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Abstract: Polymer-based tri-layered (bone, intermediate and top layers) scaffolds used for the
restoration of articular cartilage were prepared and characterized in this study to emulate the
concentration gradient of cartilage. The scaffolds were physically or chemically crosslinked. In order
to obtain adequate scaffolds for the intended application, the impact of the type of calcium phosphate
used in the bone layer, the polymer used in the intermediate layer and the interlayer crosslinking
process were analyzed. The correlation among SEM micrographs, physical-chemical characterization,
swelling behavior, rheological measurements and cell studies were examined. Storage moduli at 1 Hz
were 0.3–1.7 kPa for physically crosslinked scaffolds, and 4–5 kPa (EDC/NHS system) and 15–20 kPa
(glutaraldehyde) for chemically crosslinked scaffolds. Intrinsic viscoelasticity and poroelasticity were
considered in discussing the physical mechanism dominating in different time/frequency scales. Cell
evaluation showed that all samples are available as alternatives to repair and/or substitute cartilage
in articular osteoarthritis.

Keywords: multilayer scaffold; polymer-based biomaterials; rheology; cellular behavior

1. Introduction

Disorders of articular cartilage represent some of the most common and debilitating
diseases encountered in orthopedic practice. Understanding the normal functioning of
articular cartilage is a prerequisite to understanding its pathologic processes. The me-
chanical properties of articular cartilage arise from the complex structure and interactions
of its biochemical constituents: mostly water, electrolytes, and a solid matrix composed
primarily of collagen (COL) and proteoglycan. Cartilage’s viscoelastic properties, due to
or caused by fluid flow through the solid matrix, can explain many of the deformation
responses observed under many loading conditions [1].

Articular cartilage is a highly complex tissue subjected to severe mechanical stress
and with very limited regenerative ability. In contrast to elastic cartilage, it is exposed to
recurring partial dehydration owing to ongoing compression, but maintains its function-
ality over decades [2,3]. From the tribological standpoint, articular cartilage is a highly
efficient rubbery surface, because it has a low wear rate and a low friction coefficient. Many
osteoarticular diseases affect articular cartilage tissue, thereby damaging the cartilage and
leading to pain and articular dysfunctions [4].
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For the last two decades, the concept of tissue engineering has promised healing of
damaged tissues and organs, using living and functional constructs. By manipulating cells,
scaffolds, and several kinds of stimuli, the premise was that implanted materials could be
generated and subsequently integrated into native tissues and restore lost functions due to
trauma, disease, or aging [2,5]. The primary goal of all approaches in tissue engineering is
the restoration of function through the delivery of living elements which become integrated
into the patient. Although some techniques of guided tissue regeneration are based only in
matrices, and other approaches only in cells, most researchers in tissue engineering use a
synergistic concept: cells combined with matrices to achieve better performance in the new
tissue formation [5].

Mechanical properties are essential for the biological functions and mechanical be-
havior of the cartilage. These characteristics are primarily dependent on the hierarchical
organization in the two macromolecular major extracellular matrix (ECM) components of
the cartilage: the fibrillar collagen network and the glycosaminoglycan (GAG)-substituted
proteoglycan, mainly aggrecan, aggregates. The delicate balance between swelling pressure
and restraining stress controls the mechanical properties of cartilage, which in turn, are
essential for articulation, loading, energy dissipation, and diffusion of solutes. Dissipation
of mechanical energy in articular cartilage subjected to dynamic loads during walking is
essential for protecting bone structures from mechanical stress in joints [1,6].

Platelet rich plasma (PRP) has been used as a natural bioactive scaffold in dentistry
for a few years. When it is autologous, it is the quintessential three-dimensional scaffold
due to its natural biocompatibility and biodegradability. This is mainly due to the fact that
PRP contains several growth factors, such as transformative, endothelial, fibroblast, and
platelet-derived. PRP combined with stem cells has shown the ability to regenerate soft
and hard tissues [7–9].

In normal adult cartilage, collagen is woven together to form a fibrous network in
which the huge proteoglycan aggregates are trapped. Together, they form a cohesive
porous composite organic solid matrix. The collagen network is characterized by its great
tensile stiffness, but due to the high slenderness ratio of each segment of the collagen
fibril, the network is relatively weak in compression [10]. In studying the deformational
characteristics of articular cartilage under mechanical loading, one of the central concerns
has been the determination of the “elastic modulus” of this thin layer of tissue at the ends
of the bone in a diarthrodial joint. Due to its anatomical form and its thinness, indentation
experiments were the historical choice. The assumption that cartilage is purely elastic
applies, at best, only at equilibrium when there would be no dissipative effect due to the
movement of the interstitial fluid. It was not until the early 1960s that the systematic study
of the role of fluid flow in the function of cartilage actually began [1,10,11].

It is apparent from experimental results, such as those obtained from indentation
tests, that the movement of the interstitial fluid plays a fundamental role in the dynamic
deformational behavior of the tissue. In other words, to obtain a realistic rheological
model for biomechanical studies on articular cartilage, it is necessary to assume the fluid
component as a distinct phase of the system within the tissue. This means that, at the very
least, cartilage should be modelled as a biphasic material, where the solid matrix and the
interstitial fluid are the two phases [1,10,12,13].

Since novel biomaterials to be used in biomedical applications should mimic the
natural organs and tissues, a detailed characterization of the former is essential. Natural and
synthetic polymers provide an excellent platform for tissue engineering and regenerative
medicine strategies. Examples of natural polymers are chitosan (CHI), hyaluronic acid,
sodium alginate, and cellulose [14,15]. Among the synthetic polymers, there is broad
representation from the vinyl family (acrylic and methacrylic acid; hydroxyethyl and
methyl methacrylate), the poly-LG family (poly-lactic acid, poly-glycolic acid and their
combination) [16,17], and finally, those that mimic natural structures, such as elastin-like
recombinants (ELRs) [18–21].
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Among the protein-based polymers, elastin-like recombinant polymers (ELRs) are
emerging as a new class of polymers with exceptional properties. These include mechani-
cal properties ranging from excellent elasticity to plasticity, outstanding biocompatibility,
and acute smart behavior. This last attribute is caused by the so-called “inverse temper-
ature transition” (ITT). The ITT has become the key issue in the development of new
peptide-based polymers as molecular machines and materials. The understanding of the
macroscopic properties of these materials in terms of the molecular processes taking place
around the ITT has established the basis for their functional and rational design [22,23].

All the functional elastin-like polymers exhibit phase transitional behavior associated
with the ITT. In an aqueous solution, below a certain critical temperature (Tt), the free
polymer chains remain disordered, random coils in solution that are fully hydrated, mainly
by hydrophobic hydration. On the contrary and because of the ITT, above Tt, the chain
hydrophobically folds and assembles to form a phase-separated state in which the polymer
chains adopt a dynamic, regular, non-random structure, called a β-spiral, involving one
type II β-turn per pentamer, which is stabilized by intraspiral interturn and interspiral
hydrophobic contacts. During the initial stages of polymer dehydration, the hydrophobic
associations of β-spirals lead to a fibrillar form that grows to a several hundred-nanometer
particle before settling into the visible phase-separated state [18,19,22–24].

Normally, ionic crosslinking in this type of materials is related to the abundance
of electrical charges due to the solubility of the polymers used, or at least their interac-
tions with the liquids with which they are mixed or suspended (through electrostactic
interactions or hydrogen bonds). For example, this great difficulty for the production of
bioinks for 3D printing has been widely studied in the last decade, but its solutions are
usually very technologically complicated [25,26] or generate possible collateral products
that disadvantage the material balance [27].

The imine formation mechanism is not so simple as to pretend that a simple mixture of
cationic (amine type) and anionic (carboxylate type) polymers will spontaneously generate
an imine structure. This process requires the use of catalysts and very specific reaction
conditions to obtain it [28].

Perhaps this has been one of the main causes of the application of chemical crosslink-
ers in this type of process, which is also conditioned by the need to increase the me-
chanical properties of the material and in accordance with its possible field of applica-
tion. Although there are many crosslinking methods, photosensitive ones with the use of
pluronic-type poloxamers [29] and chemical procedures that usually use substances such as
gelatin/methacryloil [30], glutaraldehyde [31], and N,N-(3-dimethylaminopropyl)-N′-ethyl
carbodiimide (EDC) [32,33] stand out for their abundance today. All these methods have
advantages and disadvantages related to their possible applications, and it is a researcher’s
task to make the most appropriate selection of each of them.

Normally the cell studies use a primary biocompatibility index, either for adhesion or
for cell proliferation. This fact has importance due to lack of cells and nutrients of such
a structure in the specific case of the materials for cartilage substitution or regeneration.
Most of these works center on chondrocyte studies [34,35], or on other types of cells, such
as human umbilical veins, endothelial cells [16], bone marrow mesenchymal stem cells [36],
MC3T3-E1 osteoblasts from mice [37], and many others. However, they have extensively
reported the necessity of growth factors to improve the proliferation of cells inside of the
scaffolds [19,34,37].

This study focuses on the preparation of tri-layered scaffolds with concentration
gradients and potential applications in cartilage tissue engineering. For that, we have
developed a collagen/chitosan-based multi-layered scaffold with distinct but seamlessly
integrated layers that mimics the structure and composition of osteochondral tissue. The
interlayer crosslinking is based on either physical (electrostatic type) or chemical interac-
tions (due to amide formation through chemical crosslinking). It could be hypothesized
that an ideal scaffold for osteochondral repair could be produced by combining a base
layer consisting of a collagen/chitosan scaffold exhibiting osteoinductive properties and
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potential for bone repair (due to the presence of calcium phosphate materials) with a
polymer-based intermediate cartilage layer, and finally, the tri-layered scaffold would be
completed with a collagen/chitosan-based cartilaginous layer with a different ratio than
the intermediate layer.

The influences of (i) the change of the type of calcium phosphate in the bone layer,
(ii) the substitution of the polymer in the middle layer by ELR, and (iii) the interlayer’s
crosslinking effect on the scaffold’s properties were evaluated. The mechanical behavior of
scaffolds is discussed on the basis of the biphasic porous-viscoelastic (BPVE)
model [2–4,18,19,38,39] and the contributions of both the fluid-dependent (poroelastic-
ity) and fluid-independent (intrinsic viscoelasticity) elasticityhave been taken into account
in this work.

2. Materials and Methods
2.1. Materials

All chemicals were of analytical grade. They were purchased from Sigma-Aldrich
Co. (Madrid, Spain and Tokyo, Japan) and used as received. Another materials’ origins
or specifications will be pointed out when necessary. The infrared analysis was done
with a Bruker T27 + Opus Data Collection Program (Bruker, Billerica, MA, USA) and the
XRD patterns were obtained with a Philips PW1800 Powder X-Ray Diffractometer (Philips
Health Systems, Amsterdam, The Netherlands) with Q–Q–Bragg–Brentano geometry,
anode Cu (Kα), running at 40 kV and 35 mA.

2.1.1. Ca-P Materials

Octacalcium phosphate (OCP). Ca8(HPO4)2(PO4)4·5H2O, was obtained by dropwise
addition of a calcium acetate solution (250 mL, 0.04 mol/L) into a sodium acid phosphate
solution (250 mL, 0.04 mol/L), 5 < pH < 6, maintained at 60 ◦C for 4 h. The solution
was unstirred during all the precipitation process and the subsequent digestion periods.
Finally, the precipitates were filtered, washed several times with bi-distilled water, and air-
dried at room temperature [40]. FTIR (cm−1) (Figure S1) [40–42]: 1019, 1105
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(Figure S2) (ASTM 26-1056) [40,42,43]: 4.74◦ (0 1 0), 9.45◦ (0 2 0), 9.81◦ (1 1 0), 26.00◦ (0 0 2),
31.56◦ (2 6 0), and 31.70◦ (2 −4 1).

Hydroxyapatite (HAP). Ca10(PO4)6(OH)2, was obtained by dropwise addition of a
phosphoric acid solution (250 mL, 0.4 mol/L) into a suspension of calcium oxide in bi-
distilled water (250 mL, ≈ 0.5 mol/L) under stirring. The end point of the reaction was
established by pH at 7.2 ± 0.1. Then, the precipitate was left overnight in the reaction
flask without stirring and washed several times with bi-distilled water, dried in a stove
at 105 ◦C for 24 h, heated at 1000 ◦C by 3 h, and finally, milled and classified below
160 µm [42,44]. FTIR (cm−1) (Figure S1) [41,44,45]: 3571 {ν (OH−)}; 1634 {δ (OH−)};
1037, 1100
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25.81◦ (0 0 2), 31.74◦ (2 1 1), 32.13◦ (1 1 2), 32.91◦ (3 0 0), and 49.39◦ (2 1 3).

2.1.2. Polymeric Materials

COLLAGEN: It constitutes approximately 10% of the wet and 50% of the dry weight
of cartilage. Each molecule consists of three polypeptide chains coiled into a unique type
of rigid helical structure. The unique properties of the polypeptide chains are in part due
to the rigid amino acid repeating triplets of gly–pro–hydroxyproline, although they could
change according to collagen type [48,49]. FTIR (cm−1) (Figure S3: 3296) (amide A); 3084
(amide B); 1635 (amide I); 1545 (amide II); 1236 (amide III)

CHITOSAN: It is the only pseudo-natural cationic polymer, and is called so when
chitin reaches the degree of deacetylation of about 50%. CHI’s solubilization occurs
by protonation of the –NH2 functional group on the C-2 position of the D-glucosamine
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repeating unit (the other is N-acetyl-β-D-glucosamine), whereby the polysaccharide is
converted to a polyelectrolyte in acidic media [50,51]. FTIR (cm−1) (Figure S3): 3326
{ν (OH−) + ν (NH2)}; 2933 {ν (CH3)}; 2867 {ν (CH2)}; 1563 {δ (NH2)}; 1414
{ν (OH, alcohol)}.

ELASTIN: The ELR used in this work, denominated (GEG)15, was supplied by the
Bioforge Group (University of Valladolid, Spain). Its amino acid sequence is [(VPGVG)2
VPGEG(VPGVG)2]15 and it was obtained by standard genetic engineering techniques [22].
Specifically, it was produced using cellular systems for genetically engineered protein
biosynthesis in Escherichia coli and purified using several cycles of temperature-dependent
reversible precipitations, as described in the literature [20–24]. Due to the COO− groups of
glutamic acid, this ELR increases the negative charge density in the intermediate scaffold
layer to favor the simulation of the concentration gradient in the cartilage normally pro-
duced by the high negative charge density provided by the proteoglycans [52]. Moreover,
through this ELR sequence being incorporated into the material cell-adhesion of RGD and
REDV peptide sequences [18], the biological performance of the scaffold is improved. FTIR
(cm−1) (Figure S3): 3291 (Amide A); 3069 (amide B); 1625 (amide I); 1524 (amide II) and
1236 (amide III).

It can be clearly inferred that the natural polymers used in this work provide amino,
carboxylate, and hydroxyl terminal groups according to the most abundant composi-
tions thereof.

2.2. Polymeric Solutions

COL (type I collagen fibers from the bovine Achilles tendon, commercial grade, Brazil),
CHI, and ELR 2% (w/v) solutions were left overnight under magnetic stirring in separate
flasks; 10 µL of glacial acetic acid (per mL of polymer solutions) was added to each one after
24 h, and stirring continued for another day. On the third day, the three layers’ composites
were prepared as described below.

2.3. Scaffold Fabrication

The three-layer scaffolds were manufactured with gradient of concentration from the
bone layer (or bottom layer that included calcium phosphate materials to improve bone
adhesion) up to the cartilage layer (or top layer) going through the intermediate layer. The
two upper layers were composed only of natural and synthetic polymers. The preparation
of each layer’s suspensions can be seen below (Table 1).

Table 1. Sample codes and compositions of the scaffolds. 3CC means 3 layers with collagen and
chitosan. B, M, and T layers mean bottom, medium, and top layers, and bold letters define the specific
composition in each scaffold. O—OCP, H—HAP, E—ELR, G—glutaraldehyde; N—NHS/EDC.

Sample Code B-Layer M-Layer T-Layer Cross-Linked

3CCO

COL:CHI (1:1)
+ 2% Ca-P

COL:CHI (1:1)

COL:CHI (3:1)

No
3CCH COL:CHI (1:1) No

3CCHE COL:ELR(1:1) No
3CCO.G COL:CHI (1:1) Yes (G)
3CCH.G COL:CHI (1:1) Yes (G)
3CCH.N COL:CHI (1:1) Yes (N)

3CCHE.G COL:ELR(1:1) Yes (G)

2.3.1. Bone Layer Suspension (B-Layer)

The same volumes (1:1) of 2% collagen solution and 2% chitosan solution, 10 µL of
Tween 80 (per mL of layer suspension), and the powder necessary to reach 2% (w/v) of
calcium phosphate in the final volume, either OCP and HAP (O and H in the sample
code of Table 1, respectively) were added into a 100 mL beaker with mechanical stirring
at 5000 rpm for 30 min. Then, 16 µL of NaOH 1 mol/L (per mL of layer suspension) was
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added to neutralize the acetic acid. The mixture was added to the mold and frozen for
30 min at −20 ◦C (Figure S4a).

2.3.2. Intermediate Layer Suspension (M-Layer)

The same volumes (1:1) of 2% collagen solution and 2% chitosan solution (or (GEG)15,
E for ELR in the sample code of Table 1) and 10 µL of Tween 80 (per mL of layer suspension)
in the final volume were added into a 100 mL beaker with mechanical stirring at 5000 rpm
for 30 min. Then, 16 µL of NaOH 1 mol/L (per mL of layer suspension) was added to
neutralize the acetic acid. The mixture was added to the mold and frozen for 30 min at
−20 ◦C (Figure S4a).

2.3.3. Cartilage Layer Suspension (T-Layer)

Volumes (3:1) of 2% collagen solution and 2% chitosan solution and 10 µL of Tween
80 (per mL of layer suspension) in the final volume were added into a 100 mL beaker with
mechanical stirring at 5000 rpm for 30 min. Then, 16 µL of NaOH 1 mol/L (per mL of layer
suspension) was added to neutralize the acetic acid. The mixture was added to the mold
and frozen for 30 min at −20 ◦C (Figure S4a).

2.3.4. Final Step

The scaffold was kept for 24 h at−80 ◦C and lyophilized. Finally, it was gently washed
with MilliQ water several times to eliminate all the basic and acidic residues. Then, it was
lyophilized again (Figure S4b).

2.4. Crosslinking Process

During the scaffold manufacturing process, physical crosslinking resulted mainly due
to the electrostatic interactions among the amine (COL; CHI; ELR), acid (COL; ELR), and
hydroxyl (COL; CHI) groups of the polymers involved in each layer; due to the presence
of water, these interactions may be stabilized through hydrogen bonds. In particular, the
presence of the glutamic acid in the ELR and its subsequent increase of the negative charge
density (COO−) will affect the physical crosslinking in the corresponding scaffold. As
an alternative to these relatively weak interactions, chemical crosslinking has been also
included to improve the performance of the scaffolds [17,53–55].

2.4.1. Crosslinking with Glutaraldehyde

The reaction between carbonyl groups in the glutaraldehyde and amino groups
(mainly available in the natural polymers and in minor extensions in the ELR due to its
limited amount of terminal amino groups) of the scaffold layers can be described according
to the chemical reaction in the Figure 1a (imine formation). No chemical crosslinking is
produced between the G carbonyl groups and the ELR carboxyl groups in this case. For
chemical crosslinking, the scaffold was immersed in a 2.5% (v/v) glutaraldehyde solution
(G in the sample code) for 45 min, and then was wash repeatedly with MilliQ water, frozen
at −20 ◦C, and lyophilized.

2.4.2. Crosslinking with EDC/NHS

The reaction between amine groups in the corresponding (EDC)/N-hydroxy succin-
imide (NHS) solution and the carbonyl groups of the available in the polymers of the
scaffold layers can be described by several steps. The EDC reacts with carbonyl groups
and forms an unstable intermediate which should react immediately with three possible
compounds (Figure 1b):

• The NH2-terminal provided for natural polymers in the multilayer scaffold resulting,
a stable amide bond;

• The NHS, which is a result of a semi-stable amine NHS ester that forms with the
terminal NH2 provided by natural polymers a stable amide bond;
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• A small quantity of carbonyl groups are regenerated because the unstable intermediate
reacts with water of the medium [32,33].
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For chemical crosslinking, the samples were immersed in a solution of EDC/NHS
(33 mM/6 mM) in ethanol (95%) for 4 h at room temperature. Then the crosslinking
scaffolds were washed (5 times × 5 min), frozen at −80 ◦C, and lyophilized.

2.5. Morphological, Chemical, Physical, and Mechanical Characterization
2.5.1. Microstructural Morphology

Scanning electron microscopy (SEM) was used to investigate the scaffold morphology.
Thus, the samples were immersed in MilliQ water at 37 ◦C for 15 min (maximum swelling);
then immediately dropped into liquid nitrogen, physically fractured, and immersed in
liquid nitrogen again. Finally, they were freeze-dried. Images of lyophilized scaffolds were
obtained by SEM (FEI Quanta 200FEG, Hillsboro, OR, USA) with Schottky’s Filament Field
Emission Cannon and voltages of 0.2–30 kV. Micrographs were achieved under ESEM mode
at 10 kV and a EDAX Genesis micro-probe (Mahwah, NJ, USA) was used for elemental
microanalysis of the scaffold’s different layers.

2.5.2. Swelling Studies

Swelling measurements were performed by a gravimetric method to determine the
water percentage by weight absorbed by the scaffolds. Small octahedral pieces of ≈ 30 mg
were cut transversally (to include the three layers). The small octahedrons were weighed
(Wi) and submerged in saline buffered solution (Dulbecco’s PBS, Nissui Pharmaceutical Co.
Ltd., Tokyo, Japan) at pH = 7.4 and 37 ◦C (Digitheat-TFT, J.P. Selecta, Spain) and weighed
again at predetermined time intervals. The difference between the weight of the scaffold at
time t, Wt, and the initial weight, Wi, defines the water percentage by weight, expressed as
swelling degree, W (Equation (1)):

W =
Wt −Wi

Wi
× 100 = 100

Wt

Wi
− 100 (1)

The swelling degree tests were carried out until the values remained constant for three
consecutive measurements.
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2.5.3. Mechanical Analysis

Rheological experiments were performed using a strain-controlled AR-2000ex rheome-
ter (TA Instruments, Newcastle, DE, USA) with the sample submerged in water at 37 ◦C
after 15 min for complete swelling. Cylindrical swollen scaffolds were placed between
parallel plates of non-porous stainless steel (diameter = 12 mm). A normal force adequate
to prevent slippage was applied. A gap larger than 1000 µm was always reached after the
sample relaxed until equilibrium.

Several oscillatory measurements were performed in a shear deformation mode.
Initially, the range of strain amplitudes over which the samples exhibited a linear region of
viscoelasticity was determined. Thus, a dynamic strain sweep (with amplitudes ranging
between 0.01 and 10%) was carried out at a frequency of 1 Hz to measure the dynamic shear
modulus as a function of strain. Secondly, dynamic frequency sweep tests were performed
to determine the dependence of the dynamic shear modulus and loss factor on frequency.
Specifically, a frequency sweep between 0.01 and 10 Hz at a fixed strain (corresponding to
the scaffold linear region) was selected.

Finally, to determine the transient evolution of the relaxation modulus, a stress relax-
ation test was undertaken. One of the potential biomedical applications supports this type
of measurement. The scaffolds developed to repair joint cartilage are more effective if their
stress relaxation behavior matches that of the native tissue, since such behavior affects load
transfer and nutrient transport [10,18].

Rheological measurements provided the storage modulus, the so-called elastic modu-
lus (G’), and the loss modulus, the so-called viscous modulus (G”), as a function of strain
or frequency at 37 ◦C. The complex modulus magnitude, the so-called dynamic shear
modulus (|G*|2 = (G’)2 + (G”)2), and the loss factor (tan δ = G”/G’, where δ is the phase
angle between the applied stimulus and the corresponding response) were also obtained.
Moreover, the transient evolution of the relaxation modulus, G(t), was recorded [56].

2.6. Cell Studies

Viability assay. The suitability of the scaffolds for the culture of immortalized human
chondrocytes (C-28 cell line) [57] was studied. Briefly, 3 × 104 C-28 human chondrocytes
per well were seeded on the top of one scaffold sample (3 mm width and length × 1 mm
height) with DMEM in a 48-well plate. The scaffold samples were removed after 3, 7, 10,
or 14 days of seeding, and then assessed using a Calcein-AM/ethidium homodimer-1
(EthD-1) LIVE/DEAD® assay kit, according to the manufacturer’s instructions. Specifically,
the isolated pre-loaded samples were washed with PBS, treated with the assay kit, kept in
darkness for 30 min, and finally, studied by confocal microscopy. In the LIVE/DEAD® assay,
living cells are stained green, whereas dead cells are stained red [58]. The cells nuclei were
stained with DAPI at the same time to corroborate the results of the cells population [59,60].
The materials, the positive and negative controls, have been analyzed by the Leica DM5500
B fluorescence microscope (filter settings: FITC and DAPI), equipped with a Leica DFC365
FX digital camera. Digital images were acquired and stored using Leica Application Suite
X (LAS X) software (Leica Microsystems, Amsterdam, The Netherlands).

MTS assay. To further corroborate the cell viability results, an MTS assay was
performed. This is a colorimetric technique in which (3-(4,5-dimethylthiazol-2-yl)-5-(3-
carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium), in the presence of phenazine
methosulfate (PMS), produces a formazan product that has an absorbance maximum at
490 nm in PBS. Scaffold samples with dimensions like the viability assay were loaded
with C-28 human chondrocytes (density: 1 × 104 per well; 500 µL of cell suspension), and
then incubated for 3, 7, 10, or 14 days; 100 µL of the supernatant solution was extracted
to a 96-well plate for reading at λ = 490 nm into a tunable, spectrophotometric microplate
reader (VersaMax, York County, PA, USA with Program Softmax Pro).
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2.7. Statistical Analysis

Graphs were made and statistics gathered with OriginPro 2018 (OriginLab Corp.,
Northampton, MA, USA). Data are reported as mean ± standard deviation (SD), unless
stated otherwise. Error bars represent the SDs calculated from tests of triplicate mea-
surements for each scaffold. Statistical analysis was significant by a one-way analysis of
variance (one-way ANOVA) for p < 0.05 (*) or p < 0.01 (**).

3. Results and Discussion
3.1. Physical-Chemical Characterization
3.1.1. Morphological Characterization

Despite the apparently heterogeneous pore structure of the three-layer 3CCO scaffold
shown in Figure 2A, a good degree of pore interconnectivity throughout the construct could
be observed. Each layer had approximately 2 mm of height with good integration between
individual layers, as shown by the lack of visible interfaces among them. The height of
each layer can be adjusted by changing the volumes used during the layers’ preparation.
This good connection between layers is vital in order to promote cell infiltration and
the regeneration of tissue in the different layers of the scaffold, and to obtain adequate
mechanical properties.
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gray. Bar = 1 mm.

Scaffold porosity was high for each of the three layers. A slight reduction in porosity
was seen in the B-layer containing OCP. In this layer the pore size revealed a diameter
distribution from 100 to 400 µm, ideal for the cell proliferation. There was no significant dif-
ference in the pore size of different layers, in agreement with similar works reported in the
literature [34,61]. Collagen fibers were integrated into the three-dimensional structure of the
scaffold, contributing to the interconnectivity and definition of the pore shape [11,61–63].

The difference between the base and the intermediate layer can be clearly seen because
the B-layer has small, clearly visible white spots corresponding to the calcium phosphate
(OCP), whereas it is more difficult to appreciate these particles in the intermediate layer.
Nevertheless, a slight change in the grayish tonality can be appreciated—the M-layer being
darker and the T-layer being clearer. No particles were detected under our experimental
conditions in the top layer.

High intensity signals in the EDX graph (Figure 2B) were observed in the base layer
corresponding to Ca and P atoms due to the OCP used in this layer. The EDX’s graph
corresponding to the M-layer indicates that Ca and P signals were still clearly observed.
During the manufacturing process of scaffolds, the OCP can be found close to the boundary
between the layers, and partial melting of the upper part of the B-layer occurs when the
M-layer’s solution is added. Thus, some particles of Ca-P could migrate from one layer to
another and be trapped after the freezing process in the M-layer.

In the case of the chemically crosslinked 3CCO.G scaffold (Figure 2C), the apparent
boundaries were fully lost, suggesting excellent adhesion between layers. Note the de-
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crease in pore size and number of fibers in the inner fracture zone due to the chemical
crosslinking process. This structure was more compact than the physically crosslinked
scaffold with the same composition due to chemical bonds. From the EDX signals, high
Ca and P intensities can be seen in the M-layer (Figure 2D). In a 45-min immersion in a
G solution, simultaneously with the reaction of the amino groups of the polymers with
the carbonyl groups of the glutaraldehyde, a partial swell took place which led to the
release of some of the OCP particles. Thus, migration and distribution of OCP in M-layer
is allowed [23,34,54,64]. In addition, a high C signal was observed due to the use of G.

As far as the crosslinking process is concerned, similar behavior was observed for the
samples based on COL/CHI in the M-layer. However, when (GEG)15 was included in this
layer, substantial changes could be observed in the structural morphology of the scaffold.
Figure S5a shows a noticeable morphological change in the 3CCHE scaffold (with ELR
and without G) with respect to the 3CCO and 3CCO.G samples (Figure 2A,B, respectively),
where both a higher pore size and a poorly-organized distribution of fibers were detected.

Micrographs in Figure S5b,c show the boundary between the B and M layers for the
scaffolds (GEG)15 without and with crosslinker, respectively. Different shapes, distributions,
and pore sizes were noticed. The sample 3CCHE.G (Figure S5c) showed an interlayer
region with the covered pores and the Ca-P particles adsorbed in the scaffold, instead of
exposed ones as in the 3CCHE (Figure S5b) sample.

3.1.2. Swelling Studies

The scaffold´s ability to swell plays an important role during the in vitro culture
studies [54,64,65] and in the mechanical properties [62,66–69]. The swelling degree of the
scaffold was calculated by applying conventional Flory–Huggins equation (Equation (1)).
The swell scaffold will present a higher pore size and the presence of fluid among them,
which should facilitate the colonization of the matrix by the cells. The swelling profiles
of the scaffolds (Figure 3) with different calcium phosphates in the B-layer (3CCO and
3CCH) showed no significant differences either in shape or in values. When (GEG)15 was
used instead of chitosan in the M-layer (3CCHE), more swelling was observed. In all cases
the equilibrium (maximum swelling) was reached within about 15 min, regardless of the
sample’s composition.
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Non-significant differences could be seen in the swelling profiles when reconfiguring
the scaffolds with changes in calcium phosphate in the B-layer due to the similarity in
structure of OCP and HAP, consistent with the low solubility of both salts in the aqueous
medium [70].

On the contrary, the change in the polymer (ELR instead of CHI, 3CCHE) in the
M-layer had a great influence, because of the increment of available COO− groups and
their impact on the physical crosslinking. This should have led to drastic changes in the
mechanical behavior of material, which will be evaluated in the next subsection. The
addition of glutaraldehyde (3CCO.G, 3CCH.G, and 3CCHE.G) and EDC (3CCH.N) as
crosslinkers caused a drastic and significant decrease in the swelling capacity of all the
scaffolds (Figure 3). On the one hand, this was accomplished by the chemical reactions
between the carbonyl groups of glutaraldehyde and the amino groups of the polymers,
and on the other hand, by the reactions between the carboxylate groups of the scaffolds
and one of the nitrogens of the carbodiimide’s double bond.

The primary factor that affects the swelling ability is the chemical crosslinking pro-
cedure. The water-binding ability of the scaffolds could be attributed to both their hy-
drophilicity and the maintenance of their three-dimensional structure. In general, the
swelling ratio decreases as the crosslinking degree increases, because of the diminishing
of the hydrophilic groups and the higher stiffness of the scaffold. The absolute value
decreases approximately 1.5 times over its initial weight after the chemical crosslinking
process, which is high enough for tissue engineering.

These experimental results agree with those reported in the bibliography. The weight
gain of poly-ε-caprolactone/elastin composites 2-fold from 15.8± 0.3 w/w to 38.3 ± 0.7 w/w
when the elastin solution concentration was increased up to a saturation level
>50 mg/mL [34]. Samples with pure chitosan hydrogel showed the highest water content
(28.14 g/g), while in the case of structures prepared from chitosan/glycerophosphate
homogenous solutions and two-layer scaffolds, the addition of silk fibers to the hydrogel
reduced the water content to 27.02 and 25.5 g/g, respectively. The high water content of
scaffolds allows for the transport of nutrients and waste through the matrix [66].

3.2. Rheological Properties

The mechanical/viscoelastic properties of these scaffolds must be considered, since
they are key properties for the functionality of the scaffold. In this sense, it is well known
that rheological measurements are an adequate tool for characterizing these properties [18].

The viscoelastic mechanical properties of the scaffold were determined by rheological
measurements over the linear viscoelastic range, providing information under conditions
close to the unperturbed material state. Accordingly, in compliance with the principle of
small deformation rheology, each sample was tested over its respective linear viscoelastic
range [71–73]. The evolution of the complex modulus magnitude with the strain amplitude
can be found for each sample in Figure S1 of the Supplementary Materials. All subse-
quent rheological tests were performed using the same value of strain (0.2%), which was
consistent with the linear viscoelastic range for each scaffold.

3.2.1. The Frequency Responses of Moduli

The frequency evolution models of G’ and G” have been obtained, and both are
frequency-dependent, as can be seen in Figure 4. Similar frequency-dependencies have
been reported for biological tissues in the literature for human and animal tissues such
as liver [74], uterus [75], the adventitial layer of a pig [76], canine kidney cortex and
marrow [77], isolated chondrocytes from articular cartilage [78], brain and nerves, liver,
fat, relaxed muscle, breast gland tissue, dermis, connective tissue, contracted muscle
epidermis, cartilage [56], nucleus pulposus, eye lens [77], and newly synthesized ma-
terials [4,18,19,24,56,66,79,80]. The values of both moduli at a frequency of 1 Hz have
been summarized in Table 2. For every sample measured, G’� G” indicates high elastic
behavior. Thus, G’ is the major contribution to |G*|.
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In the case of the physically crosslinked scaffolds (Figure 4a), similar storage modulus
values in the range 1–2 kPa were obtained for both 3CCO and 3CCH. Yet, when (GEG)15
was used in the M-layer, this value decreased almost four times. It could be stated that the
drastic decrease in the storage modulus was due to the use of the recombinamer (ELR),
whose remarkable increase of COO− groups [18,19,23,24] with respect to the chitosan
contribution provided to the 3CCHE scaffold more sites of negative charges. The carboxyl
groups of the ELR increased the negative charge density in both interlayers (B-M and M-T
layers), acting as a barrier that hinders the physical crosslinking through electrostatic forces.
In consequence, the values of the mechanical properties were reduced. Nevertheless,
the loss modulus showed very similar trends for all the samples with values ranging
from 50 to 110 Pa; non-significant differences were found among the three physically
crosslinked scaffolds.

In the case of chemically crosslinked scaffolds, G’ and G” values are at least one
order of magnitude higher than the values of the physically crosslinked samples with G
(Figure 4b). The fact of the reaction between the glutaraldehyde and the amino groups of
the different polymers used in the preparation of the scaffold clearly shows that the inter-
layer interaction is transformed from being just physical to being mostly chemical, struc-
turally supported by the large number of imine groups formed by chemical crosslinking.
No significant differences were found among any of the chemically crosslinked samples.

We should point out the increase of the storage modulus for 3CCHE.G with respect
to the sample without G due to the chemical crosslinking (Table 2) [64,81]. It can be
suggested that the COL contribution to the crosslinking density dominates, and therefore,
it is responsible for most of the mechanical scaffold properties. Some contribution may
also be attributed to the higher quantity of amino groups available in the ELR when this
polymer is used in the middle layer. The increase of just four times approximately, was
obtained in the crosslinking process with EDC, just as it was foreseen from the swelling
studies (Figure S6, Figure 4b and Table 2). Nevertheless, normally this EDC/NHS’s system
is the most used because for its solubility, the crosslinking’s excess is eliminated easily and
with low cytotoxicity [32,33]; in the meantime, the removal process of glutaraldehyde is
the most complicated from the technologic point of view [64].
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Table 2. Superscript capital letters are used to compare between scaffold values (columns) with matching references values
of the literature in the same row. Hz.

Magnitude 3CCO 3CCH 3CCHE 3CCO.G 3CCH.G 3CCH.N 3CCHE.G Approx. Reference
Values

G’ (kPa) 1.71 ± 0.02 A 1.4 ± 0.3 A 0.33 ± 0.05 B 19 ± 7 C 15 ± 3 C 3.86 ± 0.07 D 18 ± 8 C

1.8–7.5 (AD) [18]
1–10 (AD) [24]

0.01–3.5 (ABD) [56]
0.006–1.000 (B) [36]

0.3 (B) [66]
0.5–2.7 (AB) [79]

0.1-1 (B) [82]

G” (kPa) 0.11 ± 0.01 A 0.07 ± 0.01 B 0.05 ± 0.01 C 1.5 ± 0.2 D 1.4 ± 0.4 D 0.3 ± 0.1 E 1.3 ± 0.6 D

0.02–0.75 (ABE) [18]
0.02–0.40 (ABE) [24]

0.001–0.030 [36]
0.25 [66]

0.01–0.04 [82]

tan 0.064 ± 0.008 A 0.05 ± 0.02 A 0.16 ± 0.06 B 0.08 ± 0.04 C 0.09 ± 0.04 C 0.08 ± 0.02 C 0.07 ± 0.07 C

0.19–0.22 [4]
0.07–0.11 (AC) [18]

0.061–0.087 (AC) [19]�
0.01–0.06 (A) [24]

0.096–0.19 (BC) [80]�
0.033-0.045 [83]

δ (◦) 3.7 ± 0.5 A 3 ± 1 A 9 ± 3 B 5 ± 2 AC 5 ± 2 AC 4.6 ± 0.9A C 4 ± 4 AC

10.7–12.4 (B) [4]�
4.0–6.3 (C) [18]�
3.5–5.0 (A) [19]

0.5–3.5 (C) [24]�
5.5–11 (BC) [80]

1.8–2.6 (C) [83]�

G* (kPa) 1.7 A 1.4 A 0.33 B 19 C 16 C 3.9 D 18 C

200–250 [4]
1.8–9.5 (AD) [18]
2.0–5.5 (D) [19]

1.25–2.00 (A) [80]

τ1(s) 8 ± 4 A 7 ± 1 A 1.0 ± 0.5 C 8.4 ± 0.2 A 12.3 ± 0.4 B 8 ± 3 A 23 ± 1 D 8–10 (AB) [18]
τ2(s) 50 ± 10 A 150 ± 30 B 18 ± 5 C 77 ± 2 D 85 ± 2 E 40 ± 10 A 180 ± 30 F 100–110 [18]
τ3(s) 530 ± 60 A 1400 ± 400 B 270 ± 20 B 860 ± 30 C 820 ± 20 C 460 ± 50 A 1200 ± 300 D 1000–1200 (BD) [18]

� Values calculated from reported data.

These moduli values agree with those reported for similar materials. Specifically, G’
and G” values of 300 and 250 Pa, respectively, have been reported for thermosensitive
chitosan hydrogels crosslinked with silk fibers [66]. However, if the silk it is substituted
by β-glycerophosphate, the moduli decrease to 100 Pa for G’ and 10 Pa for G” [82]. In
both cases, the crosslinking process was physical, but when the chemical crosslinking
was included these values oscillated between 1.8–7.5 kPa and 20–750 Pa for G’ and G”,
respectively [18]. Meanwhile, other ELRs with different protein sequences but similar
chemical crosslinking process had respective values of 1–10 kPa and 20–400 Pa [24]. Huang
et al. [36] reported G’ and G” intervals of 6–1000 Pa and 1–30 Pa, respectively, for materials
with the same chemical composition (COL/CHI/HAP).

As far as the loss factor is concerned (Figure S7), a slight frequency dependence was
observed for the physically crosslinked scaffolds. The values reported in Table 2 indicate
non-significant differences between 3CCO and 3CCH at the frequency of 1 Hz, (around
3-4◦). The phase angles are very low, corresponding to highly elastic, energy-storing
polymers. The higher values of tan δ for 3CCHE may be related to the presence of ELR
in the M-layer, thereby increasing the negative charge density and reducing physical
interactions in the interlayer surfaces [18,19,24]. In the case of chemically crosslinked
scaffolds, a clear frequency dependence was found, and the loss factor was higher than
that of the physically ones, mainly at low frequencies (4–5◦). When frequency increases,
the difference is reduced and the phase angle at 1 Hz ranges from 3◦ to 5◦ (see Table 2) for
each sample (excluding 3CCHE), regardless of the crosslinking type or agent.

Thus, although the crosslinking process drastically influences the individual values
of the storage and loss modules, the ratio G”/G’ was relatively similar for all the samples
at 1 Hz (excluding 3CCHE). Similar values and conclusions of these magnitudes were
obtained in previously reported scaffold studies focused on cartilaginous restoration,
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indicating the clear dominance of the elastic behavior over the loss one, even with the
inclusion of Ca-P particles or crosslinking process, as reported in Table 2 [4,18,19,24,80,83].

3.2.2. Poroelasticity and Intrinsic Viscoelasticity

Viscoelasticity is defined as the time-dependent response of a material that has been
subjected to a load or deformation. Fluid flow through the cartilage solid matrix is the
primary factor responsible for the viscoelastic behaviors observed in articular cartilage.
Considering that articular cartilage is mostly loaded under compression, understanding
its compressive properties is essential to comprehending this tissue’s function. Under
compression, a volumetric variation, and as consequence a pressure change in the tissue
occurred. This resulted in the flow of interstitial fluid through the extracellular matrix,
generating frictional resistance.

Therefore, the tissue’s behavior under compression is a result of its biphasic nature
and the forces which act to balance the externally applied load. This biphasic nature of
cartilage could be described by the three major forces which act on the surfaces of the
tissues. The forces are caused by: (1) the stress in the solid phase; (2) the pressures in the
fluid phase; and (3) the frictional resistance because of the fluid flow in the solid phase [1].

The dependence of |G*|on f
1
2 has been plotted in Figure S8 for all the scaffolds studied.

Two different regions are clearly observable [18]. A non-linear relationship was found at
low frequencies (around 0.01–0.25 Hz), corresponding to the region where the intrinsic
(fluid-independent) viscoelasticity mechanisms dominate. In contrast, a linear relationship
was observed in the ranges 0.25–10 Hz and 0.25–3 Hz for chemically and physically
crosslinked scaffolds, respectively. In this frequency range, poroelasticity mechanisms
dominate. At higher frequencies, this linear dependence is lost.

The slope of the linear region (Table 3) has been calculated using a least-squares
fitting of the experimental data (see Figures S9 and S10 in the Supplementary Material).
Significant differences can be observed between the slope values (d|G∗|/d

√
f ) in its linear

region.

Table 3. Slope values of the linear region of Figures S9 and S10 obtained by linear regression of the
experimental data.

Sample Slope (Pa/Hz 1
2 )

3CCO 166 ± 3

3CCH 115 ± 3

3CCHE 71 ± 2

3CCO.G 1010 ± 20

3CCH.G 850 ± 20

3CCH.N 139 ± 7

3CCHE.G 920 ± 20

Considering that G’ is the dominant contributor to |G*|, it may be suggested that the
slope change observed corresponds to a permeability change in the scaffolds. It is well
known that permeability of a hydrogel is a macroscopic measure of the ease with which
a fluid can flow through the matrix. Thus, permeability decreases as the matrix becomes
denser and more compact.

The lowest slope value for 3CCHE corresponds to the highest pore size observed in
Figure S5a. The chemical crosslinking gave rise to a noticeable decrease in the scaffold’s
permeability with respect to that of the physically crosslinked scaffold, in agreement with
the scaffold morphologies shown in Figure 2 and Figure S5a. In the case of 3CCH.N, the
explanation of the slope’s low value could be the difference in strength between the bonds
(imine vs. amide) exposed above. The slope values obtained in this work are comparable to
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those reported for materials of similar composition. For instance, elastin-like recombinamer
catalyst-free click gels had values in the range of 200–800 Pa/Hz

1
2 [18].

3.2.3. Time Relaxation Modulus

In a stress relaxation test, a shear strain is applied to the scaffolds at t = 0 s and kept
constant up to the end of the measurement while recording the corresponding relaxation
modulus, namely, the ratio of the shear stress required to maintain a fixed strain to this
same strain, as a function of time. A final time of 1800 s was selected to determine long-term
scaffold behavior. Due to the transient response of the rheometer, it showed the evolution
of the composite relaxation modulus for t > 5 s. As such, no values were obtained for
relaxation processes faster than that time.

The flow-independent viscoelastic behavior in cartilage and the viscoelastic nature of
collagen fibers and proteoglycan have been demonstrated [3,10,55,84,85]. These observa-
tions indicate that the BPVE model—which takes into account the viscoelastic behavior
generated from the flow-dependent frictional interactions, and the flow-independent vis-
coelastic nature of the porous solid matrix—is essential for modeling the behavior of soft
tissues and hydrogels [18,85].

When a fluid-independent viscoelastic mechanism (intrinsic viscoelasticity) dominates
the relaxation modulus, G(t), the time evolution of this parameter can be described by the
equation [18,85,86]:

G(t) = Geq + ∑N
i Gi exp(−t/τi) (2)

based on a series of decreasing exponential functions (Figure 5), where τi and Gi are the
relaxation time constant and the weight or degree of contribution of the τi-type relax-
ation to the overall relaxation process, respectively; and Geq is the equilibrium modulus,
Geq = lim

t→∞
G(t). For cartilage, the value of N = 3 (three different relaxation processes) in

the discrete representation has been shown to be sufficient to model the change in the
relaxation modulus predicted by the continuous spectrum model, which uses an integral
representation [85].
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Figure 5. Normalized relaxation modulus transients for physically (open) and chemically (fill)
crosslinked scaffolds. (�) 3CCO, (#) 3CCH, (3) 3CCHE, (�) 3CCO.G, (•) 3CCH.G, (�) 3CCHE.G,
(M) 3CCH.N. Each curve corresponds to the average of three different samples measured. Error bars
have been omitted for clarity.

The longer time constants (τ2 and τ3, see Table 4) were higher for 3CCH than 3CCO,
giving rise to a slower transient. Thus, whereas the transient for 3CCO was stabilized at
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t = 1800 s, the corresponding transient for 3CCH did not reach equilibrium by then. It can
be suggested that the presence of HAP hampers and complicates the relaxation processes.

Table 4. Fitting parameters of the experimental data of Figure 5 to Equation (2) (mean ± SE). G% = (G(1800s)/G(5s)) × 100.

Parameter 3CCO 3CCH 3CCHE 3CCO.G 3CCH.G 3CCH.N 3CCHE.G

Geq 0.576 ± 0.006 0.29 ± 0.06 0.208 ± 0.004 0.387 ± 0.003 0.267 ± 0.003 0.27 ± 0.01 0.31 ± 0.03

G1 0.06 ± 0.02 0.17 ± 0.02 3 ± 1 0.247 ± 0.003 0.155 ± 0.002 0.12 ± 0.03 0.212 ± 0.007

τ1(s) 8 ± 4 7 ± 1 1.9 ± 0.3 8.4 ± 0.2 12.3 ± 0.4 8 ± 3 23 ± 1

G2 0.10 ± 0.01 0.14 ± 0.02 0.334 ± 0.005 0.192 ± 0.002 0.218 ± 0.002 0.20 ± 0.03 0.18 ± 0.02

τ2(s) 50 ± 10 150 ± 30 210 ± 10 77 ± 2 85 ± 2 40 ± 10 180 ± 30

G3 0.207 ± 007 0.41 ± 0.03 — 0.272 ± 0.002 0.406 ± 0.002 0.39 ± 0.01 0.316 ± 0.009

τ3(s) 530 ± 60 1400 ± 400 — 860 ± 30 820 ± 20 460 ± 50 1200 ± 300

G% 58% 39% 19% 42% 31% 31% 37%

R2
f it (%) 98.23 99.07 95.89 99.97 99.98 98.79 99.89

Finally, the chemical crosslinking with glutaraldehyde led to relatively similar tran-
sients for the three scaffolds. Nevertheless, the three relaxation processes for 3CCHE.G
showed higher time constants than did 3CCO.G and 3CCH.G. It can be suggested that
the electrostatic interaction between positive Ca2+ ions in the B-layer and negative COO−

groups of the ELR in the middle layer [17,37] might contribute to these high time con-
stant values.

Transients were measured for a strain amplitude of 0.2% at 37 ◦C for all the samples.
All the samples were fitted to three relaxation process (N = 3), with the exception of
the 3CCHE experimental data, which were fitted to only two (N = 2) to obtain fitting
parameters with physical meaning. Once again, the 3CCHE scaffold showed different
behavior due to the loss of physical crosslinking—now from the viewpoint of the relaxation
modulus. The parameter values obtained by fitting the experimental data to Equation (2)
(Figure S11, Supporting Information) are reported in Table 4. Each time constant dominated
the relaxation process within its corresponding time range. Thus, the transient tail was
mainly controlled by the relaxation process characterized by the longest time constant.

At a given temperature, the combination of weights and time constants of the relaxation
processes contributing to the overall transient results in the “amplitude” of the normalized
transient, i.e., (1-G(1800s)/G(5s)). Whereas a higher amplitude was observed for 3CCH than
for 3CCO, similar amplitudes were observed for the chemically crosslinked scaffolds.

3.3. Cells Studies

Figure 6 clearly shows that the three-dimensional scaffolds are not cytotoxic, reflecting
a progressive growth of the number of cells (in addition, it can be corroborated in Figures 7
and 8 for up to 72 h, as extensively reported at literature [36,65,66]). This progressive growth
is more significant in the case of materials crosslinked with EDC/NHS than those with
glutaraldehyde, probably due to the toxicity of the latter. However, it is encouraging that
the cells survive in this medium because, as previously discussed, the rheological properties
are better when they are crosslinked with glutaraldehyde instead of carbodiimide.
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Figure 6. Cell viability assay results of crosslinking materials 3CCH.G and 3CCH.N at 24, 48, and 72 h,
revealing that the scaffold is non-cytotoxic. 3CCH.N at 72 h was the only instance with significant
differences from all the rest (p < 0.001).
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Figure 7. SEM of crosslinked scaffolds. The first letter in the code means crosslinked with
(G)lutaraldehyde or EDC/(N)HS. For the second letter in the code: (A) or (B) = 3 days; (C) or
(D) = 7 days; (E) or F = 10 days; and (G) or (H) = 14 days. For the first and third columns, bar = 1.
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Figure 8. Confocal micrographs of a representative slice of scaffold crosslinked with EDC/NHS into which chondrocytes
had been seeded on the top of surface. (A) Living cells, which appear in green, (B) scaffold structure, (C) cells stained with
DAPI, and (D) dead cells, which appear in red—three days in. The letter sequences have the same significance as ABCD but
changed with evaluation time: (E–H) for 7 days, (I–L) for 10 days, and (M–P) for 14 days. Micrographs with glutaraldehyde
not shown due to interference of the structure. Bar = 200 µm.

The typical features of these three-dimensional scaffolds are interconnected pores
between 100 and 150 µm in diameter (seen in the Figure 7), and areas that have junc-
tions through wire-shaped structures due to collagen fibers, as seen in the SEM micro-
graphs [33,61,87,88]. The change in the surface over time happens for two reasons, the
interaction of the biological media with the surface and the simultaneous insertion of the
cells through the interconnected pores.

In the first place, the reaction with glutaraldehyde is simple from the point of view of
its chemical mechanism (just one reaction for the imine formation, Figure 2a), so although
it changes a little in superficial aspects, the change is not as substantial as with the carbodi-
imide system. Most notable is the loss of boundaries between the layers—better defined in
the case of non-crosslinked materials (Figure 2a,c and Figure 7) [31,89].

In the case of EDC/NHS, the chemical reactions formed by complex mechanisms
based on the production, generation, and regeneration of stable and unstable intermediaries
until the formation of the peptide bonds is achieved, may cause the pores covering the
surface of the crosslinked scaffold. In addition, the C–N peptide bond has a shorter bond



Polymers 2021, 13, 907 19 of 24

distance than the classical C–N bonds of chemical structures, due to the electronic effects
around the alpha carbon, which makes the peptide bond in physiological media without
enzymatic alterations a stable structure with some strength (bond energy ≈ 300 kJ/mol;
bond distance ≈ 0.15 nm) [90,91].

On the other hand, cell adhesion can be clearly visualized by increasing the size of
the white dots in the form of spheres on the surfaces of the three-dimensional scaffolds,
perfectly distinguishable from the calcium phosphate filler, whose shape is not spherical.
It can be observed in the second and fourth columns of Figure 7 that as time passes, the
cells proliferate. The samples crosslinked with the EDC/NHS system were less toxic and
were easily removable from the scaffold structures with water washing. In addition, the
hydroxyapatite’s (but other calcium phosphates too) aggregate size was below 160 µm,
but the humid synthesis method led to obtaining normal particle groupings with different
irregular shapes [40,44,70], while the chondrocytes had 10–20 µm diameters and almost
perfect spherical shapes [60,92].

In Figure 8A,E,I,M, numerous green dots corresponding to living cells within the three-
dimensional structure are clearly observable, as is their proliferation from 3 to 14 days.
In contrast, in Figure 8D,H,L,P the cells were meant to appear red if there was cellular
apoptosis. That there was no relevant apoptosis according to the results obtained. In the
rest of Figure 8, the structure of the scaffold can be seen, alongside the many nuclei of cells
stained blue with DAPI, which relate to living cells, indicating a high survival rate.

It is important to note that only the results obtained for the scaffold crosslinked
with EDC/NHS were shown, because glutaraldehyde could cause confusion when eval-
uating the results due to the crosslinking agent having self-fluorescence at the working
wavelengths of this technique [93,94]. It was shown, however, in Figure 7 that the cells
also adhere to and proliferate in the three-dimensional structure when crosslinked with
glutaraldehyde, despite the recognized toxicity of the crosslinker.

4. Conclusions

In this study, novel 3D tri-layered scaffolds intended for the restoration of cartilaginous
tissue were obtained. They consisted of three layers with a concentration gradient: the
bottom (bone) layer was based on collagen, chitosan, and calcium phosphates to improve
bone adhesion; the intermediate layer consisted of the mixture of collagen and chitosan or
ELR; and finally, the top layer was based again on collagen and chitosan with a different
ratio than that of the middle layer. Both physical and chemical crosslinking were used.

The scaffolds were characterized by the combination of several experimental tech-
niques: morphological characterization (SEM micrographs), chemical-physical characteriza-
tion (FTIR, XRD, and swelling behavior), and the characterization of mechanical properties
through rheological measurements. SEM images showed a highly porous and intercon-
nected structure with potential bioactivity in its bone layer due to the high concentration of
Ca-P. The chemical crosslinking process significantly increases the rheological properties,
while maintaining adequate matrix-fluid absorption and interaction. By following the
BPVE model, it can be concluded from the analysis of the rheological data that two different
physical mechanisms (poroelasticity and intrinsic viscoelasticity) dominate in different
frequencies and time scales.

The rheological measurements showed mechanical properties similar to those required
by natural tissues and to those in the literature—in some cases, the values we attained
were better than those from the literature. The biological behavior of the material showed
non-toxicity through a progressive increase in the population of exposed cells, which
together with its rheological behavior makes it a promising candidate to be used as a matrix
in cartilage tissue engineering.

Supplementary Materials: The following are available online at https://www.mdpi.com/2073-436
0/13/6/907/s1. Figure S1. FTIR spectra of synthesized calcium phosphates. Differences in the bands
related to the hydroxyl groups in hydroxyapatite related to octacalcium phosphate are symbolized
with red in the proper structure. Figure S2. XRD of synthetized Ca-P materials. Bars indicate Ca-P
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patterns. ASTM 26-1059 for OCP and 09-432 for HAP. Figure S3. FTIR spectra of three polymers
used in this study: COL, CHI, and ELR. The very similar structures show the chemical structure
of each one. Figure S4. (a) FTIR spectra of the individual layers integrating the 3CCHE scaffold.
The blue asterisks indicate areas with the main changes in the B-layer due to HAP. Each spectrum
is the result of a measurement on each separate layer and (b) the FTIR spectra of the scaffolds
without crosslinking. Note the increase of the bands around 1000 cm−1 due to addition of calcium
phosphates to the scaffolds. Figure S5. Micrograph of the overall structure of the 3CCHE scaffold
(a, bar = 250 µm). Micrographs of the boundary between the B and M-layers in the 3CCHE (b) and
the 3CCHE.G (c) scaffolds. Bar = 100 µm. Figure S6. Evolution of complex modulus magnitude with
strain amplitude for physically (open) and chemically (fill) crosslinked scaffolds. Figure S7. Loss
factor for physically (open) and chemically (fill) crosslinked scaffolds. Each curve corresponds to
the average of three different samples measured. Error bars have been omitted for clarity. Figure S8.
Complex modulus magnitude of physically (open) and chemically (fill) crosslinked scaffolds. Each
curve corresponds to the average of three different samples measured. Error bars have been omitted
for clarity. Figure S9. Evolution of complex modulus magnitude with f 1

2 . The continuous line
corresponds to the linear regression fitting in the range of 0.25–3 Hz for physically crosslinked
scaffolds. Figure S10. Evolution of complex modulus magnitude with f 1

2 . The continuous line
corresponds to the linear regression fitting in the range of 0.25–10 Hz for chemically crosslinked
scaffolds. Figure S11. Normalized relaxation modulus transients. The solid line corresponds to the
exponential decay fitting of third grade (according to Equation (2)) for all the scaffolds (open and
filled symbols correspond to physically and chemically crosslinked scaffolds respectively, with the
exception of 3CCHE, which was fitted with two relaxation processes.
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