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Abstract
Cathodoluminescence is a powerful technique for the characterization of semiconductors. Due to its
high spatial resolution, it is emerging as a suitablemethod for the study of semiconductor devices.
The reduced dimension of the devices and themultilayer structure of their active parts demand
experimentalmeans with high lateral resolution and probe depth tunability for characterising the
different layers forming the device structure. Degradation is a crucial technological issue for high
power devices. In particular, the failures of laser diodes are due to the formation of defects during the
laser operation. Those defects can be imaged by cathodoluminescence; furthermore, its spectroscopic
capabilities permit to go beyond themere observation of the non-luminescent areamorphology,
allowing a better understanding of the physicalmechanisms of degradation.We present herein an
overview of the cathodoluminescence analysis of catastrophically degraded high power laser diodes,
both singlemode andmultimode broad emitter lasers. The study of the defects responsible of the
degradation is a step forward to establishmodels of degradation, necessary to improve the laser power
and durability.

1. Introduction

Luminescence techniques are currently used for the characterization of semiconductors. Photoluminescence
(PL)was, and still is, a fundamental tool for the study of semiconductingmaterials [1–3]. As the device size
decreased, the interest to get local information about the semiconductor properties was increasing, and
the spectroscopic attributes of the PLwere combinedwith the local character provided by the optical
microscopes, which resulted in the development ofmicro PL, and PLmapping techniques [4–8]. The excitation
with optical probes is achieved via a focused laser beam; therefore, the spatial resolution is limited by optical
diffraction. According to the Rayleigh criterium the spatial resolution lies in the order of the lightwavelength.
This resolution is clearly insufficient for the actual sizes of the devices, as the local inhomogeneities of the
semiconductormaterials are relevant for the device operation and reliability. Therefore, there is an increasing
demand for improving the spatial resolution of the luminescence probes in order to study the localfluctuations
of certain properties, e.g. composition, and impurity distribution, but also the presence of non-radiative
recombination centers (NRRCs), which are critical to the performance and failure of the devices [9, 10]. In this
context, one needs to scale down the spatial resolution of the luminescence emission, as it remains a powerful
technique of characterization, in order to study local aspects.When using a focused laser beam as the excitation
source, one averages the luminescence response over amicroscopic volume of the sample. Furthermore,most of
the devices are formed by amultilayer structure, which consists of a stacked sequence of layers of different
thicknesses and compositions; therefore, it is difficult to study these structures using optical beams, because the
light penetration depth is limited by the absorption coefficients, and often the deepest layers are not accessible to
the light beam.Most of these challenges can be addressed by cathodoluminescence (CL).With this technique,
the excitation of the luminescence is performed bymeans of an electron beam [1, 11–15]. On one side the
electron beam size lies in the range of a fewnanometers and, on the other the penetration depth can reach up to
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2–3 μmdepending on the energy of the probing electrons, instead of the few hundreds of nanometers
(≈100–200 nm) typically probed by the optical beam in PLmeasurements. Therefore, by changing the
excitation approach, electrons versus photons, one improves the spatial resolution, even though the carrier
diffusion also contributes to the spatial resolution. By varying the e-beam energy one can selectively study the
different layers typically forming a device structure. A review about the study of heterostructured layers usingCL
can be found in [16].

Reliability is a very important issue in terms of safety and cost of electronic and optoelectronic devices, and,
particularly, for high power devices [17, 18].Most of the failures in these devices are associatedwith defects in the
epitaxial structure, and those generated during operation, which lead to unattended failure, are particularly
harmful because they are very difficult to screen. The degradation usually takes place at weak points of a device
and are localized at amicroscopic or submicroscopic scale [19–21]; therefore, the use of an experimental
techniquewith high spatial resolution to study these defects is of crucial interest for improving its reliability. For
example, dislocations are responsible for the early breakdown ofGaN/Si-based power electronic devices [22].
Another example of the capacity of the CL technique for device failure analysis was reported in [23] for the study
of high frequency, high powerAlGaN/GaNhigh electronmobility transistors (HEMTs).

Temperature device operation is a key parameter to understand the degradation. Generally, the degradation
starts in a tiny hot spot. Therefore,measurement of the local temperature is of great relevance. It has been
evaluated bymicro-Raman spectroscopy, with a spatial resolution limited by the laser beamdiameter (slightly
submicrometric) [24]. Themeasured experimental temperature represents an average over the probed volume,
so that local temperaturemight be significantly higher depending on the thermal conductivity around the hot
region, which is specially critical inmultilayer structures where thermal boundary resistances at the interfaces
can lead to sharp temperature gradients [25]. Also, temperature data can be derived from the shift of the near
band edge luminescence emission (NBE), e.g. using the shift of the intrinsic CL emission inGaN [26]. It should
be noted that the excitation e-beam current is negligible with respect to the device operation current; therefore,
no distortion is introduced by the electron beamduring theCLmeasurements on devices under operation.

Device failure is related to the formation of defects behaving asNRRCs.Non- radiative recombination
(NRR) produces heat, which is transferred to the lattice, or creates newdefects by themechanism of
recombination enhanced defect reaction (REDR) [27]. The study of these defects is essential to understand the
failure causality. The degradation takes place at a very local scale, andmainly concerns the active parts of the
device, which are exposed to thermal,mechanical, and electrical stresses during the device operation. In this
context, CL appears as a very suitable technique for studying the defects generated during the degradation.

We present herein the application of CL to the analysis of catastrophically degraded high-power laser diodes.
The catastrophic optical damage (COD) of edge-emitting laser diodes is the sudden drop of the optical power
aftermany hours of regular operation [17, 18, 28–34]. This phenomenon is critical in high power lasers as the
COD is driven by the self-absorption of the laser radiation, therefore increasing the risks of failure when
increasing the power. Because of the practical impossibility ofmonitoring a laser to catch a random failure, the
study of the defects generated by those failures appears as themainway to establish degradation scenarios. On
the bases of these scenarios,models have to be built-up to delimit the clues of the degradation aiming to establish
failure causality [35, 36]. Electron beam excitation techniques, CL and the electron beam induced current
(EBIC) sister technique [37], are powerful tools for this purpose as they are sensitive to the presence ofNRRCs.
However, this is a ‘post-mortem’ analysis, that does not provide immediate conclusions about the physical
mechanisms driving the process. One needs therefore going down from the defect analysis to the root causes
leading to the laser failure.We focus herein on the study of themain defects produced by theCOD in high power
laser diodes using theCL technique, aiming to get an insight into the physics of failure. The use of these
techniques for the study of laser diode failure dates from the early times of the laser diodes innovation. Both
panchromatic CL (pan-CL) and EBIC images allowed the visualization of the non radiative recombination areas
related to the defects that result from the laser degradation.Most of the CL studies about the degradation of laser
diodes did not use the spectroscopic capabilities of the technique but focused on the observation of CL images
revealing the defect patterns [38–46]. Spectrally resolvedCL provides additional information in regard to the
laser diode failure analysis; hence, the interest of doing spectrally resolvedCL for studying degraded lasers will
also be addressed.

2. Laser diodes

Laser diodes consist ofmultilayer structures, basically formed by an active zonewith one ormore quantumwells
(QWs), and thewaveguide formed by the two barrier layers surrounding theQW.Two cladding layers
encompass thewaveguide. There is also the n-doped substrate and the contact layer on top of the p-type cladding
layer. The Fabry–Perot resonant cavity in edge-emitting lasers is formed by twomirrors at both ends of the laser.
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Thesemirrors consist of the cleaved (110) planes, which are coatedwith dielectrics in order to passivate the
surfaces and provide the reflectivity necessary for optimizing the resonant cavity. The front facet is a low
reflectivity (R)mirror, typically R<3%,while the rearmirror presents high reflectivity, typically R>95%.
Themirror technology is critical in regard to the laser reliability as themirror coatings do not only provide the
required reflectivity but also protect the facets fromoxidation. In order to reduce theQWoptical load and the
optical losses, thewaveguide is generally asymmetric, the opticalfield beingmainly guided by the n-type
waveguide. Thewaveguide only supports one vertical opticalmode, while the lateral opticalmodes are defined
by a narrow (≈ 3–5 μm) etched ridge for single-mode lasers, whereas broad emitters (>100 μm) are used in the
case ofmultimode lasers, figure 1. There are different strategies to protect themirrors, which, in general, are the
weak parts of the laser. Usually, the region close to themirrors is coatedwith a dielectric, up to a fewμms away
from themirrors, forming non injected regions (NIR). The lasers are soldered to a heatsink, either junction up or
down. A typical high-power laser structure is formed by aQWsurrounded byAlGaAs barriers and cladding
layers, grown on an n-typeGaAs substrate. Single-mode InGaAs/AlGaAs lasers can reach optical power
densities as high as 80MWcm−2, while broad emitter lasers reach higher absolute power, typically a few tens of
Ws, but lower power density and lower beamquality as compared to singlemode lasers.

Laser degradation depends on the laser structure, operation conditions, laser beam energy, and the nature of
the semiconductors constituting it [47]. Therefore, one can confront different degradationmodeswith a notable
dispersion.Wewill focus here on high power lasers based onGaAs, in particular, high power 808 nm laser bars
formed by 25 broad emitters withAlGaAsQWand graded index separate confinement heterostructures
(GRINSCH)with output powers up to a few tens of watts. Besides, wewill present theCL analysis of 980 nm
single-mode strained InGaAs/AlGaAsQWpump lasers, which typically supply≈1watt of continuous-wave
(cw) optical power. Each laser type presents different defect signatures after COD, even if some general trends do
exist. Both of these types of lasers have high technological relevance. In particular, the 808 nm laser bars are used
for solid-state laser pumping,metal and plastic welding, hard and soft soldering, and surface treatments among
other applications. These applications do not need high beamquality; thatmakes laser bars a good option for
providing high optical power. Regarding the single-mode 980 nm lasers, they are the basic devices for pumping
Er-dopedfiber amplifiers, for which a high-quality beam (monomode) is necessary.

Figure 1. (a) Scheme of a singlemode edge emitting laser, (b) front facet of a broad emitter laser with injection channels.
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3. Spatial resolution

One of the critical issues of theCL applied to the laser degradation study is related to the spatial resolution, which
is crucial as far as the laser failure appears as a local event. The spatial resolution of theCL technique is a complex
problem towhich abundant literature is devoted [11–15, 48].

When optimal conditions are fulfilled, resolutions of a few tens of nanometers can be achieved. The spatial
resolution of CL is governed by several experimental parameters, as well as the nature of the samples. Among the
experimental parameters, one can distinguish the size of the e-beam, the energy of the electrons, and theworking
distance. In fact, the e-beam size offield emission scanning electronmicroscopes (FESEMs) can be reduced to a
fewnm in diameter. However, this does not define the spatial resolution, as one has to refer to the electron-hole
pair generation volume, which is determined by the spatial extension of the e-beam/sample interaction [49, 50].

Regarding theworking distance, one has to consider that it is increasedwith respect to the conventional
microscopemode (secondary electrons image) because one needs to intercalate the collection optics between the
microscope lens and the sample, which is not necessary for EBICmeasurements that are collected in similar
conditions as secondary electron (SE) images. The beam size ismuch smaller than the beam/sample interaction
volume. In fact, when the primary electrons enter the sample, they lose their energy in successive collisions, with
the result of the spreading of the e-beam inside the sample. The trajectory of electrons inside the sample can be
calculated usingMontecarlo simulations [51]. The interaction volume depends on the parameters of the e-beam
and the characteristics of the sample. The higher the e-beam energy, the deeper the penetration of the electrons.
As the beampenetrates it spreads laterally. The larger the e-beam energy the larger the lateral spreading, thus
reducing the lateral resolution. Therefore, the highest spatial resolution is achievedwith low energy e-beams.
Hence, inmultilayer structures, such as the laser diodes, the highest spatial resolution can only be reached on the
closest layers to the surface, while the deepest layers need higher e-beam energies to excite their luminescence. In
particular, the study of theQWand the n-type barriers and claddings in plan viewmust be donewith a

Figure 2.Montecarlo simulation of the e- beam/sample interaction volume. The sample is aQWInGaAs/AlGaAs laser structure.
(a) e-beam5 KeV, (b) 10KeV, (c) 15KeV. (d)Plot of theMax. Energy loss depth versus the lateral extension of the interaction volume.
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sufficiently high e-beam energy. Therefore, the exploration of theQW, critical to the study of the laser
degradation, implies a certain loss of lateral resolutionwith respect to the resolution that one can reach on the
layers closest to the surface, i.e., the top p-cladding and the contact layers.

The interaction volume for different e-beam energies is calculated for an InGaAs/AlGaAsQW laser
structure usingCASINO software [51],figures 2(a)–(c). One can see the close relationship between penetration
depth and the lateral extension of the generation volume.One can also observe the need for increasing the
e-beam energy to reach theQW.The penetration depth (taken as a third of the electron range, R/3) plotted
versus the lateral size of the interaction volume is shown infigure 2(d), evidencing the compromise between
probe depth and lateral resolution.

Another factor that can affect the spatial resolution concerns the distribution of the generated e-h pairs. The
role of carrier diffusion in the spatial resolution of CL has been largely discussed [52–55]. In principle, because of
the large numerical aperturemirrors used for collecting theCL, one can assume that there is a divergence
between the e-h generation volume and the luminescence emission volume because the light emitted by the
recombination of the carriers out-diffusing away from the generation volume can be collected by themirror.
Donolato demonstrated that the carrier diffusion does not substantially enlarge the carrier distribution volume,
as the carrier density decreases faster than the exponential law usually reported for the carrier diffusion [56]. On
the other hand, when recording CL images, one aims to reveal the presence of defects, which often behave as
NRRCs, e.g. dislocations. The carrier diffusion length around these defects is drastically reduced, and, therefore,
the steady state carrier distribution in their vicinity is not substantially enlarged by diffusion. In fact, the
recombination atmosphere of individual dislocations can be revealed byCL images with a high spatial resolution
[57–59]. The ability of CL to resolve tiny inhomogeneities is tightly related to the steady state distribution of the
generated carriers inside the generation volume. Defect features smaller than the diffusion length have been
experimentally imaged byCL. Paraphrasing P.R. Edwards et al: ‘what theCL is imaging is at least partially the
variation in carrier diffusion itself’ [60]. This variation is related to the presence of features locally reducing the
diffusion length, e.g. recombination at dislocations, or the potential barriers at the interfaces. Thus, one can
image byCL the recombination atmosphere of individual dislocations, or a fewnm thickQWs, or nanorods
[57–59, 61, 62]. As an example, CL images of both isolated and clustered dislocations in InGaN are shown in
[58]. The resolution of individual dislocations requires a separation between them at least larger than the
diameter of the e-h generation volume.

4. Laser failure

The failure of laser diodes can be classified into three different degradationmodes: gradual, rapid, and
catastrophic [17, 18, 63–65]. Both the type of defects and the degradation sequence differ from each other. The
gradualmode is the typical wear out process dealingwith the formation of point defects, small precipitates, and
dislocation loops, which slowly, and progressively degrade the laser parameters over long periods of operation.
Rapid degradation can be easily screened by burn-in tests [47]; it appears as a sharp drop of the laser optical
power in a time scale of hours, usually associatedwith the presence of dislocations in the active zone of the laser.
These dislocations propagate during laser operation forming large areas of reduced luminescence emission.
Meanwhile, the catastrophic degradation corresponds to a sudden loss of optical power, in a scale of seconds or
less. Thismode is usually identified as the catastrophic optical damage (COD). TheCODappears shortly after
reaching a critical temperature at the front facet or inside the cavity [31, 66].Wewill focus herein on theCL
analysis of lasers that sufferedCOD, in order to reveal the defects issued from the degradation, as ameans to
understand themechanisms driving this process.

TheCOD is usually associatedwith a thermal runaway process [39]. It can occur either at themirror facet or
inside the laser cavity [67], labeled as catastrophic optical bulk damage (COBD), in contraposition to themore
frequent facetmirror damage usually labeledCOMD.COBDoccurs in lasers for which the improved facet
technology enhances the resilience toCODof themirror facets. The thermal runaway is usually described in the
literature as follows: on afirst stage the temperature is locally enhanced, with the corresponding local bandgap
shrinkage; therefore, the transparency regime is lost at that hot spot. Then, laser self-absorption further increases
the temperaturewith the concomitant absorption, leading tomelting in a positive feedback loop [39, 68]. This
picture neglects some aspects of themechanisms leading to the fast degradation occurring under COD. In
particular, the relation of CODwith the gradual aging, the origin of the local heating, which is the ultimate cause
launching theCOD, themeaning of the critical temperature, and themechanisms leading to the thermal
runaway and its relationwith the thermal, optical andmechanical properties of the active zone of the laser
[25, 66, 69–71]. Because of the virtual impossibility tomonitor the sequence of COD in real-time, the study of
the defects formed under theCODprocess is themainway to set up a physicalmodel for the degradation.
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5. Cathodoluminescence of degraded laser diodes

The study of the degradation requires the investigation of themain defects generated during the laser operation.
The identification of the defect signatures in degraded devices is crucial to establish the physics behind theCOD
process.

Aswe have alreadymentioned, COD is a random failure extremely difficult to analyze in real-time, as it can
occur unexpectedly after thousands of hours of regular operation. Therefore, one needs to proceed by
accelerated aging tests. COD can be accelerated by increasing the current and the optical power. Some devices
fail once a threshold optical power is reached, the so-called power toCOD [30]. In other cases, the optical power
simply decreases as the temperature of the cavity increases for increasing current: this is the thermal rollover
effect, which is a reversible process and does not concern laser degradation [65]. Accelerated tests can be
performed at a high temperature in cw operation (burn-in test)which significantly reduces the time to failure
[47]. Another aging approach is based on the use of stress step tests, which consist of the application of successive
high current pulses of predetermined duration leading toCOD [70, 72]. Also, one can use electrostatic discharge
(ESD) tests, which is basically one single step test at a very high current.

EBIC has beenmore frequently used for the characterization of degraded lasers because it can be carried out
without a specific preparation of the laser whenever themetal layer is thin enough to allow the e-beam
penetration into the junction [41]. Unlike EBIC, CL needs of the preparation of the laser, as the contactmetal
layer has to be removed to allow the luminescence emission to emerge; also, the ridge is removed in order to have
aflat surface giving a spatially homogeneous e-beampenetration.

6.Defect signatures of laser degradation

6.1.MultimodeAlGaAs/GaAs lasers
The results of the CODcan be visualized in pan-CL images as non-luminescent areas [38] associatedwith the
defects generated during the laser degradation process, which behave asNRRCs. The pan-CL images give a
similar contrast to the EBIC images as both are sensitive to carrier capture. However, CLmay provide additional
informationwhen using its spectroscopic capabilities.

The devices referenced here areGRINSCHQWAlGaAs/GaAs laser bars emitting at 808 nmwith output
powers up to a few tens of watts. Typically, these bars consist of 25 emitters (200 μmwide) separated from each
other by optically and electrically isolated channels, with a period between emitters of 400 μm.Each single
emitter is divided into 20 injection channels separated by dielectric stripes with a period of 10 μm, figure 1. These
bars are soldered p-side down, typically using aCuWheat sinkwithAuSn solder. The lasers described here have
undergone burn-in aging test at a constant optical output power of 30W.After the aging step, the lasers are
separated into individual emitters. They are etched in a dilutedHF solution, which removes themetal layer by
under-etching the dielectric layer beneath themetal, thus opening the cavity to observation byCL. Both cross-
sectionCL images of the front facet and plan-viewCL images of the laser cavity are described here.

A panCL image of themirror facet of a degraded emitter is shown infigure 3(a). TheQWemission is imaged,
and it shows a series of dark spots, corresponding to degraded zones. Note that the confinement of carriers in the

Figure 3. (a)PanCL image (80 K) of the front facet of a degraded broad emitter laser showingQWdefects and associatedVdefects,
(b) local CL spectra (80 K) at different positions on theQW [44, 73].
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QWpermits to reach a spatial resolution equivalent to theQW thickness, so that theQWemission appears
clearly differentiated in theCL image. Some of the dark spots are at the apex of V-shaped dark contrast structures
propagating across the n-barrier and cladding layers, even reaching the substrate. These are the so-calledV
defects [73, 74]. The branches of theVs form an angle of 57°with the epitaxial plane; therefore, they correspond
to the intersection of themirror plane (110)with the dislocation gliding plane (111). Parts of theQWare fully
quenched, while others still luminesce exhibiting different degrees of quenching, which correspond to diverse
levels of degradation. Local CL spectra at selected points of theQW in the front facet are shown infigure 3(b).
TheQWemission is fully quenched at the apex of theVdefects, which accounts for the full destruction of the
QW in these positions. On the other hand,QWdark contrasted zones without associatedVdefects are not fully
quenched, which suggests that these regions are in an earlier stage of degradationwith respect to the areas with
associatedVdefects [73]. TheV-shaped defects have been associatedwith the relaxation of the compressive
stress induced by packaging [74, 75].Maximumpackaging stress is concentrated in the center of the soldered bar
[47], with significant relaxation close to the bar ends. It is true that, statistically, theV-defects appearmore often
in emitters of the center of the bars, where the packaging stress ismaximal; however, its presence is also observed
in regions close to the ends of the bars where the packaging stress is almost fully relaxed. Besides, they are
exclusively observed in aged lasers, which points to additional driving forces developed during laser operation
being required for theV-defects to be generated. In particular, the local heating at the front facet during laser
operation induces thermal stresses that, when associatedwith the packaging stress,might generate arrays of
dislocations gliding along the (111) planes. Note that theV branches can penetrate deeply into the substrate, thus
suggesting a strong stress field, and pointing to high-temperature gradients at the front facet. These large
temperature gradients should be produced by local non-radiative recombination at certain zones of theQW in
the frontmirror, and subsequent laser radiation absorption. Symptoms ofmelting are often seen at the front
facet, e.g. blisters of ejectedmaterial are observed in the opticalmicroscope [76].

The non-luminescent areas seen inside the cavity in top viewCL images adopt an elongated shape, the so-
called dark line defects (DLDs) [39] running along the injection channels of the laser cavity, figure 4(a) [73].
DLDs start at the front facet at the same positionwhere the apex of theV defect was formed. This suggests that
theDLDs are seeded at the front facet in themost degraded points of theQW.TheDLDpropagation along the
cavity is fueled by laser self-absorption; therefore, theseDLDs follow the opticalfield instead of a particular
crystal orientation.

Figure 4.Plan view panCL images of a degraded broad emitter laser. Room temperature (RT) images: (a)PanCL image of the full laser
showing theDLDs propagating along the cavity. (b)PanCL image of the front facet, showing the defects in theQWseeding theDLDs.
(c)End of theDLDs close to the rear facet. (d)PanCL image of theDLDs close to the front facet. 80 K temperature images: (e)DLDs
close the rear facet, same region as (c). (f)DLDs showing the splitting of theDLDs shown in (d). (g) highmagnificationCL image
showing the discontinuousmorphology of theDLDs [44, 73].
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Whiledamage is initiated in the active zone of the laser, theQW, itmight also extend to thewaveguide and
cladding layers.However, due to their composition , it cannot be seen in thepanCL images because of the virtual
lack of emission from the gradedwaveguides (26%–65%Al) and the cladding layers (Al0.65Ga0.35As). TEM images
show the effective damageof thewaveguide [77]. TheDLDspropagate following the injection channels and can run
along the cavity ending close to the rearmirror,figures 4(a), (c), (d). It is interesting to compare theCL images
recorded at 300 Kwith those recorded at 80 K,figures 4(e)–(g). Surprisingly, themorphology of theDLDs, as viewed
in theCL images, changes at 80 K.At room temperature one observes twocontinuous, slightlyblurred,DLDs
propagating along twocontiguous injection channels; however, at 80 Koneobserves that theDLDs split in several
parallelwell resolveddashed lines formingdiscontinuous sequences of aligneddark contrasted short segments
separated fromeachother by≈3–4 μmof less damagedmaterial.These parallel dashed lines canbe associatedwith
thefilamentationof the opticalmodes by the effect of local heating [78]. This difference between theCL images at
80 Kand300 K isprobably the consequenceof the higher carrier diffusion length at room temperature,whichblurs
the discontinuous defect line observed at 80 K into a continuous line at room temperature. Also, this observation
calls into question themechanismsof propagationof theDLDs.The discontinuousnature of theDLDrules out the
hypothesis that aDLD is generated by the propagationof amolten front, as it has been formerly claimed [39]. The
propagationof amolten frontwas indeedobserved in InGaAsP/InP laser structures [40]. The epilayer structurewas
pumpedwith aheavily absorbedNd:YAG laser (1064 nm), at a very highoptical power density, 100MW cm−2,
muchhigher than the laser diode optical power density.TheDLDwasnucleated at crystal defects. This rules out any
similaritywith theDLDs generatedunder laser operation. The propagationof theDLDs seems to obeymore
complexmechanisms thanmeremelting.On the other hand, this discontinuousdegradationpattern shows
similaritieswith thedegradationof InGaAs/AlGaAs lasers, aswewill see later.

Complementary information can be unveiled by using the spectroscopic capabilities of CL. Typical CL
spectra recorded at different points of a hyperspectral CL image are shown infigure 5(a). One observes theQW
emission at≈760 nm (note that the spectrumwas recorded at 80 K,which accounts for the blue shift with
respect to the nominal laser emission, the contact layer emission at≈845 nm, aweak feature at≈720 nm,which
should be associatedwith the barrier layer emission, and a broadband at≈920 nm. Processed hyperspectral
images reveal that the contact layer is not damaged, figures 5(b), (c). The distributions of theQWemission and
the 920 nmband are spatially correlated: the 920 nmband is quenchedwhen theQWemission is quenched. PL
emission at≈918 nm (1.35 eV) related toVGa-SiGa pair complexes has been reported for bothmetal-organic
chemical vapor deposition (MOCVD) [79, 80] andmolecular beam epitaxy (MBE) [80, 81] Si-doped
AlxGa1-xaAs (x=0.3); therefore, this emission can be related to the n-type barrier layer, as it is Si-doped. The
spatial correlationwith theQWemissionmight suggest that the damage generated in theQWextends to the
n-type AlGaAs barrier layer. The 720 nmemission is probably related to the p-type barrier layer. The 720 nmCL
emission is anticorrelated to theQWdamage pattern, it presents bright contrast in the dark contrasted zones of
theQWemission image. The enhanced emission from the p-barrier layer suggests that the damage is not severe
in the p-barrier; therefore, one can claim that the damage associatedwith theCODprocess in these lasersmainly
concerns theQWand the n-typewaveguide layer. It should be noted that the bar is soldered p-side down,which
should allow a better heat dissipation in the p-side.

Figure 5. (a)Typical CL spectra (80 K) in non-degraded (lower panel) and degraded (upper panel) zones. (b)Monochromatic CL
image at RT (QWemission), (c)Monochromatic CL image at RT (contact layer emission).
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In the absence of injection channels, theDLDpattern of a broad emitter presents a different shape. Figure 6
shows theCL image of a catastrophically degraded 808 nmbroad emitter laser, where one can appreciate that the
DLDs do not follow the same path as infigure 4 [81]. This is due to the different distribution of the lasermodes in
the two laser configurations. In the laser offigure 4 the opticalmodes are guided along the injection channels,
while in the broad emitter without the injection channels the opticalmodes can be deviated and superposed
during the degradation, locally increasing the effective optical power and resulting in defect propagation
patterns as those shown infigure 6. A study of the degradation of broad emitter lasers using EBIC, and amodel
describing the formation of this defect patternwas reported elsewhere [82].

6.2. Single-mode lasers, strained InGaAsQW lasers
StrainedQWInGaAs/AlGaAs lasers present several advantages, e.g. low current threshold, high power density,
and improved reliability, that render them themost efficient and reliable high-power laser diodes available.
For a time it was claimed that theywere immune toCOD [83]. However, as the optical power of these devices
increased, COD started to be observed aswell in this type of lasers. Usually, thewaveguide structure is
asymmetric. This is achieved by controlling the refractive indexes of the two barrier layers, n and p, so that a
higher optical power fraction is carried by the n-typewaveguide, roughly 60%versus 30% (p-type). TheQWalso
carries a lower optical power density than the n-type guide. This distribution of the verticalmode permits a
significant reduction of the optical losses, and, in particular, a lower absorption by theQW,which is the
potential absorbingmediumduring laser operation, and therefore the layer where degradationwould start.

Highpower single ridgewaveguide InGaAs/AlGaAsQWlasers (GRINSCH980 nm lasers) are formedby a
strained InGaAsQW (≈10%–15%In), AlGaAsbarrierswithAl fraction ranging from≈0.1 to 0.3, and cladding
layerswith x≈0.3. The lateralmode is limited by anarrow ridge (3–5 μmwide),figure 1.Under cwoperation the
CODpower threshold slowly decreases as a consequenceof the generationof point defects during the laser aging.
However, this can take a long time, up to thousands hours, and therefore, accelerated tests are used to provoke the
COD. Inparticular, CODcanbe inducedbydifferent aging procedures, e.g. repetition of short single current pulses
of increasing current [70]. It is admitted that this procedure creates a defect pattern similar to the one observed in
long termCOD.Therefore, accelerated aging tests have beenused to study the defect formationduringCOD.These
accelerated tests act on fresh devices, while the long-termCODtakes place ondeviceswith a non-residual presence
of point defects generatedduringmanyhours of operation. Even if the defect signature is similar, onemight say that
the dynamics leading to theCODmust be different depending on the aging scenarios; however, one can learn about
the physicalmechanismsofCODusing accelerated ageddevices. Inparticular, we consider lasers agedduring burn-
in tests, and lasers that have suffered a voltage transient leading toCOD.

As previouslymentioned, once themetal layer has been removed, the ridge is eliminated rendering the top
surface planar. First, onemust observe thedegradeddevices at the SEMtodetectmorphologic changes that could be
producedduring the preparationprocess.Onlyoneof the lasers subjected to electrostatic discharge (ESD) suffered
morphologic changes, revealed by the etchingprocedure to prepare the planar surface.Noneof the other lasers
showed externalmorphology changes.All the lasers presentDLDs aligned along the ridge in theCL images.

The ESD aged laser presents evidence ofmelting close to the rear facet. It is well known that electrical
transients applied in ESD tests can introduce changes in the junction of devices due to localized heating
associatedwith local current crowding [83, 84]. Starting from themolten zone aDLDpropagates towards the
front facet. On the other hand, theDLDs observed in lasers aged by burn-in tests are initiated close to the front

Figure 6.Plan view panCL images of two broad emitters without defined injection channels. Courtesy ofM.Hempel et al [81].
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facet and extend over a distance close to the half-length of the cavity. Finally, lasers aged by voltage transients
present a dark line placed around themiddle of the cavity, shorter than the ones observed in the lasers suffering
burn-in aging.

TheDLDs as observed in thepan-CL images are not uniform, but they present different shapes along the cavity,
revealing different defect distributionswhich account for differentmechanismsof interactionbetween the optical
field and the active layers of the laser. Aquasi-continuousDLDcanbeobserved. In certain zones, theDLDappears
continuously forming a true dark line,whileother parts of theDLDare formedby a series of aligneddark spots. In
fact, thenon-uniformity of theDLDs along the laser cavity seems to showdifferent levels of degradation.One can
distinguish twodifferent defect patterns along theDLD,figure 7.We label themasA type andB type, respectively.

When looking in detail to the A type defects of , one observes that the dark line running along the ridge is
surrounded by a halo spreading at both sides of the ridge,figure 7(a). The halo consists of a cloud of dislocations,
formingDLDs oriented along crystallographic directions, either perpendicular to the laser cavity, 〈1−10〉
oriented, or aligned along the 〈100〉 crystal axis forming 45°with the cavity axis, figure 8. These networks of

Figure 7.PanCL images (80 K) of theDLD in singlemodeQWInGaAs/AlGaAs laser. (a)A type defects, (b)B type defects (see text).

Figure 8.PanCL images (80 K) of the halo formed by crystallographic DLDs (c-DLDs)propagated by climb (a) and glide (b) at both
sides of the ridge.
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dislocations propagate during the laser operation by either glide (〈1–10〉) or climb (〈100〉) [85–88].We label
theseDLDs as crystallographic (c-DLDs) because, opposite to themainDLDoriented along the laser cavity, they
follow crystallographic directions, and propagate according to the classicalmechanisms of climb and glide,
described in previous studies about the degradation of double heterostructure (DH) lasers [85–88].

When dealingwith B type defects, theDLDpresents a discontinuous dotted shape, with a slight lateral
broadening of the darkest dots, which are separated by zones with a lower dark contrast, figure 7(b). The lateral
spreading of the dark contrast areas in the darkest dots is different from the halo observed inA type defects. The
QWemission is partially quenched in thisDLDmorphology, with theCL intensity profile along the ridge
showing a very irregular pattern ofQWemission, unlike the A type defects, which show a pronounced
quenching of theQWemission along the ridge.

Themorphology of theDLDs aligned along the laser cavity as revealedby theCL images suggests different stages
of degradationdepending on the zones of theDLDresulting from the interactionbetween theopticalfield and the
laser cavity.When theQWCLemission appears fully quenched, one can assume that it contains ahigh concentration
of defects, e.g. dislocations. In fact, under the thermal stresses inducedby the local heating, the active zone should
collapse into adense array of dislocations,which give thedark contrast of theCL images. It has been claimed that
thesequenched zones are the result ofmelting and subsequent recrystallization [39], and that theDLDs are formedby
thepropagationof themelting front.However, the discontinuousnatureof theDLDswithdifferent levels of
degradation along themdoesnot support such an statement. Localmelting canoccur but as anultimate consequence
of the interactionbetween the laser beamand thedense tangle of dislocations formedprior tomelting [69]. In this
sense, this presents similaritieswith thedegradationof the 808 nm lasers previously described.

The defects revealed by theCL images constitute the fingerprint of the degradation. One needs to unravel
where the defects are localized, and how is the luminescence emission of the different zones of theDLDs, as they
present different signatures. First, one needs to interpret the CL spectrumof the laser structure. By varying the
e-beam energy one can selectively excite the different layers forming it, thus allowing the identification of the
origin of the luminescence bands. CL spectra of a pristine laser structure recordedwith different e-beam energies
are shown infigure 9. The spectrum excitedwith 10 keV electrons shows aCL band peaking at 649 nm, and a
veryweak band peaking at 916 nm. These bands correspond respectively to the top p-type cladding layer
(649 nm), and theQW (916 nm instead of the 980 nmnominal laser light, because the spectra are recorded at

Figure 9.Plan viewCL spectra (80 K) at different e-beam energies in undamaged areas of the laser structure.

11

Nano Express 2 (2021) 014001 SDadgostar et al



80 K). The emission of the n-type cladding layer is not excited at 10 keV.On the other hand, the transfer of
charge to theQW is very low, as deduced from theweakQWemission. Excitingwith 15 keVpermits to see three
emission bands, corresponding to the p-type cladding (649 nm), theQW (916 nm), and the n-type cladding
(659 nm). By increasing the e-beam energy to 25 keV, one observes a broadband, convolution of the respective
emission bands of the p-type and n-type cladding layers, and theQWemission band. The barrier layers are not
observed as the e-h pairs generated on them are transferred to theQW.Also, one starts to see the emission from
theGaAs substrate at 820 nm.Once the different CL bands are identified, spectrally resolvedCL images
(hyperspectral images)will permit to localize the defects of the degraded areas in the laser structure.

Monochromatic images extracted fromthehyperspectral images ofA typedefects are shown infigure 10(a). The
emissions of thep-type cladding (649 nm), n-type cladding (659 nm), andQW (916 nm) show that the c-DLDs
forming thehalo around the ridge only affect theQWemission,which is partially quenched in thehalo area,while the
cladding layers are free of the influenceof these dislocations.One can argue that the arrays of 〈100〉 and 〈1–10〉
orienteddislocations are inhibited to propagate towards the adjacent layers. Thismight be associatedwith the
endurance of the strainedQW,whichwouldbehave as afilter for thepropagationof these dislocations [89]. TheQW
emission is fully quenched along the ridge,while the emissionof thep-type cladding is enhanced, and the emission
fromthen-type cladding layer is partially quenched. Some representative local spectra are plotted infigure10(b)
corresponding to thepointsmarked in theCL image.TheCL emission enhancement in thep-cladding layermight be
related to the formationof a potential barrier at the interfacewith thep-typebarrier layer,which inhibits the transfer
of the free carriers towards theQW.This potential barrier canbe created by the segregationofAl towards the interface
cladding/barrier, forming anAl-richAlGaAs alloy, as itwas shown tooccur in [77].

The hyperspectral images of B type defects reveal a different behavior with respect to A type defects,
figure 11(a). The threemonochromatic images, correspondingto p-type cladding, QW, and n-type cladding
layers, present similar patterns. TheQWemission is irregularly quenched along the ridge, with discontinuities
showing up in the dark pattern. The regionswith the highest quenching level spread out of the ridge limits; these
zones are those that appear also quenched in themonochromatic images of the two cladding layers. Selected
spectra of zones with different degree of degradation are plotted infigure 11(b). Another point to consider is the
fact that, unlike the A type defects, theQW is not fully quenched in B type defects. TheQWemission profiles
along the ridge for the two defect types are displayed infigure 12: while full quenching of theQWemission is

Figure 10. (a)Monochromatic CL images (80 K) of A type defects (p-cladding,QW, and n-cladding). (b) Local spectra (80 K) at
selected pointsmarked in (a)with different degree of degradation.
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Figure 11. (a)Monochromatic CL images (80 K) of B type defects (p-cladding, QW, and n-cladding). (b) Local spectra at selected
pointsmarked in (a)with different degree of degradation.

Figure 12. Intensity profiles (80 K) of theQWemission along the ridge for A type defects (figure 10) andB type defects (figure 11).
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observed for the A type defects, theQW is still emitting, even if substantially reduced, all along the ridge for B
type defects.

A spectrumof the B type defects is shown infigure 13(a). One observes an additional emission between 700
and 800 nm in the damaged regions. Interestingly, this emission appears very irregular both in intensity and in
its spectral shape depending on the position along the ridge. This emission seems to be related to the barrier
layers, both p and n: we label it as thewaveguide band (WG).

ACL line scan along the ridge of the laser section shown infigure 11 is plotted infigure 13. The spectral
fluctuations of theWGband are clearly appreciated, while the bands associatedwith theQWand the claddings
do not show spectral changes other than the intensity. Thefluctuations in the spectral emission distribution
between 700 and 800 nm suggest changes in the composition of the barrier layers. It points to the formation of
domains of different composition, consequence of the degradation. These emission bands appear irregularly
distributed along theDLD,figure 13(d).

7. Summary

Wehave presented an overview of the application of CL to the study of the laser diode degradation, which is
extensible to other devices. The lateral and in-depth resolution of theCLmake it suitable for studying the defects
issued from the laser degradation. Combinedwith its spectroscopic capabilities, this renders CL as an ideal tool
to studymultilayer structures, such as laser diodes. The observation of the defects resulting from the degradation
of laser diodes has allowed us to set up amodel for describing theCOD.Thismodel is based on the thermal stress
induced by the local heating produced by non-radiative recombination and subsequent laser radiation self
absorption at tiny regions (microscopic or submicroscopic) of the active zone of the laser [36, 69, 71, 90–92]. The
local heating can occur at both the frontmirror and/or inside the cavity. The local temperature increase induces
a local shrinkage in the bandgap, so that laser self-absorption becomes relevant in these limited volumes and
launches theCODprocess.

Spectrally resolvedCL has been scarcely used to study the degradation of lasers, whichweremainly studied
through EBIC and pan-CL images, which reveal the defectmorphology but do not provide the information
linking the defects to the different layers of the active zone of the laser. In this sense, hyperspectral images
provide capital information about the damage localization in the laser structure, in particular, aboutwhat layers
of the laser structure are concerned by the degradation. By controlling the different parameters of theCL in the
SEMone can build up a post-mortemdegradation scenario.

The discontinuous dark contrast along theDLDs, revealing different states of degradation along the lines,
rules out the propagation of amolten front as the cause of theDLD formation. A scenario inwhich one

Figure 13. (a)CL spectrum (80 K) of a point of the ridge (defect of type B) (figure 11), showing the presence of aCL emission between
700 and 800 nm, see the detail in (b). Line scans along the ridge offigure 11 (80 K) for different spectral ranges: c) cladding layers
(640–680 nm), d)WGemission in the 700–800 nm spectral range, and e)QWemission (905–930 nm).
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combines the sensitization of the cavity by the formation of point defects, combinedwith self-focusing caused by
the hot spots (thermal lensing), can account for the conditions necessary for the formation of theDLDs resulting
from the degradation [93]. The spectroscopic analysis of the damaged regions shows that the damage extends to
the barrier layers, also, the cladding layers can be affected. This implies that not only the gain is reduced by
degradation (QWdegradation), but also the resonant cavity is seriously damaged leading to the abrupt end of
lasing.
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