A decrement in unit_growth (amount by which the size of a bacterium
agent is increased when eating) causes that the bacterium agents grow slower
than in the nominal case, so they metabolize smaller portions of substrate
and the total depletion of substrate occurs later than in the nominal case,
as figure 7.7 shows.

A smaller value in rep_size (the bacterium agents start the reproduction



80 Chapter 7. Agent-Based Model of the Activated Sludge Process

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

Time

C
on

ce
nt

ra
tio

n

 

 

Biomass concentration. Nominal case
Substrate concentration. Nominal case
Biomass concentration. Experiment
Substrate concentration. Experiment

Figure 7.7: Comparison: ABM model base case dynamics Vs. experiment
(unit_growth=0.1).

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

Time

C
on

ce
nt

ra
tio

n

 

 

Biomass concentration. Nominal case
Substrate concentration. Nominal case
Biomass concentration. Experiment
Substrate concentration. Experiment

Figure 7.8: Comparison: ABM model base case dynamics Vs. experiment
(rep_size=4.5).

process earlier) causes that the population increases in number significantly,
reaching high values of biomass concentration (figure 7.8).

If we want to change the decay rate of bacteria, with the Monod model
we can conduct a change in Kd parameter, as for example in figure 7.9 where
Kd is increased by 82%; and manipulating the yield coefficient Y (conversion
coefficient between cell growth rate dX/dt and substrate utilization rate
dS/dt), as figure 7.10 shows.

In our ABM we can expect similar results manipulating the parameters
max_age, i_energy_by_eating, d_energy_by_starving and max_energy.

If a 20% of decreasing is performed in max_age, so bacterium agents may
die younger than in the nominal case, the results are shown in figure 7.11
and figure 7.12. As it can be observed in figure 7.12, bacterium agents start
dying earlier than in the nominal case, as expected. This causes the ’food’
(substrate) to last longer and the logarithmic phase ends later. Moreover,



7.2. Activated Sludge Batch Reactor Model. NetLogo version 81

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

Time

C
on

ce
nt

ra
tio

n

 

 

Biomass concentration. Monod model. Nominal

Substrate concentration. Monod model. Nominal

Biomass concentration. Monod model. Experiment

Substrate concentration. Monod model. Experiment

Figure 7.9: Comparison Monod model base case dynamics Vs. experiment
(Kd=0.1).

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

Time

C
on

ce
nt

ra
tio

n

 

 

Biomass concentration. Nominal case
Substrate concentration. Nominal case
Biomass concentration. Experiment
Substrate concentration. Experiment

Figure 7.10: Comparison: Monod model base case dynamics Vs. experiment
(Y =0.65).

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

 

 

Time

C
on

ce
nt

ra
tio

n

Biomass concentration. ABM model. Nominal case
Substrate concentration. ABM model. Nominal case
Biomass concentration. ABM model. Experiment 
Substrate concentration. ABM model. Experiment 

Figure 7.11: Temporal evolution of the concentrations if max_age is de-
creased by 20%



82 Chapter 7. Agent-Based Model of the Activated Sludge Process

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

 

 

Run out of energy deaths
Age deaths

Figure 7.12: Temporal evolution of bacteria deaths if max_age is decreased
by 20%.

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

Time

C
on

ce
nt

ra
tio

n

 

 

Biomass concentration. Nominal case
Substrate concentration. Nominal case
Biomass concentration. Experiment
Substrate concentration. Experiment

Figure 7.13: Comparison: ABM model base case dynamics Vs. experiment
(i_energy_by_eating=2.5).

the substrate concentration reaches zero (all substrate agents were eaten)
earlier than in first case, as figure 7.11 shows.

The amount of internal energy a bacterium agent gains every time it
eats (i_energy_by_eating) also influences this process. The bigger the
increase in internal energy, the stronger a bacterium agents is (so it would
die older). The amount of internal energy a bacterium agent lose every time
step (d_energy_by_starving) has an opposite influence. Both parameter
influences are shown in figures 7.13 and 7.14 respectively.

The internal energy of a bacterium agent cannot be increased indefinitely,
but to a maximum (max_energy). This parameter is related with the two
previous ones and also influences the viability of bacteria, as figure 7.15
shows, where an increase is performed in max_energy so the bacterium
agents start dying later than in the nominal case.



7.2. Activated Sludge Batch Reactor Model. NetLogo version 83

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

Time

C
on

ce
nt

ra
tio

n

 

 

Biomass concentration. Nominal case
Substrate concentration. Nominal case
Biomass concentration. Experiment
Substrate concentration. Experiment

Figure 7.14: Comparison: ABM model base case dynamics Vs. experiment
(d_energy_by_starving=1.4).

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

Time

C
on

ce
nt

ra
tio

n

 

 

Biomass concentration. Nominal case
Substrate concentration. Nominal case
Biomass concentration. Experiment
Substrate concentration. Experiment

Figure 7.15: Comparison: ABM model base case dynamics Vs. experiment
(max_energy=12).

7.2.4 Conclusions

This first version of the model allowed us to test the behaviour of the as-
sumptions made in the conceptualization process. This work was presented
at the 19th Mediterranean Conference on Control Automation (MED) that
was held in Corfu (Greece) in 2011 [100]. This work showed that ABM al-
lows the researcher to develop a bottom-up approximation to the study of
complex problems such as the phenomena occurring in a wastewater treat-
ment plant, and in particular, secondary treatment by activated sludge. An
agent-based model for the activated sludge process in a batch reactor has
been proposed, which provides a better understanding of the phenomena
that occurs in the system while varying some of its characteristics.



84 Chapter 7. Agent-Based Model of the Activated Sludge Process

7.3 Activated Sludge Batch Reactor Model. MAT-

LAB version

As in a general purpose programming language, the representation of agents
in MATLAB can be carried out using different alternatives:

1. Layered representation (figure 7.16a), where the world is modelled with
different matrix layers, each layer representing an agent property and
the position of each element of the matrix determines the location of
the agent in the world. It is inspired in the automata cellular approach.
This alternative has an important limitation; the agents positions in
the world are restricted to the matrix elements coordinates.

2. To solve the disadvantage of the previous Layered representation, the
agents can be modelled having a property representing their position
in the world, relative to a Cartesian axe. Two approaches can be used.
On the one hand, data structures, where the properties of the agents
can be accessed with the dot notation, e.g., agent(number).property
(figure 7.16b).

3. On the other hand it is the matrix representation. The agent properties
can be stored in a matrix agent(number of agent, number of property)
(figure 7.16c).

4. Object Oriented Programming (OOP) (figure 7.16d). It is a program-
ming paradigm that is based on objects, data structures consisting of
data fields and methods together with their interactions. A generic
agent is represented as an object, and the other agents are created in-
heriting their characteristics from that agent, and adding their owns.
This can be done due to the inheritance property of OOP (inheritance
is a way to reuse code of existing objects, establishing a subtype from
an existing object).

In this thesis we have compared the four implementation alternatives
versus the NetLogo implementation from section 7.2, looking for the one
with less computational time. This was motivated by the future possible
application in automatic control, where the models are used in real time
for computing the next control action, so computational time is a limitation
factor in a practical implementation. In table 7.5 we present the average
simulation time of ten executions for each experiment and for our implemen-
tations. The model implemented with the four alternatives is the same; it
is a variation from the one in section 7.2. It is described in the following
subsection 7.3.1.

The alternative with less computational time (in the majority of cases)
and consequently selected was the matrix representation (figure 7.16c), which
takes advantage of the computing power of vectorial calculus of MATLAB.



7.3. Activated Sludge Batch Reactor Model. MATLAB version 85

3.3 0 0 5.3

0 1 0 0

1.2 0 0 2.3

2 3 0 0 1 9

0 0 0 0

0 0 0 7.8

0 1 0 0

0 0 0 0

0 0 0 10

2.3 0 0 1.9

0 5.6 0 0

0 0 0 0
0 0 0 10

0 0 0 4.6
energy

age

size

(a) Layered representation. Alternative 1

K>> bacteria 

bacteria =  

      size:  [4x4 double] 
      age:  [4x4 double] 
    energy:  [4x4 double] 

K>> bacteria.size 

ans = 

    2.1188    3.1807    3.2230    2.5036 
    3.0968    3.1702    2.3114    3.2316 
    3.2160    3.1474    3.1662    3.1981 
    2.9317    3.1705    2.4458    2.4876 

K>>

(b) Data structure represen-
tation. Alternative 2

X Y Size Age energy

Agent 1 1.2 5.5 2.3 5.3 3.6

Agent 2 2.5 2.1 5.3 6.2 6.3Agent 2 2.5 2.1 5.3 6.2 6.3

…. 22.1 6.4 7.3 15.6 9.3

A 15 6 4 0 4 5 8 0 4 1Agent n 15.6 4.0 4.5 8.0 4.1

(c) Matrix representation. Alter-
native 3

classdef agent

    properties

        position

        size

        color

        shape

        label

    end

    

    methods     

        function [obj, child] = hatch(obj)    

            obj.size = obj.size / 2;

            child = obj; 

        end

        function obj = move (obj, position)

            obj.position = position;

        end       

    end

end

 

(d) OOP representation. Alternative 4

Figure 7.16: ABM in MATLAB, alternatives: (a) Layered representation,
(b) Data structure, (c) Matrix representation, (d) OOP representation.

The OOP alternative is a suitable natural representation of agents. In
fact, it is widely adopted as the most common paradigm for ABM frame-
works. Our implementation under this paradigm was presented in the confer-
ence 9th International Symposium on Distributed Computing and Artificial
Intelligence, in Salamanca (Spain) the 28-30th March of 2012. It is now pub-
lished as a book chapter [102]. We have also developed a graphic interface
for the configuration of the simulations (figure 7.17).

7.3.1 Description

This model is an improvement from the previous one in section 7.2. In this
section we only explain the differences from the previous one.

In Entities, state variables, and scales : Each bacterium is represented
with five variables: location (two variables for the two-dimensional coor-
dinates in a Euclidean space limited by the parameters width and height),



86 Chapter 7. Agent-Based Model of the Activated Sludge Process

Experiment
Implementations

N. a L.R. b D.S. c M.R. d O.O.P. e

220-150-30f 1.504 2.339 1.532 0.163 1.723
220-150-60 2.213 2.005 1.509 0.449 2.319
440-300-30 1.702 4.309 2.838 0.523 3.581

2220-1500-30 2.252 7.461 4.532 2.514 5.993
7333-5000-30 6.129 22.502 19.474 15.963 27.759

Table 7.5: Simulation time (seconds) comparison of imple-
mentations.

a N: NetLogo
b L.R.: Layered representation
c D.S.: Data structure
d M.R.: Matrix representation
e O.P.P.: Object Oriented Programming
f The codification X-X-X of the experiments means: num-

ber of bacterium agents - number of substrate agents -
width/height of the square environment.

size, age, and internal energy. The substrate units are represented by agents
with the state variables location (also two variables) and size.

In Details: The initialization process is conducted by the user who assigns
values to the constants of the model. Then, the model creates the agents and
places them in the world, and assigns initial values for agent variable states.
Initially, agents are placed randomly on the environment as a uniform distri-
bution. Bacterium agents are created with initial values of energy as a normal
distribution N(max_energy, sd_energy), initial age values as a normal dis-
tribution N(initial_age, sd_age), and constant size (initial_b_size). Sub-
strate agents are created with constant size (initial_s_size). The inputs
that have to be set up by the user in the interface are the ones in table 7.1
and the new one eat_radius (a bacterium agent can only eat in its
surrounding).

In Submodels : To eat. A bacterium agent can only eat in its sur-
roundings defined by a circle of radius eat_radius. It will eat a portion
of substrate agent equal to its size multiplied by size_percentage. The bac-
terium agents that have eaten, increase its size by the quantity it has eaten,
and its internal energy by one (until a maximum value of max_energy). The
substrate agent eaten decreases its size by a percentage (size_percentage)
of the eating bacterium agent.



7.3. Activated Sludge Batch Reactor Model. MATLAB version 87

Figure 7.17: Graphic User Interface in MATLAB.

7.3.2 Results

To analyse the behaviour of the model we carried out the same experiments
as with the NetLogo implementation, comparing the dynamics of the ABM
with the dynamics of the Monod model. In the following, we analyse the
effect on the emergent macroscopic behaviour of the model when changing
some of the parameters of the model. Nominal behaviour, for comparison,
is as figure 7.18 shows.

0 10 20 30 40 50 60 70 80
0

10

20

30

40

50

60

Time

C
on

ce
nt

ra
tio

n

Concentration of agents

 

 

Biomass concentration
Substrate concentration

Figure 7.18: Evolution of concentration of agents over time. Nominal case.

We have done the same experiments as with the NetLogo model in sec-
tion 7.2 inferring the same results, as expected. We only show a couple of
examples, figures 7.19a and 7.19b show the same two experiments as in the
previous NetLogo version (figures 7.5 and 7.11).



88 Chapter 7. Agent-Based Model of the Activated Sludge Process

0 10 20 30 40 50 60 70 80
0

20

40

60

Time

C
on

ce
nt

ra
tio

n

Concentration of agents

 

 

Biomass concentration
Substrate concentration
Biomass concentration. Experiment 1
Substrate concentration. Experiment 1

(a) size_percentage parameter effect.

0 10 20 30 40 50 60 70 80
0

10

20

30

40

50

60

Time

C
on

ce
nt

ra
tio

n

Concentration of agents

 

 

Substrate concentration
Biomass concentration
Substrate concentration. Experiment 2
Biomass concentration. Experiment 2

(b) max_age parameter effect.

Figure 7.19: Concentration of agents in experiments.



7.4. Activated Sludge Reactor Model. Improved MATLAB version 89

7.4 Activated Sludge Reactor Model. Improved MAT-

LAB version

This model is based on the previous one, but includes some changes and
improvements thanks to the work with Marta Ginovart from the MOSIM-
BIO (Discrete Modelling and Simulation of Biological Systems) group at
the Universitat Politècnica de Catalunya during my stay in Barcelona the
months of September to November of 2012. The MOSIMBIO group studies
different microbial systems (such as bacteria, yeast, protozoan parasites or
multispecies ecosystems) and processes of industrial or environmental inter-
est. Using the ABM (or Ibm) methodology, they have developed INDISIM
(INDividual DIScrete SIMulations) [38], a model to simulate the growth and
behaviour of bacterial populations. INDISIM has been used in many works
[37], [38], [39] and it has several adaptations [30], [35]. This simulator has
inspired the improvements made on our model, and so have done the advices
from Marta Ginovart.

Besides the batch operation protocol, we added another three proto-
col possibilities to the simulator: continuous regime, fed-batch and semi-
continuous. In the continuous culture regime, there is a continuous supply
of substrate and bacteria to the reactor; the fed-batch involve a discontinued
substrate feeding and the products remain in the bioreactor until the end of
the run; and the forth one is the one we have called semi-continuous and it
is equal to fed-batch, but in the feeding, bacteria are also introduced.

As this model is an evolution from the previous one, in the following we
only explain the improvements.

In Entities, state variables, and scales : The basic entities of the model
are bacteria and substrate units. Each bacterium is represented with five
state variables: two coordinates of location in a two-dimensional Euclidean
space (limited by width and height parameters), mass, viability (when-
ever the environmental conditions become unfavourable, the bac-
terium may lose its viability and stop being metabolically active),
and internal energy. The substrate units are represented by agents with the
state variables: two coordinates of location, and size.

In Process overview and scheduling : At each time step of the simulation
the following actions are performed: reactor stirring, bacterial uptake and
maintenance, bacterial reproduction, to update bacterial viability, and
feeding and removal of medium (depending on the operation protocol
selected). The process of updating the state variables is asynchronous.

The global scheduling of the simulation follows different steps: initializa-
tion of variables, operation protocol selection, execution of the simula-
tion and generating and displaying the results.

In Design concepts :

Emergence. The dynamics of the system are a result of the interaction



90 Chapter 7. Agent-Based Model of the Activated Sludge Process

between bacteria and substrate. The structure of the bacterial population
(parametrized in the initialization process), the spatial environment and the
operation protocol determine the dynamics of the system.

Adaptation. Bacteria reduce their own biomass when there is a lack of
nutrient, until a limit. If this limit is surpassed, bacteria die. In this model,
the inhibitory effect produced by the end product excreted by the bacteria
is not contemplated.

Stochasticity. Stochasticity is used to provide the bacterial population
with heterogeneity characteristics, initializing their characteristics around
mean values, using a normal distribution (the most commonly encountered
distribution in nature). It is also used when applying the rules that govern
the model, modelling the stochasticity that is present in nature. Variability
is an intrinsic quality of the modelled system. To reduce the number
of parameters in our model, we have fixed the stochasticity of all
the processes to the same proportion, that is, a twenty percent of their
mean. This wilful value should be revised if the dynamics of the model are
not adequate, and should also be calibrated to a real system when using
the model in practice. From now on, all normal distributions used have a
standard deviation with value twenty percent of their mean.

In Details:

Initialization. The initialization process is conducted by the user who
assigns values to the constants of the model. Then, the model creates the
agents and places them in the world, and it assigns initial values of agent
variable states. Initially, agents are placed randomly on the environment as
a uniform distribution.

Bacterium agents are created with initial values of mass as a normal
distribution centred at rep_size N(rep_size, 20%rep_size), viability and
internal energy properties are initialized to zero. Substrate agents
are created with initial values of mass as a normal distribution centred at
initial_s_size N(initial_s_size, 20%initial_s_size). The initial num-
ber of bacterium agents and substrate agents can be initialized by
two ways, just setting number of bacterium agents and number of

substrate agents parameters, or setting the initial concentrations
of biomass (X0i) and substrate (S0i) inside the reactor so that the
number of agents is deduced.

The inputs that have to be set up by the user in the interface are:
number of bacterium agents, number of substrate agents, X0i, S0i,
initial_s _size, b_density, s_density, rep_size, availability, uptake,
viability, sd_ viability, yield, maintenance, flow, X0, S0, period, fed_time,
eat_radius, width and height. The meaning of the new parameters is ex-
plained in table 7.6.

Submodels. :

• Reactor stirring. At each step of the program, agents in the world are



7.4.
A

ctivated
S
lu

d
ge

R
eactor

M
o
d
el.

Im
p
roved

M
A

T
L
A

B
version

91

Parameter Value

number of bacterium agents Number of bacterium agents inside the reactor at time step zero.
number of substrate agents Number of substrate agents inside the reactor at time step zero.
X0i Initial concentrations of biomass inside the reactor at time step zero.
S0i Initial concentrations of substrate inside the reactor at time step zero.
availability Percentage modelling the entry of nutrient particles into the bacterial cell.
uptake Mean value of maximum nutrient a bacterium can uptake.
viability Number of periods a bacterium could not satisfy the maintenance requirements.
sd_ viability Standard Deviation for modelling stochasticity in bacterial dead.
yield Yield of the process of covering maintenance requirements and increasing the biomass.
maintenance Percentage of bacterial mass used to calculate the maintenance requirements.
flow Flow of the influent in continuous, fed-batch and semi-continuous operating protocols.
X0 Biomass concentration on the influent.
S0 Substrate concentration on the influent.
period Period of a square wave influent in fed-batch and semi-continuous operating protocols.
fed_time Duration of the feeding (maximum amplitude phase of a square wave influent)

in fed-batch and semi-continuous operating protocols.

Table 7.6: Improved MATLAB ABM Parameters explanation.



92 Chapter 7. Agent-Based Model of the Activated Sludge Process

rearranged in a random uniform position in a circular area centred
at its previous position and with a radius 30%width (30% of the
environment width), thus modelling a system that operates in contin-
uous stirred-tank reactor (CSTR conditions, obtaining homogeneous
characteristics in terms of substrate and biomass concentrations.

• Bacterial uptake and maintenance. A bacterium agent can only eat in
its surroundings defined by a circle of radius eat_radius. The quan-
tity of "food" a bacterium can reach is also limited by the
coefficient availability which takes into account the probabilistic re-
garding the entry of nutrient particles into the bacterial cell through
the cellular membrane. The quantity a bacterium can uptake is
proportional to its cellular surface and to a coefficient of up-
take according to a normal distribution N(uptake, 20%uptake)
[105]. This nutrient quantity is used to cover the maintenance
requirements (applying yield coefficient), these maintenance require-
ments are proportional (maintenance parameter) to the bacterium
agent mass. If the nutrient absorbed is not enough to cover
the maintenance requirements, it is checked the possibility
of bacterial lysis (the bacterium degrades its own biomass until it
achieves a minimum size). Once the viability of the bacterium
agent is achieved, if there is any remaining energy, the bac-
terium can increase its own biomass (depending on the yield
coefficient).

• Bacterial reproduction. Bacterium agents reproduce by bipartition cre-
ating 2 individuals of the same characteristics as the parent, mass half
of the parent). The reproduction process follows the deterministic cell
size division approach, that is, the bacteria divide once a biomass/size
threshold is reached [51]. The reproduction process starts when the
bacterial size is greater than a value drawn from a normal distribution
N(rep_size, 20%rep_size).

• To update bacterial viability. If a bacterium can not satisfy the
maintenance requirements, it increases its viability property.
If this value is greater than a value drawn from a normal
distribution N(viability, 20%sd _viability), the bacterium dies.

For the continuous, fed-batch and semi-continuous operating protocols,
incoming agents are randomly placed on the environment, and outcoming
agents are randomly selected.

The quantity of bacterium and substrate agents on the input is parametri-
zed by the influent flow (flow) and the biomass and substrate concentrations
on the influent (X0 and S0). In the fed-batch, X0=0, that is, there is only



7.4. Activated Sludge Reactor Model. Improved MATLAB version 93

feeding of substrate. In the continuous operating protocol, the flow is equal
for the influent and the effluent.

The discontinuous feeding in both fed-batch and semi-continuous is mod-
elled with a square wave, where period is the period of the wave, and
fed_time is the duration of the feeding. The feeding starts in time step
zero.

7.4.1 Results

The model was implemented in MATLAB. A set of experiments were con-
ducted to test the model.

7.4.1.1 Testing the model behaviour

Firstly, as we did with the other previous models, we compared the dynamics
of the model with the Monod model. The parametrization of the model was
not an issue, since we did not want, at this stage, to tune them to mimic
any reference model (which is done in the next section); just only to analyse
the qualitative behaviour. The behaviour of the model was compared with
the behaviour of the Monod model as in the previous versions, identifying
the different phases of the activated sludge process in the case of the batch
operating protocol (figure 7.20a) and a regular response for the rest of the
cases (figures 7.20b, 7.20c, 7.20d).

As figure 7.20c shows, the high renewal frequency of substrate in the
fed-batch operating protocol causes the bacteria in the reactor to grow and
reproduce until a stationary oscillating state is reached.

The renewal frequency in the example in figure 7.20d is also high, not
reaching the biomass concentration a zero value (all bacteria die).



94 Chapter 7. Agent-Based Model of the Activated Sludge Process

10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

Time

C
on

ce
nt

ra
tio

n

 

 

Biomass concentration
Substrate concentration

(a) (c)(b)

(a) ABM in batch operating protocol.

5 10 15 20 25 30 35 40 45 50
0

20

40

60

80

100

120

Time

C
on

ce
nt

ra
tio

n

 

 

Biomass concentration
Substrate concentration

(b) ABM in continuous operating protocol.

20 40 60 80 100 120 140 160 180 200
0

10

20

30

40

50

60

70

80

90

100

Time

C
on

ce
nt

ra
tio

n

 

 

Biomass concentration

Substrate concentration

(c) ABM in fed-batch operating protocol.

10 20 30 40 50 60 70 80 90 100
0

5

10

15

20

25

30

35

40

45

50

Time

C
on

ce
nt

ra
tio

n

 

 

Biomass concentration

Substrate concentration

(d) ABM in semi-continuous operating protocol.

Figure 7.20: Dynamic behaviours of the four operating protocols: (a) batch,
(b) continuous, (c) fed-batch, (d) semi-continuous.



7.4. Activated Sludge Reactor Model. Improved MATLAB version 95

7.4.1.2 Model parameters tuning for the Batch Operation Proto-
col

In this section we deal with ABM parameter tuning. We adjusted the model
parameters for the Batch operating protocol to mimic the Monod model with
a parametrization obtained from the calibration with a real system. The
Monod model parameters values chosen were the ones on table 7.7 obtained
from [78] (original source in persian [119]).

Parameter Value Parameter Value

S0(mg/l) 50 µmax(day
−1) 9.39

X0(mg/l) 10 Ks(mg/l) 169.3
Y (mg/l) 0.882 Kd(day

−1) 0.107

Table 7.7: Monod model parametrization from [78].

The majority of the parameters were adjusted with reasonable values
(since we are modelling real individuals), with the help of Marta Ginovart
and their simulator [40]. The rest of the parameters (less than 6) were
calibrated using the trial and error technique, starting with values similar to
the ones Marta Ginovart used in [40].

The parameter values estimated for our ABM are shown in table 7.8.
Once the model is tuned for the batch operating protocol, we have the bac-
terial population parameters tuned, and we can work with the other oper-
ating protocols since the intrinsic characteristics of the bacterial population
(viability, reproduction size, etc) do not change with the operating protocol.

Parameter Value Parameter Value

number_of_bacterium_agents 54 maintenance 1.95
number_of_substrate_agents 45 viability 500
b_density 100 sd_viability 0.55
s_density 100 initial_s_size 10
eat_radius 4.24 width 30
rep_size 2 height 30
uptake 1.95 X0 0
availability 0.5 S0 0
yield 1.95 flow 0
period 0

Table 7.8: ABM model parametrization.

As we can notice in figure 7.21, the ABM behaviour perfectly fits the
Monod model behaviour.



96 Chapter 7. Agent-Based Model of the Activated Sludge Process

10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

Time

C
on

ce
nt

ra
tio

ns

 

 

Biomass concentration. Monod model
Substrate concentration. Monod model
Biomass concentration. ABM model
Substrate concentration. ABM model

Figure 7.21: Comparison of ABM and Monod model behaviours.

7.4.1.3 Parameters sensitivity experiments

We have studied the sensitivity of the ABM parameters and comparing it
with the Monod model. A change in a parameter was done, maintaining the
rest fixed. In the following we can examine some results.

Figure 7.22 shows the behaviour of the Monod model if we manipulate
the growth rate of bacteria with the parameter µmax (increased by 50% (in
green) or decremented by 50% (in blue)).

We can have a similar behaviour with the ABM modifying the parameters
rep_size, uptake, availability and yield.

The effects of changing rep_size (size from which the bacteria are able
to reproduce) can be observed in figure 7.23. If this value is small, the
bacterium agents start reproducing with a smaller size.



7.4. Activated Sludge Reactor Model. Improved MATLAB version 97

10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

Time

C
on

ce
nt

ra
tio

n

 

 

Biomass concentration. Monod model
Substrate concentration. Monod model
Biomass concentration. ABM model
Substrate concentration. ABM model
Biomass concentration. Monod model. Change in parameter value +50%
Substrate concentration. Monod model. Change in parameter value +50%
Biomass concentration. Monod model. Change in parameter value −50%
Substrate concentration. Monod model. Change in parameter value −50%

(a) Simulation time from 0 to 100

5 10 15 20 25 30 35
0

10

20

30

40

50

Time

C
on

ce
nt

ra
tio

n

 

 

Biomass concentration. Monod model
Substrate concentration. Monod model
Biomass concentration. ABM model
Substrate concentration. ABM model
Biomass concentration. Monod model. Change in parameter value +50%
Substrate concentration. Monod model. Change in parameter value +50%
Biomass concentration. Monod model. Change in parameter value −50%
Substrate concentration. Monod model. Change in parameter value −50%

(b) Zoom to simulation time from 0 to 35

Figure 7.22: Concentration of biomass and substrate. µmax parameter effect.



98 Chapter 7. Agent-Based Model of the Activated Sludge Process

10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

Time

C
on

ce
nt

ra
tio

n

 

 

Biomass concentration. Monod model
Substrate concentration. Monod model
Biomass concentration. ABM model
Substrate concentration. ABM model
Biomass concentration. ABM model. Change in parameter value +50%
Substrate concentration. ABM model. Change in parameter value +50%
Biomass concentration. ABM model. Change in parameter value −50%
Substrate concentration. ABM model. Change in parameter value −50%

(a) Simulation time from 0 to 100

5 10 15 20 25 30 35
0

10

20

30

40

50

60

70

Time

C
on

ce
nt

ra
tio

n

 

 

Biomass concentration. Monod model
Substrate concentration. Monod model
Biomass concentration. ABM model
Substrate concentration. ABM model
Biomass concentration. ABM model. Change in parameter value +50%
Substrate concentration. ABM model. Change in parameter value +50%
Biomass concentration. ABM model. Change in parameter value −50%
Substrate concentration. ABM model. Change in parameter value −50%

(b) Zoom to simulation time from 0 to 35

Figure 7.23: Concentration of agents. rep_size parameter effect.



7.4. Activated Sludge Reactor Model. Improved MATLAB version 99

10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

Time

C
on

ce
nt

ra
tio

n

 

 

Biomass concentration. Monod model
Substrate concentration. Monod model
Biomass concentration. ABM model
Substrate concentration. ABM model
Biomass concentration. ABM model. Change in parameter value +50%
Substrate concentration. ABM model. Change in parameter value +50%
Biomass concentration. ABM model. Change in parameter value −50%
Substrate concentration. ABM model. Change in parameter value −50%

(a) Simulation time from 0 to 100

5 10 15 20 25 30 35
0

10

20

30

40

50

60

Time

C
on

ce
nt

ra
tio

n

 

 

Biomass concentration. Monod model
Substrate concentration. Monod model
Biomass concentration. ABM model
Substrate concentration. ABM model
Biomass concentration. ABM model. Change in parameter value +50%
Substrate concentration. ABM model. Change in parameter value +50%
Biomass concentration. ABM model. Change in parameter value −50%
Substrate concentration. ABM model. Change in parameter value −50%

(b) Zoom to simulation time from 0 to 35

Figure 7.24: Concentration of agents. uptake parameter effect in the ABM.

The uptake parameter regulates the uptake process. A higher value al-
lows the bacteria to metabolize more substrate, as figure 7.24 shows.

The availability parameter limits the quantity of nutrient a bacterium
can uptake, taking into account the probabilistic regarding the entry of nu-
trient particles into the bacterial cell through the cellular membrane. The
higher the availability parameter value, the more available nutrient for a
bacterial cell. This effect is shown in figure 7.25.



100 Chapter 7. Agent-Based Model of the Activated Sludge Process

10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

Time

C
on

ce
nt

ra
tio

n

 

 

Biomass concentration. Monod model
Substrate concentration. Monod model
Biomass concentration. ABM model
Substrate concentration. ABM model
Biomass concentration. ABM model. Change in parameter value +50%
Substrate concentration. ABM model. Change in parameter value +50%
Biomass concentration. ABM model. Change in parameter value −50%
Substrate concentration. ABM model. Change in parameter value −50%

(a) Simulation time from 0 to 100

5 10 15 20 25 30 35
0

10

20

30

40

50

60

Time

C
on

ce
nt

ra
tio

n

 

 

Biomass concentration. Monod model
Substrate concentration. Monod model
Biomass concentration. ABM model
Substrate concentration. ABM model
Biomass concentration. ABM model. Change in parameter value +50%
Substrate concentration. ABM model. Change in parameter value +50%
Biomass concentration. ABM model. Change in parameter value −50%
Substrate concentration. ABM model. Change in parameter value −50%

(b) Zoom to simulation time from 0 to 35

Figure 7.25: Concentration of agents. availability parameter effect in the
ABM.



7.4. Activated Sludge Reactor Model. Improved MATLAB version 101

10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

Time

C
on

ce
nt

ra
tio

n

 

 

Biomass concentration. Monod model
Substrate concentration. Monod model
Biomass concentration. ABM model
Substrate concentration. ABM model
Biomass concentration. ABM model. Change in parameter value +50%
Substrate concentration. ABM model. Change in parameter value +50%
Biomass concentration. ABM model. Change in parameter value −50%
Substrate concentration. ABM model. Change in parameter value −50%

(a) Simulation time from 0 to 100

5 10 15 20 25 30 35
0

10

20

30

40

50

60

Time

C
on

ce
nt

ra
tio

n

 

 

Biomass concentration. Monod model
Substrate concentration. Monod model
Biomass concentration. ABM model
Substrate concentration. ABM model
Biomass concentration. ABM model. Change in parameter value +50%
Substrate concentration. ABM model. Change in parameter value +50%
Biomass concentration. ABM model. Change in parameter value −50%
Substrate concentration. ABM model. Change in parameter value −50%

(b) Zoom to simulation time from 0 to 35

Figure 7.26: Concentration of agents. yield parameter effect from the ABM.

The yield parameter is a performance parameter (as its name indicates).
It is present in the bacterial uptake and maintenance process, so it influences
the bacterial growth process. Its effect is shown in figure 7.26. A higher
value in yield causes the bacteria to uptake more nutrient and to obtain
more energy per unit of nutrient, this results in an increase in the biomass
concentration and the viability of the population (that dies later than in
the nominal case). For a small value in yield, the effect is the opposite, as
expected.

This coefficient yield also influences the bacterial decay process (figure
7.26a), as the equivalent Monod parameter Y (as it was observed in figure
7.10).

If we want to modify the decay rate of bacteria, we can also manipulate



102 Chapter 7. Agent-Based Model of the Activated Sludge Process

20 40 60 80 100 120
0

10

20

30

40

50

60

Time

C
on

ce
nt

ra
tio

n

 

 

Biomass concentration. Monod model
Substrate concentration. Monod model
Biomass concentration. ABM model
Substrate concentration. ABM model
Biomass concentration. ABM model. Change in parameter value +50%
Substrate concentration. ABM model. Change in parameter value +50%
Biomass concentration. ABM model. Change in parameter value −50%
Substrate concentration. ABM model. Change in parameter value −50%

Figure 7.27: Changes in decay rate of bacteria modifying viability parameter
from the ABM.

the viability parameter, that is, the mean value of bacterial deaths. So, the
higher the viability parameter, the older the bacteria would die. This effect
is shown in figure 7.27.

The responses in general are similar; they have the same behaviour as
expected. The ABM seems to be more sensitive to variations, in general.



7.4. Activated Sludge Reactor Model. Improved MATLAB version 103

7.4.1.4 Studying the influence of bacterial composition in the dy-
namics of the system

The most common use of this type of ABM models is for understanding the
behaviour of the model under different hypothesis than cannot be tested in
the real system (availability, cost, etc). In this thesis we have tested the
influence of the composition of the bacterial culture in the reactor, that is,
the viability and size of the bacteria inside the reactor, and in the input
influent stream. These experiments have been done for the continuous op-
erating protocol. The ABM is parametrized with the values obtained in the
subsection 7.4.1.2.

We analysed four different scenarios, four bacterial compositions of the
influent stream. We have named each scenario with labels (in italics), which
also appear as legends in the figures of this section.

• Viable biomass input influent. The bacteria in the influent are young
and viable, and their mass are near the reproduction mass. In the
figures of the experiments it is represented in blue.

• Like steady state bacteria input influent. The bacteria in the influent
are a mixture between viable and less viable bacteria, of different sizes,
with the same composition as the bacteria inside the reactor when the
system is on steady state. This bacterial composition is obtained from
a previous simulation (parametrized as table 7.8) collecting a sample
that is used later for ’cloning’ new bacteria for the influent. In the
figures of the experiments it is represented in green.

• Suboptimal bacteria input influent. The bacteria are in a suboptimal
viability condition, and their mass are near the reproduction mass. In
the figures of the experiments it is represented in pink.

• 50% viable and 50% mean biomass input influent. In this case, half of
the bacteria in the influent are equal than in the second case, and the
other half has a composition equal to the average values of the bacteria
inside the reactor when the system is on steady state. This second half
is obtained from a previous simulation (parametrized as table 7.8),
measuring the population mean characteristics (size, viability, etc) and
using these values to randomly generate new bacteria with properties
as a normal distribution centred in the mean calculated values. In the
figures of the experiments it is represented in brown.

We compared the scenarios against the prediction of the Monod contin-
uous model behaviour (equations 7.1 and 7.2). The parameter values for the
Monod model were the ones in table 7.7 and V = 50m3, q = 1m3/s, these
two last values are not real values, like the rest of them, only arbitrary values



104 Chapter 7. Agent-Based Model of the Activated Sludge Process

for simulation. The parameters value for the ABM are the ones in table 7.8
except for flow = 0.6, X0 = 10, S0 = 50.

dX

dt
= µX −KdX +

q

V
(X0 −X) (7.1)

dS

dt
= − µ

Y
X +

q

V
(S0 − S) (7.2)

where X is the biomass concentration, µ is the specific growth rate and
Kd is the decay coefficient, q is the flow in the influent and in the effluent, V
is the reactor volume, X0 is the biomass concentration in the influent, X is
the biomass concentration in the effluent, Y is the yield coefficient, S0 is the
substrate concentration in the influent, and S is the substrate concentration
in the effluent.

The first experiment tests the influence of the bacterial compositions in
the influent in the dynamics of the system. The four scenarios are compared
with the Monod Model prediction. The simulation starts with concentra-
tions of biomass and substrate inside the reactor X0i = 92 and S0i = 14
respectively, and with viable bacteria which mass is around the reproduction
mass. The results are shown in figure 7.28. As it can be observed, the com-
position of the bacterial culture in the influent strongly affects the steady
state the system reaches.

The next experiment consisted in modifying the concentration of sub-
strate in the influent (an increment of 20% and a decrement of 20%) at
time=10 and then maintaining this new concentration constant (simulating
for example an increment of substrate in the sewage). As figure 7.29 shows,
the dynamics of the system for the different scenarios show that the systems
reaches different steady states. This implies that the system is working in a
different point depending on the influent, and should be controlled with the
recirculation of bacteria of the activated sludge process, which is important
in a real system from a practical point of view. We have obtained analogous
results when the change is performed in the concentration of biomass in the
influent (figure 7.30), and in the influent and effluent flow (since it is the
same in this model) (figure 7.31).

7.4.2 Conclusions

In this work we have developed and implemented an ABM for the activated
sludge process, which provides the possibility to test the behaviour of the
system under different operating protocols and also the influence of the bac-
terial culture composition.

We can conclude that the bacterial culture composition definitely influ-
ences the dynamics of the system. That influence is present in the recircu-
lation of sludge to the tank and in the addition of new bacterial material in



7.4.
A

ctivated
S
lu

d
ge

R
eactor

M
o
d
el.

Im
p
roved

M
A

T
L
A

B
version

105

5 10 15 20 25 30 35 40 45 50
0

20

40

60

80

100

120

140

Time

C
on

ce
nt

ra
tio

n

 

 
Biomass conc. Monod model. Nominal case
Substrate conc. Monod model. Nominal case

VIABLE BACTERIA IN INFLUENT
Biomass conc. ABM model. Nominal case

Substrate conc. ABM model. Nominal case

LIKE STEADY STATE BACTERIA  IN INFLUENT
Biomass conc. ABM model. Nominal case

Substrate conc. ABM model. Nominal case

SUBOPTIMAL BACTERIA  IN INFLUENT
Biomass conc. ABM model. Nominal case

Substrate conc. ABM model. Nominal case

50% VIABLE 50% MEAN − BACTERIA  IN INFLUENT
Biomass conc. ABM model. Nominal case

Substrate conc. ABM model. Nominal case

Figure 7.28: Comparison of the steady state of the system with different bacterial compositions of the input influent.



106 Chapter 7. Agent-Based Model of the Activated Sludge Process

10 20 30 40 50
0

50

100

150

Time

C
on

ce
nt

ra
tio

n

 

 

Biomass concentration. ∆P=+20%
Substrate concentration. ∆P=+20%
Biomass concentration. ∆P=−20%
Substrate concentration. ∆P=−20%

(a) Viable biomass input influent.

10 20 30 40 50
0

50

100

150

Time

C
on

ce
nt

ra
tio

n

 

 

Biomass concentration. ∆P=+20%
Substrate concentration. ∆P=+20%
Biomass concentration. ∆P=−20%
Substrate concentration. ∆P=−20%

(b) Like steady state bacteria input influent.

10 20 30 40 50
0

50

100

150

Time

C
on

ce
nt

ra
tio

n

 

 

Biomass concentration. ∆P=+20%
Substrate concentration.  ∆P=+20%
Biomass concentration. ∆P=−20%
Substrate concentration.  ∆P=−20%

(c) Suboptimal bacteria input influent.

10 20 30 40 50
0

50

100

150

Time

C
on

ce
nt

ra
tio

n

 

 

Biomass concentration. ∆P=+20%
Substrate concentration. ∆P=+20%
Biomass concentration. ∆P=−20%
Substrate concentration.  ∆P=−20%

(d) 50% viable and 50% mean biomass input influent.

Figure 7.29: Dynamic behaviours of the four scenarios when a change in the
concentration of substrate in the influent is conducted.



7.4. Activated Sludge Reactor Model. Improved MATLAB version 107

10 20 30 40 50
0

50

100

150

Time

C
on

ce
nt

ra
tio

n

 

 

Biomass concentration. ∆P=+20%
Substrate concentration. ∆P=+20%
Biomass concentration. ∆P=+−20%
Substrate concentration. ∆P=+−20%

(a) Viable biomass input influent.

10 20 30 40 50
0

50

100

150

Time

C
on

ce
nt

ra
tio

n

 

 

Biomass concentration. ∆P=+20%
Substrate concentration. ∆P=+20%
Biomass concentration. ∆P=−20%
Substrate concentration. ∆P=−20%

(b) Like steady state bacteria input influent.

10 20 30 40 50
0

50

100

150

Time

C
on

ce
nt

ra
tio

n

 

 

Biomass concentration. ∆P=+20%
Substrate concentration. ∆P=+20%
Biomass concentration. ∆P=20%
Substrate concentration. ∆P=−20%

(c) Suboptimal bacteria input influent.

10 20 30 40 50
0

50

100

150

Time

C
on

ce
nt

ra
tio

n

 

 

Biomass concentration. ∆P=+20%
Substrate concentration. ∆P=+20%
Biomass concentration. ∆P=−20%
Substrate concentration. ∆P=−20%

(d) 50% viable and 50% mean biomass input influent.

Figure 7.30: Dynamic behaviours of the four scenarios when a change in the
concentration of biomass in the influent is performed.



108 Chapter 7. Agent-Based Model of the Activated Sludge Process

10 20 30 40 50
0

50

100

150

Time

C
on

ce
nt

ra
tio

n

 

 

Biomass concentration. ∆P=+20%
Substrate concentration. ∆P=+20%
Biomass concentration. ∆P=−20%
Substrate concentration. ∆P=−20%

(a) Viable biomass input influent.

10 20 30 40 50
0

50

100

150

Time

C
on

ce
nt

ra
tio

n

 

 

Biomass concentration. ∆P=+20%
Substrate concentration. ∆P=+20%
Biomass concentration. ∆P=−20%
Substrate concentration. ∆P=−20%

(b) Like steady state bacteria input influent.

10 20 30 40 50
0

50

100

150

Time

C
on

ce
nt

ra
tio

n

 

 

Biomass concentration. ∆P=+20%
Substrate concentration. ∆P=+20%
Biomass concentration. ∆P=−20%
Substrate concentration. ∆P=−20%

(c) Suboptimal bacteria input influent.

10 20 30 40 50
0

50

100

150

Time

C
on

ce
nt

ra
tio

n

 

 

Biomass concentration. ∆P=+20%
Substrate concentration. ∆P=+20%
Biomass concentration. ∆P=−20%
Substrate concentration. ∆P=−20%

(d) 50% viable and 50% mean biomass input influent.

Figure 7.31: Dynamic behaviours of the four scenarios when a change in the
influent flow is conducted.



7.4. Activated Sludge Reactor Model. Improved MATLAB version 109

the activated sludge process. This information will be very valuable for the
optimal control of the process.

We adjusted the model parameters for the batch operation protocol with
the objective to mimic the Monod model as if it were a real system. We
have experienced the challenging of this process of tuning, which is more
complicated when more and more parameters are involved. The general
way to proceed is adjusting the majority of parameters manually with real
values (since some individual properties are also real properties), and using
an optimization algorithm to adjust the rest, if necessary.

This model is available for download online at https://csp.isa.cie.

uva.es/~mpereda/ABM_SWARM_THESIS/.

https://csp.isa.cie.uva.es/~mpereda/ABM_SWARM_THESIS/
https://csp.isa.cie.uva.es/~mpereda/ABM_SWARM_THESIS/


110 Chapter 7. Agent-Based Model of the Activated Sludge Process

7.5 CUDA implementations

When parallel computing over GPU is mixed with ABM, one can be tempted
to parallelize the complete ABM, since it is composed by quasi independent
agents. Moreover, one disadvantage of using agent-based modelling is that
in many cases the models have high computational load. Our aim in this
part is applying GPGPU to try to reduce the computing time of the ABM
simulations.

We parallelized our agent-based model (section 7.3), obtaining quite dis-
appointing results. First, we needed a lot of shared memory between threads,
because, although the individuals in our model are independent, the actions
one individual performs indirectly influence the others (for example in the
uptake process). This implies a first hardware limitation, since the shared
memory in these devices has generally a small capacity or the access is very
slow to perform many accesses in each iteration.

We performed three implementations to prove this point. The first was
CUDA native code, where we run out of shared memory and could not finish
the implementation.

5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

Iteration

P
er

 it
er

at
io

n 
tim

e 
(s

ec
on

ds
)

uptake

 

 

MATLAB sequential implementation

Jacket parallel implementation

(a) Uptake method

5 10 15 20 25 30
0.05

0.1

0.15

0.2

0.25

0.3

0.35

shake

Iteration

P
er

 it
er

at
io

n 
tim

e 
(s

ec
on

ds
)

 

 

Jacket parallel implementation

MATLAB sequential implementation

(b) Reactor stirring method

Figure 7.32: Comparison of sequential and Jacket implementations.



7.5. CUDA implementations 111

Afterwards, we decided to use the MATLAB Parallel Computing toolbox.
We managed to adapt our code to solve the many limitations this toolbox
forces you to comply (no indexing allowed in parallel code, no nested for
loops, no if statements inside for loops...), and we also had to share back
data from GPU to MATLAB workspace many times which made the imple-
mentation very inefficient. As a result, we had an implementation that was
slower than the MATLAB original implementation.

The last option we tried was the Jacket toolbox for MATLAB (from
Accelereyes [3]) (nowadays this company has joined MATLAB to develop
an unique toolbox for MATLAB, the Parallel Computing Toolbox as we can
read in the blog from Accelereyes [2]). This toolbox was less restrictive
and the programming experience was better since we had not to adapt our
code so much. But the results were not satisfactory enough; our parallel
implementation was sometimes slower and sometimes faster, but it does not
worth the effort involved in programming, as we can see in figure 7.32 for
the uptake and reactor stirring methods.

Then we decided to implement our ABM as a CUDA kernel and provide
the possibility to run several simulations in parallel, decreasing the compu-
tational time of the process of tuning of parameters and also providing a
fast option to test different hypotheses in parallel. The kernel was launched
with MATLAB, this process is summarized in figure 7.33. Firstly, the num-
ber of parallel simulations to be launched must be selected, and also the
parametrization for each simulation. Then, with the Parallel Computing
Toolbox from MATLAB, we created a CUDA kernel object K, we selected
launching ni parallel simulations; and at last, we launched the simulations
with the feval MATLAB function. This function copies back the data from
the GPU to the MATLAB workspace, so we can plot the simulation results.

In figure 7.34 we can observe fifty parallel simulations of our ABM, all
the simulations with the same parameters, so we can observe the influence
of the stochasticity in our model. These fifty simulations were executed in
parallel taking 3.63 seconds. If we compare it with 7.97 seconds that was
required in an ANSI C implementation, we can see an improvement of 2x in
execution time.



112 Chapter 7. Agent-Based Model of the Activated Sludge Process

Select the number ni of 

Initialize ABM

parallel executions desired

C
P
U

A
T
L
A
B

Initialize ABM 

parametersM
A

Launch ni ABMs in parallel:

K=parallel.gpu.CUDAKernel(‘abm.ptx','abm.cu');

K.ThreadBlockSize=ni;;

[data]=feval(K, parameters);

Execute ni ABMs in 

parallel G
P
U

Data transfer from 

GPU to CPU

P
U

T
L
A
B

Plot results

C
P

M
A
T

Figure 7.33: Parallel launch scheduling

10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

Iteration

C
on

ce
nt

ra
tio

n

Figure 7.34: 50 Parallel ABM simulations.



In the next chapter. . . 113

In the next chapter. . .

In the next section, our swarm intelligence optimization algorithm, the Hiker,
is introduced.





Chapter 8

Swarm Intelligence: The Hiker

algorithm

Things don’t have to change the world to

be important.

Steve Jobs.

Summary: This chapter exposes our work developing a new opti-

mization algorithm called Hiker, under the swarm intelligence paradigm.

The algorithm has been implemented in MATLAB and its performance

compared on several benchmark problems.

8.1 The Hiker optimization algorithm

The Hiker optimization algorithm is inspired by the swarm intelligence the-
ory and the particle swarm algorithm. The algorithm represents the collec-
tive behaviour of a group of hikers descending a mountain, thus representing
a minimization problem. The hikers carry walkie talkies to share information
among them.

Every individual (hiker) in the swarm represents a potential candidate
solution and it is represented by a multidimensional (nx) position vector.
The algorithm determines the positions each hiker could explore. The new
position each hiker selects is influenced by the best position the entire swarm
has found. At each iteration, the hiker has the possibility to explore nd ran-
dom directions and p points in every direction, emulating the vision that
a man can have descending a mountain. The points in every direction are
calculated with an update formula (equation 8.1) based on the Swann brack-
eting algorithm [57], as it is shown in figure 8.1. The set of new potential

115



116 Chapter 8. Swarm Intelligence: The Hiker algorithm

positions of every hiker is also influenced by the past position with a inertia
coefficient γ.

~xpi(t) = ~x0i(t) + 2jrmin~vd + γ( ~x0i(t)− ~x0i(t− 1)) (8.1)

where ~x0i(t) denote the position of hiker i in the search space at time
step t ; unless otherwise stated, t denotes discrete time steps. ~xpi(t) denote
the new possible position at direction d (from 1 to nd). ~vd is the random
direction vector. j goes from 1 to p points. rmin is an adaptive resolution
coefficient depending on the variation of the objective function of every hiker
i (figure 8.2), ratio is calculated as shown in equation 8.2:

20rmin

21rmin

)(0 tx
i

 

22rmin

1v
 

3v
 

2v
 

Figure 8.1: Sketch of a hiker generating possible points in three directions.

ratio = |f( ~x0i(t))− f( ~x0i(t− 1))| (8.2)

where f : Rnx → R is the fitness function, which measures the quality of
the solution found.

Every hiker i selects as his next possible position the best from the nd×p
potential positions (equation 8.3).

~̂xpi(t) ∈
{

~xpi1(t), ..., ~xpind×p
(t)

}

|f( ~̂xpi(t)) = min
{

f( ~xpi1(t)), ..., f( ~xpind×p
(t))

}

(8.3)

The best potential position in the swarm is selected from the particles of
the current swarm

~̂̂xp(t) ∈
{

~̂xp1(t), ...,
~̂xpni(t)

}

|f( ~̂̂xp(t)) = min
{

f( ~̂xp1(t)), ..., f(
~̂xpni(t))

}

(8.4)



8.1. The Hiker optimization algorithm 117

rmin min

rmin_max

rmin

ratio_min ratio_max

rmin_min

ratio

Figure 8.2: rmin value in function of ratio value.

where ni is the number of hikers.

The contribution to each hiker’s position of the global best is weighted
with the parameter α. A hiker only changes its position to a new one if
the fitness function improves; considering a minimization problem we have
equation 8.5:

~x0i(t+1) =































~x0i(t) if f((1− α) · ~xpi(t) + α · ~̂x̂p(t)) ≥ f( ~x0i(t))

(1− α) · ~xpi(t) + α · ~̂x̂p(t) if f((1− α) · ~xpi(t) + α · ~̂x̂p(t))

< f( ~x0i(t))
(8.5)

The Hiker method is summarized in Algorithm 2

Algorithm 2 Hiker

Create and initialize an nx−dimensional swarm;
repeat

for each hiker i = 1, ..., ni do
create nd random directions
create the possible positions with eq. 8.1
select the best possible position with eq. 8.3
set the global best position with eq. 8.4
update the position using equation 8.5

end for
until stopping condition is true;

In figure 8.3 a representation of the optimization process of four hikers
optimizing the function Peaks (equation 8.10) can observed. The trail of the



118 Chapter 8. Swarm Intelligence: The Hiker algorithm

four hikers after the optimization appears in the figure in dark blue, the new
possible route in yellow, in black the new possible end points, in magenta the
best point every hiker found in past iterations, in red the best point every
hiker has found in current iteration.

−3 −2 −1 0 1 2 3

−3

−2

−1

0

1

2

3

(a) Hiker optimization process with four hikers.

−3 −2 −1 0 1 2 3

−3

−2

−1

0

1

2

3

(b) Trail of four hikers after an optimization process.

Figure 8.3: Representation of the Hiker algorithm during the optimization
of Peaks function.

8.2 Implementation Aspects

The algorithm ends when a stopping condition is satisfied. We have imple-
mented three conditions, so the optimization process ends if one of them is



8.3. Results 119

satisfied:

• Terminate when an acceptable solution has been found |f( ~̂̂xp(t))| <
fobj.

• Terminate when the hiker in the current better solution has not ob-
served improvement after a certain number max_counter of consecu-
tive iterations.

• Terminate when a maximum number of iterations N has been reached.

Other stopping conditions can also be implemented, such as the ones
explained at page 34 in section 3.2.2.

With respect to the initialization process, the variables that have to be
initialized are:

• The number of hikers ni.

• The maximum and minimum values for ratio (ratio_min, ratio_max)
and rmin (rmin_min, rmin_max).

• The minimum variation of the objective function for not consider-
ing a hiker stuck at a certain position (ratio_end). The maximum
number of iterations the hiker in the better value found can be stuck
(max_counter).

• The value for an acceptable solution fobj.

• The contribution of the global best (α).

• The inertia coefficient γ.

• The maximum number of iterations.

• The number of directions every hiker explores (nd) and the number of
points (p) in every direction.

8.3 Results

We have implemented Hiker in MATLAB, parallelizing some parts of the
code with the Parallel Computing Toolbox for MATLAB. We have tested
the efficiency of the proposed algorithm on a set of benchmarck optimization
functions.

The parallelized code has been implemented for GPU computing. The
GPU used is a NVIDIA GeForce GTX 480. The machine used for running
the algorithms is an Intel Core i5 650 3.20GHz, 8GB DDR3.



120 Chapter 8. Swarm Intelligence: The Hiker algorithm

We have optimized five different benchmark functions, four from [26]:
spherical, griewank, hiperellipsoid, rosenbrock (in equations 8.6 - 8.9, nx is
the dimension of the problem); and one from MATLAB: peaks.

Spherical:

f(x) =

nx
∑

j=1

x2j (8.6)

with xj ∈ [−100, 100] and f∗ = 0.0.

Griewank:

f(x) = 1 +
1

4000

nx
∑

j=1

x2j −
nx
∏

j=1

cos

(

xj√
j

)

(8.7)

with xj ∈ [−600, 600] and f∗ = 0.0.

Hiperellipsoid:

f(x) =

nx
∑

j=1

j2x2j (8.8)

with xj ∈ [−1, 1] and f∗ = 0.0.

Rosenbrock:

f(x) =

nx−1
∑

j=1

[

(1− xj)
2 + 100(xj+1 − x2j )

2
]

(8.9)

with xj ∈ [−2.048, 2.048] and f∗ = 0.0.

Peaks:

f(x, y) = 3(1− x)2 exp(−x2 − (y + 1)2)− 10(x/5− x3 − y5) exp(−x2 − y2)
−1/3 exp(−(x+ 1)2 − y2)

(8.10)
with f∗ = −6.5511 in the point (0.2283,-1.6255).

8.3.1 Comparison of implementations in MATLAB

The first experiments compare the performance between the MATLAB im-
plementation of PSO and Hiker, where parallelization could take place in the
function evaluation for every particle (hiker), as algorithm 3 shows for the
Hiker algorithm.

The parametrization for the PSO is shown at table 8.1, and for the Hiker
is shown at table 8.2.



8.3. Results 121

Parameter Value Parameter Value

ratio_end 0 ω 0.9
K1 0.3 K2 0.3
ns 10 N 200

Table 8.1: PSO parametrization.

Parameter Value Parameter Value

rmin_min 0.001 min_fobj -10
rmin_max 0.5 α 0.5
ratio_min 0.01 γ 0.2
ratio_max 10 N 200
ratio_end 0.00001 nd 10
max_counter 10 p 4
ni 10

Table 8.2: Hiker parametrization.

The two algorithms find the minimum for the five functions with 2 di-
mensions, as table 8.3 shows. Table 8.4 shows the stop iteration for each
optimization. The execution time of both algorithms is similar (table 8.5),
in general.

PSO Hiker

Peaks -6.5511 -6.5511
Spherical 3.17E-09 5.50E-13
Griewank 4.08E-05 2.88E-08
Hiperhellipsoid 1.68E-11 1.15E-07
Rosenbrock 5.77E-05 0.005

Table 8.3: Solutions found.

PSO Hiker

Peaks 200 200
Spherical 200 16
Griewank 200 36
Hiperhellipsoid 200 60
Rosenbrock 200 200

Table 8.4: Stop iteration of the optimization process of several functions.



122 Chapter 8. Swarm Intelligence: The Hiker algorithm

PSO Hiker

Peaks 0.08 0.11
Spherical 0.07 0.09
Griewank 0.09 0.13
Hiperhellipsoid 0.07 0.48
Rosenbrock 0.1 0.48

Table 8.5: Execution times of the optimization of several functions.

Algorithm 3 Hiker pseudocode

CPU: create and initialize an nx−dimensional swarm;
repeat

for each hiker i = 1, ..., ni do
CPU: create nd random directions
CPU: create the possible positions
GPU: evaluate the objective function on the possible positions
CPU: select the best possible position
CPU: set the global best position
CPU: update the position of the hiker

end for
until stopping condition is true;

8.4 Conclusions

We have proposed an optimization algorithm inspired by the swarm intelli-
gence theory. We have tested the algorithm on some benchmark problems,
and results in terms of performance are promising.

We implemented both the Hiker and the PSO algorithms in parallel with
the Parallel Computing Toolbox from MATLAB, but we obtained quite disap-
pointing results in terms of execution time for both algorithms as compared
with serial implementations; 10x worst in case of PSO GPU and 100x in case
of Hiker GPU in which the number of data transferred between CPU and
GPU is much greater (nd×p per each hiker). This was partly caused by the
inefficient memory transferences from CPU to GPU and vice versa, and also
due to the programming limitations this toolbox presented by the time we
developed this work.

This algorithm is available for download online at https://csp.isa.

cie.uva.es/~mpereda/ABM_SWARM_THESIS/.

https://csp.isa.cie.uva.es/~mpereda/ABM_SWARM_THESIS/
https://csp.isa.cie.uva.es/~mpereda/ABM_SWARM_THESIS/


Part IV

Conclusions and Future Work





Chapter 9

Conclusions and Future Work

Try to learn something about everything

and everything about something.

Thomas Henry Huxley

Summary: In this chaper we present the conclusions of the work

presented in this dissertation, the main contributions and the future

work directions.

9.1 Conclusions

In this thesis we have worked on bringing together the system engineering and
automatic control field and the agent-based modelling and swarm intelligence
techniques. We have studied the activated sludge process from the point of
view of its microscopic constituents. The conclusions resulting from this
work are:

• We have summarize the ABM methodology steps so that a newcomer
could use the Fundamentals chapter 2 as initial guide on the subject.

• We have proposed a new notation SSABR for representing agent-based
models, which is closer to the systems engineering field and points out
the dynamic nature of agents’ behaviour through a state space repre-
sentation. Examples of application have been included to illustrate the
utility and application of the SSABR. This notation could be used to
teach ABM in the system engineering and automatic control field and
also to report ABM research results, together with the ODD protocol.

• We have developed an ABM for the activated sludge process, that
allows testing the influence of different reactor operating protocols and

125



126 Chapter 9. Conclusions and Future Work

a configurable bacteria population. Although the model can capture
some of the macroscopic behaviours of the modelled process, it is indeed
a simple version of the processes involved in the system. A single
population of microorganisms and one type of substrate have been
modelled, but in the real system several microorganisms and types of
substrate are involved. The objective of this work is not to obtain
a complete complex model but to analyze and confirm the suitability
of this modelling technique to the systems engineering and automatic
control field.

• We have confirmed the significant influence the oscillations in the in-
fluent and the variations in its composition have on an activated sludge
process. Our model allows testing different scenarios to study the sys-
tem dynamics.

• We have provided the possibility to launch hundreds of simulations in
parallel, to study, for example, the influence of stochasticity of bacterial
population in the macroscopic behaviour of the system.

• We have developed an optimization algorithm, the Hiker, inspired by
the swarm intelligence theory with promising results of its performance.

9.2 Summary of contributions

• M. Pereda and J.M. Zamarreño. Agent-based modeling of an activated
sludge process in a batch reactor. In 2011 19th Mediterranean Con-
ference on Control & Automation (MED), pages 1128 - 1133, Corfu,
June 2011. IEEE. [100].

The aim of this work is to study the feasibility of using agent-based
modelling to study the activated sludge process. A model in NetLogo
has been proposed, and experiments have been developed comparing
the model behaviour with a classical modelling approximation for this
process, the Monod model.

• M. Pereda and J. M. Zamarreño. Modelado basado en agentes. In
Actas de las XXXII Jornadas de Automática, pages 423 - 428. Univer-
sidad de Sevilla y CEAIFAC, Septiembre 2011. [101].

The aim of this work is to study and adapt the agent-based model
methodology to the field of industrial processes, to allow the represen-
tation of macroscopic behaviours of the processes from the modelling
of its microscopic constituents. This work presents an introduction to
the subject.

• M. Pereda and J. M. Zamarreño. An OOP agent-based model for the
activated sludge process using MATLAB. In S. Omatu, J. F. De Paz



9.3. Future directions 127

Santana, S. R. González, J. M. Molina, A. M. Bernardos, and J. M. C.
Rodríguez, editors, Distributed Computing and Artificial Intelligence,
volume 151 of Advances in Intelligent and Soft Computing, pages 241
- 248. Springer Berlin Heidelberg, 2012. [102].

This contribution showed that agent-based modelling allows the re-
searcher to develop a bottom-up approximation to the study of complex
problems such as the phenomena occurring in a wastewater treatment
plant, and in particular, secondary treatment by activated sludge. An
Object Oriented Agent-Based Model for the activated sludge process
in a batch reactor was proposed, which allows to analysing and a bet-
ter understanding of the phenomena that occur in the system while
varying some of its characteristics. The implementation environment
chosen for the model, that is, MATLAB, allows an efficient represen-
tation and provides good design tools.

Other works published during the developing of this dissertation are:

• M. Pereda and J. M. Zamarreño. Optimización multiarranque en pa-
ralelo sobre GPU. In R. S. Matías García, editor, Actas de las XXXIII
Jornadas de Automática, pages 423 - 428. Universidad de Vigo y
CEAIFAC, Septiembre 2012. [103].

Some control techniques require the optimization of an objective func-
tion to calculate the control action. Usually it implies a problem of
high computational cost so some of these control techniques cannot
be applied in real time. Code parallelization is giving very good re-
sults to decrease the execution time of implementations in many fields.
This paper aims to prove the enormous potential of code paralleliza-
tion techniques applied to solving optimization problems, in this case,
multistart local search algorithms. This work is presented in appendix
B.

9.3 Future directions

To continue these four years work, many research lines can be proposed. We
summarize the ones we consider more interesting or plausible:

• To apply agent-based modelling to other systems, following the appli-
cation advices in section 2.3.

• To extend the ABM for the activated sludge process to include other
phenomena that could influence the dynamics, such as population of
other microorganisms, the configuration of different types of substrate,
the influence of the clarifier, the influence of some substrate compo-
nents as nitrates and phosphates, etc and also improve the model of
the bacteria.



128 Chapter 9. Conclusions and Future Work

• To use real data that allows the parametrization and calibration of the
model.

• To integrate the ABM for the activated sludge process as a submodel
in a whole wastewater treatment plant model.

• To use the proposed ABM to perform more simulations and test new
composition hypothesis.

• To propose an optimal parametrization for the Hiker parameters for
certain benchmark problems.

• To integrate the Hiker optimizer and the proposed model into a control
structure, such as the Model Based Predictive Control, taking into
account the dynamic nature of the problem.

• To explore the possibility of adding some kind of basic Artificial Intel-
ligence, such as Artificial Neural Networks, to the agents’ behaviour.



Part V

Appendices





Appendix A

SSABR application examples

Summary: In this section we present a collection of simple ABM

examples described using the SSABR notation proposed in this thesis,

explained at chapter 6.

A.1 Hilltopping behaviour in butterflies

This model is an introductory example in the book Agent-Based and In-

dividual Based Modelling - A practical introduction [106]. The model is
developed by Guy Pe’er et al. [99] in 1999, and models the hilltopping be-
haviour in butterflies in which males and virgin or multiple-mating females
seek topographic summits for the purpose of mating. The objective of the
model is to analyse the formation of virtual corridors in the case of hilltop-
ping butterflies in topographically heterogeneous landscapes.

Applying SSABR, we define two types of agents, the butterflies and the
patches. The butterflies are mobile agents defined by two spatial states, their
coordinates in a two dimensional environment (x_coordinate, y_coordinate).
The butterflies also have a parameter governing its behaviour, called q: the
probability of moving uphill (table A.2). The other type of agents are the
patches, environment grid cells defined by coordinates (x_patch, y_patch)
and elevation parameters (table A.2). The patches also have a state visited?
explained in table A.1. In this implementation, the butterfly coordinates are
continuous variables but the patch ones are discrete.

Butterflies
j = 1, Butterflies

~x1i1 ∈ R2 i1 = 1, ..., n1

~x1i1 =

(

x coordinate
y coordinate

)

131



132 Appendix A. SSABR application examples

X1(t) =
(

~x11 ... ~x1n1

)

; X1(t) ∈ M2×n1(R)

X1(t) =

(

x11(t)
x12(t)

)

; x11(t), ..., x12(t) ∈ M1×n1(R)

~p11 = ~p12 = ... = ~p1n1
≡ ~p1 All butterfly agents share the same set of

parameters

p1 ∈ R

p1 =
(

prob− of −moving − uphill
)

= q

Landscape patches
j = 2, Landscape patches

~x2i2 ∈ R i2 = 1, ..., n2

~x2i2 =
(

visited?
)

X2(t) =
(

~x21 ... ~x2n2

)

; X2(t) ∈ M1×n2(R)

~p2i2 ∈ R3 i2 = 1, ..., n2

~p2i2 =





x patch
y patch
elevation





P 2 =
(

~p21 ... ~p2n2

)

; P 2 ∈ M3×n2(R)

P 2 =





p21
p22
p23



 ; p21, ..., p23 ∈ M1×n2(R)

Agent type State Description

Butterfly x coordinate x coordinate of the butterfly
Butterfly y coordinate y coordinate of the butterfly
Patch visited? true if any butterfly has been in that

patch

Table A.1: Agent states

The environment
~α ∈ R2

~α =

(

number − of − width− cells
number − of − height− cells

)

Dynamic methods
In this model there are two methods. Method one represents the flight of

the butterflies. Method 2 represents the updating of patches’ visited? state.

Step 1:



A.1. Hilltopping behaviour in butterflies 133

Agent type Parameter Description

Butterfly q probability of a butterfly of moving
to the neighbouring patch with the
highest elevation

Patch x patch x coordinate of the centre of the
patch

Patch y patch y coordinate of the centre of the
patch

Patch elevation elevation of the landscape patch

Table A.2: Parameters

Z1 = X1(t) c1 = n1

Z2 = X2(t) c2 = n2

Step 2:

Z1 =

(

z11
z12

)

Z̄1 =

(

z̄11
z̄12

)

z11 , ..., z12 ∈ M1×c1(R); z̄11 , ..., z̄12 ∈ M1×c̄1(R)

Method 1: At each time step, a butterfly could move upward (from z11 , z12
to z̄11 , z̄

1
2) to the highest (p23) neighbouring patch (p21, p

2
2) with a probability

q (p1) or move randomly to a neighbouring patch with a probability 1 - q,
inside the limits of the environment (~α).

(

z̄11
z̄12

)

= F 1
i1,1

(z11 , z12 , p21, p22, p23, p1, ~α)

Method 2: If there is a butterfly in a patch, the state visited? of the patch
will change from false to true.

(

Z̄2
)

= F 2
i2,1

(Z2, z11 , z12)

Step 3:

X1(t+ 1) = Z̄1 n1 = c1
X2(t+ 1) = Z̄2 n2 = c2

Aggregated variables
To estimate the strength of the channelling effect as a function of q,

the number of patches visited by individuals (X2) during a given simula-
tion is counted and divided by the distance between the source coordinates
(x11(0), x

1
2(0)) (initialization value) and the summit (x11(t), x

1
2(t)). This mea-

sure is called ’corridor width’. In this model there is only one aggregated



134 Appendix A. SSABR application examples

(a) Trail of four butterflies during the hilltoping. In
white, the patches that have been visited.

0 20 40 60 80 100
0

1

2

3

Time

C
or

rid
or

 w
id

th

 

 

corridor width

(b) Evolution over time of the corridor width

Figure A.1: Representation of a simulation of the model.

variable measured, so y(t) ∈ R.

y(t) = g(X2(t), x11(0), x12(0), x11(t), x12(t))

A.1.1 Simulation example

We simulated the model with 4 butterflies and q=0.55 and the results are
shown in Figure A.1. The visited patches are coloured in white. Every
butterfly left a trail while moving. The dynamic evolution of the states is
shown in figure A.1a, and the evolution of the aggregated variable corridor
width is shown in figure A.1b.



A.2. Sugarscape 1 Immediate Growback 135

A.2 Sugarscape 1 Immediate Growback

This model is a version from NetLogo library of examples (available at [130])
of Sugarscape model from Epstein and Axtell’s, as described in chapter 2 of
their book Growing Artificial Societies: Social Science from the Bottom Up
[28] . It simulates a population with limited, spatially-distributed resources
available.

Using SSABR we define two types of agents, the so called ’agents’ which
are the mobile agents, and the patches that are static agents. The ’agents’
have three states: their coordinates in a two dimensional environment and
the quantity of sugar they own (table A.3); and two parameters: metabolism
and vision (table A.4). The patches are the grid cells defining the environ-
ment; they have three parameters: their grid coordinates (x_coordinate,
y_coordinate) and the maximum sugar quantity they can hold (table A.4).
They only have one state: the quantity of sugar they hold at time t (psugar).

Agents
j = 1, agents

~x1i1 ∈ R3 i1 = 1, ..., n1(t)

~x1i1 =





x patch
y patch
sugar





X1(t) =
(

~x11 ... ~x1
n1(t)

)

; X1(t) ∈ M3×n1(t)(R)

X1(t) =





x11(t)
x12(t)
x13(t)



 ; x11(t), ..., x13(t) ∈ M1×n1(t)(R)

~p1i1 ∈ R2 i1 = 1, ..., n1(t)

~p1i1 =

(

metabolism
vision

)

P 1 =
(

~p11 ... ~p1
n1(t)

)

; P 1 ∈ M2×n1(t)(R)

Patches
j = 2, Patches

x2i2 ∈ R i2 = 1, ..., n2

x2i2 =
(

psugar
)

X2 =
(

x21 ... x2n2

)

; X2 ∈ M1×n2(t)(R)

~p2i2 ∈ R3 i2 = 1, ..., n2

~p2i2 =





x coordinate
y coordinate
max− psugar





P 2 =
(

~p21 ... ~p2n2

)

; P 2 ∈ M3×n2(R)



136 Appendix A. SSABR application examples

P 2 =





p21
p22
p23



 ; p21, ..., p23 ∈ M1×n2(R)

Agent type State Description

Agent x patch x coordinate of the agent
Agent y patch y coordinate of the agent
Agent sugar the amount of sugar an agent has
Patch psugar the amount of sugar a patch contains

Table A.3: States

Agent type Parameter Description

Agent metabolism the amount of sugar that each agent
loses each tick

Agent vision the distance that a agent can see
in the horizontal and vertical direc-
tions

Patch x coordinate x coordinate of the centre of the
patch

Patch y coordinate y coordinate of the centre of the
patch

Patch max− psugar the maximum amount of sugar that
a patch can hold

Table A.4: Parameters

The environment
~α ∈ R2

~α =

(

number − of − width− cells
number − of − height− cells

)

Dynamic methods
In this implementation there are two methods. The movement of ’agents’,

collection of sugar and die of ’agents’ is implemented in method 1, and the
growth of sugar of patches in method 2.

Step 1:

Z1 = X1(t) c1 = n1(t)

Z2 = X2(t) c2 = n2



A.2. Sugarscape 1 Immediate Growback 137

In this model, the number of patches is fix, so n2 is not time depending,
but the number of agents is, so it is explicitly written as n1(t).

Step 2:

Z1 =





z11
z12
z13



 Z̄1 =





z̄11
z̄12
z̄13





z11 , ..., z13 ∈ M1×c1(R); z̄11 , ..., z̄13 ∈ M1×c̄1(R)

P 1 =

(

p11
p12

)

P 2 =





p21
p22
p23





p11, ..., p12 ∈ M1×q1(R); p21, ..., p23 ∈ M1×q2(R)

Method 1: Each agent can only see along a certain distance both hori-
zontally and vertically. At each tick, each agent will move to the nearest
unoccupied location (from (z11 , z12) to (z̄11 , z̄12)) within their vision range
(p12) with the most sugar (Z2), inside the limits of the environment ~α. If
its current location has as much or more sugar (Z2) than any unoccupied
location it can see, it will stay put. After moving or not, each turtle will
collect all the sugar (Z2) in its patch (p21, p22), incrementing its sugar (from
z13 to z̄13), decrementing the patch sugar to zero (from Z2 to Z̄2). Then,
agents with sugar (z13) less or equal to zero will die. Agents also use (and
thus lose) a certain amount of sugar each tick (from z13 to z̄13), based on their
metabolism rates (p11).

(

Z̄1

Z̄2

)

= F 1
i1,3

(z11 , z12 , z13 , p12, ~α, Z2, p21, p22, p11)

Method 2: At each tick, each patch grows back fully to have the maximum
amount of sugar (p23).

(

Z̄2
)

= F 2
i2
(Z2, p23)

Step 3:

X1(t+ 1) = Z̄1 n1(t+ 1) = c̄1
X2(t+ 1) = Z̄2 n2 = c̄2

Aggregated variables
In this implementation, four aggregated variables are measured (~y(t) ∈

R4).

The population is the number of ’agents’ at time t.

y1(t) = g1(X
1(t))

The second one is the distribution of sugar inside ’agents’ called Wealth



138 Appendix A. SSABR application examples

0 5 10 15 20 25 30
0

20

40

60

80

iteration

su
ga

r

Figure A.2: Evolution of four turtles sugar states.

distribution.

y2(t) = g2(x
1
3(t))

The third one is the Average vision, that is, the mean of vision of ’agents’.

y3(t) = g3(p
1
2)

The Average metabolism is the mean of metabolism of ’agents’.

y4(t) = g4(p
1
1)

A.2.1 Simulation example

We simulated the model with 800 turtles, with random vision in a range 1-6
and random metabolism in a range 1-4. In figure A.2 the evolution of the
quantity of sugar for four turtles is shown.

A.3 Particle Swarm Optimization Algorithm

This is the representation of Particle Swarm Optimization (PSO) algorithm
with the SSABR, specifically the variation Global Best PSO (gbest PSO)
with Inertia Weight proposed by Shi and Eberhart.

A PSO algorithm maintains a swarm of particles, where each particle repre-
sents a potential solution. Let ~ui(t) denote the position of particle i in the
search space at time step t ; unless otherwise stated, t denotes discrete time
steps. The position of the particle is changed by adding a velocity, ~vi(t), to
the current position, i. e.

~ui(t+ 1) = ~ui(t) + ~vi(t+ 1)

For gbest PSO, the velocity of a particle i is calculated as:



A.3. Particle Swarm Optimization Algorithm 139

vid(t+ 1) = ωvid(t) + k1r1d(t)[µid(t)− uid(t)] + k2r2d(t)[µ̂d(t)− uid(t)]

where vid(t) is the velocity of particle i in dimension d = 1, ..., nx at time
step t, uid(t) is the position of particle i in dimension d at time step t, k1
and k2 are positive acceleration constants used to scale the contribution of
the cognitive and social components respectively, r1d(t), r2d(t) ∼ U(0, 1) are
random values in the range [0,1], sampled from a uniform distribution. The
inertia weight, ω, controls the momentum of the particle by weighting the
previous velocity, basically controlling how much memory of the previous
flight direction will influence the new velocity. The personal best position,
~µi, associated with particle i is the best position the particle has visited
since the first time step. The global best position, ~̂µd is the best position
the entire swarm has visited since the first time step.

So the current position of particle i can be expressed as

~ui(t+ 1) = ~ui(t) + ω~vi(t) + k1 ~r1(t). ∗ 1[~µi(t)− ~ui] + k2 ~r2(t). ∗ [~̂µ(t)− ~ui(t)]

Considering minimization problems, the personal best position at the next
time step, t+1, is calculated as

~µi(t+ 1) =

{

~µi(t) if f(~ui(t+ 1)) ≥ f(~µi(t))
~ui(t+ 1) if f(~ui(t+ 1)) < f(~µi(t))

where f : Rnx → R is the fitness function. The fitness function measures how
close the corresponding solution is to the optimum, i.e. the fitness function
quantifies the performance, or quality, of a particle (or solution).

The global best position ~̂µ(t), at time step t, is defined as

~̂µ(t) ∈ {~µ1(t), ..., ~µns(t)} |f(~̂µ(t)) = min {f(~µ1(t)), ..., f(~µns(t))}

where ns is the total number of particles in the swarm. ~̂µ(t) is the best
position discovered by any of the particles so far.

Using the SSABR, we will define one type of agents, the particles, with
three states: its coordinates in a nx dimensional environment ~ui(t), its ve-
locity ~vi(t), and the best position the particle has visited since the first time
step ~µi (table A.5). The particles also have the parameters k1, k2, ω ex-
plained at table A.6.

Applying SSABR will lead to the following

Particles

1element-wise product



140 Appendix A. SSABR application examples

j = 1, particle agent type

~x1i1 ∈ R3 i1 = 1, ..., n1

~x1i1 =





~ui(t)
~vi(t)
~µi(t)





X1(t) =
(

~x11 ... ~x1n1

)

; X1(t) ∈ M3nx×n1(R)

We will define some partitions (x11(t), x
1
2(t), x

1
3(t)) from X1(t) for conve-

nience, that allows to select each state for all the agents in a separate way.

X1(t) =





x11(t)
x12(t)
x13(t)



 ; x11(t), ..., x13(t) ∈ Mnx×n1(R)

~p1i1 ∈ R3

~p1i1 =





k1
k2
ω





P 1 =
(

~p11 ... ~p1n1

)

; P 1 ∈ M3×n1(R)

~p11 = ~p12 = ... = ~p1n1
≡ ~p1 All agents share the same set of parameters

State Description

~ui(t) coordinates of particle i in a nx dimensional environment
~vi(t) velocity of particle i
~µi(t) the best position the particle i has visited since the first time step

Table A.5: Particle states

Parameter Description

k1 acceleration constant of cognitive component
k2 acceleration constant of social component
ω inertia weight

Table A.6: Parameters

The environment
The environment is a nx dimensional world, constrained or unconstrained

depending on the problem to solve.

Dynamic methods This optimization algorithm can be described with



A.3. Particle Swarm Optimization Algorithm 141

three methods: the update of the best position each particle has visited,
the update of velocity of each particle and the update of the position of each
particle. These three methods are iteratively repeated until a stopping con-
dition is satisfied.

Step 1:

Z1 = X1(t) c1 = c̄1 = n1 The number of agents does not change over
time.

Step 2:

Z1 =





z11
z12
z13



 Z̄1 =





z̄11
z̄12
z̄13





z11 , ..., z13 ∈ Mnx×c1(R); z̄11 , ..., z̄13 ∈ Mnx×c̄1(R)

Partitions in Z1 and Z̄1 for convenience, as in the definitions of particle
agent states.

P 1 =





p11
p12
p13





p11, ..., p13 ∈ M1×c1(R) Partitions for convenience

Method 1: At each time step, for each agent, the best personal position
is calculated.

(

z̄13
)

= F 1
i1,1

(z11 , z13)

Method 2: At each time step, for each agent, the velocity of the agent is
updated.

(

z̄12
)

= F 1
i1,2

(z11 , z12 , z13 , P 1)

Method 3: At each time step, for each agent, the position of the agent
is updated.

(

z̄11
)

= F 1
i1,3

(z11 , z12 , z13 , P 1)

Step 3:

X1(t+ 1) = Z̄1

Aggregated variables

In this algorithm two aggregated variables are calculated: ~y1 and y2.



142 Appendix A. SSABR application examples

At each time step, the global best position the entire swarm has visited
is calculated (~y1(t) = ~̂µ(t))

~y1(t) = g1(x
1
3(t))

The value of the objective function on that point is also calculated.

y2(t) = g2(g1(x
1
3(t))) = g(x13(t))

g2 ≡ f (fitness function)



Appendix B

Application of GPGPU in

Optimization

Summary: This section deals with reducing the computational time

of optimization processes that use the multi-start optimization tech-

nique, by using the power of GPGPU.

B.1 The multi-start optimization method

This work was focused on applying the GPU parallel programming to the
multi-start optimization technique. The idea is to launch several optimiza-
tion processes from different starting points to avoid the algorithm getting
stuck in local minima. The main problem of local search algorithms is that
they may obtain locally optimal solutions that can be very far (in terms of
the objective function value) from the global optimal solution. There are
different options to solve this problem of convergence. One of the simplest
is to use the methods called multi-start [80].

In the multi-start method, a phase of generation of initial solutions is
followed by other of improvement of solutions. The algorithm returns as
output the best solution of the objective function value found. The basic
multi-start search is characterized by randomly generated initial solutions.

The optimization algorithms used in this part are the Random Optimiza-
tion (RO) algorithms, a family of numerical optimization methods that do
not require using the gradient of the problem and they can therefore be used
in functions that are not continuous or differentiable. These methods are
also known as direct search algorithms or black box. The name, random
optimization, is attributed to Matyas [82], who made a first presentation of
the RO with basic mathematical analysis. The RO works iteratively moving
to better positions in the search space, which are obtained using a normal

143



144 Appendix B. Application of GPGPU in Optimization

distribution around the current position. One of the most significant fea-
tures of this algorithm is that it ensures convergence to a global minimum
with probability 1 in a compact set when the number of iterations tends to
infinity. In 1981, Solis and Wets [118] proposed MROM method (Modified
Random Optimization Method), a version of the Matyas’ algorithm that en-
sures convergence to the global minimum in a smaller number of iterations.
These RO methods are local search algorithms, that is, they consist of an it-
erative process that begins in a solution and they look in the neighbourhood
for a better solution; if found, they replace the current solution by the new
one and the process continues until the current solution cannot be improved.

The description of these two algorithms is detailed below. Let f(~x) be
the objective function, X the search region, and k the step iteration counter.

Random Optimization Method

1. Select an initial point ~x(0). Let k = 0 and M be the total number of
iterations.

2. Generate a Gaussian random vector ~ξ(k). If ~x(k) + ~ξ(k) ∈ X, go to
step 3. If not, go to step 4.

3. If f(~x(k) + ~ξ(k)) < f(~x(k)), then ~x(k + 1) = ~x(k) + ~ξ(k). If f(~x(k) +
~ξ(k)) ≥ f(~x(k)), then ~x(k + 1) = ~x(k).

4. If k = M , stop the process. If k < M , then k=k+1 and return to step
2.

Modified Random Optimization Method The only difference from
the previous algorithm is step 3:

3.

i If f(~x(k)+~ξ(k)) < f(~x(k)), then ~x(k+1) = ~x(k)+~ξ(k) and ~b(k+1) =
0.4~ξ(k) + 0.2~b(k).

ii If f(~x(k) + ~ξ(k)) ≥ f(~x(k)) and f(~x(k)− ~ξ(k)) < f(~x(k)), then ~x(k +
1) = ~x(k)− ~ξ(k) and ~b(k + 1) = ~b(k)− 0.4~ξ(k).

Otherwise, ~x(k + 1) = ~x(k) and ~b(k + 1) = 0.5~b(k).

where ~b is the center of the Gaussian random vector ~ξ, and ~b(0) = 0.

ROM and MROM algorithms were coded in CUDA C and ANSI C us-
ing the Visual Studio development environment. The initial solutions were
generated from a uniform grid solution space of 49 points, and a set of 10
variances for the optimization methods MROM and ROM were generated,
that is, 490 different initial conditions. These 490 optimizations were ex-
ecuted sequentially and in parallel. The objective functions were function



B.1. The multi-start optimization method 145

−2 0 2−20
2

−5

0

5

Figure B.1: Peaks function representation.

Figure B.2: Two-dimensional Rosenbrock function representation.

peaks from MATLAB (equation B.1, figure B.1) and the Benchmark function
Rosenbrock (equation B.2, figure B.2) with dimension 10 (nx=10).

f(x, y) = 3(1− x)2 exp(−x2 − (y + 1)2)− 10(x/5− x3 − y5) exp(−x2 − y2)
−1/3 exp(−(x+ 1)2 − y2)

(B.1)
with f∗ = −6.5511 in the point (0.2283,-1.6255).

f(x) =

nx−1
∑

j=1

[

(1− xj)
2 + 100(xj+1 − x2j )

2
]

(B.2)

with xj ∈ [−2.048, 2.048] and f∗ = 0.0, and nx the function dimension.

To analyze the execution times of the implementations, the serialized
and parallel algorithms were executed, optimizing the objective functions
described above, and varying the number of iterations performed by each
algorithm, from 102 to 108 iterations.

The results of execution times can be seen in figures B.3 and B.4, and
acceleration factor achieved in each implementation in the tables B.1 and
B.2.

In tables B.1 and B.2 it can be observed that the MROM acceleration
factor obtained for the same objective function is smaller than the obtained
with the ROM algorithm, because the MROM method performs more func-



146 Appendix B. Application of GPGPU in Optimization

10
2

10
4

10
6

10
8

0

2

4

6
x 10

4

Iterations (logarithmic scale)

E
x
e
c
u
ti
o
n
 t

im
e

 (
s
)

ROM C

ROM CUDA

(a) Peaks function

10
2

10
4

10
6

10
8

0

2

4

6
x 10

4

Iterations (logarithmic scale)

E
x
e
c
u
ti
o
n
 t

im
e
 (

s
)

ROM C

ROM CUDA

(b) Rosenbrock function

Figure B.3: ROM algorithm execution time.

10
2

10
4

10
6

10
8

0

2

4

6
x 10

4

Iterations (logarithmic scale)

E
x
e
c
u
ti
o
n
 t

im
e
 (

s
)

MROM C

MROM CUDA

(a) Peaks function

10
2

10
4

10
6

10
8

0

2

4

6
x 104

Iterations (logarithmic scale)

E
x
e
c
u
ti
o
n
 t

im
e

 (
s
)

MROM C

MROM CUDA

(b) Rosenbrock function

Figure B.4: MROM algorithm execution time.

tion evaluations. Similarly, evaluating a more complex function (Rosenbrock
versus Peaks) supposes less acceleration.

The true efficiency of parallelized code over GPUs is achieved with thou-
sands of threads (in this example 490 threads have been used). To achieve
greater efficiency and therefore greater acceleration, memory accesses must
be optimized. Global memory is much slower than shared memory, as it



B.1. The multi-start optimization method 147

Table B.1: Acceleration factor. Peaks function.

Function Peaks
Optimization method Acceleration factor

ROM 7x

MROM 5.5x

Table B.2: Acceleration factor. Rosenbrock function.

Function Rosenbrock
Optimization method Acceleration factor

ROM 5x

MROM 2.5x

is located outside the chip, and therefore it is pretty important to perform
the requests efficiently. In the example in this work, we have only worked
with global memory. Furthermore, the maximum efficiency is achieved with
little divergence, that is, when the code has less conditional statements. The
acceleration factor achievable ranges from 3x to 350x depending on the type
of application and how the code is optimized.

This work was presented during the conference XXXIII Jornadas de Au-
tomática that was held in Vigo (Spain) in September of 2012 [103].





Bibliography

Y así, del mucho leer y del poco dormir,

se le secó el celebro de manera que vino

a perder el juicio.

Miguel de Cervantes Saavedra

[1] B. G. Aaby, K. S. Perumalla, and S. K. Seal. Efficient simulation
of agent-based models on multi-GPU and multi-core clusters. In Pro-
ceedings of the 3rd International ICST Conference on Simulation Tools
and Techniques, SIMUTools ’10, pages 29:1–29:10, ICST, Brussels, Bel-
gium, Belgium, 2010. ICST (Institute for Computer Sciences, Social-
Informatics and Telecommunications Engineering).

[2] Accelereyes. Accelereyes blog. http://blog.accelereyes.com/

blog/2012/12/12/exciting-updates-from-accelereyes/ (last vis-
ited September 2013).

[3] Accelereyes. Jacket. http://www.accelereyes.com/download_

jacket (last visited November 2012), 2012.

[4] B. Al-kazemi and C. Mohan. Training feedforward neural networks
using multi-phase particle swarm optimization. In Neural Information
Processing, 2002. ICONIP ’02. Proceedings of the 9th International
Conference on, volume 5, pages 2615–2619 vol.5, 2002.

[5] K. Anderson and S. Sheffield. Water Reuse. http://www.

sheffy6marketing.com/ (last visited April 2013).

[6] AndroMeta LLC. AndroMeta. http://g6g-softwaredirectory.

com/bio/cross-omics/agent-based/20451AndroMeta.php (last vis-
ited April 2013).

[7] AnyLogic. Multimethod simulation software. http://www.anylogic.
com (last visited August 2013).

149

http://blog.accelereyes.com/blog/2012/12/12/exciting-updates-from-accelereyes/
http://blog.accelereyes.com/blog/2012/12/12/exciting-updates-from-accelereyes/
http://www.accelereyes.com/download_jacket
http://www.accelereyes.com/download_jacket
http://www.sheffy6marketing.com/
http://www.sheffy6marketing.com/
http://g6g-softwaredirectory.com/bio/cross-omics/agent-based/20451AndroMeta.php
http://g6g-softwaredirectory.com/bio/cross-omics/agent-based/20451AndroMeta.php
http://www.anylogic.com
http://www.anylogic.com


150 Bibliography

[8] P. Arpaia, F. Donnarumma, S. Manfredi, and C. Manna. Model predic-
tive control strategy based on differential discrete particle swarm opti-
mization. In Environmental Energy and Structural Monitoring Systems
(EESMS), 2010 IEEE Workshop on, pages 70–73, 2010.

[9] R. Axelrod. Advancing the art of simulation in the social sciences.
Complexity, 3(2):16–22, Nov. 1997.

[10] R. Axelrod and L. Tesfatsion. A guide for newcomers to agent-based
modeling in the social sciences. In L. Tesfatsion and K. L. Judd, editors,
Handbook of Computational Economics, Vol. 2: Agent-Based Compu-
tational Economics. North Holland, 2006.

[11] R. L. Axtell. Why agents? on the varied motivations for agent com-
puting in the social sciences. In C. M. Macal and D. Sallach, editors,
Proceedings of the Workshop on Agent Simulation: Applications, Mod-
els, and Tools. Argonne National Laboratory, 2000.

[12] C. Blum and D. Merkle. Swarm Intelligence: Introduction and Appli-
cations. Natural Computing Series. Springer-Verlag Berlin Heidelberg,
2008.

[13] E. Bonabeau. Agent-based modeling: Methods and techniques for
simulating human systems. Proceedings of the National Academy of
Sciences, 99(90003):7280–7, 2002.

[14] E. Bonabeau, M. Dorigo, and G. Theraulaz. Swarm intelligence: from
natural to artificial systems. Oxford University Press, Inc., New York,
NY, USA, 1999.

[15] S. Cagnoni and M. Mordonini. Particle swarm optimization and image
analysis. In J. R. Rabuñal, J. Dorado, and A. Pazos, editors, Encyclo-
pedia of Artificial Intelligence, pages 1303–1309. IGI Global, 2009.

[16] A. Carlisle and G. Dozier. Adapting particle swarm optimisation to
dynamic environments. In International Conference on Artificial In-
telligence, pages 429–434. CSREA Press, 2000.

[17] S. Chandrasekaran, R. K. Suresh, S. G. Ponnambalam, and N. Vi-
jayakumar. An application of particle swarm optimization algorithm
to permutation flowshop scheduling problems to minimize makespan,
total flowtime and completion time variance. In CASE, pages 513–518.
IEEE, 2006.

[18] N. Collier. RePast: An extensible framework for agent simulation.
http://repast.sourceforge.net/ (last visited August 2013), 2003.

http://repast.sourceforge.net/


Bibliography 151

[19] S. Cook. CUDA Programming: A Developer’s Guide to Parallel Com-
puting with GPUs. Applications of GPU Computing Series. Elsevier
Science, 2012.

[20] E. Dens, K. Bernaerts, A. Standaert, and J. V. Impe. Cell division
theory and individual-based modeling of microbial lag: Part i. the
theory of cell division. International Journal of Food Microbiology,
101(3):303 – 318, 2005.

[21] E. Dens, K. Bernaerts, A. Standaert, J.-U. Kreft, and J. V. Impe. Cell
division theory and individual-based modeling of microbial lag: Part ii.
modeling lag phenomena induced by temperature shifts. International
Journal of Food Microbiology, 101(3):319 – 332, 2005.

[22] A. Drogoul, D. Vanbergue, and T. Meurisse. Multi-Agent Based Sim-
ulation: Where are the Agents?, pages 43–49. Springer, 2003.

[23] R. C. Eberhart and J. Kennedy. A new optimizer using particle swarm
theory. In Proceedings of the Sixth International Symposium on Mi-
cromachine and Human Science, Nagoya, Japan., pages 39–43, 1995.

[24] R. C. Eberhart and J. Kennedy. Particle swarm optimization. In
Proceedings of IEEE International Conference on Neural Networks,
Piscataway, NJ., pages pp. 1942–1948, 1995.

[25] B. Edmonds. The use of models - making MABS more informative.
In Proceedings of the Second International Workshop on Multi-Agent-
Based Simulation-Revised and Additional Papers, MABS ’00, pages
15–32, London, UK, UK, 2001. Springer-Verlag.

[26] A. Engelbrecht. Fundamentals of Computational Swarm Intelligence.
Wiley, 2005.

[27] J. M. Epstein. Agent-based computational models and generative so-
cial science. Complexity, 4:41–60, 1999.

[28] J. M. Epstein and R. Axtell. Growing artificial societies: social science
from the bottom up. Brookings Institution Press, Washington, DC,
1996.

[29] J. D. Farmer and D. Foley. The economy needs agent-based modelling.
Nature, 460(7256):685–6, Aug. 2009.

[30] J. Ferrer, J. Vidal, C. Prats, J. Valls, E. Herreros, D. López, A. Giró,
and D. Gargallo. Individual-based model and simulation of plasmod-
ium falciparum infected erythrocyte in vitro cultures. Journal of The-
oretical Biology, 248(3):448–59, 2007.



152 Bibliography

[31] FLAME. Flexible Large-scale Agent Modelling Environment. http://
www.flame.ac.uk (last visited October 2013).

[32] S. Franklin and A. Graesser. Is it an agent, or just a program?: A
taxonomy for autonomous agents. In Proceedings of the Workshop on
Intelligent Agents III, Agent Theories, Architectures, and Languages,
ECAI ’96, pages 21–35, London, UK, UK, 1997. Springer-Verlag.

[33] J. M. Galán, L. R. Izquierdo, S. S. Izquierdo, J. I. Santos, R. del Olmo,
A. López-Paredes, and B. Edmonds. Errors and artefacts in agent-
based modelling. Journal of Artificial Societies and Social Simulation,
12(1):1, 2009.

[34] G. N. Gilbert. Agent-based models. Quantitative applications in the
social sciences. Sage, 2008.

[35] M. Ginovart and J. Cañadas. INDISIM-YEAST: an individual-based
simulator on a website for experimenting and investigating diverse dy-
namics of yeast populations in liquid media. Journal of Industrial
Microbiology & Biotechnology, 35(11):1359–1366, 2008.

[36] M. Ginovart, D. López, and A. Gras. Individual-based modelling of
microbial activity to study mineralization of C and N and nitrification
process in soil. Nonlinear Analysis: Real World Applications, 6(4):773
– 795, 2005.

[37] M. Ginovart, D. López, and M. Silbert. Simulation modelling of bac-
terial growth in yoghurt. International Journal of Food Microbiology,
73(2-3):415–25, Mar. 2002.

[38] M. Ginovart, D. López, and J. Valls. INDISIM, an individual-based
discrete simulation model to study bacterial cultures. Journal of The-
oretical Biology, 214(2):305–319, Jan. 2002.

[39] M. Ginovart, D. López, J. Valls, and M. Silbert. Individual based
simulations of bacterial growth on agar plates. Physica A: Statistical
Mechanics and its Applications, 305(3):604–618, 2002.

[40] M. Ginovart and C. Prats. A bacterial individual-based virtual biore-
actor to test handling protocols in a NetLogo platform. In MATH-
MOD 2012 - 7th Vienna International Conference on Mathematical
Modelling, pages 647–652, 2012.

[41] V. Grimm. Ten years of individual-based modelling in ecology: what
have we learned and what could we learn in the future? Ecological
Modelling, 115(2-3):129–148, Feb. 1999.

http://www.flame.ac.uk
http://www.flame.ac.uk


Bibliography 153

[42] V. Grimm, U. Berger, F. Bastiansen, S. Eliassen, V. Ginot, J. Giske,
J. Goss-Custard, T. Grand, S. K. Heinz, G. Huse, A. Huth, J. U.
Jepsen, C. Jorgensen, W. M. Mooij, B. Muller, G. Pe’er, C. Piou, S. F.
Railsback, A. M. Robbins, M. M. Robbins, E. Rossmanith, N. Ruger,
E. Strand, S. Souissi, R. A. Stillman, R. Vabo, U. Visser, and D. L.
Deangelis. A standard protocol for describing individual-based and
agent-based models. Ecological Modelling, 198:115–126, 2006.

[43] V. Grimm, U. Berger, D. L. DeAngelis, J. G. Polhill, J. Giske, and S. F.
Railsback. The ODD protocol: A review and first update. Ecological
Modelling, 221(23):2760–2768, Nov. 2010.

[44] W. Gujer. Microscopic versus macroscopic biomass models in activated
sludge systems. Water Science & Technology (IWA Publising), 45(6):1–
11, 2002.

[45] R. A. Hanneman and M. Riddle. Introduction to social network meth-
ods. Riverside, CA: University of California, Riverside (published in
digital form at http://faculty.ucr.edu/ hanneman/), 2005.

[46] M. Hare and P. Deadman. Further towards a taxonomy of agent-based
simulation models in environmental management. Mathematics and
Computers in Simulation, 64(1):25–40, Jan. 2004.

[47] I. Harvey, E. A. Di Paolo, R. Wood, M. Quinn, and E. Tuci. Evolu-
tionary robotics: A new scientific tool for studying cognition. Artificial
Life, 11(1-2):79–98, 2005.

[48] I. Harvey, P. Husbands, and D. Cliff. Issues in evolutionary robotics.
In J. Meyer, H. Roitblat, and S. Wilson, editors, From Animals to An-
imats 2: Proceedings of the Second International Conference on Sim-
ulation of Adaptive Behavior, pages 364–373. MIT Press, Cambridge,
MA, 1993.

[49] S. Hassan, J. Arroyo, J. M. Galán, L. Antunes, and J. Pavón. Asking
the oracle: Introducing forecasting principles into agent-based mod-
elling. Journal of Artificial Societies and Social Simulation, 16(3):13,
2013.

[50] D. Helbing, editor. Social Self-Organization: Agent-Based Simulations
and Experiments to Study Emergent Social Behavior. Understanding
Complex Systems. Springer, Berlin, 2012.

[51] F. Hellweger and E. Kianirad. Individual-based modeling of phyto-
plankton: evaluating approaches for applying the cell quota model.
Journal of Theoretical Biology, 249(3):554–65, 2007.



154 Bibliography

[52] F. L. Hellweger and V. Bucci. A bunch of tiny individuals -individual-
based modeling for microbes. Ecological Modelling, 220(1):8–22, 2009.

[53] M. Henze, W. Gujer, and T. Mino, editors. Activated sludge models
ASM1, ASM2, ASM2d and ASM3, volume No. 9. IWA Publishing,
2000.

[54] A. J. Heppenstall, A. T. Crooks, L. M. See, and M. Batty, editors.
Agent-Based Models of Geographical Systems. Springer Netherlands,
Dordrecht, 2012.

[55] A. G. Hernández-Díaz, L. V. Santana-Quintero, C. Coello Coello,
R. Caballero, and J. Molina. A new proposal for multi-objective opti-
mization using differential evolution and rough sets theory. In Proceed-
ings of the 8th annual conference on Genetic and evolutionary compu-
tation, GECCO ’06, pages 675–682, New York, NY, USA, 2006. ACM.

[56] F. Hinkelmann, D. Murrugarra, A. S. Jarrah, and R. C. Laubenbacher.
A mathematical framework for agent based models of complex biolog-
ical networks. Computing Research repository, abs/1006.0408, 2010.

[57] S. Hoshino. On Davies, Swann and Campey minimisation process. The
Computer Journal, 14(4):426–427, Nov. 1971.

[58] X. Hu and R. Eberhart. Solving constrained nonlinear optimization
problems with particle swarm optimization. In 6th World Multicon-
ference on Systemics, Cybernetics and Informatics (SCI 2002), pages
203–206, 2002.

[59] S. R. Karnik, A. B. Raju, and M. S. Raviprakasha. Robust de-
sign of power system stabilizer using taguchi technique and particle
swarm optimization. In Emerging Trends in Engineering and Technol-
ogy (ICETET), 2009 2nd International Conference on, pages 515–520,
2009.

[60] F. Kawai, H. Ito, C. Nakazawa, T. Matsui, Y. Fukuyama, R. Suzuki,
and E. Aiyoshi. Automatic tuning for model predictive control: Can
particle swarm optimization find a better parameter? In Intelligent
Control, 2007. ISIC 2007. IEEE 22nd International Symposium on,
pages 646–651, 2007.

[61] J. Kennedy and R. C. Eberhart. Swarm intelligence. Morgan Kauf-
mann Publishers Inc., San Francisco, CA, USA, 2001.

[62] D. Kirk and W. Hwu. Programming Massively Parallel Processors: A
Hands-on Approach. Elsevier Science, 2012.



Bibliography 155

[63] F. Klügl, R. Herrler, and C. Oechslein. From simulated to real envi-
ronments: How to use SeSAm for software development. In Multiagent
System Technologies - 1st German Conferences MATES, (LNAI 2831,
pages 13–24. Springer, 2003.

[64] F. Klügl. A validation methodology for agent-based simulations. In
Proceedings of the 2008 ACM symposium on Applied computing, SAC
’08, pages 39–43, New York, NY, USA, 2008. ACM.

[65] J.-U. Kreft, G. Booth, and J. W. T. Wimpenny. BacSim, a simulator
for individual-based modelling of bacterial colony growth. Microbiol-
ogy, 144(12):3275–3287, Dec. 1998.

[66] J.-U. Kreft, C. Picioreanu, J. W. T. Wimpenny, and M. C. M. van
Loosdrecht. Individual-based modelling of biofilms. Microbiology,
147(11):2897–2912, 2001.

[67] E. Laskari, K. Parsopoulos, and M. Vrahatis. Particle swarm optimiza-
tion for minimax problems. In Evolutionary Computation, 2002. CEC
’02. Proceedings of the 2002 Congress on, volume 2, pages 1576–1581,
2002.

[68] R. Leombruni and M. Richiardi. Why are economists sceptical about
agent-based simulations? Physica A: Statistical Mechanics and its
Applications, 355(1):103–109, Sept. 2005.

[69] X. Li, P. Tian, and M. Kong. A novel particle swarm optimization
for constrained optimization problems. In S. Zhang and R. Jarvis,
editors, AI 2005: Advances in Artificial Intelligence, volume 3809 of
Lecture Notes in Computer Science, pages 1305–1310. Springer Berlin
Heidelberg, 2005.

[70] C.-J. Liao, C.-T. Tseng, and P. Luarn. A discrete version of particle
swarm optimization for flowshop scheduling problems. Computers &
Operations Research, 34(10):3099 – 3111, 2007.

[71] J. Lowden. Evolution of the NVIDIA GPU architecture. Advanced
Computer Architecture http://meseec.ce.rit.edu/722-projects/

fall2012/1-4.pdf (last visited October 2013), 2012.

[72] M. Luck, P. McBurney, O. Shehory, and S. Willmott. Agent Technol-
ogy: Computing as Interaction (A Roadmap for Agent Based Comput-
ing). AgentLink, 2005.

[73] S. Luke, G. C. Balan, L. Panait, C. Cioffi-Revilla, and S. Paus. MA-
SON: A Java multi-agent simulation library. In C. M. Macal, M. North,
and D. Sallach, editors, Proceedings of Agent 2003, Conference on
Challenges in Social Simulation. Argonne National Laboratory, 2003.

http://meseec.ce.rit.edu/722-projects/fall2012/1-4.pdf
http://meseec.ce.rit.edu/722-projects/fall2012/1-4.pdf


156 Bibliography

[74] M. Lysenko and R. M. D’Souza. A framework for megascale agent
based model simulations on graphics processing units. Journal of Ar-
tificial Societies and Social Simulation, 11(4):10, 2008.

[75] C. M. Macal and M. J. North. Tutorial on agent-based modeling and
simulation part 2: How to model with agents. In Winter Simulation
Conference, 2006. WSC 06. Proceedings of the, pages 73–83, Dec. 2006.

[76] C. M. Macal and M. J. North. Introductory tutorial: agent-based
modeling and simulation. In S. Jain, R. R. C. Jr., J. Himmelspach,
K. P. White, and M. C. Fu, editors, Winter Simulation Conference,
pages 1456–1469. WSC, 2011.

[77] V. Mangat. Survey on particle swarm optimization based clustering
analysis. In Proceedings of the 2012 international conference on Swarm
and Evolutionary Computation, SIDE’12, pages 301–309, Berlin, Hei-
delberg, 2012. Springer-Verlag.

[78] S. Mardani, A. Mirbagheri, M. Amin, and M. Ghasemian. Determina-
tion of biokinetic coefficients for activated sludge processes on munic-
ipal wastewater. Iranian Journal of Environmental Health Science &
Engineering, 8(1), 2011.

[79] Y. Marinakis, G. Iordanidou, and M. Marinaki. Particle swarm op-
timization for the vehicle routing problem with stochastic demands.
Applied Soft Computing, 13(4):1693–1704, 2013.

[80] R. Martí and J. M. Moreno-Vega. Métodos multi-arranque. Inteligen-
cia Artificial. Revista Iberoamericana de Inteligencia Artificial, 2003.

[81] MATLAB. version 7.10.0 (R2010b). The MathWorks Inc., Natick,
Massachusetts, 2010.

[82] J. Matyas. Random optimization. Automation and Remote Control,
26(2):244–251, 1965.

[83] I. Metcalf & Eddy, G. Tchobanoglous, F. Burton, and H. Stensel.
Wastewater Engineering: Treatment and Reuse. McGraw-Hill Series
in water resources and environmental engineering. McGraw-Hill Edu-
cation, 2002.

[84] J. Miller and S. Page. Complex Adaptive Systems: An Introduction
to Computational Models of Social Life: An Introduction to Computa-
tional Models of Social Life. Princeton Studies in Complexity. Prince-
ton University Press, 2009.

[85] M. M. Millonas. Swarms, phase transitions and collective intelligence.
In C. Langton, editor, Artificial Life III. Addison-Wesley, 1994.



Bibliography 157

[86] N. Minar, R. Burkhart, C. Langton, and M. Askenazi. The swarm sim-
ulation system: A toolkit for building multi-agent simulations. Santa
Fe Institute working paper 96-06-042. Swarm available at http://www.
swarm.org (last visited August 2013), 1996.

[87] J. Monod. The growth of bacterial cultures. Annual Review of Micro-
biology, 3:371–394, 1949.

[88] R. Moreno. Estimación de estados y control predictivo del proceso de
fangos activados. PhD thesis, Universitat Autònoma de Barcelona,
1994.

[89] S. Moss. Control metaphors in the modelling of economic learning and
decision-making behavior. Computational Economics, 8, 1998.

[90] L. Mussi, F. Daolio, and S. Cagnoni. Evaluation of parallel parti-
cle swarm optimization algorithms within the CUDATM architecture.
Journal of Information Science, 181(20):4642–4657, Oct. 2011.

[91] NVIDIA. NVIDIA CUDA C programming guide, version 4.2.

[92] NVIDIA. NVIDIA CUDA C programming best practices guide, version
4.2, 2012.

[93] C. Ocampo-Martinez. Concluding remarks. In Model Predictive Con-
trol of Wastewater Systems, Advances in Industrial Control, pages 195–
200. Springer London, 2010.

[94] G. Pan, Q. Dou, , and X. Liu. Performance of two improved par-
ticle swarm optimization in dynamic optimization environments. In
Proceedings of the 6th International Conference on Intelligent Systems
Design and Applications, pages 1024–1028. IEEE Press, 2006.

[95] E. Papageorgiou, K. Parsopoulos, C. Stylios, P. Groumpos, and
M. Vrahatis. Fuzzy cognitive maps learning using particle swarm op-
timization. Journal of Intelligent Information Systems, 25(1):95–121,
2005.

[96] K. E. Parsopoulos, K. Skouri, and M. N. Vrahatis. Particle swarm op-
timization for tackling continuous review inventory models. In M. Gi-
acobini, A. Brabazon, S. Cagnoni, G. D. Caro, R. Drechsler, A. Ekárt,
A. Esparcia-Alcázar, M. Farooq, A. Fink, J. McCormack, M. O’Neill,
J. Romero, F. Rothlauf, G. Squillero, S. Uyar, and S. Yang, editors,
EvoWorkshops, volume 4974 of Lecture Notes in Computer Science,
pages 103–112. Springer, 2008.

[97] K. E. Parsopoulos and M. N. Vrahatis. Recent approaches to global
optimization problems through particle swarm optimization. Natural
Computing, 1(2-3):235–306, 2002.

http://www.swarm.org
http://www.swarm.org


158 Bibliography

[98] J. Pavón, A. López-Paredes, and J. Galán. Modelado basado en agentes
para el estudio de sistemas complejos. Novática, 218:13–18, 2012.

[99] G. U. Y. Pe’er, D. Saltz, and K. Frank. Virtual corridors for con-
servation management. Conservation Biology, 19(6):1997–2003, Dec.
2005.

[100] M. Pereda and J. M. Zamarreño. Agent-based modeling of an activated
sludge process in a batch reactor. In 2011 19th Mediterranean Confer-
ence on Control & Automation (MED), pages 1128–1133, Corfu, June
2011. IEEE.

[101] M. Pereda and J. M. Zamarreño. Modelado basado en agentes. In Actas
de las XXXII Jornadas de Automática, pages 423–428. Universidad de
Sevilla y CEA-IFAC, Septiembre 2011.

[102] M. Pereda and J. M. Zamarreño. An OOP agent-based model for
the activated studge process using MATLAB. In S. Omatu, J. F.
De Paz Santana, S. R. González, J. M. Molina, A. M. Bernardos,
and J. M. C. Rodríguez, editors, Distributed Computing and Artificial
Intelligence, volume 151 of Advances in Intelligent and Soft Computing,
pages 241–248. Springer Berlin Heidelberg, 2012.

[103] M. Pereda and J. M. Zamarreño. Optimización multiarranque en pa-
ralelo sobre GPU. In R. S. Matías García, editor, Actas de las XXXIII
Jornadas de Automática, pages 423–428. Universidad de Vigo y CEA-
IFAC, Septiembre 2012.

[104] B. Potter, J. Sinclair, and D. Till. Introduction to Formal Specification
and Z (2nd Edition). Prentice Hall PTR, 1996.

[105] C. Prats. Individual-based Modelling of Bacterial Cultures in the Study
of the Lag Phase. PhD thesis, Universitat Politècnica de Catalunya.
Departament de Física i Enginyeria Nuclear and Escola Superior
d’Agricultura de Barcelona, 2008.

[106] S. F. Railsback and V. Grimm. Agent-Based and Individual-Based
Modeling: A Practical Introduction. Princeton University Press, 2011.

[107] A. Rakitianskaia and A. Engelbrecht. Training feedforward neural net-
works with dynamic particle swarm optimisation. Swarm Intelligence,
6(3):233–270, 2012.

[108] A. Repenning and T. Sumner. Agentsheets: A medium for creating
domain-oriented visual languages. IEEE Computer 28: 17-25. http://
AgentSheets.com/ (last visited August 2013), 1995.

http://AgentSheets.com/
http://AgentSheets.com/


Bibliography 159

[109] C. W. Reynolds. Flocks, herds and schools: A distributed behavioral
model. SIGGRAPH Computer Graphics, 21(4):25–34, Aug. 1987.

[110] M. Richiardi, R. Leombruni, N. J. Saam, and M. Sonnessa. A com-
mon protocol for agent-based social simulation. Journal of Artificial
Societies and Social Simulation, 9(1):15, 2006.

[111] P. Richmond. FLAME GPU technical report and user guide. technical
report CS-11-03. Technical report, University of Sheffield, Department
of Computer Science, 2011.

[112] D. L. Russell. Practical Wastewater Treatment. John Wiley & Sons,
Inc., 2006.

[113] J. Sanders and E. Kandrot. CUDA by Example: An Introduction to
General-Purpose GPU Programming. Pearson Education, 2010.

[114] T. C. Schelling. Models of segregation. The American Economic Re-
view, 59(2):488–493, 1969.

[115] A. J. Schuler. Diversity matters: dynamic simulation of distributed
bacterial states in suspended growth biological wastewater treatment
systems. Biotechnology and Bioengineering, 91:62–74, 2005.

[116] A. J. Schuler, N. Majed, V. Bucci, F. L. Hellweger, Y. Tu, and A. Z.
Gu. Is the whole the sum of its parts? agent-based modelling of
wastewater treatment systems. Water Science & Technology (IWA
Publising), 63(8):1590, 2011.

[117] Y. Shi and R. C. Eberhart. A modified particle swarm optimizer. In
Proceedings of the IEEE Congress on Evolutionary Computation, pages
69 – 73, 1998.

[118] F. J. Solis and R. J. B. Wets. Minimization by random search tech-
niques. Mathematics of Operations Research, 6(1):19–30, 1981.

[119] A. Talaie khozani, N. Jafarzadeh Haghighi Fard, M. Talaie Khozani,
and M. Beheshti. The determination of biokinetic coefficients of crude
oil biodegradation using pseudomonas aeruginosa bacteria. Health &
Environment, 3:111–122, 2010.

[120] Y. Tan and Y. Zhou. Parallel particle swarm optimization algorithm
based on graphic processing units. In B. Panigrahi, Y. Shi, and M.-H.
Lim, editors, Handbook of Swarm Intelligence, volume 8 of Adaptation,
Learning, and Optimization, pages 133–154. Springer Berlin Heidel-
berg, 2010.



160 Bibliography

[121] W. Tang. Accelerating agent-based modeling using graphics processing
units. In X. Shi, V. Kindratenko, and C. Yang, editors, Modern Ac-
celerator Technologies for Geographic Information Science, pages 113–
129. Springer US, 2013.

[122] W. Tang, D. A. Bennett, and S. Wang. A parallel agent-based model
of land use opinions. Journal of Land Use Science, 6(2-3):121–135,
2011.

[123] A. Taylor. The verification of dynamic simulation models. Journal of
the Operational Research Society, 34(3):233–242, 1983.

[124] L. Tesfatsion. Agent-based computational economics: Growing
economies from the bottom up. Artifitial Life, 8(1):55–82, Mar. 2002.

[125] L. Tesfatsion. Agent-Based Computational Economics. Growing
Economies from the Bottom Up. http://www.econ.iastate.edu/

tesfatsi/ (last visited March 2013), 2013.

[126] I. Torsun. Foundations of Intelligent Knowledge-Based Systems. Li-
brary and Information Science. Academic Press Limited, 1995.

[127] F. van den Bergh and A. Engelbrecht. A study of particle swarm
optimization particle trajectories. Information Sciences, 176(8):937–
971, 2006.

[128] U. Wilensky. NetLogo Segregation model. Center for Con-
nected Learning and Computer-Based Modeling, Northwestern Univer-
sity, Evanston, IL. http://ccl.northwestern.edu/netlogo/models/
Segregation (last visited March 2013), 1997.

[129] U. Wilensky. NetLogo. Center for Connected Learning and Computer-
Based Modeling, Northwestern University, Evanston, IL.http://ccl.
northwestern.edu/netlogo/ (last visited March 2013), 1999.

[130] U. Wilensky. NetLogo Sugarscape 1 Immediate Growback model.
Center for Connected Learning and Computer-Based Modeling,
Northwestern University, Evanston, IL. http://ccl.northwestern.

edu/netlogo/models/Sugarscape1ImmediateGrowback (last visited
March 2013), 2009.

[131] I. Wolfram Research. Mathematica. Wolfram Research, Inc., 2010.

[132] D. Xiao, D. Song, L. Peng, and T. Li. Hybrid model predictive control
based on modified particle swarm optimization. In BIC-TA, pages
385–390. IEEE, 2010.

http://www.econ.iastate.edu/tesfatsi/
http://www.econ.iastate.edu/tesfatsi/
http://ccl.northwestern.edu/netlogo/models/Segregation
http://ccl.northwestern.edu/netlogo/models/Segregation
http://ccl.northwestern.edu/netlogo/
http://ccl.northwestern.edu/netlogo/
http://ccl.northwestern.edu/netlogo/models/Sugarscape1ImmediateGrowback
http://ccl.northwestern.edu/netlogo/models/Sugarscape1ImmediateGrowback


Bibliography 161

[133] Y. Zhou and Y. Tan. GPU-based parallel particle swarm optimization.
In Proceedings of the Eleventh conference on Congress on Evolutionary
Computation, CEC’09, pages 1493–1500, Piscataway, NJ, USA, 2009.
IEEE Press.

[134] Q. Zou, J. Ji, S. Zhang, M. Shi, and Y. Luo. Model predictive control
based on particle swarm optimization of greenhouse climate for saving
energy consumption. In World Automation Congress (WAC), 2010,
pages 123–128, 2010.






	Acknowledgements
	Summary
	Resumen
	I Introduction
	Introduction and Objectives
	Motivation and Background
	Objectives
	Document Structure


	II Fundamentals
	Agent-Based Modelling
	Introduction
	Definitions
	Application areas
	Strengths and weaknesses
	Methodology
	Agents and their Environment
	Agent Methods and Interactions
	Implementation
	Verification, validation and calibration
	Simulation

	Software
	Standards
	In the next chapter

	Swarm Intelligence
	Introduction
	Particle Swarm Optimization
	Basic Particle Swarm Optimization
	Implementation Aspects

	Applications
	In the next chapter

	Wastewater Treatment
	Introduction
	Wastewater Treatment
	The Activated Sludge Process
	Microbiological concepts
	ABM in microbiology
	In the next chapter

	Parallel Computing on the GPU with CUDA
	Introduction
	What is the CUDA architecture
	CUDA program structure
	The NVIDIA GPU hardware
	Example of a CUDA C program
	Choosing a NVIDIA GPU for computing
	The Parallel Computing Toolbox from MATLAB
	Swarm intelligence and ABM applications of GPU computing


	III Developments
	The State Space Agent-Based Representation
	Introduction
	Mathematical Description
	Examples
	Segregation model

	Conclusions
	In the next chapter

	Agent-Based Model of the Activated Sludge Process
	Introduction
	Activated Sludge Batch Reactor Model. NetLogo version
	Description
	SSABR Description
	Results
	Conclusions

	Activated Sludge Batch Reactor Model. MATLAB version
	Description
	Results

	Activated Sludge Reactor Model. Improved MATLAB version
	Results
	Conclusions

	CUDA implementations
	In the next chapter

	Swarm Intelligence: The Hiker algorithm
	The Hiker optimization algorithm
	Implementation Aspects
	Results
	Comparison of implementations in MATLAB

	Conclusions


	IV Conclusions and Future Work
	Conclusions and Future Work
	Conclusions
	Summary of contributions
	Future directions


	V Appendices
	SSABR application examples
	Hilltopping behaviour in butterflies
	Simulation example

	Sugarscape 1 Immediate Growback
	Simulation example

	Particle Swarm Optimization Algorithm

	Application of GPGPU in Optimization
	The multi-start optimization method


	Bibliography

