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Introduction

Topological defects are solutions of a field theory which cannot decay into

a less energetic –more fundamental– solution due to topological restrictions.

Some examples of topological defects are domain walls, vortices and monopoles.

The importance of topological defects in physics lies on the fact that they

are the relics of a phase transition. Thus, from the study of the network of

topological defects left behind a phase transition, we are able to gain some

insight about the underlying theory.

The emergence of topological defects as a consequence of phase transitions

is described by the Kibble-Zurek mechanism. It was first introduced by

Kibble [1] in the seventies in the context of high energies physics. Kibble

argues that phase transitions must have occurred in the early universe. This

is a natural consequence from the fact that the universe has been cooling

since the Big Bang and the assumption that the unification theories of the

standard model are correct. As a result of these early phase transitions,

topological defects associated to them must have formed.

Later in the nineties, Zurek proposed to study topological defects in

condensed-matter systems as an analogy for cosmic defects created in the

primordial universe [2]. The advantages of topological defects in condensed-

matter systems –such as vortices in liquid helium, ferromagnetic domains,

disclination lines in liquid crystals...– over the defects created in cosmolog-
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ical backgrounds is that the formers are accessible in the lab. Zurek also

completed the argument of Kibble to take into account out-of-equilibrium

phenomena during phase transitions of the second kind, which play a cru-

cial role on the formation of topological defects. The complete Kibble-Zurek

mechanism predicts a relationship between the spatial density of topological

defects and the critical exponents of the theory. These critical exponents are

universal, in the sense that they only depend on the symmetries of the theory.

This is a consequence of the critical behaviour of the system at the transition

point. However, there is yet one more reason to justify that the properties of

a phase transition are universal for theories with the same symmetries. The

underlying mechanism which allows the formation of topological defects is

the spontaneous symmetry breaking which occurs during the phase transition

[3]. Therefore, the nature of topological defects depend on the symmetries

of the original theory and how they are broken.

All in all, we can relate theories from different contexts if they belong

to the same universality class. Since the seminal Zurek’s article, many ex-

periments have been carried out in condensed-matter systems. The aim of

these experiments has been twofold. First, experiments are performed to

test the Kibble-Zurek mechanism. Secondly, they are used to investigate

the physics of inaccessible high-energy systems through condensed-matter

analogues. Hexagonal manganites are one of such systems on which experi-

ments have been performed. They are multiferroic materials with very rich

phenomenology. Their most remarkable feature is that the symmetry of the

theory is broken in a discrete way when they undergo a structural phase

transition.

In this thesis, we build an effective model for a two-components scalar

field which reproduces the physics of the hexagonal manganites and perform
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numerical simulations in different regimes. The main objectives of this work

are the following:

• To discuss the usual prescription to model thermal fluctuations through

a stochastic term in the equations of motion. This customary approach

presents some problems –namely, the possible double-counting of ther-

mal effects. Indeed, the temperature appears explicitly in two different

terms in the Lagrangian of the theory: in the amplitude of the ther-

mal stochastic force and also as a linear parameter in the mass term

coefficient. We present an alternative approach to include thermal fluc-

tuations in order to overcome this problem. In this new approach, the

temperature only appears explicitly in the amplitude of the thermal

noise term, but not in the coefficient of the mass term. Thus, we let

the mass term be effectively renormalized by the fluctuations of the

field due to thermal effects rather than force it to change following an

external imposition.

• To analyse in detail the process of vortex formation after a thermic

second-order phase transition with global symmetry. We identify some

relevant observables and distinguish three different dynamical regimes,

each with a characteristic time scale. We find that the formation of vor-

tices is a continuous process whose time limits are difficult to define. In

essence, this analysis is valid for the different quench implementations

that we consider.

• To provide a universal criterium to determine the number of primor-

dial defects. The Kibble-Zurek mechanism yields a prediction of the

density of topological defects as a function of the quench rate at which

the system is cooled down during the phase transition. However the
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number of total defects decreases in time after their formation due to

an annihilation process. Thus, it is important to determine the correct

measurement time to test the prediction of the Kibble-Zurek mecha-

nism. We identify this measurement time as the time at which the

phase of the complex field has relaxed and, as a result, patches of ho-

mogeneous complex phase are formed.

• To test the Kibble-Zurek mechanism in different quench regimes. We

are not only interested in the prediction of the density of topological

defects for a given quench rate, but also in comparing the dynamical

process described by the theoretical mechanism with the results of our

model simulations. We find that our model does not reproduce the

expected behaviour –specifically, criticality effects are not detected.

This thesis is organised as follows. In part I, we provide a detailed review

of all the concepts presented in this introduction. We start by explaining

the Landau theory of phase transitions, which entails the expansion of a

thermodynamic potential in terms of powers of the order parameter of the

system –chapeter 1. Next, we define what topological defects are and show

how they arise as a consequence of the spontaneous symmetry breaking of

a system –chapter 2. In chapter 3 we explain in detail the Kibble-Zurek

mechanism. We demonstrate how the connection between the spatial density

of vortices and the quench rate at which the system is cooled during the phase

transition is obtained from it. Lastly, we introduce the hexagonal manganites

in chapter 4. We describe their main features and use them to motivate our

model.

In part II we present the results of our work. First, we describe our

model in chapter 5. It consists of a Lagrangian whose potential is expanded
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according to the Landau theory of phase transitions. Some terms are included

in this theory in order to represent the features of the hexagonal manganites.

We pay special attention to how thermal effects are taken into account. Our

model simulates the thermal fluctuations of the system through a stochastic

noise term in the equations of motion. This was first done by Langevin to

simulate the dynamics of the Brownian motion, and since then it has been

widely used. We discussed the issues that may arise from using the usual

formulation of this approach, and propose alternatives to overcome them.

We also discuss how quenches are modelled in these contexts and explain

the prescription adopted in our model. This is done in chapter 6. Lastly, in

chapter 7 we present the results of numeric simulations performed with our

model.

In part III, the code scripts that have been used to simulate the dynamics

of the system are collected. We explain in detail the boundary conditions,

the algorithms to discretize the equations of motion and the setting of initial

conditions in chapters 8, 9 and 10, respectively. In chapter 11 we introduce

the functions which have been used to measure some relevant observables

of the system. Of special importance is the function to count the number

of topological defects. Lastly, we present the main function of the program,

where all the previous ones are gathered 12.

Finally, in the conclusions we summarised our results and compare them

with the ones from the literature. We discuss the limits and strengths of our

model in view of what has been accomplished.
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Introducción

Un defecto topológico es una solución de una teoŕıa de campos que no puede

decaer a otra menos energética (más fundamental) debido a restricciones

topológicas. Muros de dominio, vórtices y monopolos son algunos ejemplos

de defectos topológicos. La importancia de estos objetos en f́ısica reside en

el hecho de que son los subproductos de una transición de fase. Por consigu-

iente, el estudio del patrón de defectos topológicos creados tras una transición

de fase nos permite obtener información sobre la teoŕıa f́ısica subyacente.

El mecanismo de Kibble-Zurek explica cómo los defectos topológicos apare-

cen como consecuencia de una transición de fase. Fue propuesto por primera

vez por Kibble [1] en los años setenta en el contexto de f́ısica de altas en-

erǵıas. Kibble argumenta que, dado que el universo ha estado enfriándose

desde el Big Bang y consideramos válidas las teoŕıas de unificación del mod-

elo estándar de part́ıculas, es natural concluir que en el universo temprano

debió haber transiciones de fase. Como resultado de dichas transiciones de

fase, se debieron formar defectos topológicos.

Posteriormente, en la década de los noventa Zurek propone estudiar de-

fectos topológicos en sistemas de materia condensada como analoǵıas a los

defectos cósmicos que emergieron en el universo primigenio [2]. La ventaja

fundamentadal de los defectos topológicos en sistemas de materia conden-

sada (tales como vórtices en helio ĺıquido, dominos ferromagnéticos, ĺıneas
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de discinación en cristales ĺıquidos ...) frente a los creados en escalas cósmicas

es que los primeros son accesibles en el laboratorio. Zurek también completó

la explicación de Kibble para transiciones de fase de segundo orden, en la

que la dinámica fuera del equilibrio juega un papel crucial. El mecanismo de

Kibble con la contribución de Zurek predice una relación entre la densidad

espacial de defectos topológicos y los exponentes cŕıticos de la teoŕıa. Estos

exponentes cŕıticos son universales, en el sentido de que sólo dependen de las

simetŕıas de la teoŕıa. Esto se debe al comportamiento cŕıtico del sistema en

el punto de transición de una fase a otra. Sin embargo, hay otro argumento

más que justifica que las propiedade de una transición de fase son univer-

sales para teoŕıas con las mismas simetŕıas. El mecanismo f́ısico subyacente

que permite la formación de defectos topológicos es la ruptura expontánea

de simetŕıa que tiene lugar durante la transición de fase [3]. Por tanto, la

naturaleza de los defectos topológicos depende de las simetŕıas de la teoŕıa

original y de qué forma se rompen.

En definitiva, podemos relacionar teoŕıas de distintos contextos f́ısicos si

pertenecen a la misma clase de universalidad. Desde el art́ıculo seminal de

Zurek se han hecho muchos experimentos en sistemas de materia condensada

con el objetivo, por un lado, de poner a prueba el mecanismo de Kibble-Zurek

y, por otro, de investigar la f́ısica de sistemas de altas enerǵıas inaccesibles a

través de sistemas análogos en materia condensada. Las manganitas hexag-

onales son uno de estos sistemas. Son materiales multiferroicos con una rica

fenomenoloǵıa, cuya caracteŕıstica más distintiva es que la simetŕıa se rompe

de forma discreta como resultado de una transición de fase estrucutral.

En esta tesis construimos un modelo teórico para un campo esclar de dos

componentes que reproduce la f́ısica de las manganitas hexagonales y efectu-

amos simulaciones numéricas en varios reǵımenes. Los princpales objetivos
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del trabajo son los siguientes:

• Analizar la prescripción usual para simular fluctuaciones térmicas a

través de un término estocástico en las ecuaciones de movimiento.

Esta forma de modelizarlas presenta algunos problemas (en particu-

lar, es posible que tenga en cuenta dos veces los efectos térmicos). En

efecto, la temperatura aparece expĺıcitamente en dos términos difer-

entes del Lagrangiano de la teoŕıa: por un lado, en la amplitud de

la fuerza estocástica térmica y, por otro, en el coeficiente del término

de masa como un parámetro lineal. Proponemos una forma alterna-

tiva de incluir las fluctuaciones térmicas para tratar de solventar este

problema. Desde esta nueva perspectiva, la temperatura sólo aparece

expĺıcitamente en la amplitud de la fuerza estocástica, pero no en el

coeficiente del término de masa. Por tanto el valor que adquiere el

término de masa es resultado de una renormalización efectiva debido a

las fluctuaciones del campo inducidas por los efectos térmicos y no el

resutlado de una imposición externa.

• Analizar en detalle el proceso de formación de vórtices tras una tran-

sición de orden térmica de segundo orden con una simetŕıa global.

Identificamos los observables relevantes para su descripción y distin-

guimos tres diferentes reǵımenes dinámicos, cada uno con un tiempo

caracteŕıstico asociado. Constatamos que la formación de vórtices es

un proceso cont́ınuo dif́ıcil de delimitar en el tiempo. En esencia, este

análisis es válido para las diferentes implementaciones de enfriamientos

que tenemos en consideración.

• Dar un criterio universal para determinar el número de defectos primor-

diales. El mecanismo de Kibble-Zurek predice una dependencia entre
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la densidad del número de defectos topológicos creados tras una tran-

sición de fase y el ritmo de enfriamiento al cual se ha efectuado dicha

transición. No obstante, el número total de defectos no permanece

constante, sino que decrece en el tiempo después de su creación debido

a un proceso de aniquiliación. Por tanto, es importante determinar

el tiempo de medición correcto para poner a prueba la predicción del

mecanismo de Kibble-Zurek. Identificamos este tiempo de medida con

el tiempo en el cual la fase del campo complejo se ha relajado y, en

consecuencia, se han formado dominios de fase homogénea.

• Poner a prueba el mecanismo de Kibble-Zurek en diferentes reǵımenes

de enfriamiento. No estamos sólo interesados en la predicción de la

densidad de defectos topológicos para un cierto ritmo de enfriamiento,

sino que también comparamos la dinámica del proceso descrito por el

mecanismo de Kibble-Zurek con los resultados obtenidos a partir de las

simulaciones de nuestro modelo. Hallamos que nuestro modelo no re-

produce el compartamiento explicado por el mecanismo (en particular,

no se detecta el papel que juega la criticalidad).

Esta tesis está organizada de la siguiente manera. En la parte I se pro-

porciona una explicación detallada de todos los conceptos mencionados en

esta introducción. Empezamos explicando la teoŕıa de Landau para transi-

ciones de fase, que consiste en la expansión de un potencial termodinámico

en potencias del parámetro de orden del sistema (caṕıtulo 1). A continuación

definimos matemáticamente los defectos topológicos y explicamos cómo emer-

gen como consecuencia de la ruptura espontánea de la simetŕıa del sistema

(caṕıtulo 2). En el caṕıtulo 3 explicamos en detalle el mecanismo de Kibble-

Zurek y demostramos cómo obtener a partir de él la relación entre la densidad
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espacial de vórtices y el ratio al que el sistema es enfriado durante la tran-

sición de fase. Por último, en el caṕıtulo 4 introducimos las manganitas

hexagonales. Describiemos sus caracteŕısticas fundamentales, que usaremos

para contruir nuestro modelo.

En la parte II exponemos los resultados de nuestro trabajo. En primer lu-

gar, describimos nuestro modelo en el caṕıtulo 5. Consiste en un lagrangiano

con un potencial expandido en potencias del parámetro de orden, de acuerdo

con la teoŕıa de Landau para las transiciones de fase, al que se le han añadido

unos términos particulares para representar el comportamiento caracteŕıstico

de las mananitas hexagonales. Prestamos una atención especial a la forma

de incluir efectos térmicos. En nuestro modelo, las fluctuaciones térmicas

se simulan a través de un término de ruido estocástico en las ecuaciones

de movimiento. Esta forma de proceder fue empleada originalmente por

Langevin para simular la dinámica del movimiento Browninano, y desde en-

tonces se ha empleado de forma habitual. Comentamos los posibles proble-

mas que pueden surgir al aplicar este formalismo y proponemos alternativas

para solucionarlos. También analizamos cómo se modelizan los enfriamientos

en estos contextos y describimos de qué forma lo hemos reflejado en nuestro

modelo. Todo esto constituye el contenido del caṕıtulo 6. Por último, el el

caṕıtulo 7 presentamos los resultados de simulaciones numéricas efectuadas

según nuestro modelo.

En la parte III se recogen las secuencias de código empleadas para sim-

ular la dinámica del sistema. Explicamos en detalle cómo implementar las

condiciones de frontera, los algoritmos para discretizar las ecuaciones del

movimiento y las condiciones iniciales en los caṕıtulos 8, 9 y 10 respectiva-

mente. En el caṕıtulo 11 analizamos las funciones que hemos empleado para

medir algunos observables relevantes. La función implementada para contar
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el número de defectos topológicos es de especial importancia. En último lu-

gar, incluimos el código de la función principal del programa, que articula el

resto de funciones, en el caṕıtulo 12.

Finalmente, en las conclusiones resumimos nuestros resultados y los com-

paramos con los obtenidos en la bibliograf́ıa. Analizamos los ĺımites y fort-

alezas de nuestro modelo en vista de los resultados obtenidos.

20



Part I

State of the art

21





Chapter 1

Phase transitions. Phase

transitions of the second kind

and criticality.

In thermodynamics, a physical phase is defined as an homogeneous portion of

a system which is in the same state of matter. Such state is defined by some

physical properties related with symmetries, which are uniform within the

phase. A phase transition is a process in which these symmetry properties

that characterised a phase undergo a change as a response to variations of

the external conditions of the system.

Let us introduce some definitions to make a more rigorous description

of this phenomenon. The state of the body is characterised by a quantity

called order parameter. For instance, the vector of total magnetization M

plays the role of the order parameter in a ferromagnetic phase transition. An-

other example of order parameter is the displacement vector of some atoms

of a crystal lattice in a phase transition between two different crystal struc-

tures. In addition to the order parameter, it is also necessary to introduce
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a control parameter. It accounts for the external conditions of the system,

whose variation induce the phase transition. This takes place when the con-

trol parameter surpasses a certain critical value. The most common control

parameter is the temperature, though may be others.

For a phase transition to be possible, it is necessary that the symmetry

of one phase be higher than the other, i.e., the symmetry of one phase must

contain all the symmetry elements –rotations, translations, reflections, etc.–

of the other plus additional ones. Mathematically, if the group of symme-

tries of higher symmetric phase is G, and the group of symmetries of lower

symmetric phase is H, H must be a subgroup of G. Nevertheless, this is not

a sufficient condition, since there are still more restrictions to be taken into

account.

The change that occurs at a phase transition is a spontaneous symmetry

breaking. When the system is in the phase of higher symmetry –from now

on, symmetric phase–, the symmetry of the state (described by the control

parameter) is the same as the symmetry of the theory (described by some

energetic functional, such as the Lagrangian). At the critical point, the state

of the body chooses spontaneously one of the possible points of the vacuum

manifold. This happens inhomogeneously in the space –i.e., the state takes

different values at different spatial points. As a consequence, in the phase

of lower symmetry –from no on, broken phase– the symmetry of the state is

reduced, whereas the symmetry of the theory remains the same.

There exists two types of phase transitions, which differ in how this spon-

taneous symmetry breaking develops. The phase transitions of the first kind

involve a discontinuous change in the value of the order parameter. Thus, the

state of the body changes discontinuously at the transition point. So does

the thermodynamic functions which depend on them, such as the free-energy,
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the entropy, the volume, etc. As a consequence, during the transition the

system absorbs –or releases– a fixed amount of energy per volume without

increasing the temperature. That is, first-order phase transitions carry a la-

tent heat. A phase transition of the first kind occurs through a process called

nucleation. Firstly, the new phase is reached at some small spatial regions

randomly, with a certain probability. These small regions constitutes nuclei

from which bubbles of new phase will grow –hence the name of the process.

These bubbles of new phase grow within a medium which still remains in the

old phase. While new nuclei are created and bubbles grow, the two phases

coexist in equilibrium, and we can always tell at which phase belong every

part of the system. Eventually, all the body will be in the new phase.

On the contrary, a phase transition of the second kind entails a continuous

change in the order parameter. Both the physical properties and the ther-

modynamic functions of the state of the body varies continuously through

the transition –although their derivatives are discontinuous at the transition

point. In spite of this, the symmetry does still change discontinuously at the

transition point. In a phase transition of the second kind, all spatial points

reach the broken phase at the same time, so there is no coexistence of the

two different phases.

In order to provide a quantitative explanation of the phenomenological

features noted above, let us introduce the Landau theory for phase transitions

of the second kind (pages 446-478 of reference [4]). This formalism can then

be extended to describe first-order phase transitions as well. In a second-

order phase transition, let us assume that the order parameter is zero in the

symmetric phase and takes non-zero values in the broken phase. For instance,

this is how the vector of total magnetization behaves in a ferromagnetic

phase transition. It is zero in the paramagnetic phase, above the critical
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point –which is also known as Curie point–, and different from zero in the

ferromagnetic phase, below the critical temperature.

Let Φ(η, T ) be the thermodynamic potential of the theory. It accounts

on the free-energy of the system as a function of the order parameter, η,

and the control parameter, the temperature T . It may also depend on other

variables, but we will neglect them in this summary for the sake of simplicity.

It is important to remark that the dependence of Φ on η is not of the same

nature as the dependence on the temperature. Whilst the latter can be

chosen arbitrary, the former takes its value from the equilibrium state. That

is, the value which η actually takes is computed by imposing the condition

that Φ is a minimum (for given temperature) –i.e., ∂ϕ/∂η = 0.

The fact that the state of the body changes continuously in a second-

order phase transition implies that the order parameter takes values arbitrary

small near the transition point –recall that it vanishes in one of the phases,

namely the symmetric one. Therefore, we can make an expansion of the

thermodynamic potential Φ in powers of η in a neighbourhood of the critical

point,

Φ(T ; η) = Φ0 + α1η + α2η
2 + α3η

3 + α4η
4 + . . . , (1.1)

where the coefficients αi are functions of T . In order to reproduce the phe-

nomenological behaviour described above, some restrictions on these coeffi-

cients must be imposed.

First of all, we must set that α1 is identically zero. Otherwise, the order

parameter –computed at equilibrium– is different from zero at any temper-

ature, which is in contradiction with our assumption that η = 0 in the

symmetric phase, where T > Tc.

The requirement that Φ must have a minimum at η = 0 for temperatures

above the critical also implies that α2 > 0 in the symmetric phase. However,
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the assumption in the broken phase is that the stable state –i.e. the minimum

of Φ– corresponds to non-zero values of η. This can only be achieved if α2 < 0

below the critical temperature. Thus, by continuity, the coefficient α2 must

be zero at the transition point. Assuming that this coefficient is a function

of T which has not singularity at the transition point Tc, it can be expanded

by a series in temperatures up to first order, α2 = a0(T − Tc), where a0

is a positive constant. Notice that this expansion reproduced the desired

dependence on the temperature of α2 stated above.

Let us assume that the transition point itself is also a stable state. That

is, it must be a minimum of Φ at η = 0. The quadratic coefficient α2 is zero

at this point. Therefore, for this requirement to be possible we must impose

that α3(T = Tc) = 0 and α4(T = Tc) > 0. The coefficient of the cubic term

α3 can be chosen to be identically zero at all temperatures, not only at the

critical. If the coefficient of the quartic term α4 is positive at the transition

point, by continuity is also positive in a neighbourhood of that point. Thus,

we replace it by a positive constant, α4 = b > 0.

Taking into account all these considerations, we can rewrite the expansion

(1.1), which now reads

Φ(T ; η) = Φ0 + a0(T − Tc)η
2 + bη4, (1.2)

where a0 and b are positive constants. From this expression, we can de-

duce the behaviour of the order parameter in a neighbourhood of the critical

temperature. Indeed, it is obtained by imposing ∂Φ/∂η to be zero, that is

η(a0(T − Tc) + 2bη2) = 0. In the symmetric phase, there is only one solu-

tion, η = 0, which is a minimum. As the transition point is approached, the

minimum of the potential as a function of the order parameter becomes flat-

ter. This implies that the restoring force to return the system to equilibrium

becomes steadily weaker, which entails the increase of the relaxation time
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without limit. After the critical point is surpassed, the system enters the

broken phase. There, η = 0 becomes a maximum; the minimum is smoothly

displaced to

η = ±
√

−a0(T − Tc)

2b
. (1.3)

Notice that the order parameter changes continuously with the temperature

along the transition, as we had assumed (figure 1.1)

η

Φ
-
Φ

0

T>Tc

T=Tc

T<Tc

Figure 1.1: Thermodynamic potential Φ as a function of the order parameter

η for several temperatures. Each line represents a higher temperature than

the one below. Above the critical temperature (red lines), the minimum is

located at the origin. At the transition temperature (black line), the potential

flatters and the force that restores the field to the origin dissapears. Below

the critical temperature (blue lines), two minima different from zero appears.

As the temperature cools, they move away and the wells become deeper.

This expansion describe the energy of an homogeneous body. To account

for the inhomogeneities, we must introduce spatial derivatives. For long-wave
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fluctuations, only the derivatives of lowest order (and their lowest powers)

need to be accounted for. Linear terms in first and second order derivatives

can be neglected, since they only are responsible for surface terms once inte-

grated in the volume. Thus, the first relevant contribution are the quadratic

terms of first order derivatives. Adding this terms to the former expansion,

we get

Φ(T ; η) = Φ0 + a0(T − Tc)η
2 + bη4 + g

(
∂η

∂r

)2

, (1.4)

where we have defined g as the isotropic coupling factor for the gradients.

This formula is only valid for long wavelengths, larger than the interatomic

distances. We will make use of this expansion for the free-energy of a system

which suffers a phase transition of the second kind as a basis to build our

model in chapter 5.

From this expression, the correlation function –and also the correlation

length, ξ– can be computed. An important remark is that this correlation

length diverges when the critical temperature is approached [4],

ξ =

√
g

a0(T − Tc)
. (1.5)

Actually, this is a manifestation of criticality. Criticality is an important

feature of second-order phase transitions, which has not mentioned before in

this chapter. In phase transitions of the second kind, the fluctuations of the

order parameter grows anomalously when the transition point is approached.

This have important implications. In the first place, it limits the range of

application of the Landau theory. Indeed, the thermodynamic potential does

have a singularity at the critical point. Hence, the expansion (1.4) is only

valid in a regime where the fluctuations are sufficiently small. This expression

is valid only if the following condition is fulfilled,

a0 |T − Tc| ≫
T 2
c b

2

g3
. (1.6)
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This criterion was derived by Levanyuk and Ginzburg [5] from the condition

that the mean square fluctuation of the parameter of order averaged over a

volume given by the correlation length is small compared with the character-

istic value η̄2 ∼ a0(T −Tc)/b, obtained in (1.3). In a narrow interval close to

the critical temperature, the left hand side of (1.6) is small and the criterion

is not satisfied. This interval, called the fluctuation range, defines the region

where the Landau theory is not applicable.

The second consequence of the large fluctuations of the order parameter

near the transition point is that they cause the divergence of other quantities.

We have already seen the divergence of the correlation length ξ –equation

(1.5). As a consequence, the system at the transition point is fully correlated,

and a perturbation on one point can affect the whole system. The correlation

length is not the only quantity which diverges. The relaxation time of the

system also diverges, which leads to a critical slowing down of the system.

Other quantities such as the susceptibility or the specific heat also diverges.

This divergences have the functional form of a law-scales. The exponents of

these functions are called critical indices. These systems are universal, in the

sense that they only depend on the symmetries of the theory beneath the

phase transition.

The Landau theory can be extended to describe first-order phase tran-

sitions in a similar way. Nevertheless, the variation of the thermodynamic

potential with respect the temperature is qualitatively different, since its ex-

pansion comprehends different terms. At high temperatures, the only minima

of the potential is located at η = 0. As the temperature decreases, a second

minima at some non-zero value of η appears. This minimum has a higher

energy than the minima situated at the origin. However, if the tempera-

ture continues decreasing, this new minimum eventually becomes the global
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minima of the theory. The phase transition occurs when the order parame-

ter jumps from the minimum at the origin to the true minimum, which has

less energy. To do so, it needs to get through a potential barrier –a local

maximum between the two minima: the latent heat. This is accomplished

thanks to the thermal fluctuations of the system. Unlike the second-order

phase transitions, in this case the order parameter changes discontinuously

from η = 0 to the value where the global minimum is.
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Chapter 2

Topological defects

Topological defects are solutions of a field theory which cannot decay to a less

energetic solution due to topological constraints. In the context of this work,

their importance lies on the fact that they are the relics of a phase transition.

From the pattern of topological defects, we can extract information about

the underlying theory. This connection is made clear in the description of

the Kibble-Zurek mechanism –cf. chapter 3. In this chapter, we will expose

a brief summary of topological defects, paying special attention to vortices,

because they are the defects which appears in our investigation. A more

extensive description can be found in references [6, 7, 8] or in reviews such

as [3], on which this summary is based.

A field theory is invariant under some transformation if it does no involve

any changes in the Lagrangian. Mathematically, if the field ϕ transforms as

ϕ → gϕ, with g being an element of a symmetry group G, then

L[gϕ] = L[ϕ]. (2.1)

This amounts to say that the Lagrangian is symmetric under the action of

the group G. This symmetry is spontaneously broken whether the symmetry
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of the state of the system is no longer the same as the symmetry of the

Lagrangian.

Let us illustrate this with an example. Let L be a theory of a single

complex scalar field ϕ = |ϕ| exp(iθ),

L = ∂µϕ
∗∂µϕ− V (|ϕ|). (2.2)

Global U(1) transformations ϕ → exp(iα)ϕ, with α constant in space and

time, left the Lagrangian invariant. The vacuum state of that theory is the

field solution which is constant in space and time and minimizes the potential

V . Let us consider a potential of the form

V (|ϕ|) = m2|ϕ|2 + λ|ϕ|4. (2.3)

In this instance, if m2 < 0, all the points which satisfy |ϕ| =
√

−m2/2λ

belongs to the vacuum. Therefore, it is degenerated. Let M be the vacuum

manifold, which amounts to the set of all possible vacua. Any two points of

M can be related through symmetry transformations. However, the state of

the system does not have this symmetry anymore –that is, small perturba-

tions around the vacua does not remain invariant under a U(1) transforma-

tion. Thus, the symmetry is broken.

In this case, the symmetry U(1) is fully broken. However, in other cases

where the symmetry group G is more complex, the symmetry can be par-

tially broken. This amounts to say that the vacuum remains invariant under

transformations of a subgroup H of G.

Let us consider the possible solutions of a theory whose symmetry has

broken. For a classical solution to be admissible, the field configuration must

approach the vacuum asymptotically at infinity. But there are multiple pos-

sible vacua to approach, as the vacuum is degenerated. Thus, there exist field

configurations which approaches different points of M in different directions.
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Let SD−1, with D being the spatial dimensionality, represent the spatial

infinity. Then, the values of these field configurations at the spatial infinity

constitute a map from the spatial infinity to the vacuum manifold,

ϕ : SD−1 → M. (2.4)

A homotopy class of this map is formed by the set of field configurations

which can transform into one another continuously. These homotopy classes

are elements of the (D − 1)-th homotopy group of M, πD−1(M). We can

also define lower homotopy groups, πn(M), n < (D − 1), by restricting the

domain of the map to subsets Sn of SD−1.

We are now in condition to provide a rigorous definition of what a topo-

logical defect is. The vacuum solution –i.e., the constant map– represents

the identity element of any homotopy group. Besides, it is the less ener-

getic solution of the theory. A topological defect is a solution which belongs

to any πn(M) homotopy group, with n ≤ D − 1, provided πn(M) is non-

trivial. Indeed, the field configuration which represents such solution cannot

be continuously transformed into the vacuum solution because they belong

to different homotopy classes.

In three dimensional space theories, field configuration belonging to non-

trivial π0(M), π1(M) and π2(M) groups correspond to domain walls, vor-

tices and monopoles, respectively. Let us consider the example of vortices in

the theory (2.2) with potential (2.3) and m2 < 0 to show that topological

defects are solutions more energetic than the vacuum state. In this case the

theory is U(1) symmetric, and the vacuum manifold is M = S1.

Let us introduce a concrete case. Let ϕ to be a static field configuration

ϕ(ρ, φ, z) = |ϕ(ρ)| exp(iφ) in cylindrical coordinates. It is clear that this

solution belongs to a nontrivial homotopy class of π1(M), since the map

ϕ : S1 → U(1) –that is, the map from the angle in the physical space, φ, to
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the angle of the complex phase of the field, θ– is not the constant map. Thus,

this solution represents a topological defect, a vortex. If we assume that ϕ

is a smooth configuration, it is necessary by continuity that it vanishes at

ρ = 0, which requires some energy (V has a local maximum at the origin).

Thus, it is more energetic than the vacuum solution, ϕ = |ϕ(ρ)|. Yet, the

vortex cannot decay because it belongs to a different homotopy class. This

is why topological defects are metastable solutions although they are not the

less energetic.

Let us finish this chapter by introducing the concept of topological charge.

It allows us to classify the topological defects within the same homotopy

group. In the case of vortices, it is represented by the winding number, Nw.

It is defined as the circulation of the complex phase of the field θ around

a closed curve which enclosed the defect –which can be chosen to be S1 at

infinity, ρ = ∞–, that is

Nw =
1

2π

∮
C

dφ∇θ. (2.5)

As the field must be periodic after a 2π shift in the polar angle φ –i.e.,

ϕ(ρ, φ, z) = ϕ(ρ, φ+2π, z)–, it is clear that circulation of the complex phase

of the field must be an integer number of times 2π, soNw is an integer. Hence,

each homotopy class is characterized by a topological charge which cannot

change continuously, since it is essentially discrete. This is another manifes-

tation of the impossibility to transform continuously one field configuration

of one homotopy class to another configuration of a different class.
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Chapter 3

Kibble-Zurek mechanism

The Kibble-Zurek (KZ) mechanism offers an explanation of how the topolog-

ical defects arise after a phase transition. The mechanism was first proposed

by Kibble [1, 9] in the seventies in the context of cosmology. Kibble argues

that cosmological structures such as domain walls, cosmological strings or

magnetic monopoles may be the relic of phase transitions which occurred

in the early universe, as it cooled down from an initial hot state where all

symmetries were unbroken. Later, Zurek took advantage of the analogy be-

tween cosmological strings and vortex lines in superfluid helium to extend the

mechanism to condensed matter systems [2, 10]. Zurek also completed the

argument of Kibble to include finite-time cooling quenches in second order

phase transitions.

Topological defects emerge after a phase transition only if two conditions

are fulfilled: First, there must be a symmetry which spontaneously breaks.

After a symmetry is broken, the field is able to reach different vacuum states

at different spatial locations. The second requirement is that the field con-

figuration belongs to a non-trivial homotopy group. Otherwise, the field

solution will decay to a trivial vacuum solution. This two conditions are
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fulfilled after a phase transition. The change of the shape in the thermo-

dynamic potential as the temperature have dropped below the critical one

leads to the creation of a degenerate vacuum. In the new broken phase, the

field takes different values of this degenerate vacuum in different locations,

thus allowing non-trivial field configurations.

The dynamics described by the KZ mechanism is as follows. For the sake

of clarity, let us consider a global U(1) theory with a complex scalar field,

ϕ = |ϕ| exp iθ. In the symmetric phase –i.e., above the critical temperature–

the equilibrium state of the field is the origin, |ϕ| = 0. After the temperature

of the system falls below the critical temperature, the system moves to the

broken phase. The phase of the field takes at random any of the values of

the vacuum manifold, θ ∈ [0, 2π), all with equal probability. In addition,

depending on what type of phase transition is taking place –first or second

order–, this process will be accomplished in different ways.

In phase transitions of first order, there is an energetic barrier between

the two phases. This barrier can be overcome by means of thermal fluctua-

tions, which are random. Consequently, not all the points will reach the new

phase at the same time. The points which first fall to the vacuum manifold

constitute a nucleus from which the new phase will expand. As a result, all

the domain which grows from a single nucleus will be homogeneous – i.e.,

the field at every point will take the same value.

In contrast, phase transitions of second order happen continuously. There

is no energetic barrier, so all the points reach the vacuum manifold at the

same time. The size of domains of homogeneous phase in this kind of transi-

tions is argued to be of the order of magnitude of the correlation length of the

system, ξ. This quantity represents the length scale within which points are

correlated –i.e., they can influence each other. Hence, the choice of vacuum
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at every point is not independent, since it is affected by its neighbourhood.

This is a statement which needs further discussion. It will be addressed later

on this chapter.

Regardless of what kind of phase transition is taking place, domains of

homogeneous phase will form, and they will be disconnected and spatially

uncorrelated with each other. This is a condition of possibility for the vortices

to exist, but it is not enough. Vortices will only form from these domains if

they meet under suitable circumstances. Let us elaborate this concept.

Let us consider two domains of homogeneous phase that meet. The com-

plex phase of the field takes two different values at both sides of the border.

Then, there is an interpolation of the complex field between these two do-

mains. Such interpolation is governed by the geodesic rule, which can be

formulated as follows [1]: the complex phase θ of the scalar field must inter-

polate between the two domains across the junction following the shortest

path on the vacuum manifold, S1. Eventually, these two domains will merge

and become one.

Naturally, if all encounters were this way, no vortex could form, since all

patches will merge together in a one single common domain. To create a

vortex, we need several patches colliding together. The complex phase need

to interpolate continuously across borders of domain pairs in such a way that

the circulation of the phase over a closed trajectory C which passes through

all the domains is
∮
C
∂θ = 2nπ, where n is an integer number which is called

winding number. By continuity, this implies that at some point enclosed in

the trajectory C, the field is zero. This is the core of the vortex. There, the

field still remains in the old symmetric phase, unlike the surrounding points,

which all are in the new broken phase.

To create a vortex of winding number one, we need at least three patches
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colliding together (see figure 3.1). Besides, the following condition must be

fulfilled,

θ1 + π < θ3 < θ2 + π, θ1 < θ2 < θ3, (3.1)

where {θj} represents the complex phase of the field of the j − th domain.

This condition is met with a probability of 1/4 [11]. Any vortex with wind-

ing number larger than 1 is also possible. The probabilities to form them

are fewer, though, since the process entails the collision of more (suitable)

domains, which is less likely to happen.

(b)(a)

Figure 3.1: (a) Meeting of three domains. Within each domain, all the

points have the same value of the complex phase of the field, {θ1, θ2, θ3} (b)

S1 vacuum manifold, which amounts to the minima of the potential. The

complex phase interpolates between pairs of domains following the shortest

path on the vacuum manifold. As the phases fulfil the relation (3.1), a vortex

of winding number 1 will emerge from the meeting.

Let us now return to the issue of the size of the primitive domains of ho-

mogeneous phase after a second order phase transition. It was argued that
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the typical size of these domains is similar to the correlation length, ξ. Some

remarks are worth mentioning. First, the correlation length is a quantity

which can be derived from the computation of the correlation function –for

instance, consult [4], pages 471-478. In this context, the correlation length ξ

represents the length scale at which the correlation of the fluctuations of the

field decreases significantly, i.e. ⟨δϕ(r)δϕ(r+ ξ)⟩ ∼ 0. It is a well known fact

that the long wave fluctuations heavily increase as the temperature of the

system approaches the critical temperature in a second order phase transi-

tion. In fact, in a system of infinite size, they become infinite at the critical

point. So does the correlation length. Consequently, as we approached the

critical point, the size of the domains of homogeneous phase would become

bigger and bigger. Eventually, at the critical point, the size of the domains

would span the whole sample. The formation of topological defects would be

impossible, since there would exist only one domain.

This apparent paradox was solved by Zurek. Zurek realizes that this

scenario only would happen if the cooling was performed adiabatically –

i.e., the system was at equilibrium at every moment during the process.

However, this is not possible, because the relaxation time of the system also

diverges as the system approaches the critical point, a phenomenon called

critical slowing down. That is, an adiabatic quench would last infinite time.

Nevertheless, in real experiments, the time which the system spends cooling is

finite. Therefore, the quench is performed out of equilibrium. This prevents

the correlation length to become infinite and allows the formation of domains

of homogeneous phase.

Let us expose the standard argument provided by Zurek to explain this

out-of-equilibrium dynamics. There are two relevant time scales in the prob-

lem. The first one is the quench time, τq. It represents the time the system
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spends cooling through the phase transition. The second is the relaxation

time, τ , accounts to the time the system needs to return to the equilibrium

after a perturbation. More precisely, it can be obtained from the mean-field

theory by linearising the equation of motion and neglecting the inertial terms.

Therefore, τ is inversely proportional to the mass term. Using causality argu-

ments, this time can be related with the size of the domains of homogeneous

phase. As the speed at which information propagates in the medium is fi-

nite, the relaxation time defines a region within which all the points can

communicate their choice of vacuum with each other. Far from the critical

temperature, the relaxation time remains approximately constant. So does

the size of homogeneous domains. As the system approaches the transition

point, both the critical point and the size of the domains start increasing due

to the criticality. At some moment, the time that some information needs to

propagate through the whole domain is equal to the time that the system is

going to spend cooling through the critical point. Beyond this time, the sys-

tem cannot transmit information fast enough, as the cooling will end before

this transmission completes. Thus, this moment defines a freezing time, tfr,

at which the size of the domains stops growing (see figure 3.2).

The freezing temperature depends on the quench rate. The slower the

cooling, the closer the freezing temperature will be to the critical tempera-

ture, which means that the domains will be larger. The larger the domains,

the fewer will be created. Finally, the fewer domains, the lower the number

of collisions between them, so the number of topological defects decreases.

In conclusion, there exits a relationship between the density of topological

defects created after a phase transition and the quench rate at which the

cooling is performed.

A mathematical derivation of such relationship can be provided. Both
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the relaxation time and correlation length are quantities which diverges at

the critical temperature. They are known to diverge as power laws, namely

τ(T ) = τ0

∣∣∣∣T − Tc

Tc

∣∣∣∣−µ

, ξ(T ) = ξ0

∣∣∣∣T − Tc

Tc

∣∣∣∣−ν

. (3.2)

Here, τ0 and ξ0 are the relaxation time and correlation length at zero tem-

perature, respectively. This is a quantity which depends on the material

Figure 3.2: Domain formation according to the KZ mechanism. The correla-

tion length defines the length scale of the size of the domains of homogeneous

phase, d. We start our quench at temperatures above Tc and move towards

the left as the system cools over time. When the freezing temperature Tfr

is reached, the size of the domains freezes and no longer grows following the

adiabatic curve pictured in the figure. This is due to the fact that pertur-

bations have no time to propagate beyond this distance before the phase

transition is completed (recall that the relaxation time also diverges). Below

Tc, size of domains will follow again the adiabatic curve after the defreezing

temperature Tdfr.
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properties of the system we are dealing with. On the contrary, µ and ν, does

not depend on the specific system. They are the critical exponents, which

depends on the universality class of the theory, i.e., the symmetry properties

of the phase transition.

From now on, we will use the reduced temperature, ϵ = (T−Tc)/Tc, rather

than the actual one, T , since it has the advantage of being dimensionless.

Let us assume a linear quench, i.e. the temperature decreases linearly with

the time. If we set T = Tc at time t = 0,

ϵ = −rq t = − t

τq
, (3.3)

where we have introduced the quench time as the inverse of the quench rate,

τq ≡ r−1
q . From this equation we can tell that the freezing temperature ϵfr is

achieved at a freezing time tfr = τqϵfr. Equating this time with the relaxation

time computed at the freezing temperature from equation (3.2), that is, tfr =

τ(ϵfr), we obtain an expression for the reduced freezing temperature,

|ϵfr| =
(
τ0
τq

) 1
µ+1

. (3.4)

Substituting this value on equation (3.2) for the correlation length, we get

ξfr ≡ ξ(ϵfr) = ξ0

(
τq
τ0

) ν
µ+1

. (3.5)

This freezing length represents the scale length that the domains will get

during the phase transition. On a plane, the size of these domains is of the

order of ξ2fr. Since vortices will form in the intersections of domains, we can

approximate the density of vortices per unit area as n ∼ ϵ−2
fr . Thus, we obtain

the following important scaling law between the density of defects and the

quench rate,

n ∼ 1

ξ20

(
τ0
τq

) 2ν
µ+1

. (3.6)
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Note that terms of a very different nature appear in this relationship. The

critical exponents depends on the symmetry properties of the phase transi-

tion, whilst the density of vortices is a measurable quantity. Therefore, the

study of the pattern of topological defects left behind a phase transitions can

give us information about its universality class.

This is the general scheme of the KZ mechanism. While its verification at

cosmological scales is difficult, it has been successfully tested experimentally

on many condensed matter systems [2, 3, 11, 12, 13, 14, 15, 16, 17, 18, 19,

20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40].

However, there are also some experimental results that departures from the

postulated KZ scaling in the regime of fast quenches [37, 38, 39, 40]. In order

to try and explain these discrepancies, work is still being done to extend and

improve the mechanism. In particular, there have been efforts to consider

more realistic quenches. The standard formulation of the model establish

an homogeneous quench, that is, a quench where the critical temperature is

reached at every point at the same moment. This is certainly an idealization.

It will work well in some cases, whereas in many others it is not possible ne-

glect that the phase transition does not occur uniformly. The most common

approach to overcome this problem is to let the quench rate depend on the

space coordinates too. Hence, a temperature front propagates through the

sample with certain velocity [41, 42, 43]. The space of parameters of the

model enlarges, and new regimes are found where the creation of vortices is

suppressed. Some other works have also try other solutions, as consider a

critical temperature inhomogeneous in space [44]. A more extensive explana-

tion of the mechanism, its applications, as well as its limitations and further

developments is provided in reference [45].
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Chapter 4

Hexagonal manganites

Formation of topological defects after a phase transition is a ubiquitous phe-

nomenon. It is present in many different physical systems, from cosmic to

atomic length scales. The KZ mechanism is used to describe this process. Its

verification is challenging in cosmic systems, but there are many condensed-

matter systems in which experiments can be carried out in order to test this

mechanism.

There is a second important reason to study condensed-matter systems

in the context of topological defect formation. The scaling law which relates

the density of defects with the cooling rate is claimed to be the same for all

systems which belongs to the same universality class. This remarkable feature

can be exploited to study systems which otherwise would be inaccessible.

Hence, many cosmological systems can be studied not directly, but through

an analogue condensed-matter system of the same universality class. This

was the original idea of Zurek in reference [2]. Since then, there has been an

increasing interest in condensed-matter systems in which topological defects

can emerge.

Hexagonal manganites RMnO3 are one of such systems, where R stands
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for Y , Sc, or one rare earth ion (Dy,Ho,Er, Tm, Y b, Lu). They present a

rich phenomenology, where several phase transitions occurs at different tem-

peratures, thus creating different kinds of topological defects, such as ferro-

electric vortices or neutral and charged domain walls. Hexagonal manganites

are multiferroic material, in the sense that they exhibit several ferroic prop-

erties. Namely, they are improper ferroelectric, since electric polarization is

a by-product of a previous structural phase transition. At low temperatures,

an antiferromagnetic phase appears.

In this chapter, we will focus on the phase transition which occurs at

higher temperature –the change in the structure of the crystal. This phase

transition can be modelled using the Landau theory described in chapter 1.

In references [35, 37, 38, 46, 47] a expansion of the free energy of the system

as powers of the order parameter is presented, where the order parameter

represents a displacement of atoms in the crystal lattice. Reference [47]

introduce a more complete expansion, since it also includes couplings of the

order parameter with the polarization vector. The interest of this material is

that the potential includes anisotropic sextic terms. As a result, the vacuum

manifold is discretized. Instead of the usual U(1), the vacuum manifold

becomes a Z6. Expansions of even higher terms are also proposed [48], but

there are not considered here. This is the potential that we have used to

build our model in chapter 5.

The defects which arise after this structural phase transition are domain

walls and vortices. Reference [46] provides a detailed description of the struc-

ture of them. Other interesting feature about the hexagonal manganites is

that recently some experiments have shown regimes where their behaviour

deviates from the scaling predicted by the KZ mechanism. Those experi-

ments are explained in references [37, 38].
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Let us describe the crystal structure of the hexagonal manganites and

define their order parameter. The structure of this material consist of planes

of trigonal bi-pyramids (one atom of manganese in the center, five atoms of

oxygen in the vortices) separated by planes of R ions, which are arranged in

a hexagonal mesh (figure 4.1).

Figure 4.1: Left: side view of the planes of trigonal bi-pyramids and the R

ions. Right: Top view of the unit cell. At the critical temperature, R ions

move upwards (or downwards) and the axis of the bi-pyramids tilt towards

(or away) from a common center. This causes the trimerization of the unit

cell. The order parameter of the trimerization is (Q cosϕ,Q sinϕ), with Q

and ϕ being the magnitude and orientation of the tilt of the vertical axis of

the bi-pyramid receptively.

At the transition point, a spontaneous symmetry breaking happens, and

two phonon modes condensates. The first phonon mode involves a trimer-

ization of the unit cell, that is, the formation of trimers –sets of three equal

molecules. This trimerization consist of the tilt of the long axis of the bi-

pyramids. This tilt amounts to the parameter of order. It is a two-component

field, (Q cosϕ,Q sinϕ), where Q represents the magnitude of the tilt and ϕ
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the direction of such tilt. This phonon can condensate around three different

centres, and the tilt can be towards or away –cf. figure 4.2. As a result,

six different trimerization domains are formed. The tilts of the bi-pyramids

induces the appearance of another phonon. This new phonon consists in

the displacement of the R ions which lay between two layers of bi-pyramids.

They move upwards if the tilt of the bi-pyramids converge to its position and

downwards otherwise. This second phonon causes the spontaneous ferroelec-

tric polarization P ∼ Q3 cos 3ϕ . However, it does not create new domains.

Figure 4.2: Three (of six) different forms to trimerize a cell unit, seen from

above. Arrows correspond to the projections in the horizontal plane of the

movement of the oxygen atoms at the top vertices of the bi-pyramids. One

ion (yellow arrow) is chosen to define the trimerization phase. In the figure

are shown the cases with ϕ = 0, π/3 and 2π/3, from left to right.

The model which we consider in part II is inspired in the phenomenology

of this first phase transition. The order parameter is a two-component scalar

field, and the potential is expanded up to six order to include the anisotropy

terms which leads to the formation of six different domains.
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Part II

Thermal vortices in Hexagonal

Manganites
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The aim of our work is to provide a detailed explanation of the process

of vortex formation after a second-order phase transition has taken place.

We also investigate different forms of taking into account the thermal effects.

To do so, we build an effective model which reproduces the physics of cer-

tain condensed-matter systems and perform numerical simulations in various

regimes.

Although the KZ mechanism gives general arguments to account for how

vortices are created, there are some nuances which are not fully explained and

require further clarification. One of the aspects which is worth considering

more carefully is the fact that there is no clear separation between the regime

of vortex formation and the subsequent regime of vortex interaction. Indeed,

once the vortices are formed, they interact with each other, as well as with

the borders of the sample. The result of such interactions leads to their

annihilation. Hence, the total number of defects is a decreasing function of

time.

If defining the end of the formation regime is difficult, it is no less problem-

atic to unambiguously determine its beginning. The KZ mechanism argues

that vortices form at the transition point, since it is at this moment where

the patches of homogeneous phase –which have been created in the symmet-

ric phase with a length scale determined at the freezing temperature– choose

one of the degenerate values of the vacuum. However, this behaviour is not

reproduced in our model. We see no evidence that patches are formed in

the symmetric phase in our simulations. The complex phase of neighbour

locations –which is at first chosen randomly and independently at the tran-

sition point– eventually take the same value, thus creating spatial domains

of homogeneous phase already in the broken phase. In this scenario, to tell

at which moment patches are already formed and start interacting is not
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evident. A criterion must be specified.

From the above remarks, it is clear that the formation of vortices is a

process which develops continuously on time rather than an event which

happens at a single moment. This may be a problem to test the KZ prediction

of scaling-laws –equation (3.6). As the number of vortices that enter in

the formula is not constant over time, it is necessary to specify when to

perform the measurement. This problem have been solved in the literature

in different ways. For instance, in [49] the total number of vortices is chosen

extrapolating backwards the time series of the number of vortices. In [10, 50],

a more straightforward method is used: defects are counted at a fixed value

of t/τq, where t stands for the time passed from the critical point and τq for

the inverse of the quench rate.

As far as our model is concerned, we identify three different regimes in the

process of vortex creation, each of one with a characteristic time scale –see

chapter 7 for a detailed description. The prediction of the KZ mechanism

can be tested with the number of vortices computed at these different times.

In chapter 7 a more detailed explanation is provided.

Besides the ambiguity to characterised the times of the process of vortex

formation, there is another important issue to take into consideration: the

way thermal effects are taken into account. One of the most common manner

to consider thermal fluctuations is to use Montecarlo simulations. However,

we have employed a different approach. Thermal fluctuations are included

in our model as random contributions to the equations of motion through

a stochastic term which introduce random noise. This is a standard way

to introduce the thermal noise since it was first proposed by Langevin [51].

For instance, this is how temperature is included in many time-dependent

Ginzburg-Landau models of superconductors [52, 53, 54, 55, 56]. This noisy
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term is necessary because it is the only contribution which forces the field to

move from the origin when it becomes a maximum in the broken phase.

The thermal effects also alter the value of the mass term. It has been

stated in chapter 3 that a topological defect can only occur if a symmetry

is broken. This break happens if the sign of the mass term changes sign

when the temperature crosses the transition point –chapter 1. Therefore, we

need to explain this change in the sign of the mass term as a thermal effect.

This can be achieved in different manners. The most straightforward way is

to make the mass term a explicit function of the temperature. This is how

simulations are performed in reference [57], for example. In this cases, the

temperature appears explicitly in two different terms: as a linear parameter

in the mass coefficient and also in the amplitude of the thermal noise term.

An alternative approach is to consider that the mass term is effectively renor-

malized by the fluctuations of the field due to thermal effects [3]. Under this

assumption, the temperature only appears explicitly in the amplitude of the

thermal noise term, but not in the coefficient of the mass term. The change

in sign of this coefficient is a consequence of its renormalization. We have

performed simulations according to both formalisms. In chapter 6 a more

extensive explanation is elaborated.

This second part is organised as follows: In chapter 5 we introduce the ba-

sic notions of our model and its motivation. We discuss general aspects and

derive the equations of motion without defining yet the prescription to take

into account the thermal effects. In section 5.1 we outline the computations

of the correlation length ant the relaxation time in the mean field theory and

linear approach. In chapter 6, we distinguish two different ways to perform

a quench and take into account the thermal effects. The generic model de-

scribed before will be adapted to fit each of this prescriptions. Lastly, the
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numeric set-ups and results for this three cooling methods will be discussed

in chapter 7.

Some part of this work has been already published in the following refer-

ence: Tello-Fraile, Marcos, Andrés Cano, and Manuel Donaire. Topological

thermalization via vortex formation in ultrafast quenches. Physical Review

E 101.5 (2020): 052113 [58].
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Chapter 5

The model

Let us consider an effective Lagrangian model of a scalar field order pa-

rameter, Q, in which temperature fluctuations are incorporated through a

Langevin term in the equation of motion. Specifically, we consider a two-

component scalar order parameter, Q = (Q1, Q2) = (Q cosϕ,Q sinϕ), with

equations of motion

∂L
∂Qi

−∇ ∂L
∂∇Qi

= − ∂R
∂Q̇i

+ fi. (5.1)

Here L is the effective Lagrangian, R is the dissipative function, and fi are

the components of a stochastic Langevin force such that ⟨fi(r, t)fj(r′, t′)⟩ =

2γTδijδ(r − r′)δ(t − t′), with T being the temperature and γ the damping

coefficient [4]. In this way, we effectively consider Gaussian fluctuations of

Q satisfying the fluctuation-dissipation theorem at temperature T [59]. The

physical idea of this theorem is that the interactions of the field with the

thermal bath which causes its microscopic fluctuations are precisely the ones

which lead its macroscopic evolution [51]. Let us elaborate on each of the

objects which appears in equation (5.1).
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In the following, we consider an effective Lagrangian of the form

L = VT (Q) +
g

2
[(∇Q)2 +Q2(∇ϕ)2], (5.2)

where the total potential VT contains a U(1)-symmetric term, V (Q), and a

six-fold anisotropy term, V6(Q), VT (Q) = V (Q) + V6(Q),

V (Q) =
a

2
Q2 +

b

4
Q4 +

c

6
Q6, (5.3)

V6(Q) =
c′

6
[(Q2

1 − 3Q2
2)Q1]

2 =
c′

6
Q6 cos2(3ϕ). (5.4)

This is nothing but the power expansion of the thermodynamic potential in

powers of the order parameter Q prescribed by the Landau theory for phase

transitions of the second kind –cf. chapter 1.

The coefficients b, c, g > 0 are all constant. The coefficient of the quadratic

term, a, takes different forms depending on which way the thermal effects

are taken into account. This will be discussed in full detail in chapter 6. The

total effective potential according to these definitions is depicted in figure

5.1.

The critical behaviour of this model belongs to the XY universality class.

However, the six-fold anisotropy term, V6(Q), can be tuned to describe either

U(1)-symmetric systems like superfluids or Z6-symmetric ones like hexagonal

multiferroic manganites [46, 47, 48]. In the latter case, although the symme-

try that is initially broken below Tc is that of the U(1) group, the subsequent

evolution as well as the final structure of the vortices is generally affected

by the Z6 anisotropy term for sufficiently large values of c′. In the instance

of using this potential to describe hexagonal manganites, Q physically rep-

resents a structural order parameter describing the trimerization of the unit

cell –cf. chapter 4.

In static equilibrium, the uniform order parameter for which the free
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Figure 5.1: Sketch of the total effective potential of the order parameter in

configuration space, VT (Q) = V (Q) + V6(Q), below the critical tempera-

ture. The field values at the minimum of VT (Q) form the vacuum manifold.

Left, potential in the weak-anisotropy regime; right, potential in the strong-

anisotropy regime.

energy presents a minimum value satisfies

[
a+ bQ2 +

(
c+ c′ cos2(3ϕ)

)
Q4

]
Q = 0, (5.5)

Q6 sin(6ϕ) = 0. (5.6)

The only solution above Tc (a > 0) is Q1 = Q2 = 0. Below Tc (a < 0), the

above equation presents twelve possible solutions with Q = Q0 ≃
√

|a|/b,

ϕn = nπ/12 (n = 0, . . . , 11). However, the actual minima of the energy

correspond to either ϕn = nπ/3 if c′ < 0, or ϕn = (2n+1)π/6 if c′ > 0, where

n = 0, . . . , 5, unless higher-order terms are included [48]. Thus, the minimum

energy state of the order parameter is six-fold degenerate. Therefore, the

choice of any of those values by the order parameter breaks spontaneously

the symmetry of the system whose phase is then said non-symmetric.
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Regarding the dynamics, we neglect inertial terms and restrict ourselves

to the over-damped dynamics of Q introducing the dissipative function R,

[4]

R =
γ

2
(Q̇2

1 + Q̇2
2) =

γ

2
(Q̇2 +Q2ϕ̇2), (5.7)

in accord with the Langevin force [59]. The inclusion of a dissipative term

yields a dynamics of relaxation towards the equilibrium. This process intro-

duce a characteristic time scale in the system. Neglecting the inertial terms

is a valid approximation whether the typical time scales of the fluctuations

of the field –which are induced by the thermal noise fluctuations– are much

smaller than the relaxation time. In this regime, the thermal degrees of free-

dom can be regarded as white noise –that is, as an uncorrelated function in

time. This is the case in many condensed-matter experiments.

All in all, the time evolution of the system is described by the stochastic

diffusion equation (5.1) which contains a radial force fQ acting upon the

amplitude of the order parameter, and a tangential force fϕ upon its phase.

For future purposes, it is convenient to distinguish three contributions to

these forces as follows,

−γ∂tQ ≡ fQ = aQ+ bQ3 +
[
c+ c′ cos2(3ϕ)

]
Q5︸ ︷︷ ︸

radial restoring force

−g
[
∇2Q−Q(∇ϕ)2

]︸ ︷︷ ︸
radial tension force

−f1 cosϕ− f2 sinϕ︸ ︷︷ ︸
radial stochastic force

, (5.8)

−γ∂tϕ ≡ fϕ = −c′ sin(6ϕ)Q4/6︸ ︷︷ ︸
tangential restoring force

−g Q−2∇(Q2∇ϕ)︸ ︷︷ ︸
tangential tension force

+Q−1(f1 sinϕ− f2 cosϕ)︸ ︷︷ ︸
tangential stochastic force

. (5.9)

Thus, we identify a restoring force associated to the effective potential; a

tension force associated to gradient terms; and a stochastic force originated
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from the Langevin term.

Finally, let us make some remarks about the boundary conditions of the

problem. When the sample is isolated, the most suitable boundary condi-

tions are the Neumann boundary conditions –i.e., the annihilation of the

derivative normal to the surface, n · ∇Q1,2|∂Ω = 0. Physically, it means that

the polarisation vector remains fixed at the boundary ∂Ω, n ⊥ ∂Ω. This is

what we have used in most of our simulations. We have also used periodic

boundary conditions sometimes to simulate a larger sample. Although not

considered in this work, there are experimental set-ups which requires differ-

ent boundary conditions. For instance, in the experiments where the sample

is in contact with some substrate [60], Dirichlet-like boundary conditions are

more suitable, since the value of the field is fixed in the border.

5.1 Correlation lengths and relaxation times

in the mean-field linear approximation

In this section we outline the definition of the correlation lengths and relax-

ation times in the mean field approximation, since equations can be obtained

for the amplitude and phase zero modes, i.e., for uniform values of Q and ϕ,

respectively.

In the symmetric phase, above Tc, the perturbations of the order pa-

rameter around its stable point (0, 0) can be written such that (Q1, Q2) =

(0, 0) + (q1, q2). Thus, the effective Lagrangian associated to the Gaussian

fluctuations is

δL =
g

2

[
ξ̄−2(q21 + q22) + (∇q1)

2 + (∇q2)
2
]
, (5.10)

where ξ̄ = (g/a)1/2 is the correlation length, common to the q1 and q2 com-
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ponents. Likewise, linearization of the equations of motion in the symmetric

phase around Q = 0, neglecting the Langevin force and the tensions, yields

−∂tq1,2 = (|a|/γ)q1,2, (5.11)

from which we identify τ̄ = γ/|a| with a relaxation time common to q1 and

q2.

Below Tc, once in the non-symmetric phase, it is more convenient to write

Q in terms of Q and ϕ instead. Hence, the value of the order parameter

around any of the six minima of the effective potential can be written now

as (Q, ϕ) = (Q0, ϕn) + (q, φ). In this case, the effective Lagrangian for the

Gaussian fluctuations reads

δL =
g

2

{[
4ξ̄−2q2 + (∇q)2

]
+Q2

0

[
ξ̄−2
6 φ2 + (∇φ)2

]}
. (5.12)

It is plain that, in addition to the correlation length of the amplitude zero

mode, ξ̄, there appears a second correlation length ξ̄6 = [g/(3|c′|Q4
0)]

1/2 as-

sociated to the fluctuations of the phase zero mode, φ. Again, linearization

around (Q0, ϕn) as for equation (5.12) yields the following equations for the

fluctuations of the amplitude and the phase modes, respectively,

−∂tq = τ̄−1q, (5.13)

−∂tφ = (3|c′|Q4
0/γ)φ, (5.14)

where both the Langevin force and the tension forces have been neglected.

Again, φ presents a second relaxation time, τ̄6 = γ/(3|c′|Q4
0).

As we see, the two components of the order parameter behave as equiva-

lent degrees of freedom above Tc and there exist a unique correlation length

and a unique relaxation time for both of them. In contrast, below Tc, there

appears a second correlation length associated to the phase of the order pa-

rameter due to the V6(Q) potential.
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Chapter 6

Accounting for thermal effects

In this chapter, we first introduce how the thermal effects are incorporated

in models which use the Langevin prescription. Then, we discuss their lim-

itations and propose an alternative method to take the thermal effects into

account. Finally, we define the two methods to mimic a cooling quench that

we have studied in detail.

6.1 Thermal fluctuations and renormalization

of the mass term

Two are the contributions of the temperature which are relevant for the sort

of systems we are interested in. First, the temperature plays the role of the

control parameter which induces the transition point. As it is explained in

chapter 1, the shape of the thermodynamic potential varies with the tem-

perature. There is a critical value which defines the transition point. Above

this point, only one minimum exits, and it is located at the origin. Below

the critical point, the vacuum manifold degenerates and the symmetry of

the state breaks spontaneously. The first scenario corresponds to a potential
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whose mass term is positive; the second one, to a potential with a negative

mass term. This is not the only thermal effect in the dynamics of the system.

The fluctuations of the thermal degrees of freedom makes the field fluctuate.

This is indeed a crucial contribution, since they force the field to move away

from the equilibrium. Namely, they are responsible for the spontaneous sym-

metry breaking. Any model which describes a thermal phase transition need

to reproduce this two features.

In the literature about models which employs the Langevin prescription,

it is customary to take into account these two effects in two different ways.

The Langevin term, fi(r, t), is used to model the field fluctuations due to

thermal effects. The variance of such term depends on the temperature T

and the damping coefficient γ,

⟨fi(r, t)fj(r′, t′)⟩ = 2γTδijδ(r− r′)δ(t− t′). (6.1)

It is uncorrelated in time since it accounts for thermal fluctuations which

occurs much faster than the typical relaxation time of the field, as it was

discussed in a previous chapter. However, this stochastic contribution is not

used to explain the change in the shape of the potential. This feature is

modelled by making the coefficient of the quadratic term of (5.2) to depend

explicitly on the temperature as a linear function,

a = a0
T − Tc

Tc

= a0ϵ, (6.2)

where a0 is a positive constant which represents the absolute value of the mass

term at zero temperature and ϵ is the reduced temperature. It is clear from

this assumption that the mass term has the correct sign for both regimes:

above Tc and below Tc. Notice that in this case, the critical temperature is a

free parameter which is fixed a priori. Some examples of this way to proceed

can be found in references [49, 57, 61, 62, 63].
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There are some aspects of this method which are worth remarking. First,

in many cases, the temperature in the variance of the Langevin term (6.1)

is not the same that the one which appears in the coefficient of the mass

term a(T ) (6.2), although both are caused by the interaction of the system

with the same thermal bath. Furthermore, when a quench is performed,

the only temperature which changes in time is the temperature of the mass

term, whilst the other remains constant. In fact, it is usual to considered the

latter as a free parameter of the theory, which is chosen small with respect

the mean value of a fluctuation of the field and constant in time. However,

the most important issue is that, following this procedure, the effects of

the interaction with the thermal bath might be counted twice. Indeed, the

coefficient of the mass term is renormalized by the thermal noise. But this

renormalization is omitted in this prescription, since the value of a is forced

to vary with the temperature following an external imposition. There is no

clear explanation on how the explicit variation of a with the temperature

amounts to the renormalization due to thermal noise.

Bearing in mind this problems, we have opted for an alternative method

to account for the thermal effects. We do not assume any dependence of

the coefficient of the mass term on the temperature. It is fixed to a con-

stant negative value, which amounts to the value of such coefficient at zero

temperature. For convenience, let us write

a = −a0, a0 ≥ 0, (6.3)

It is important to distinguish between this nominal bare value, which is a

free parameter to which we have access, and the effective value after the

renormalization, which cannot be modified directly. The nominal bare value

can be identified as the value of the coefficient at zero temperature. Indeed,

at zero temperature there are no thermal fluctuations, so the value is not
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renormalized and its effective value is the same as the nominal value.

The temperature only appears in the amplitude of the stochastic noise

term. Let us define θ as the noise temperature. Then, the amplitude of the

Langevin term AL is

AL =

√
2θdt

γdx3
. (6.4)

Here, dx and dt correspond to the discretized space-step and time-step in

our simulations respectively 1.

At zero temperature, θ = 0, there are no thermal fluctuations, since their

amplitude is null. Therefore, no thermal renormalization occurs and the

coefficient of the mass term is simply a = −a0. At this temperature, a is

clearly negative, so the system is in the broken phase. Once the temperature

starts rising, thermal fluctuations appears and a is renormalized. As a result,

its effective value is increased [3]. If the temperature is high enough, its

effective value becomes positive, and the symmetric phase is restored. In this

case, the critical temperature at which the transition happens is not a free

parameter of the theory, as it is in the previous scheme, but a quantity which

must be found. In figure 6.1, we present some numeric results which support

this way to account for thermal effects. We have performed simulations at

different temperatures θ without quench in order to study the value of some

observables at thermal equilibrium.

We initialized the system at Q = (Q0, 0), with Q0 ≃
√
a0/b being the

value of the modulus of the field at zero temperature. We let the system

evolve and reach an equilibrium. At this moment, we measure some observ-

ables, namely the mean of the modulus, ⟨Q⟩ and the mean value of each of the

field components, ⟨Q1⟩, ⟨Q2⟩ (top figure) and its mean quadratic fluctuations

1An explanation of why the time-step and space-step must be included in the amplitude

of the stochastic term can be found in the reference [59].
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Figure 6.1: Top: mean value of the field components (Q1 light blue squares,

Q2 light blue triangles) and mean value of the modulus Q (dark blue circles)

versus temperature. Bottom: mean quadratic fluctuations of the field com-

ponents ((δQ1)
2 squares, (δQ2)

2 triangles) versus temperature. Results for

simulations with a = −1. The critical temperature is found to be θc = 0.0235.

a0 is the fundamental unit of the system, to which all the others are referred.

⟨(δQ1)
2⟩, ⟨(δQ2)

2⟩, where δQi = Qi − ⟨Qi⟩ (bottom figure).

In the top figure, we see that at low temperatures the mean equilibrium
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value of the first component of the field (light blue squares) is different from

zero, while the mean equilibrium value of the second (light blue triangles)

remains zero. At higher temperatures, the mean value of the first component

reduces its magnitude until it becomes zero at a certain critical temperature,

θc. At this point, the symmetric phase is restored. Indeed, at temperatures

above this one, the equilibrium value of the field is Q = (0, 0). Below θc, the

mean equilibrium value of the modulus (dark blue circles) decreases as the

critical temperature is approached. This is due to the decrease of the mean

value of the first component of the field. However, for temperatures above the

critical, it becomes larger and larger for higher temperatures. This is an effect

of the thermal fluctuations, whose amplitude grows with the temperature.

Thus, although the equilibrium value of the field in this regime is Q = (0, 0),

its variance increases with the temperature.

In the bottom figure are depicted the mean quadratic fluctuations of both

field components (orange squares for the variance of the first component and

orange triangles for the variance of the second). Below the critical temper-

ature, they increase with growing temperatures. Notice that the variance

of the second component –which is initialized at zero– is larger than the

variance of the first component –which is initialized at some non-zero value.

Hence, in the initial set-up the first component represents the radial com-

ponent whereas the second component represents the angular component.

Since the potential only affects the radial component2, it is natural that its

variance is smaller. For temperatures above the critical, there is no difference

between components. The behaviour of the mean quadratic fluctuations is

the same as the mean modulus: they increase as the amplitude of the thermal

2We have set c = c′ = 0 to perform these simulations, so the vacuum manifold is

continuous and the angular mode is massless.

66



fluctuations does.

The above results correspond to simulations with a fixed bare value of the

coefficient mass term, a = −1, and different temperatures of the Langevin

term. We can also investigate the instance of fixed temperature and different

values of a. Initial set-up of the field and the observables considered are the

same as in the previous case. Results are shown in figure 6.2 for a fixed

temperature of θ = 0.0235. This corresponds to the critical temperature of

the former set of simulations. Thus, we expect to find critical behaviour at

a = −1.

Indeed, we see in the top figure that the mean value of the first component

(light blue squares) is non-zero if the coefficient of the mass term is low

enough –specifically, lower than a = −1. Lower values of a correspond to

renormalized potential wells whose minima lays further from the origin. So

the mean value of the first component of the field –which represents the radial

component in the initial set-up– gets closer to zero as a increases. At a = −1,

the mean value of this component becomes zero and the symmetric phase is

restored. This is in agreement with the previous set of simulations. It still

remains zero for higher values of a. On the other hand, the mean value of

the second component (light blue triangles) remains zero –it initial value–

for all values of a.

In the bottom figure of 6.2, mean square fluctuations of both components

of the field grows as a = −1 is approached. This is a consequence of criti-

cality. Values are finite rather than diverge because the size of the system is

finite. Notice that the mean square fluctuations of the two components take

the same value above a = −1 –i.e., when the symmetric phase is restored–

and differs below a = −1, with the fluctuations of the second component (or-

ange triangles) –which corresponds to the angular mode– being larger than
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Figure 6.2: Top: mean value of the field components (Q1 light blue squares,

Q2 light blue triangles) and mean value of the modulus Q (dark blue cir-

cles) versus a. Bottom: mean quadratic fluctuations of the field components

((δQ1)
2 squares, (δQ2)

2 triangles) versus a. Results for simulations with

θ = 0.0235. Dashed black line corresponds to a = −1. Simulations with this

value of a and different temperatures are depicted in figure 6.1.
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the fluctuations of the first component of the field (orange squares) –which

represents the radial component. This can be explained with the same ar-

guments as in the previous case: the synamics of the radial component is

subjected to restoring forces which confine it in a potential well. Hence, its

values is less disperse. On the contrary, the angular mode is not affected by

the potential and its dispersion is larger.

Notice that in this case, the value of the mean modulus (dark blue circles,

top figure) decreases monotonically. So do the mean square fluctuations of

the field for values above a = −1. This is in contrast with the previous set

of simulations, where they become larger and larger as the symmetric phase

is consolidated. In the former case, this is a consequence of considering

thermal fluctuations of increasing size. In the latter case, the size of the

thermal fluctuations is always of the same size, since the temperature is

constant. When the potential is flat enough –i.e., |a| is low enough–, the

energetic barrier which separates the vacuum and the maximum at the origin

can be easily surpassed by the thermal fluctuations. From this moment,

the components of the field are not confined by the quadratic term of the

potential, but by the quartic. Increasing values of a make the shape of this

quartic well narrower. Since the size of the fluctuations remains constant,

the narrower the quartic well walls are, the smaller the dispersion of the field

is.

In both sets of simulations, we use a0 as the fundamental unit of the

problem, to which all other quantities refer to. This is also true for the rest

of simulations in this chapter. In cases where the value of the coefficient

of the mass term varies –as in this second set of simulations– we take as

reference the case with a = −1. To avoid misunderstanding, in such cases

we rather use a = a′0 to note different values of a. Hence, the varying a′0 is
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noted differently than the a0 used as reference.

6.2 Cooling quench

Let us focus our attention to the way of cooling a system. As a first approxi-

mation, the temperature can be made to decrease linearly with the time. As

commented at the former section, in the literature it is customary to make the

coefficient a a explicit function of the temperature, a = a0(T −Tc)/Tc = a0ϵ.

Let us define τq as the typical time scale of the quench, and the quench rate

r′q as the inverse of this time. Then,

ϵ = ϵinit − rqt = ϵinit −
t

τq
. (6.5)

This quench only modifies the temperature which appears in this term, whilst

the temperature in the amplitude of the noise term remains constant and

small enough so as to hardly affect the dynamics of the phase transition.

Since the mass term does not depend explicitly with the temperature in our

alternative approach to account for thermal effects, this way to simulate a

quench is not useful.

Let us introduce two different ways to perform a quench in our model,

where the temperature only appears in the amplitude of the Langevin term.

This two methods can be related, as we will explain later. The first method

consist of forcing this temperature to decrease linearly in time,

θ = θinit −Rqt. (6.6)

In our simulations of quenches, we will start at a temperature θinit above the

critical θc. The critical temperature which has been already found numeri-

cally through simulations at thermal equilibrium such as the ones discussed

above. We let the system evolve at that temperature in the symmetric phase
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for some time, so it is thermalised before the quench starts. When the quench

begins, the temperature decreases. At some point, the critical temperature

θc is crossed and the system enters in the broken phase. There it evolves for

some time, until some final temperature θf is reached and the quench ends.

Then, we let the system evolve at this final temperature without varying the

temperature anymore.

The second method to quench a system consist of forcing the mass-term

coefficient to increase linearly in time,

a = ainit − ρqt. (6.7)

In this case, the temperature of the Langevin term remains constant, whereas

the potential changes. To vary a amounts to effectively change the critical

temperature. Indeed, flatter potentials need smaller thermal fluctuations

for the symmetric phase to be recovered. That is, the critical temperature

decreases as a increases. In this case the phase transition process is as follows.

We start at a given temperature, θ, which will be the same during all the

process, and a given value of a which guarantees that the critical temperature

is below θ. We let the system evolve for some time to ensure that the system

is thermalised and then the quench starts. As the parameter a is decreased

with time, the effective critical temperature increases. At the transition

point, the critical temperature reaches the value of the temperature of the

noise term. As time evolves further, the critical temperature becomes bigger

than θ, that is, the system is in the broken phase. When the quench stops,

we let the system evolve at that final a for some time without no further

changes in the shape of the potential.

This second method may seem the same as the one which is usually

employed in the literature: the noise term is kept constant whereas the mass

term is decreased. Nevertheless, there are important differences between

71



them. In our approach, the nominal value of a is always negative. The

required change in sign for a phase transition to be possible is due to the

thermal fluctuations which renormalizes the coefficient. This is in contrast

with the usual method, where the change in sign of this coefficient is an

external imposition. In the second place, in the usual approach, the critical

temperature is a free parameter of the theory. Once fixed, it remains constant

during the quench. Conversely, in our approach the critical temperature

effectively changes with the mass term coefficient.

The two methods to perform quenches according to our formalism can

be related. The quench rate for the first method, introduced in (6.6), can

be defined as Rq = −∂θ/∂t. In a similar way, we define the quench rate of

the second method (6.7) as ρq = −∂a/∂t. In order to compare them, the

quench rate ρq need to be expressed in the same units as Rq. Let us define R
′
q

as the rate at which the effective critical temperature changes in the second

scenario, i.e., R′
q = ∂θc/∂t. Making use of the chain rule, we can write

ρq = −∂a

∂t
= − ∂a

∂θc

∂θc
∂t

= − ∂a

∂θc
R′

q. (6.8)

Rearranging, we obtain an expression of R′
q in terms of ρq,

R′
q = −

[
∂a

∂θc

]−1

ρq. (6.9)

Once quench rates are expressed in the same units, comparisons between

them are possible.Rq and R′
q can be redefined so as to be conveniently ex-

pressed in units of inverse time. This is achieved by dividing both rates by

some common temperature θ.

The dependence of a on the effective critical temperature θc is shown

in figure 6.3. In the range of relevant values of a, this dependence is ap-

proximate linear. Each point has been computed numerically in the same
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manner as it was done previously in this chapter –cf. figure 6.1. Namely, for

a set of simulations with the same fixed value of a, we identify the critical

temperature as the one at which the first component of the field vanishes.

It coincides with the temperature at which the mean square fluctuations of

both components become the same.

Figure 6.3: Functional dependence of a on the effective critical temperature

θc. A linear fit yields a = −37.32 θc − 0.08.

To conclude this section, let us include a specific regime of quenches,

which can be regarded as a limit case of the above methods. In reference [58],

we investigate the formation of vortices under extremely-fast-quenching con-

ditions. An ultra-fast quench refers to a quench which is fully accomplished

in times much shorter than any other relevant time scale of the problem. This

implies that the vortices emerge in a process that is entirely driven by the

dynamics of the system after the quench. In particular, the order-parameter

correlations evolve according to its diffusive fluctuating dynamics at the fi-
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nal temperature of the quench, rather than being imprinted by its critical

behaviour just before the freezing. This is simulated by initializing the field

in the origin –i.e., the equilibrium state in the symmetric phase, before the

quench starts– and letting it evolve according to the potential at the final

temperature –i.e. the final form of the potential after the quench ends. To

investigate this scenario, we have not used the formalism developed in this

chapter, but the one usually employed in the literature, with the exception

that we have evaluated at the same temperature both the noise term and

the mass term. Since there are no finite quench rates in this limit case, the

reinterpretation in terms of the new formalism is straightforward. It can be

thought as a limit case of any of the two quench methods introduced in this

chapter, where Rq or R
′
q tends to infinity.
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Chapter 7

Results

In this chapter, we present the results of numerical simulations considering

three different situations. First, we consider the limit case of quenches in the

ultra-fast regime, where the relevant quantity to describe the phenomenol-

ogy is not the quench rate, but the final temperature [58]. In the second

place, we perform some quenches at different rates varying the temperature

of the thermal noise term θ for a fixed value of the mass term coefficient a

–equation (6.6). Lastly, we investigate how the system behaves when the

quench modifies the mass term a whilst maintaining the amplitude of the

thermal fluctuations θ –equation (6.7).

In all these cases, a phase transition occurs during the quench of the

system. This induces the formation of topological defects –vortices. We

provide a detailed description of the different regimes in which the process

can be split and discuss the underlying physical mechanisms. We also pay

attention to the evolution of the network of defects once they are formed.

We base our study on data obtained from a set of relevant observables.

These observables are the mean modulus of the field through the time, ⟨Q⟩;

the mean absolute value of the forces which acts on the angular component of
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the field, ⟨|fϕ|⟩ –this force is defined in (5.9)–; and the density of total defects

measured in the equatorial plane of the sample n. The two first observables

are straightforward to measure. Conversely, the total number of defects is

challenging to determine. Two are the reasons for such difficulty. First, the

data are inherently noisy, since equations of motion include an stochastic

term which acts at every time-step. Secondly, the process of formation do-

mains of homogeneous phase is not clearly bounded in time. A discussion

about how to overcome these difficulties can be found in chapter 11.1, where

the algorithm used to perform this measurements is presented and analysed.

From the data provided by the two first observables, we are able to identify

some remarkable features in the dynamics of the system along the quench.

We will use them to bound different regimes and define relevant times. The

number of total defects at these times are used to test the KZ predictions.

Furthermore, we will use the time-evolution of the number of defects to get

some insight into the annihilation process of vortices which follows after their

formation.

This chapter is organised as follows. In section 7.1, we collect all the tech-

nical details of the simulations. In sections 7.2, 7.3.1 and 7.3.2, we present the

results of the numeric simulations performed according to the three different

scenarios stipulated above.

7.1 Technical details of the simulations

Simulations in the ultra-fast regime

In this limit case, we consider two different situations. In the first place,

we consider that the system is effectively U(1)-symmetric, and refer to this

situation as weak-anisotropy regime. That is, we choose the parameters in the
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potential VT such that the anisotropic term becomes irrelevant, i.e., VT (Q) ≈

V (Q). In particular, for the simulations in subsection 7.2.1, we take for

the side lengths, Lx = Ly ≈ 400 l, Lz ≈ 120 l –recall that l is the lattice

spacing. The discretized version of the algorithm to integrate the equations

of motion is explained in chapter 9. The numerical values of the parameters

in those equations are a0 = 1, b = 2, c = 0, c′ = 2/3, g = 1, Tc = 0.0025,

which are chosen such that a
−1/2
0 becomes the unit of length scale and, at

temperature Tc/2, ϵ = −0.5, ξ̄(Tc/2) = 1/
√
2, and τ̄(Tc/2) = 0.2 for γ =

0.1a
1/2
0 . In terms of the correlation lengths and relaxation times of the mean

field approximation, this implies also that ξ̄ ≪ ξ̄6, τ̄ ≪ τ̄6 in the weak-

anisotropy regime –cf. table 7.1 below.

As for the situation in which V6(Q) becomes relevant, that we refer to as

strong-anisotropy regime, the coefficient c′ is enlarged so that the phase zero

mode gets massive and the relationship between the mean field correlation

lengths and relaxation times turns into ξ̄ > ξ̄6, τ̄ > τ̄6. In particular, for the

simulations in subsection 7.2.2, we take for the side lengths Lx = Ly = 1314l,

Lz = 43 l. The numerical values of the rest of parameters are as in the

weak-anisotropy regime, except for the value of c′ that is taken c′ = 128/3.

Simulations in the strong-anisotropy regime are performed for a single final

temperature, ϵf = −0.3, for which ξ̄ = 0.71, ξ̄6 = 0.59.

Since the vortex radius scales approximately with the minimum correla-

tion length of the mean field approximation, the lattice spacing l is adapted in

either case to each temperature according to the formula l =min(
√
2ξ̄, ξ̄6)/4.

It is worth mentioning that, with the numerical values chosen for the

parameters, the Ginzburg region reduces to ϵ ∈ [−3.96 · 10−10, 3.96 · 10−10],

which is negligible in all our simulations. Therefore, effects related to the

strongly nonperturbative dynamics of the order parameter within this region
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can be fairly discarded. Lastly, the boundary conditions imposed upon Q

are of the kind of no-flux boundary conditions.

In all the simulations we consider ultra-fast quenches from the initial

temperature Ti > Tc in the symmetric phase, to the final temperature Tf <

Tc, assuming a uniform rate (Tf − Ti)/τcool with τcool being the cooling time.

Ultra-fast quenches are defined by the inequality

τcool(Tc − Tf )/(Ti − Tf ) ≪ τ0, (7.1)

where the term on the left hand side of this inequality is the time lapse corre-

sponding to the temperature interval [Tc, Tf ], and τ0 is the vortex formation

time measured from the time the quenching passes through Tc. This means

that the time spent by the system during the quench below Tc is negligible in

comparison to the vortex formation time τ0. Also, it implies that its dynam-

ics is independent of the initial temperature. Important is to note that in our

simulations the stochastic forces act on the system all the way through from

the start. Finally, since the dynamics of Q from equations (5.8) and (5.9) is

determined by the ratio T/γ, we fix the value of the diffusion coefficient at

γ = 0.1a
1/2
0 in all the simulations without loss of generality.

Simulations for finite quench rates

This are the data for simulations in sections 7.3.1 and 7.3.2.

We perform numerical simulations on a cubic sample. In this two cases,

we consider that the system is U(1)-symmetric. That is, we choose the

parameters in the potential VT such that the anisotropic term is absent –i.e.,

VT (Q) = V (Q). For the simulations in sections 7.3.1 and 7.3.2, we take side

lengths Lx = Ly = 800 l, Lz = 3 l, where l is the lattice spacing, which

takes the constant value l = 0.2 in all the simulations. We impose periodic
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boundary conditions in the z−direction and Neumann boundary conditions

in the others. Thus, we are effectively dealing with two-dimensional samples.

The dynamics of the order parameter is governed by a discretised version of

the equations (5.8) and (5.9). The numerical implementation of the boundary

conditions and the algorithm to integrate these equations is explained in

chapters 8 and 9 respectively.

The numerical values of the parameters in those equations are a = −a0

b = 0.25, c = c′ = 0, g = 0.06. In all simulations a
−1/2
0 is the unit of length

scale. We fix the value of the diffusion coefficient at γ = 0.5a
1/2
0 in all the

simulations without loss of generality.

For simulations in section 7.3.1, the coefficient a is set to a = −1 for all

simulations. The initial and final temperatures for all quenches are, respec-

tively, θinit = 0.042 and θf = 0. In section 6.1, it is shown that the critical

temperature for this set-up is θc = 0.0235. Thus, the initial and final reduced

temperatures are ϵinit = 0.8 and ϵf = −1.

For simulations in section 7.3.2, the temperature is θ = 0.0235 for all sim-

ulations. In this case, the quench modifies the values of the mass parameter.

Its starting value is ainit = −0.267 and its final value is af = −1.83 for all

cases. Quenches rates of both simulations are chosen to be the same in both

scenarios. They can be related through (6.9).

7.2 Ultra-fast quenches

7.2.1 Vortex formation at weak-anisotropy

First, we analyse the effective U(1)-symmetric case in which the six-fold

anisotropy of our model is extremely weak. That is, the case in which the

phase zero mode is effectively massless and the tangential restoring force in
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equation (5.9) is negligible.

In our analysis, we first define the time τ0 at which primordial vortices

form as the time at which a pattern of domains of well-defined uniform and

stable phase ϕ shows up for the first time. This is the relaxation time of the

phase ϕ, and can be determined from the tangential force fϕ acting on ϕ –see

equation (5.9). The behavior of the sample-averaged strength of this force

⟨|fϕ|⟩ as a function of time is illustrated in figure 7.1(a) for ϵf = −0.3.

As we can see, this force drops to a small asymptotic value signaling

the formation of metastable domains. In such a quasi-stationary state, only

the stochastic component of equation (5.9) survives. Therefore, since the

anisotropic tangential restoring force term in equation ()refeqd is negligible,

we infer that it is the tangential tension force that causes the relaxation of

ϕ until domains of quasi-uniform phase get formed. This is nothing but the

realization of the geodesic rule in a second order phase transition, formulated

for the first time by Kibble in first order phase transitions [1, 11].

Thus, τ0 can be identified with the time at which the slope of the tan-

gential force at its saddle point intercepts its long-time asymptote –see fig-

ure 7.1(a). We use this time to define the density of primordial vortices,

n0 ≡ n(τ0), which further evolves in time as illustrated in figure 7.1(b).

To further clarify the evolution of the vortex distribution we track the

related changes in the amplitude of order parameter. These changes reveal

three dynamical regimes –see figure 7.1(a). In a first stage, the linear dynam-

ics of Q is dominated by its diffusion in configuration space as a result of the

stochastic force. Diffusion dominates completely the dynamics up to certain

diffusion time, τd, at which Q starts rolling down the effective potential and

non-linear effects become apparent. Diffusion causes an effective delay of the

phase transition, whereas the steep descent is caused by the radial restoring
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Figure 7.1: (a) Sample-averaged tangential force strength (dashed red, in

arbitrary units) and normalized amplitude of the order parameter (solid blue)

as a function of time, in the weak-anisotropy case, for ϵf = −0.3. The

vertical dotted lines indicate the diffusion time, τd, the phase relaxation time,

τ0, and the vortex consolidation time, τ1, as defined in the main text. (b)

Graphical determination of the corresponding vortex density as a function of

time (log-log scale). The same power-law behavior is obtained according to

two different methods (solid and open circles, respectively, cf. section 11.1)

beyond τ1.
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force which derives from the effective potential. The phenomenon of delayed

bifurcation was firstly noticed by Lythe in the dynamics of the phase transi-

tion of a field theory [57]. However, in contrast with Lythe’s approach and

other works [49, 61], our treatment of the Langevin term –the temperature

in the amplitude of the Langevin term is the same as the temperature in

the mass term– causes the control parameter ϵ (analogous to the bifurcation

parameter in reference [57]) to take its final value much earlier than τd. In

fact, once the system is below the transition point, the stochastic Langevin

force is the dominant force all the way until the diffusion time τd is reached.

This prevents the formation of actual vortices during the quench towards the

final temperature, and thus any scaling with the quench rate. This condition

is in fact an alternative definition for the ultra-fast character of the quench.

Accordingly, the order parameter starts deviating from zero much later than

the moment at which the reduced temperature has reached its final value ϵf .

Subsequently, the amplitude Q eventually reaches its equilibrium value,

Q0, at any of the six minima of the effective potential, except at those points

where the transition is frustrated by the presence of the topological defects.

We identify this event with the vortex consolidation time, τ1, which is slightly

longer than τ0. τ1 is the relaxation time of the amplitude Q, and thus signals

the accomplishment of the phase transition. In fact, during the intermediate

regime between τd and τ1, Q is mainly driven by the radial restoring force

–see equation (5.8), while in the final stage the stochastic force takes over so

that the total radial force fQ tends to an asymptotic stationary value. The

consolidation time τ1 is thus associated to the crossover between these two

regimes –see figure 7.1(a).

The evolution of the vortex pattern obtained in this case is illustrated in

figure 7.2.
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Figure 7.2: Snapshots of the amplitude Q (left) and the phase ϕ (right) of the

order parameter in the weak-anisotropy case for ϵf = −0.7. They illustrate

the distribution of vortices at the formation time τ0 (primordial vortices,

top) and at the vortex consolidation time τ1 (bottom). The zoomed area

emphasizes the U(1) character of the vortices in this case.

The density of primordial vortices n0 as a function of the final reduced

temperature ϵf is summarized in table 7.1, together with the average distance

between those vortices, ξ0 ≃ n
−1/2
0 , relaxation times and mean field values

–cf. section 5.1.

We note that the density of primordial vortices increases monotonically

with the decrease of ϵf (so that the average distance between vortices de-

creases). The three characteristic times, in their turn, decrease as the final

temperature of the quench does. We interpret that these tendencies have

their root in the diffusive dynamics of the order parameter in configuration

space, which is enhanced by the temperature. That is, the higher the tem-
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ϵf −0.3 −0.4 −0.5 −0.6 −0.7 −0.8

n0[a0] 0.0021 0.0027 0.0036 0.0041 0.0042 0.0054

ξ0[a
−1/2
0 ] 21.77 19.21 16.61 15.56 15.35 13.64

ξ̄ 0.91 0.79 0.71 0.65 0.60 0.56

ξ̄6 4.71 3.54 2.83 2.36 2.02 1.77

τd[a
−1/2
0 ] 1.4 1.1 0.88 0.77 0.68 0.62

τ0 1.9 1.4 1.1 0.97 0.82 0.71

τ1 2.61 1.98 1.59 1.37 1.19 1.05

τ̄ 0.33 0.25 0.20 0.17 0.14 0.13

τ̄6 2.2 1.3 0.80 0.56 0.41 0.31

Table 7.1: Compilation of the results of the numerical simulations for different

final temperatures, ϵf , in the weak-anisotropy regime. Lengths and times are

given in units of a
−1/2
0 , whereas the values for n0 are in units of a0.

perature, the longer the period in which the stochastic force causes Q to

fluctuate randomly around Q = 0. Hence, τd increases with the final tem-

perature. In turn, diffusion slows down the rolling of Q towards any of the

minima at Q = Q0, delaying this way the start of the non-linear dynamics

and thus the relaxation processes. The latter implies that τ0 and τ1 do also

increase with the final temperature. In addition, the persistent thermal fluc-

tuations after the diffusion period do also enhance the periods of relaxation

of the phase and the amplitude of the order parameter, causing an increase

of the time intervals, τ0 − τd and τ1 − τ0, with the final temperature. Al-

together, it results in an effective increase of the vortex separation with the

final temperature of the quench.

It is also remarkable that the computed vortex correlation lengths, ξ0, and
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relaxation times, τ0 and τ1, differ in an order of magnitude with respect to

the values computed in the mean-field linear approximation. Yet, the relative

variations of ξ0, τ0 and τ1 with the temperature are approximately propor-

tional to the variations of the mean-field correlation lengths and relaxation

times, respectively, as illustrated in figure 7.3 for the lengths.

Figure 7.3: Average distance between vortices, ξ0, as a function of the fi-

nal temperature of the quench ϵf in the weak-anisotropy regime (squares),

compared to the mean-field correlation lengths, ξ̄ (open circles) and ξ̄6 (solid

circles).

The extrapolation of this result to the standard KZ picture implies that

the non-universal prefactor of the KZ scaling can play a role for the quan-

titative analysis of the vortex formation. Finally, it is worth noting that,

in comparison to previous works in which the amplitude of the noise term

is considered small [49, 57, 61], the vortex density here is not affected by
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the relationship between that amplitude and the quench rate, but by the

relationship of the final temperature and the damping rate.

7.2.2 Vortex formation at strong-anisotropy

Next, we investigate the impact of the six-fold anisotropy on the formation of

vortices. Thus, we consider the extended Z6 case described by equation (5.2)

in which the phase zero mode becomes massive as described in section 5.1.

As previously mentioned, this is the situation found in hexagonal multiferroic

manganites [46, 47, 48].

Compared with the previous U(1) situation, the diffusion regime is short-

ened –see figure 7.4(a). This is mainly due to the additional contribution

to radial restoring force generated by the anisotropy. However, the phase

relaxation interval extends longer due to the anisotropy contribution to the

tangential restoring force that opposes to the balance of the tangential ten-

sion (that is, τ0 − τd increases).

As a result, the phase relaxation time τ0 is approximately equivalent in

both cases –see figure 7.4(a), which further yields a similar density of pri-

mordial vortices –see figure 7.4(b). Lastly, once the phase gets relaxed, it

takes shorter for the vortices to consolidate under the action of the addi-

tional anisotropic radial restoring force. We note that, due to the increased

size of the vortex cores, the sample-averaged amplitude ⟨Q⟩ is noticeably

smaller than its equilibrium value Q0 at all times –see figure 7.4(a). This

was previously pointed out in [46] from an experimental analysis of the static

distribution of an order parameter described by the same Z6 model.
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Figure 7.4: (a) Sample-averaged tangential force strength (dashed red, in

arbitrary units) and normalized amplitude of the order parameter (solid blue)

as a function of time in the strong-anisotropy case for ϵf = −0.3. The vertical

dotted lines indicate the diffusion time, τd, the phase relaxation time, τ0, and

the vortex consolidation time, τ1, as defined in the main text.

(b) Graphical determination of the corresponding vortex density as a function

of time (log-log scale). The same power-law behavior is obtained according

to two different methods (solid and open circles, respectively –cf. section

11.1) beyond τ1.
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7.2.3 Vortex network evolution

Finally, we analyse the subsequent evolution of the vortex network and, in

particular, the vortex-antivortex annihilation process that eventually results

in a homogeneous non-symmetric phase1

For this purpose, we fit the time evolution of the vortex density for each

of the temperatures of the quench to a power-law function n(t) ≃ n(τ1)/t
α

for t ≥ τ1, as shown in figures 7.1(b) and 7.4(b). We find α ≈ 1 in the U(1)

weak-anisotropy case and α ≈ 3/4 in the Z6 strong-anisotropy one. This

means that, despite the fact that the overlap between vortices is larger in

the strong-anisotropy case for the vortex core is larger, the annihilation rate

is slower. This signals the impact of the Z6-anisotropy in the short-range

vortex-antivortex interaction.

7.3 Finite quenches

7.3.1 Quenches varying the temperature of the Langevin

term

In this section, we perform simulations varying the temperature of the Langevin

term, while maintaining the bare coefficient of the mass term fixed. As in the

previous case, let us first focus our attention on the sample-averaged absolute

value of the force on the phase mode and the normalized sample-averaged

modulus. Their time evolution is shown in figure 7.5.

In this case, the time evolution also involves a change in temperature, so

the comparison with the results of the previous section is not straightforward.

1See the supplemental material of reference [58] for a movie illustrating the evolution

of the complete thermalization process.
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Figure 7.5: Sample-averaged tangential force strength (dashed red, in arbi-

trary units) and normalized amplitude of the order parameter (solid blue) as

a function of time, for Rq = 0.255. The vertical solid lines represent, form left

to right, the time at which the quench starts, the time at which the critical

temperature is reached, and the time at which the quench ends. The vertical

dotted lines indicate the diffusion time, τd, the phase relaxation time, τ0, and

the vortex consolidation time, τ1, as defined in the main text.

However, we see that the qualitative behaviour of the curves is similar. Thus,

we can exploit this fact to interpret the physics of this quench in the same

terms as in the former case, highlighting and explaining the main differences.

As in the previous case, let start our analysis with the forces on the

angular phase. The system starts at a temperature above the critical and

evolves without quenching for some time, up to the first solid vertical line –

see figure 7.5. At that moment, the temperature starts to decrease. However,

we see that it remains more or less constant up to the second solid vertical
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line, which represents the time at which the critical temperature is reached.

From that moment, the curve drops until the quench ends (third solid vertical

line) and the force almost vanishes. In this case, we have chosen the final

temperature to be zero. Thus, the only surviving contribution in (5.9) is the

tangential force2. The reason for this asymptotic value to be so small is that

the relative weight of the Langevin contribution is in this case much larger

than in the previous case.

The curve behaves smoothly everywhere except in the last interval of the

quench, where a small bump is appears. This is due to the fact that the

amplitude of the stochastic term decreases as ∼ θ1/2 –see equation (6.4)–,

so near θ = 0 its derivative diverges. This implies that the langevin force

changes sharply in the limit θ → 0. We can still use this force to define the

time τ0 of formation of primordial vortices. However, the criterion employed

in the previous section it is no longer valid. Indeed, the intersection of the

tangent at the saddle-point and the asymptotic value of ⟨|fϕ|⟩ does not only

depend on the quench rate, but also on the final temperature –the higher the

final temperature, the higher the asymptote at late times, so the intersection

point is not always to same. To avoid this problem, we choose a different

criterion. We define τ0 as the moment at which the curve of the forces on

the angular mode reaches its saddle point –without taking into consideration

the final bump, which can be explained by other reasons. This criterion has

the advantage to depend only on the quench rate. However, it is not valid

if the quench is too fast and the saddle point happens after the quench has

ended. At τ0, domains of homogeneous phase are formed –see top figure 7.6.

2This simulations are performed in the fully U(1)-symmetric case, that is, we do not

take into account the anisotropic terms of the potential. As a consequence, the phase zero

mode is massless and the tangential restoring force in equation (5.9) does not contribute.
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An important remark is that τ0 is always later than the time at which the

critical temperature is crossed (second vertical solid line).

Figure 7.6: Snapshots of the amplitude Q (left) and the phase ϕ (right)

of the order parameter for R′
q = 0.255. They illustrate the distribution of

vortices at the formation time τ0 (primordial vortices, top) and at the vortex

consolidation time τ1 (bottom).

Let us now describe the time evolution of the mean value of the field.

As a remarkable fact, we perceive that it decreases during the time that the

system spends cooling in the symmetric phase –that is, between the first and

the second solid vertical lines. Then, it increases again and consolidate at the

asymptotic value given by Q0 =
√

a0/b –i.e., the value of the bulk at zero

temperature. This behaviour is the same as the one appreciated in figure
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6.1, and can be explained by the same arguments.

The consolidation of the modulus at the consolidation time τ1 signals

that the phase transition has been accomplished. Its computation and its

meaning is the same as in the case of ultra-fast quenches, so we do not

elaborate further on that. A snapshot of the field at this time can be seen

in the bottom figure 7.6. However, the definition of the diffusion time τd

requires some explanation.

In the case of ultra-fast quenches, the value of τd accounts for the time that

the system evolves in a small neighbourhood of the origin in the configuration

space, describing a random walk due to the stochastic noise, before it starts

its rolling-down towards the minima of the potential. This picture is not

valid in this scenario, since the size of the thermal fluctuations are much

larger, and the diffussion of the order parameter is not restringed to a small

region around the maxima –this explains why the initial value of ⟨Q⟩ is so

high in comparison with the former case. However, the definition of τd in

this simulation also accounts for the moment at which nonlinear effects start

to be noticed by the field. It is only in this sense that the diffusion time can

be compared with the former case.

We have computed the value of the density of vortices measured at times

τ0 and τ1 as a function of the quench rate –see figure 7.7. In the range of

slow quenches, a scaling behaviour is obtained –n ∼ R 0.37
q and n ∼ R 0.36

q for

τ0 and τ1, respectively.

The value of these exponents is lower than the expected in the mean field

theory

For this purpose, we fit the time evolution of the vortex density for each

of the temperatures of the quench to a power-law function n(t) ≃ n(τ1)/t
α

for t ≥ τ1, as shown in figures 7.1(b) and 7.4(b). We find α ≈ 1 in the U(1)
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Figure 7.7: Density of vortices n as a function of the quench rate Rq (log-log

scale). Red triangles correspond to measurements at τ0 and blue circles rep-

resents measurements performed at τ1. Power-law fit of the data is displayed.

weak-anisotropy case and α ≈ 3/4 in the Z6 strong-anisotropy one. This

means that, despite the fact that the overlap between vortices is larger in

the strong-anisotropy case for the vortex core is larger, the annihilation rate

is slower. This signals the impact of the Z6-anisotropy in the short-range

vortex-antivortex interaction.

To conclude this section, we analyse the evolution of the vortex network

after the formation of vortices has finished. As in the previous case, we

investigate the rate of the annihilation process between pairs of vortex and

antivortex. We fit the time evolution of the vortex density to a power-law

function n(t) ≃ n(τ1)/t
α for t ≥ τ1 –see figure 7.8. In this case, the exponent

of the fit is α = 0.57. That is, the decay in this case is slower than in the
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two scenarios considered in the ultra-fast limit.

Figure 7.8: Graphical determination of the corresponding vortex density as

a function of time (log-log scale). The same power-law behavior is obtained

according to two different methods (solid and open circles, respectively –cf.

section 11.1) beyond τ1. Solid vertical line represents the time at which the

quench ends.

7.3.2 Quenches varying the bare mass term of the the-

ory

Finally, let us analyse the results of quenches performed with the temperature

of the Langevin term evaluated at a constant value and varying the value of

the bare mass term coefficient, which entails to effectively vary the critical

temperature of the system. As in the previous section, we make use of the
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same observables to describe the dynamics of the quench. We only elaborate

to signal relevant differences with the cases already commented.

Let us start by analysing the time evolution of the observables ⟨|fϕ|⟩ and

⟨Q⟩/Q0, which corresponds respectively to the sample-averaged force on the

angular mode, given by equation (5.9) and the sample-averaged modulus of

the order parameter. In this case, the constant of normalization Q0 corre-

sponds to the value of the bulk field at a = −1.83, that is, the final value

of a after the quench. Its behaviour is displayed in figure 7.9. Notice that

the quench rate chosen to illustrate this kind of quench, R′
q = 0.255, is the

same as the one in the previous section. Recall that both quench rates can

be related by equation (6.9) –cf. section 6.2.

Let us start describing the behaviour of the force on the angular mode. In

the first interval, before the quench stats, it takes a stationary value, meaning

that the system is thermalised. When the quench starts cooling (first solid

vertical line), it starts dropping. This is in contrast with the case of quench

varying the Langevin temperature, where the force only starts to drop after

the transition point. Nevertheless, this drop does not become relevant until

the transition point is crossed (second solid vertical line). This is the moment

at which the effective critical temperature has become larger than the con-

stant temperature θ of the Langevin fluctuations. The drop continues until

the quench finishes (third solid vertical line) and it stabilises in a stationary

value. Notice that in this case, this asymptotic value is much larger than in

the two scenarios considered before. The issues to determine a valid criterion

to compute τ0 are the same as in the previous case. We again opt to define

the vortex formation time as the time at which the sample-averaged force

reaches its saddle-point. As in the former cases, this time represents the mo-

ment at which domains of homogeneous phase are unambiguously formed,
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Figure 7.9: Sample-averaged tangential force strength (dashed red, in arbi-

trary units) and normalized amplitude of the order parameter (solid blue) as

a function of time, for R′
q = 0.255. The vertical solid lines represent, form left

to right, the time at which the quench starts, the time at which the critical

temperature is reached, and the time at which the quench ends. The vertical

dotted lines indicate the diffusion time, τd, the phase relaxation time, τ0, and

the vortex consolidation time, τ1, as defined in the main text.

and is associated with a relaxation of the tangent forces on the angular mode

of the order parameter.

Next, let us examine the time evolution of the mean modulus of the

field. Conversely with the quenches with varying Langevin temperature, in

this instance the modulus grows monotonically. This is in accordance with

the behaviour analysed in section 6.1 –see figure 6.2. Diffusion time τd and

consolidation time τ1 have the same physical meaning as in the previous

case. Namely, the diffusion time signals when the field starts noticing the
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potential force contributions, whereas the consolidation time indicates that

the modulus has almost reached its asymptotic value. Notice that in this case

this value does not exactly corresponds to the value of equilibrium predicted

by Q0 =
√

a0/b. This is expected, since the the minimum of the effective

potential is not in the same point as the nominal value Q0. The evolution of

the vortex pattern obtained in this case is illustrated in figure 7.10.

Figure 7.10: Snapshots of the amplitude Q (left) and the phase ϕ (right)

of the order parameter for R′
q = 0.255. They illustrate the distribution of

vortices at the formation time τ0 (primordial vortices, top) and at the vortex

consolidation time τ1 (bottom).

Lastly, let us study the scaling behaviour of the density of the topological

defects n with respect the quench rates R′
q –see figure 7.11. Notice that the
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values of the quench rates considered here are the same of the ones discussed

in figure 7.7, so a direct comparison is allowed. The fits performed shows that

n ∼ R′ 0.13
q for τ0 and n ∼ R′ 0.43

q for τ1. In this instance, the scaling behaviour

yields two different exponents. Whilst the latter exponent is similar to the

exponents considered in the previous case, the former significantly deviates.

Figure 7.11: Density of vortices n as a function of the quench rate R′
q (log-log

scale). Red triangles correspond to measurements at τ0 and blue circles rep-

resents measurements performed at τ1. Power-law fit of the data is displayed.
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Part III

Code scripts for numeric

simulations
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In this part, the code used to perform all the numeric simulations of this

work is presented. Let us define the main objects with which we operate.

The sample on which the field is defined is discretized as a three-dimensional

rectangular grid of size (Nx,Ny,Nz). Let dx be the space-step which defines

the distance between two adjacent points in the x-direction. Space-steps in

the y and z-direction are dy and dz respectively. They may take different

values, although we have set dx=dy=dz in all our simulations.

The size of the grid and the magnitude of the space step are adapted

in each simulation, The space step is set to be at least four times smaller

than the correlation length computed within the mean-field formalism –it

depends on the bath temperature as well as on the parameters of the theory.

The total length of the sample, Nx*dx, is set to be several times bigger than

the mean-field correlation length. In most of the simulations, this size is at

least ten times bigger. Let dt be the time-step, which has also been adapted

to each simulation.

The complex scalar field Q(r, t) is defined on this grid. It is a three-

dimensional complex array, q = q1 + q2*im, whose elements corresponds

to the value of the field on the discretized sample. For convenience, most

functions works with the rectangular components of the field rather than the

polar.

The most important function of the program is the one which integrates

the equations of motion. It will be described in chapter 9. There are several

versions of this function in order to account for the different manners to

include the thermal effects, as well as the different methods to cool down the

system, as discussed in the previous chapter.

In order to integrate the equation, it is necessary to specify first the

boundary conditions. In chapter 8, we introduce a set of functions which
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model a variety of such conditions. We also pay attention to the initial

conditions. We have developed a great amount of initial configurations of

the field, a part of which can be found in chapter 10. Some of them have not

been employed in this work ; nevertheless, we think it is worth to include

them in this chapter , for the sake of completeness, and also because they

implement interesting starting configurations to do further research.

In chapter 11, we introduce a set of important functions. These are some

of the observables that we have used to comprehend the dynamics of the

system and describe it. We do not present here some observables that are

straightforward to calculate –e.g., the mean of the modulus of the field– but

the ones which require some elaborate computation. Namely, the number

of vortices and the correlation length. We also include in this chapter the

functions to compute the mean-field values of the correlation length and

relaxation time, computed in section 5.1.

All these functions meet in the main function of the program, described

in the last chapter 12. This function implement the whole quench process.

The field is set in an initial condition. Then, the equations of motion are

integrated a given number of times. At some time intervals, observables are

computed and saved.

Many of the functions described in this chapter are written in two different

ways. The reason is that the definition of the parameters of the theory

depends on what cooling method we are considering –cf. chapter 6. Apart

from that, the algorithms beneath are essentially the same. Whenever this

happens, we will only write one of the versions for the sake of avoiding

repetition. We have also removed some lines of code where we feel there is

no chance of confusion; those suppressions are signalled by a comment in the

code.
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The code has been written in the programming language julia, version

1.1.1. It is an open source project which is made available under the MIT

License. The election of this language was motivated for the need of high

performance – julia is a compiled language. Indeed, the numeric simulations

carried out were extremely time-consuming, so the language program which

must be used was required to be highly efficient. More information can be

found in the web page of the project 3. To perform the simulations, we have

made use of the strong performance computing resources of the Castilla y

León Supercomputing Center (SCAYLE 4).

Some specific packages are required to run these functions suitably. The

most important ones are listed below.

1 using RandomNumbers.Xorshifts

2 import Random: rand!

3 using Statistics

4 using CurveFit

5 using Polynomials

6 using FFTW

7 using DelimitedFiles

8 using Plots

3https://julialang.org/
4https://www.scayle.es
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Chapter 8

Boundary conditions

The first set of boundary conditions accounts to the most common bound-

ary conditions. ZeroFluxBC imposes to Neumann boundary conditions –

i.e., the annihilation of the normal derivative of the field at the boundary,

ZeroFieldBC implements Dirichlet boundary conditions –i.e., the annihila-

tion of the field at the boundary, and PeriodicBC corresponds to periodic

boundary conditions.

1 function ZeroFluxBC(A,Nx,Ny,Nz)

2 #Long

3 A[1,:,:] = A[2,:,:]

4 A[Nx ,:,:] = A[Nx -1,:,:]

5 #Wide

6 A[:,1,:] = A[:,2,:]

7 A[:,Ny ,:] = A[:,Ny -1,:]

8 #High

9 A[:,:,1] = A[:,:,2]

10 A[:,:,Nz] = A[:,:,Nz -1]

11 return A

12 end

13

14 function ZeroField(A,Nx,Ny,Nz)

15 #Long

16 A[0,:,:] = 0.0 + 0.0*im

17 A[Nx ,:,:] = 0.0 + 0.0*im

18 #Wide

19 A[:,0,:] = 0.0 + 0.0*im

20 A[:,Ny ,:] = 0.0 + 0.0*im
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21 #High

22 A[:,:,0] = 0.0 + 0.0*im

23 A[:,:,Nz] = 0.0 + 0.0*im

24 return A

25 end

26

27 function PeriodicBC(A,Nx,Ny,Nz)

28 #Long

29 A[1,:,:] = A[Nx -1,:,:]

30 A[Nx ,:,:] = A[2,:,:]

31 #Wide

32 A[:,1,:] = A[:,Ny -1,:]

33 A[:,Ny ,:] = A[:,2,:]

34 #High

35 A[:,:,1] = A[:,:,Nz -1]

36 A[:,:,Nz] = A[:,:,2]

37 return A

38 end

We may also impose periodic boundary conditions on some directions and

zero-flux on others. This boundary conditions have been used to perform

simulations in two-dimensional systems.

1 function XYPeriodicBC(A,Nx,Ny,Nz)

2 #We impose periodic boundary conditions on the plane x,y

and zero flux boundary conditions on the z direction

3 A[1,:,:] = A[Nx -1,:,:]

4 A[Nx ,:,:] = A[2,:,:]

5 A[:,1,:] = A[:,Ny -1,:]

6 A[:,Ny ,:] = A[:,2,:]

7 A[:,:,1] = A[:,:,2]

8 A[:,:,Nz] = A[:,:,Nz -1]

9 return A

10 end

11

12 function ZPeriodicBC(A,Nx,Ny,Nz)

13 #We impose zero flux boundary conditions on the plane x,y

and periodic boundary conditions on the z direction

14 A[1,:,:] = A[2,:,:]

15 A[Nx ,:,:] = A[Nx -1,:,:]

16 A[:,1,:] = A[:,2,:]

17 A[:,Ny ,:] = A[:,Ny -1,:]

18 A[:,:,1] = A[:,:,Nz -1]

19 A[:,:,Nz] = A[:,:,2]

20 return A

21 end
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Furthermore, we may choose other non-trivial boundary conditions. We

may let the field take some non-equilibrium value at certain relevant spatial

points, and force it to remain constant in time. For instance, we may recreate

a domain wall by choosing two different values on the opposite edges of the

sample in one direction. Rather, we may choose to fix only the field at one

of the edges. Notice that the perturbation is defined based on the definition

of the mass term given in (6.3). The nature of the perturbation depends on

whether the system is in the symmetric phase or the broken phase.

1 function XYDomainWallBC(A,Nx,Ny,Nz,a0)

2 #There are several versions of this funcion:

3 #In the x-direction , we impose either fixed boundary

conditions on both edges , or fixed in one border and zero -

flux in the other.

4 #Comment or uncomment code lines to get the desired

function.

5 #In the y-direction , we impose zero flux OR periodic

boundary conditions.

6 #In the z-direction , we always impose periodic boundary

conditions.

7

8 #x-direction

9 a_aux = zeros(ComplexF64 ,Ny,Nz)

10 ##############################################

11 #Perturbation for symmetric phase (0.95 of the mass term)

12 #amplitude_perturbation = sqrt(a0)*0.95

13 #Perturbation in both edges

14 #A[1,:,:] = a_aux .+ amplitude_perturbation*im

15 #A[Nx ,:,:] = a_aux .- amplitude_perturbation*im

16 #Perturbation in one edge

17 #A[1,:,:] = a_aux .+ amplitude_perturbation*im

18 #A[Nx ,:,:] = A[Nx -1,:,:]

19 ###############################################

20 #Perturbation for broken phase: modulus (put the system

in the maximum)

21 #amplitude_perturbation = 0.0

22 #Perturbation in both edges

23 #A[1,:,:] = a_aux

24 #A[Nx ,:,:] = a_aux

25 #Perturbation in one edge

26 #A[1,:,:] = a_aux

27 #A[Nx ,:,:] = A[Nx -1,:,:]

28 ###############################################

29 #Perturbation for broken phase: angle
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30 amplitude_perturbation = sqrt(a0/2) #Q_0 in the bulk ,

provided b=2

31 phi = pi/6

32 #Perturbation in both edges

33 A[1,:,:] = a_aux .+ amplitude_perturbation *(cos(phi+pi/3)

+im*sin(phi+pi/3))

34 A[Nx ,:,:] = a_aux .+ amplitude_perturbation *(cos(phi)+im*

sin(phi))

35 #Perturbation in one edge

36 #A[1,:,:] = a_aux .+ amplitude_perturbation *(cos(phi+pi

/3)+im*sin(phi+pi/3))

37 #A[Nx ,:,:] = A[Nx -1,:,:]

38

39 #y-direction

40 A[:,1,:] = A[:,2,:] #A[:,Ny -1,:]

41 A[:,Ny ,:] = A[:,Ny -1,:] #A[:,2,:]

42

43 #z-direction

44 A[:,:,1] = A[:,:,Nz -1]

45 A[:,:,Nz] = A[:,:,2]

46 return A

47 end

Alternatively, we may set a perturbation at the central point of the sam-

ple.

1 function PerturbationCenterSample(A,Nx,Ny,Nz,a0)

2 #We impose zero -flux or periodic boundary conditions.

Besides , we make a perturbation at the center of the

sample which is constant in time.

3

4 #x-direction

5 A[1,:,:] = A[2,:,:] #A[Nx -1,:,:]

6 A[Nx ,:,:] = A[Nx -1,:,:] #A[2,:,:]

7 #y-direction

8 A[:,1,:] = A[:,2,:] #A[:,Ny -1,:]

9 A[:,Ny ,:] = A[:,Ny -1,:] #A[:,2,:]

10 #z-direction

11 A[:,:,1] = A[:,:,2] #A[:,:,Nz -1]

12 A[:,:,Nz] = A[:,:,Nz -1] #A[:,:,2]

13

14 #Perturbation at the central point

15 #Perturbation for symmetric phase (0.95 of the mass term)

16 perturbation = sqrt(a0)*0.95* im

17 #Perturbation for broken phase: modulus (set the field in

the maximum)

18 #perturbation = 0.0 + 0.0*im
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19 #Perturbation for broken phase: angle (set the field in

the neighbour minimum)

20 #amplitude_perturbation = sqrt(a0/2) #Q_0 in the bulk ,

provided b=2

21 #phi = pi/6

22 #perturbation = amplitude_perturbation *(cos(phi+pi/3)+im*

sin(phi+pi/3))

23

24 A[round(Int ,Nx/2),round(Int ,Ny/2),round(Int ,Nz/2)] =

perturbation

25 return A

26 end

These last boundary conditions enable us to study how a perturbation

–in phase or in modulus– propagates through space and thus determine the

actual correlation length of the system. This is one of the various way in

which we have calculated the correlation length.

Lastly, we may let the boundaries of the xy−plane to be in different

minima so as to the global circulation of the phase around these edges is an

integer multiple of 2π. This boundary condition is suitable to try and get a

time-stable vortex.

1 function XYVortexBC(A,Nx,Ny,Nz)

2 #The circulation of the phase around the edges of a plane

is an integer.

3

4 Q_min = 0.4 # This value is computed apart as Q_min=sqrt(

a0/b)

5 winding_number = 1

6 phi = [i*pi/3 + pi/6 for i in 0:( winding_number *6-1)] #

Provided c1 >0

7 epsilon_space = 0.00025 #This small displacement is set

to prevent the vortex -core from being a site of the grid

8 core_vortex_x , core_vortex_y = Nx/(2 + epsilon_space), Ny

/(2 + epsilon_space)

9

10 #Long

11 ny = range(1-core_vortex_y , stop=Ny -core_vortex_y)

12 theta_1 = atan.(ny ,1- core_vortex_x) .+ pi #atan

corresponds to a standard atan2 function

13 theta_2 = atan.(ny ,Ny -core_vortex_x) .+ pi

14 l1 = ceil.(Int ,winding_number * 6 .* theta_1 ./(2*pi)) #

ceil rounds to the upper integer
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15 l2 = ceil.(Int ,winding_number * 6 .* theta_2 ./(2*pi))

16 A[1,:,:] = repeat(Q_min*cos.(phi[l1]) .+ Q_min*sin.(phi[

l1]).*im ,1,Nz)

17 A[Ny ,:,:] = repeat(Q_min*cos.(phi[l2]) .+ Q_min*sin.(phi[

l2]).*im ,1,Nz)

18

19 #Wide

20 nx = range(1-core_vortex_x , stop=Nx -core_vortex_x)

21 theta_1 = atan.(1- core_vortex_y ,nx) .+ pi

22 theta_2 = atan.(Ny -core_vortex_y ,nx) .+ pi

23 l1 = ceil.(Int ,winding_number * 6 .* theta_1 ./(2*pi))

24 l2 = ceil.(Int ,winding_number * 6 .* theta_2 ./(2*pi))

25 A[:,1,:] = repeat(Q_min*cos.(phi[l1]) .+ Q_min*sin.(phi[

l1]).*im ,1,Nz)

26 A[:,Ny ,:] = repeat(Q_min*cos.(phi[l2]) .+ Q_min*sin.(phi[

l2]).*im ,1,Nz)

27

28 #High

29 A[:,:,1] = A[:,:,Nz -1]

30 A[:,:,Nz] = A[:,:,2]

31

32 return A

33 end
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Chapter 9

Step functions

The functions included in this chapter constitute the core of the program.

They are designed to perform a single integration step of the equations of

motion (5.1). They will be called in the main function to integrate the

equation recursively a given number of times –cf. chapter 12. We present

here three different versions of the step function. Let us comment some

common features shared by the three versions, and afterwards we will discuss

their differences.

First of all, we need to introduce an auxiliary function to compute the

laplacian which appears in the equations of motion. The prescription given

here is a standard symmetrized discretization of the laplacian operator which

can be found in the literature. Notice that we have include the coupling

factors, gi, in the definition of the operator.

1 function laplacian(A,Nx,Ny,Nz,dx,dy,dz,gx,gz)

2 #Laplacian operator (symmetrized). Takes as an input a

complex 3D-array (A) of dimensions (Nx ,Ny ,Nz) and returns

the laplacian when the spatial steps are (dx ,dy ,dz) and

the couplings are gx=gy and gz.

3

4 #x-direction

5 function Dx_forward(A,Nx,Ny,Nz)

6 F = zeros(ComplexF64 ,Nx,Ny,Nz)

7 F[1:Nx -1,:,:] = A[2:Nx ,:,:]

8 return (F-A)

9 end
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10 function Dx_backward(A,Nx,Ny,Nz)

11 B = zeros(ComplexF64 ,Nx,Ny,Nz)

12 B[2:Nx ,:,:] = A[1:Nx -1,:,:]

13 return (A-B)

14 end

15 Dx(A,Nx,Ny ,Nz ,dx ,gx) = (gx/(dx^2))*( Dx_forward(A,Nx ,Ny ,Nz

)-Dx_backward(A,Nx,Ny,Nz))

16

17 #y-direction

18 function Dy_forward(A,Nx,Ny,Nz)

19 F = zeros(ComplexF64 ,Nx,Ny,Nz)

20 F[:,1:Ny -1,:] = A[:,2:Ny ,:]

21 return (F-A)

22 end

23 function Dy_backward(A,Nx,Ny,Nz)

24 B = zeros(ComplexF64 ,Nx,Ny,Nz)

25 B[:,2:Ny ,:] = A[:,1:Ny -1,:]

26 return (A-B)

27 end

28 Dy(A,Nx,Ny ,Nz ,dy ,gx) = (gx/(dy^2))*( Dy_forward(A,Nx ,Ny ,Nz

)-Dy_backward(A,Nx,Ny,Nz))

29

30 #z-direction

31 function Dz_forward(A,Nx,Ny,Nz)

32 F = zeros(ComplexF64 ,Nx,Ny,Nz)

33 F[:,:,1:Nz -1] = A[:,:,2:Nz]

34 return (F-A)

35 end

36 function Dz_backward(A,Nx,Ny,Nz)

37 B = zeros(ComplexF64 ,Nx,Ny,Nz)

38 B[:,:,2:Nz] = A[:,:,1:Nz -1]

39 return (A-B)

40 end

41 Dz(A,Nx,Ny ,Nz ,dz ,gz) = (gz/(dz^2))*( Dz_forward(A,Nx ,Ny ,Nz

)-Dz_backward(A,Nx,Ny,Nz))

42

43 return Dx(A,Nx ,Ny ,Nz ,dx ,gx) + Dy(A,Nx ,Ny ,Nz ,dy ,gx) + Dz(A

,Nx ,Ny,Nz,dz,gz)

44 end

We will also need a function which deals with the possible leaf change

when subtracting two phases.

1 function diff_phase(x0,xf)

2 D_ph = angle.(xf) - angle.(x0)

3 for i in 1: length(D_ph)

4 if abs(D_ph[i]) > pi

5 D_ph[i] = D_ph[i]<0 ? D_ph[i]+2*pi : D_ph[i]-2*pi
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6 end

7 end

8 return D_ph

9 end

In the three versions of the function, we first compute the stochastic con-

tribution due to Langevin forces. Next, we compute the forces derived from

potential and gradient terms. The combined action of these two latter forces

are referred as restoring forces, since they push the field to the equilibrium

state, whilst the random forces push it away. Notice that the notation is

slightly different of the one used in (5.8) and (5.9). Then the field matrix

is upgraded and some boundary condition operator acts on it to get the fi-

nal new state. Then, we update the parameter which takes into account

the cooling of the system, which is different in the three versions. Lastly,

we may split the different contributions of the forces, as they may be useful

observables in the subsequent analysis.

Let us focus our attention on the first version of the step function. It

was used to perform the numeric simulations for the ultra-fast regime, whose

results are discussed in detail in section 7.2.

1 #FIRST VERSION of the step function

2 function step(q, a0, b, c, c1, gx, gz, gamma , eps , Tc, r_q ,

dt, Nx, Ny, Nz, dx, dy, dz, S_rng)

3 # Update the value of the filed matrix q for a single

time step according to the discretized field equation and

apply BC

4 #PARAMETERS

5 # q: Field matrix - complex 3d-array

6 # a0: Absolute value of the mass -term coefficient at zero

temperature. The mass -term depends on the temperature in

the following way: a=a0*eps , where eps is the reduced

temperature.

7 # b,c,c1 ,gx ,gz: parameters of the lagrangian

8 # gamma: damping coefficient

9 # eps: reduced temperature , adimensional (eps=(T-Tc)/Tc)

10 # Tc: critical temperature

11 # r_q: quench rate (units of inverse time)

112



12 # dt,dx,dy,dz,Nx,Ny,Nz: time -step , space -step , grid

dimensions

13 # S_rng: Random number generator algorithm seeded , S_rng

= Xoroshiro128Star(seed)

14

15 #Langevin thermal perturbation

16 theta = Tc*(eps+1) #acual temperature

17 amplitude_langevin = sqrt (2* theta*dt/(gamma*dx*dy*dz))

18 langevin_source = amplitude_langevin*sqrt (2)*randn(S_rng ,

ComplexF64 ,(Nx ,Ny ,Nz)) #randn generate an array of

normally -distributed random numbers with mean 0 and std 1

19

20 #Dissipative force: contribution from the potential and

gradient terms

21 q1,q2 = real(q),imag(q)

22 Sq1 ,Sq2 = q1.^2,q2.^2

23 leading_order_terms = a0*eps*ones(Float64 ,Nx ,Ny ,Nz) + b*(

Sq1+Sq2) + c*(Sq1+Sq2).^2

24 restoring_force_1 = -(dt/gamma)*(q1.*( leading_order_terms

+ c1*(Sq1 -3*Sq2).*(Sq1 -Sq2)) - laplacian(q1,Nx,Ny,Nz,dx,

dy ,dz,gx,gz))

25 restoring_force_2 = -(dt/gamma)*(q2.*( leading_order_terms

- 2*c1*(Sq1 -3* Sq2).*Sq1) - laplacian(q2 ,Nx ,Ny ,Nz ,dx ,dy ,dz

,gx ,gz))

26 restoring_force = restoring_force_1 + restoring_force_2*

im

27

28 #New value of the field

29 dq = restoring_force + langevin_source

30 q_new = q + dq

31

32 #Boundary conditions

33 #We may change the boundary conditions for different runs

34 q_new = ZeroFluxBC(q_new ,Nx,Ny,Nz)

35

36 #New temperature - if there is a quench

37 eps_new = eps -dt*r_q

38

39 #Supplementary data (optional). We split the

contributions to the force

40 #Forces from potential terms

41 pot_forces_a1 , pot_forces_a2 = -(dt/gamma)*(q1.*(a0*eps*

ones(Float64 ,Nx ,Ny ,Nz))), -(dt/gamma)*(q2.*(a0*eps*ones(

Float64 ,Nx ,Ny ,Nz)))

42 pot_forces_b1 , pot_forces_b2 = -(dt/gamma)*(q1.*(b*(Sq1+

Sq2))), -(dt/gamma)*(q2.*(b*(Sq1+Sq2)))

43 pot_forces_c1 , pot_forces_c2 = -(dt/gamma)*(q1.*(c*(Sq1+

Sq2).^2 + c1*(Sq1 -3*Sq2).*(Sq1 -Sq2))), -(dt/gamma)*(q2.*(c

*(Sq1+Sq2).^2 - 2*c1*(Sq1 -3* Sq2).*Sq1))
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44 #Forces from grad terms

45 grad_forces_1 , grad_forces_2 = (dt/gamma)*(q1.*( laplacian

(q1,Nx,Ny,Nz,dx,dy,dz,gx,gz))), (dt/gamma)*(q2.*( laplacian

(q2,Nx,Ny,Nz,dx,dy,dz,gx,gz)))

46 #Forces from stochastic terms

47 langevin_forces_1 , langevin_forces_2 = real(

langevin_source), imag(langevin_source)

48 #Forces on the modulus of the field , and on the phase of

the field - with and without the langevin contribution

49 mod_forces , phase_forces = abs.(q_new)-abs.(q),

diff_phase(q,q_new)#diff_phase is a function to deal with

the possible leaf change when substracting two phases

50 mod_forces_withoutlang , phase_forces_withoutlang = abs.(

ZeroFluxBC(q+restoring_force ,Nx,Ny,Nz))-abs.(q),

diff_phase(q,ZeroFluxBC(q+restoring_force ,Nx,Ny,Nz))

51

52 return q_new , eps_new , pot_forces_a1 , pot_forces_a2 ,

pot_forces_b1 , pot_forces_b2 , pot_forces_c1 , pot_forces_c2

, grad_forces_1 , grad_forces_2 , langevin_forces_1 ,

langevin_forces_2 , mod_forces , phase_forces ,

mod_forces_withoutlang , phase_forces_withoutlang

53 end

In this case, the temperature of the external reservoir is taken into ac-

count in two different terms. In the first place, it is present in the coefficient

of the mass term, a, which is defined as a = |a0|ϵ, where a0 is the value of the

mass term at zero temperature and ϵ = (T − Tc)/Tc is the reduced temper-

ature, dimensionless. In the second place, it also appears in the amplitude

of the stochastic term, the Langevin force. A detailed discussion on why the

amplitude of this term depends on the temperature in this particular way

can be found in chapter 5. We have forced the temperature to be the same

in both terms, since it is considered that there is only one temperature on

the problem: the temperature of the external reservoir. This is why we claim

that this procedure is self consistent. In this version, the cooling method

modifies the reduced temperature eps, so the quench rate r_q has units of

inverse time. Whenever the temperature is updated, both the mass term and

the stochastic amplitude varies at the same time. However, this is in contrast
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with many previous works in the literature [49, 57, 61, 62, 63], which work

with two different unrelated temperatures, one of which remains constant

over time –the one that appears in the noise term. If we want to reproduce

such behaviour, we just need to remove the line of code number 15 and make

theta a constant input of the function.

Now, let us consider the step functions employed in sections 7.3.1 and

7.3.2. The main difference with the previous one is that the temperature

dependency of the mass term has been dropped. The temperature only

appears in the noise term. The second version implements the cooling by

reducing the temperature while maintaining the mass term fixed. We will

suppress some redundant code lines with comment lines.

1 #SECOND VERSION of the step function

2 function step(q, a, b, c, c1, gx, gz, gamma , theta , R_q , dt,

Nx , Ny, Nz, dx, dy, dz, S_rng)

3 # Update the value of the filed matrix q for a single

time step according to the discretized field equation and

apply BC

4 #PARAMETERS (Only mentioned those which differ from FIRST

VERSION of the step function)

5 # a: Mass -term coefficient at zero temperature , a<0.

6 # theta: temperature of the system

7 # R_q: quench rate (units of temperature by inverse time)

8

9 #Langevin thermal perturbation

10 amplitude_langevin = sqrt (2* theta*dt/(gamma*dx*dy*dz))

11 langevin_source = amplitude_langevin*sqrt (2)*randn(S_rng ,

ComplexF64 ,(Nx ,Ny ,Nz)) #randn generate an array of

normally -distributed random numbers with mean 0 and std 1

12

13 #Dissipative force

14 q1,q2 = real(q),imag(q)

15 Sq1 ,Sq2 = q1.^2,q2.^2

16 leading_order_terms = a*ones(Float64 ,Nx ,Ny ,Nz) + b*(Sq1+

Sq2) + c*(Sq1+Sq2).^2

17 restoring_force_1 = -(dt/gamma)*(q1.*( leading_order_terms

+ c1*(Sq1 -3*Sq2).*(Sq1 -Sq2)) - laplacian(q1,Nx,Ny,Nz,dx,

dy ,dz,gx,gz))

18 restoring_force_2 = -(dt/gamma)*(q2.*( leading_order_terms

- 2*c1*(Sq1 -3* Sq2).*Sq1) - laplacian(q2 ,Nx ,Ny ,Nz ,dx ,dy ,dz

,gx ,gz))
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19 restoring_force = restoring_force_1 + restoring_force_2*

im

20

21 #New value of the field

22 dq = restoring_force + langevin_source

23 q_new = q + dq

24

25 #Boundary conditions

26 #We may change the boundary conditions for different runs

27 q_new = ZPeriodicBC(q_new ,Nx,Ny,Nz)

28

29 #New temperature - if there is a quench

30 theta_new = theta - dt*R_q

31

32 #Supplementary data (optional). We split the

contributions to the force

33 #(Same lines 40-50 of FIRST VERSION of the step function

except for the chage a0*eps -> a)

34

35 return q_new , theta_new , pot_forces_a1 , pot_forces_a2 ,

pot_forces_b1 , pot_forces_b2 , pot_forces_c1 , pot_forces_c2

, grad_forces_1 , grad_forces_2 , langevin_forces_1 ,

langevin_forces_2 , mod_forces , phase_forces ,

mod_forces_withoutlang , phase_forces_withoutlang

36 end

The first thing to notice is that the critical temperature is no longer a

free parameter, but a quantity we need to find out. As a consequence, we do

not know a priori the reduced temperature of the system, ϵ, so the quench

cannot refer to it. Instead, we can update the actual temperature of the

system, theta. That implies that the quench rate R_q is not in the same

units as the quench rate of the first version, r_q. However, once the critical

temperature is obtained, both can be related (rq = Rq/θc).

Lastly, consider the third version of the step function.

1 #THIRD VERSION of the step function

2 function step(q, a, b, c, c1, gx, gz, gamma , theta , rho_q , dt

, Nx, Ny, Nz, dx, dy, dz, S_rng)

3 # Update the value of the filed matrix q for a single

time step according to the discretized field equation and

apply BC

4 #PARAMETERS (Only mentioned those which differ differ

from FIRST VERSION of the step function)
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5 # a: Mass -term coefficient at zero temperature , a<0.

6 # theta: temperature of the system

7 # rho_q: quench rate (units of a by inverse time)

8

9 #Langevin thermal perturbation

10 amplitude_langevin = sqrt (2* theta*dt/(gamma*dx*dy*dz))

11 langevin_source = amplitude_langevin*sqrt (2)*randn(S_rng ,

ComplexF64 ,(Nx ,Ny ,Nz))#randn generate an array of normally

-distributed random numbers with mean 0 and std 1

12

13 #Dissipative force

14 q1,q2 = real(q),imag(q)

15 Sq1 ,Sq2 = q1.^2,q2.^2

16 leading_order_terms = a*ones(Float64 ,Nx ,Ny ,Nz) + b*(Sq1+

Sq2) + c*(Sq1+Sq2).^2

17 restoring_force_1 = -(dt/gamma)*(q1.*( leading_order_terms

+ c1*(Sq1 -3*Sq2).*(Sq1 -Sq2)) - laplacian(q1,Nx,Ny,Nz,dx,

dy ,dz,gx,gz))

18 restoring_force_2 = -(dt/gamma)*(q2.*( leading_order_terms

- 2*c1*(Sq1 -3* Sq2).*Sq1) - laplacian(q2 ,Nx ,Ny ,Nz ,dx ,dy ,dz

,gx ,gz))

19 restoring_force = restoring_force_1 + restoring_force_2*

im

20

21 #New value of the field

22 dq = restoring_force + langevin_source

23 q_new = q + dq

24

25 #Boundary conditions

26 #We may change the boundary conditions for different runs

27 q_new = ZPeriodicBC(q_new ,Nx,Ny,Nz)

28

29 #New mass term - if there is a quench

30 a_new = a - dt*rho_q

31

32 #We split the contributions to the force

33 #(Same lines 40-50 of FIRST VERSION of the step function

except for the change a0*eps -> a)

34

35 return q_new , a_new , pot_forces_a1 , pot_forces_a2 ,

pot_forces_b1 , pot_forces_b2 , pot_forces_c1 , pot_forces_c2

, grad_forces_1 , grad_forces_2 , langevin_forces_1 ,

langevin_forces_2 , mod_forces , phase_forces ,

mod_forces_withoutlang , phase_forces_withoutlang

36 end

The only difference with the previous one is that, in this case, the quantity

we modify to quench the system is the mass term, whereas the temperature
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remains constant. This entails an effective change of the critical temperature,

as it is explained in chapter 6.2. This version’s quench rate, rho_q, is not in

the same units as r_q, nor is R_q. To relate them, the functional dependence

of a on Tc is required, as it is explained in section 6.2.
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Chapter 10

Initial conditions

We can classify the initial conditions in two categories, depending on the

phase at which the system starts. If the starting temperature is above the

critical –in terms of reduced temperature, it amounts to ϵ > 0–, the potential

has one minimum at q = (0, 0). Perturbations of different nature around

this minimum define three different initial conditions: no perturbation,

homogeneous perturbation and noisy perturbation.

In the broken phase –i.e., when the initial temperature is below the

critical temperature, ϵ < 0– there are more interesting configurations to

start from. The potential six different minima, located at ϕn = (2n +

1)π/6, provided c′ > 0, whereas the point q = (0, 0) is a maximum. Some

initial conditions consists of perturbations around one or several minima

(homogeneous pertrubation one well,

noisy perturbation one well, noisy perturbation six wells). Others

perturb the maximum (no perturbation, noisy perturbation maximum).

Those are the initial conditions chosen to simulate a ultra-fast quench in sec-

tion 7.2. We can also initialise the system with a configuration where a vor-

tex is already formed (vortex xy), or with a configuration which opposes
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a vortex and an anti-vortex(vortex vs antivortex)1. The initial condi-

tion domain wall reproduces a domain wall between two adjacent minima.

Lastly, modulus perturbation center and phase perturbation center

corresponds to initial conditions where the central point of the sample is

perturbed –in the radial or angular direction, respectively– whilst the rest of

the sample is set in one of the minima of the potential.

1 function init(a0,b,c,c1,gx,gz,gamma ,eps ,Tc,Nx,Ny,Nz,dx,dy,dz,

initial_state ,amplitude_perturbation ,S_rng=

Xoroshiro128Star ())

2 if eps > 0 # Symmetric phase

3 #In the symmetric phase , we start from the equilibrim

state an add a perturbation

4 q_0 = zeros(ComplexF64 ,Nx ,Ny ,Nz) #Field matrix with

every point at equilibrium

5 if initial_state == "no_perturbation"

6 #All the spatial points starts in the minimum of

the potential q=(0 ,0)

7 q_pert = copy(q_0)

8

9 elseif initial_state == "homogeneous_perturbation"

10 #Each point begins in the minimum of the

potential q=(0,0) and then is displaced a certain amount ,

the same for every spatial point.

11 q_pert = zeros(ComplexF64 ,Nx ,Ny ,Nz) .+ im*(

amplitude_perturbation)

12

13 elseif initial_state == "noisy_perturbation"

14 #Each point starts in the minimum of the

potential q=(0,0) and then is desplaced a certain amount ,

different for every spatial point.

15 q_pert = copy(q_0)

16 q_pert = amplitude_perturbation *(( rand(S_rng ,

Float64 ,(Nx ,Ny ,Nz))*2 .-1)+im*(rand(S_rng ,Float64 ,(Nx ,Ny ,

Nz))*2 .-1))

17 end

18 return q_0 + q_pert

19 end

20

21

22 if eps < 0 #Broken phase

23 Q_min = Q_0(a0,b,eps) #Minimum value of the modulus

1The profile of the radial component of the field in a vortex configuration is taken from

[46].
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of the field (provided c=0).

24 amplitude_perturbation = Q_min *0.05 #In the broken

phase , the amplitude of the initial perturbation is a

fraction (we chosse 0.05 as a default value , though a

different value can be set) of the equilibrium value of

the modulus of the field.

25

26 #Initial conditions which perturbates the field

around a certain point of the potential.

27 if initial_state == "

homogeneous_pertrubation_one_well"

28 #Each point begins in the same well (one of the

six possible) and then is desplaced a certain amount , the

same for every spatial point.

29 #Random choice of the well , the same for all

points. If we want the well to lay on an axis (y-axis),

set this value to pi/2

30 phi_min = rand(S_rng ,0:5)*pi/3 + pi/6

31 q_0 = Q_min*cos(phi_min)*ones(Float64 ,(Nx ,Ny ,Nz))

+ Q_min*sin(phi_min)*ones(Float64 ,(Nx,Ny,Nz))*im

32 q_pert = amplitude_perturbation *(( rand(S_rng ,

Float64 ,(Nx ,Ny ,Nz))*2 .-1)+im*(rand(S_rng ,Float64 ,(Nx ,Ny ,

Nz))*2 .-1))

33 q = q_0 + q_pert

34

35 elseif initial_state == "noisy_perturbation_one_well"

36 #Each point begins in the same well (one of the

six possible) and then is desplaced a certain amount ,

different for each spatial point.

37 q = zeros(ComplexF64 ,(Nx,Ny,Nz))

38 #Random choice of the well , the same for all

points. If we want the well to lay on an axis (y-axis),

set this value to pi/2

39 phi_min = rand(S_rng ,0:5)*pi/3 + pi/6

40 for i in 1:Nx , j in 1:Ny , k in 1:Nz

41 q_x = Q_min*cos(phi_min) +

amplitude_perturbation *(rand(S_rng)*2-1)

42 q_y = Q_min*sin(phi_min) +

amplitude_perturbation *(rand(S_rng)*2-1)

43 q[i,j,k] = q_x+ q_y*im

44 end

45

46 elseif initial_state == "noisy_perturbation_six_wells

"

47 #Each point begins in different minima (one of

the six possible) at random and then is desplaced a

certain amount , different for every spatial point.

48 q = zeros(ComplexF64 ,(Nx,Ny,Nz))

49 for i in 1:Nx , j in 1:Ny , k in 1:Nz
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50 phi_min = rand(S_rng ,0:5)*pi/3 + pi/6

51 q_x = Q_min*cos(phi_min) +

amplitude_perturbation *(rand(S_rng)*2-1)

52 q_y = Q_min*sin(phi_min) +

amplitude_perturbation *(rand(S_rng)*2-1)

53 q[i,j,k] = q_x+ q_y*im

54 end

55

56 elseif initial_state == "no_perturbation"

57 #Each point starts in the maxima q=(0,0) without

any displacement.

58 q = zeros(ComplexF64 ,Nx,Ny,Nz)

59

60 elseif initial_state == "noisy_perturbation_maximum"

61 #Each point begins in the maximum q=(0,0) and

then is desplaced a certain amount , different for every

spatial point.

62 q = zeros(ComplexF64 ,(Nx,Ny,Nz))

63 for i in 1:Nx , j in 1:Ny , k in 1:Nz

64 q[i,j,k] = amplitude_perturbation *(( rand(

S_rng ,Float64 ,(Nx ,Ny ,Nz))*2 .-1)+im*(rand(S_rng ,Float64 ,(

Nx,Ny,Nz))*2 .-1))

65 end

66

67 #Initial conditions which reproduces different

votices configurations

68 elseif initial_state == "vortex_xy"

69 #The initial configuration of the field in the

space is that of a single vortex of fixed winding number

in the plane xy , whose core is centered in the middle of

the sample.

70 winding_number = 1 #A different winding number

can be set.

71 q = zeros(ComplexF64 ,(Nx,Ny,Nz))

72 phi = [i*pi/3 + pi/6 for i in 0:( winding_number

*6-1)] #Array of the six minima of the phase , provided c1

>0.

73 epsilon_space = 1/(max(Nx ,Ny)*10.0) #This small

displacement is set to prevent the vortex -core from being

a site of the grid

74 core_vortex_x , core_vortex_y = Nx/(2 +

epsilon_space), Ny/(2 + epsilon_space) #Coordinates of the

vortex core

75 xi = zeta(a0, b, c, c1, gx , gz , eps)[1][1] #Mean

field value of the correlation length at the given

temperare eps

76 for i in 1:Nx , j in 1:Ny , k in 1:Nz

77 nx , ny = i-core_vortex_x , j-core_vortex_y #

Coordinates with respect the core of the vortex
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78 theta = atan(ny ,nx) + pi #atan corresponds to

a standard atan2 function

79 l = ceil(Int ,winding_number * 6 * theta /(2*pi

)) #ceil rounds to the upper integer

80 rr = sqrt((nx*dx)^2 + (ny*dy)^2)/xi #

Normalized radial distance from the vortex core

81 q_x = Q_min*cos(phi[l])* (rr/sqrt (2+rr^2))

82 q_y = Q_min*sin(phi[l])* (rr/sqrt (2+rr^2))

83 q[i,j,k] = q_x + q_y*im

84 end

85

86 elseif initial_state == "vortex_vs_antivortex"

87 #We build a vortex in the xy-plane with a given

winding number and far enough an antivortex whose winding

number is equal as the vortex but with opposite sign.

88 q = zeros(ComplexF64 ,(Nx,Ny,Nz))

89 winding_number = 1 #A different winding number

can be set.

90 distance_vortex_antivortex = Ny/2 #Distance

between the cores of the vortex and the anti -vortex. Ca be

set a different value.

91 eps_spatial = 1/( max(Nx,Ny)*10.0) #This small

displacement is set to prevent the vortex -core from being

a site of the grid

92 #Vortex

93 phi = [i*pi/3 + pi/6 for i in 0:( winding_number

*6-1)] #Array of the six minima of the phase , provided c1

>0.

94 #Coordinates of the vortex core

95 core_vortex_x = (Nx/(2 + eps_spatial))

96 core_vortex_y = Ny/(2 + eps_spatial) -

distance_vortex_antivortex /2

97 #Mean field value of the correlation length at

the given temperare eps

98 xi = zeta(a0 , b, c, c1 , gx , gz , eps)[1][1]

99 for i in 1:Nx , j in 1: floor(Int ,Ny/2)

100 nx , ny = i-core_vortex_x , j-core_vortex_y #

Coordinates with respect the core of the vortex

101 theta = atan(ny ,nx) + pi #atan corresponds to

a standard atan2 function

102 l = ceil(Int ,winding_number *6 * theta /(2*pi))

#ceil rounds to the upper integer

103 rr = sqrt((nx*dx)^2 + (ny*dy)^2)/xi #

Normalized radial distance from the vortex core

104 q_x = Q_min*cos(phi[l])* (rr/sqrt (2+rr^2))

105 q_y = Q_min*sin(phi[l])* (rr/sqrt (2+rr^2))

106 q[i,j,k] = q_x + q_y*im

107 end

108 #Antivortex
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109 phi = [i*pi/3 + pi/6 for i in (winding_number

*6-1):-1:0] #Array of the six minima of the phase ,

provided c1 >0. It is sorted in the opposite order as the

phi array uset to generate the vortex

110 core_antivortex_x = (Nx/(2 + eps_spatial))

111 core_antivortex_y = Ny/(2 + eps_spatial) +

distance_vortex_antivortex /2

112 for i in 1:Nx , j in ceil(Int ,Ny/2):Ny

113 nx , ny = i-core_antivortex_x , j-

core_antivortex_y #Coordinates with respect the core of

the anti -vortex

114 theta = sc.arctan2(ny,nx) + sc.pi

115 rr = sqrt((nx*dx)^2 + (ny*dy)^2)/xi #

Normalized radial distance from the anti -vortex core

116 q_x = Q_min*cos(phi[l])* (rr/sqrt (2+rr^2))

117 q_y = Q_min*sin(phi[l])* (rr/sqrt (2+rr^2))

118 q[i,j,k] = q_x + q_y*im

119 end

120

121 #Other initial conditions

122 elseif initial_state == "domain_wall"

123 #We split the xy-plane in two halfs. The field at

each half takes the value of one of the minima of the

potential. Those minima are adjacent , so a domain wall

will form in the middle of the plane.

124 q = zeros(ComplexF64 ,(Nx,Ny,Nz))

125 for i in 1:Nx , j in 1:Ny , k in 1:Nz

126 amplitude_perturbation = Q_min

127 phi = (i<Nx/2) ? pi/2 : pi/6

128 q[i,j,k] = amplitude_perturbation *(cos(phi)+

im*sin(phi))

129 end

130

131 elseif initial_state == "modulus_perturbation_center"

132 #We se the field to be in one of the minima of

the potential. Then , we perturbate only the modulus of the

field at the central point

133 phi = pi/6

134 q = zeros(ComplexF64 ,(Nx,Ny,Nz)) .+ Q_min *(cos(

phi)+im*sin(phi))

135 q[round(Int ,Nx/2),round(Int ,Ny/2),round(Int ,Nz/2)

] = 0.0 #The central point is set at the maximum of the

potential

136

137 elseif initial_state == "phase_perturbation_center"

138 #We se the field to be in one of the minima of

the potential. Then , we perturbate only the phase of the

field at the central point

139 phi = pi/6
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140 q = zeros(ComplexF64 ,(Nx,Ny,Nz)) .+ Q_min *(cos(

phi)+im*sin(phi))

141 q[round(Int ,Nx/2),round(Int ,Ny/2),round(Int ,Nz/2)

] = Q_min *(cos(phi+pi/3)+im*sin(phi+pi/3)) #The central

point is set in an adjacent minima

142 end

143 return q

144 end

145 end

Notice that in this case, we have used the definition of the mass parameter

most common in the literature –equation (6.2)– because it allows an easy way

to tell at which phase the system is initialized.

Let us include a last initial condition which was used to compute the

simulations in section 6.1, restoring symmetric phase. There, the first

component starts in the minimum of the potential well, whilst the second

starts at zero. With this election, the first component plays the role of the

radial component, and the second one the role of the angular component.

We are interested in seeing how the symmetric phase is recovered.

1 if initial_state == "restoring_symmetric_phase"

2 # We start with the real part of the field in the bulk

minimum and the imaginary part equal to zero

3 q = zeros(ComplexF64 ,Nx,Ny,Nz)

4 q_0 = (a0 >0) ? sqrt(a0/b) : 0.0

5 q = q .+ q_0_renormalized

6 return q

7 end
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Chapter 11

Observables

11.1 Counting vortices

Among all the observables, the number of topological defects is one of the

most relevant. Indeed, it is necessary to test the predictions of the Kibble-

Zurek mechanism. Also, it allows us to compare the outcome of different

cooling mechanisms. As discussed in chapter 3, the study and characteriza-

tion of the topological defects after a phase transition can be used to infer

properties of the underlying theory.

To compute the number of defects is a hard task. Firstly, it is important

to determine the time of measurement. In a second order phase transition,

the displacement of the field to the vacuum of the potential is a smooth

process. So it is the creation of topological defects. As a consequence, it is

not easy to resolve the exact moment at which the vortex is already formed.

In addition to this, the subsequent dynamics of the already formed vortices

entails their annihilation by merging or escaping through the edges, and

therefore the reduction of their number over time. A detailed discussion on

how to deal with this issue can be found in chapter 7.
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Let us focus in this section on the other main difficulty to perform a

measurement of the number of vortices: the noisy data. By construction,

our model introduces stochastic noise. It is necessary to model the thermal

fluctuations and compel the system to leave the vacuum. The negative coun-

terpart is that the output data from the simulations are noisy. In order to

make a meaningful measurement, we must first handle this problem.

We present here two different methods to smooth the data and eliminate

the noise. The first one is based in the standard binning method, which

consist of replacing all data in an interval by its mean. In our case, we

measure the number of vortices on a plane, namely the equatorial plane

of the sample. Thus the intervals are two-dimensional patches. As input

parameters, we must specify the radius of the patch and the number of times

this method is going to be applied.

1 function smooth_binning(q,Nx,Ny,diameter_patch_mean =4,

iterations =1, patch_indices=false)

2 #We take a 2-dimensional matrix and smooth it by

substituing the value of each point p for the mean value

of a patch of radius R centered in p.

3 R = round(Int ,diameter_patch_mean /2)

4 if patch_indices == false #This next lines are only

computed the first iteration

5 patch_indices = []

6 for ii in -R:R, jj in -R:R

7 (ii^2 + jj^2 <= R^2) && (push!( patch_indices ,[ii,

jj]))

8 end

9 end

10

11 for it in 1: iterations

12 q1,q2 = real(q),imag(q)

13 #We create an empty array with the same dimensions as

the field matrix

14 q1_smooth = zeros(Nx,Ny)

15 q2_smooth = copy(q1_smooth)

16 #Bulk of the field matrix

17 for i in R+1:Nx -R, j in R+1:Nx -R

18 q1_smooth[i,j] = mean([q1[i+k[1],j+k[2]] for k in

patch_indices ])

19 q2_smooth[i,j] = mean([q2[i+k[1],j+k[2]] for k in
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patch_indices ])

20 end

21 #Next two "for"-loops runs over the edges of the

field matrix

22 for i in union (1:R,Nx -R+1:Nx), j in 1:Ny

23 patch_indices_border = []

24 for k in patch_indices

25 i_aux ,j_aux = i+k[1],j+k[2]

26 ((1<=i_aux <=Nx) & (1<=j_aux <=Ny)) && push!(

patch_indices_border ,[i_aux ,j_aux ])

27 end

28 q1_smooth[i,j] = mean(q1[k[1],k[2]] for k in

patch_indices_border)

29 q2_smooth[i,j] = mean(q2[k[1],k[2]] for k in

patch_indices_border)

30 end

31 for i in R+1:Nx -R, j in union (1:R,Ny -R+1:Ny)

32 patch_indices_border = []

33 for k in patch_indices

34 i_aux ,j_aux = i+k[1],j+k[2]

35 ((1<=i_aux <=Nx) & (1<=j_aux <=Ny)) && push!(

patch_indices_border ,[i_aux ,j_aux ])

36 end

37 q1_smooth[i,j] = mean(q1[k[1],k[2]] for k in

patch_indices_border)

38 q2_smooth[i,j] = mean(q2[k[1],k[2]] for k in

patch_indices_border)

39 end

40 #We substitute the original field matrix by the

smoothed one

41 q = q1_smooth + q2_smooth*im

42 end

43 return q,patch_indices

44 end

An alternative smoothing method consist of running some iterations of

the program without considering noise terms nor cooling. In this case, it is

the action of the restoring forces of the potential and gradient terms the ones

which kill the noise. We must specify the number of runs without Langevin

as an input parameter.

1 function smooth_no_langevin(q, a0, b, c, c1, gx, gz, gamma ,

eps , dt, Nx, Ny, Nz , dx , dy , dz , number_steps)

2 #Smooths a 3-dimensional matrix by updating its state

number_steps times without langevin terms. Then returns
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the equatorial plane

3

4 for t in 1: number_steps

5 q1,q2 = real(q),imag(q)

6

7 #Dissipative force

8 q1,q2 = real(q),imag(q)

9 Sq1 ,Sq2 = q1.^2,q2.^2

10 leading_order_terms = a0*eps*ones(Float64 ,Nx ,Ny ,Nz) +

b*(Sq1+Sq2) + c*(Sq1+Sq2).^2

11 restoring_force_1 = -(dt/gamma)*(q1.*(

leading_order_terms + c1*(Sq1 -3*Sq2).*(Sq1 -Sq2)) -

laplacian(q1,Nx,Ny,Nz,dx,dy,dz,gx,gz))

12 restoring_force_2 = -(dt/gamma)*(q2.*(

leading_order_terms - 2*c1*(Sq1 -3*Sq2).*Sq1) - laplacian(

q2 ,Nx,Ny,Nz,dx,dy,dz,gx,gz))

13 restoring_force = restoring_force_1 +

restoring_force_2*im

14

15 #New value of the field

16 dq = restoring_force

17 q += dq

18

19 #Boundary conditions

20 #The boundary condition must be the same as the one

employed in the main function

21 q = ZeroFluxBC(q,Nx,Ny,Nz)

22 end

23 z0 = size(q)[3]/2 #Equatorial plane

24 return q[:,:,trunc(Int ,z0)]

25 end

Let us introduce the main function to count defects. It provides the

number of defects on the equatorial plane of the sample at a given time.

Also, it returns the total winding number. The algorithm is based on the

integration of the phase of the field over a series of closed loops. It starts

with a small closed loop centred at a random point of the sample, on which

it measures the circulation of the phase. Then, the loop increases its size

and the circulation is again computed. It proceeds recursively until the loop

encloses the whole sample. Comparing the result of the circulation of phase

of two consecutive loops, we are able to detect if a new vortex (or anitivortex)
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has entered in the loop. Indeed, for every new vortex (antivortex) that gets

into the loop, a 2π (−2π) factor is added to the circulation of the former

(smaller) loop. Thus, we can estimate the total number of defects by counting

the number of jumps of magnitude |2π| in the series of phase circulations

measured on the series of growing loops.

This method may underestimate the total number of defects if the new

loop encloses at the same time a vortex and an antivortex, since then the

leap in phase circulation may be 2π − 2π = 0. However, if the grid is small

enough, this possibility must be small. In any case, we compute several series

of loops, starting from different points, and then take the statistical mean.

The function uses two alternative algorithms to grow the loops: the first

algorithm, "spiral", make the loops grow as spirals from a core, whilst the

second algorithm, "circle", make them grow as circles centred at an origin.

This latter algorithm is simpler, but works worst than the former. The reason

is that the chance of enclosing a vortex and an antivortex at the same time

when computing a new loop is bigger, since the area between two subsequent

loops is bigger.

1 function counting_defects(q, a0, b, c, c1, gx, gz, gamma , eps

, dt, Nx, Ny, Nz, dx, dy, dz, boundary ,

diameter_patch_mean_binning =5, iterations_binning =1,

patch_indices_binning=false , number_steps_no_Langevin =100,

spiral_step =3, circle_step =3, version_algorithm="spiral",

seed_cores0=false)

2 #Counts the number of vortices by integrating the phase

over a series of closed loops.

3 #Includes two different algorithms: the first algorithm

computes a serie of loops which grow from a core forming a

spiral. The second algorithm make the loops grow as

circles centered in an origin.

4 #The function also returns the total winding number of

the equatorial plane of the sample.

5

6 #We prepare the two smooth 2d-matrices on which we will

count defects

7 q_binning_whole , patch_indices_binning =

smooth_binning_2d(q[:,:,trunc(Int ,size(q)[3]/2)],Nx,Ny,
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diameter_patch_mean_binning ,iterations_binning ,

patch_indices_binning)

8 q_no_langevin_whole = smooth_no_langevin(q, a0 , b, c, c1 ,

gx, gz, gamma , eps , dt, Nx, Ny, Nz, dx, dy, dz,

number_steps_no_Langevin)

9 #We remove the border of the sample and focus on the

phase of the field

10 border_remove = 1 #We remove the border since it only

accounts for boundary effects and has no real physical

meaning

11 q_binning = angle .( q_binning_whole [1+ border_remove:Nx-

border_remove ,1+ border_remove:Ny -border_remove ])

12 q_no_langevin = angle .( q_no_langevin_whole [1+

border_remove:Nx-border_remove ,1+ border_remove:Ny-

border_remove ])

13 Nx,Ny = Nx -2* border_remove , Ny -2* border_remove

14

15 #Auxiliary function: Phase difference. It deals with the

change of leaf in the phase

16 function Ph_diff(x0,xf)

17 D_ph = xf -x0

18 for i in range(1,stop=length(D_ph))

19 if abs(D_ph[i])> pi

20 D_ph[i] = (D_ph[i]<0) ? D_ph[i]+2*pi : D_ph

[i]-2*pi

21 end

22 end

23 return D_ph

24 end

25

26 #Cores of the loops

27 #We use a random number generator with his own seed to

choose the random cores from which the loops grow

28 seed_cores = (seed_cores0 == false) ? rand (1:1000) :

seed_cores0

29 S_cores = Xoroshiro128Star(seed_cores)

30 #We select the initial points from which we are going to

grow our spirals

31 core_spirals = [[1,1],[1,Ny],[Nx ,1],[Nx ,Ny],[trunc(Int ,Nx

/2),trunc(Int ,Ny/2)]] #The four corners plus the center

32 #We add some random points

33 number_random_cores = 1000

34 for i in range(1,stop=number_random_cores)

35 push!( core_spirals ,[rand(S_cores ,1:Nx),rand(S_cores ,1:

Ny)])

36 end

37

38 #Algorithms

39 if version_algorithm == "spiral"
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40 #We set the arrays to count the number of defects for

each smoothing method.

41 ndefects_binning , ndefects_no_langevin = [], []

42 #Also , we set an array to keep the value of the last

circulation loop

43 wn_total_binning , wn_total_no_langevin = [], []

44 for cs in core_spirals

45 #Initial loop. Loops start in the southwest (SW)

point and continue in counterclockwise order.

46 # (W,E), (S,N) are the x and y coordinates (

respectively) of the most exterior points of the loop.

47 cs_x , cs_y = cs

48 if (cs_x != Nx) & (cs_y != Ny)

49 W,S = cs_x , cs_y

50 E,N = cs_x+1, cs_y+1

51 elseif (cs_x == Nx) & (cs_y != Ny)

52 W,S = cs_x -1, cs_y

53 E,N = cs_x , cs_y+1

54 elseif (cs_x != Nx) & (cs_y == Ny)

55 W,S = cs_x , cs_y -1

56 E,N = cs_x+1, cs_y

57 else

58 W,S = cs_x -1, cs_y -1

59 E,N = cs_x , cs_y

60 end

61 loop = [[W,S],[E,S],[E,N],[W,N],[W,S]]

62

63 #CIRCULATION OF THE PHASE ON THE FIRST LOOP

64 #Binning_2d

65 L = length(loop)

66 phi_0_binning = [q_binning[i[1],i[2]] for i in

loop] #Array with the field phase at every site which

belongs to the loop

67 phi_f_binning = copy(phi_0_binning)

68 phi_f_binning [1:L-1] = phi_0_binning [2:L] #Copy

the phase at every point of the loop but displaced one

index

69 phase_circulation_loop_binning = sum(Ph_diff(

phi_0_binning ,phi_f_binning))/(2*pi) #Sum of all the small

phase differences around the loop

70 #We set an array to save the value of the

integration of the phase for each loop in the series of

closed loops

71 PH_CIRC_LOOPS_BINNING = [0.0]

72 push!( PH_CIRC_LOOPS_BINNING ,

phase_circulation_loop_binning)

73 #No_langevin

74 phi_0_no_langevin = [q_no_langevin[i[1],i[2]] for

i in loop] #Array with the field phase at every site
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which belongs to the loop

75 phi_f_no_langevin = copy(phi_0_no_langevin)

76 phi_f_no_langevin [1:L-1] = phi_0_no_langevin [2:L]

#Copy the phase at every point of the loop but displaced

one index

77 phase_circulation_loop_no_langevin = sum(Ph_diff(

phi_0_no_langevin ,phi_f_no_langevin))/(2*pi) #Sum of all

the small phase differences around the loop

78 #We set an array to save the value of the

integration of the phase for each loop in the series of

closed loops

79 PH_CIRC_LOOPS_NO_LANGEVIN = [0.0]

80 push!( PH_CIRC_LOOPS_NO_LANGEVIN ,

phase_circulation_loop_no_langevin)

81

82 #SERIES OF LOOPS

83 spiral_branch = 0

84 spiral_spin = rand(S_cores ,[1,-1]) #Some spirals

will grow counterclockwise (+1) and other clockwise (-1)

85 while (N-S) + (E-W) < (Nx+Ny) -2 #The maximum loop

goes from [1,1] to [Nx ,Ny]

86 spiral_direction = abs(spiral_branch %4)

87 if spiral_direction == 0 #The loop increases

including the next southern row

88 spiral_branch += spiral_spin

89 if S == 1 #If we have reached the bottom

edge of the sample , we skip this step

90 continue

91 elseif S <= spiral_step

92 S = 1

93 else

94 S -= spiral_step

95 end

96 elseif spiral_direction == 1 #The loop

increases including the next eastern column

97 spiral_branch += spiral_spin

98 if E == Nx #If we have reached the right

edge of the sample , we skip this step

99 continue

100 elseif E > Nx -spiral_step

101 E = Nx

102 else

103 E += spiral_step

104 end

105 elseif spiral_direction == 2 #The loop

increases including the next northern row

106 spiral_branch += spiral_spin

107 if N == Ny #If we have reached the top

edge of the sample , we skip this step
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108 continue

109 elseif N > Ny -spiral_step

110 N = Ny

111 else

112 N += spiral_step

113 end

114 elseif spiral_direction == 3 #The loop

increases including the next western column

115 spiral_branch += spiral_spin

116 if W == 1 #If we have reached the left

edge of the sample , we skip this step

117 continue

118 elseif W <= spiral_step

119 W = 1

120 else

121 W -= spiral_step

122 end

123 end

124

125 #Loop

126 loop = union ([[i,S] for i in W:E], [[E,j] for

j in S:N], [[k,N] for k in E:-1:W], [[W,l] for l in N:-1:

S], [[W,S]])

127 L = length(loop)

128

129 #Circulation loops

130 #We proceed in the same way as with the

circulation of the first loop

131 #Binning_2d

132 phi_0_binning = [q_binning[i[1],i[2]] for i

in loop]

133 phi_f_binning = copy(phi_0_binning)

134 phi_f_binning [1:L-1] = phi_0_binning [2:L]

135 phase_circulation_loop_binning = sum(Ph_diff(

phi_0_binning ,phi_f_binning))/(2*pi)

136 push!( PH_CIRC_LOOPS_BINNING ,

phase_circulation_loop_binning)

137 #No_langevin

138 phi_0_no_langevin = [q_no_langevin[i[1],i[2]]

for i in loop]

139 phi_f_no_langevin = copy(phi_0_no_langevin)

140 phi_f_no_langevin [1:L-1] = phi_0_no_langevin

[2:L]

141 phase_circulation_loop_no_langevin = sum(

Ph_diff(phi_0_no_langevin ,phi_f_no_langevin))/(2*pi)

142 push!( PH_CIRC_LOOPS_NO_LANGEVIN ,

phase_circulation_loop_no_langevin)

143 end

144
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145 #We consider now the arrays in capital letters.

Each element of the array consist of the phase circulation

around one loop. The first element accounts for the first

loop. The subsequent elements accounts for the loops

which have grown from this first loop. Eventually , the

last element accounts for a loop which includes the whole

sample.

146 #We compute the number of times the difference

between the circulation along two consecutive loops in the

series has changed sign

147 #Binning_2d

148 PH_CIRC_LOOPS_BINNING_0 = PH_CIRC_LOOPS_BINNING

149 PH_CIRC_LOOPS_BINNING_1 = copy(

PH_CIRC_LOOPS_BINNING_0)

150 L_series_loops_binning = length(

PH_CIRC_LOOPS_BINNING_0)

151 PH_CIRC_LOOPS_BINNING_1 [1: L_series_loops_binning

-1] = PH_CIRC_LOOPS_BINNING_0 [2: L_series_loops_binning]

152 nbinning = sum(abs.( PH_CIRC_LOOPS_BINNING_1 -

PH_CIRC_LOOPS_BINNING_0))

153 push!( ndefects_binning ,nbinning)

154 push!( wn_total_binning , pop!(

PH_CIRC_LOOPS_BINNING))#This array records the circulation

of the last loop

155 #No_langevin

156 PH_CIRC_LOOPS_NO_LANGEVIN_0 =

PH_CIRC_LOOPS_NO_LANGEVIN

157 PH_CIRC_LOOPS_NO_LANGEVIN_1 = copy(

PH_CIRC_LOOPS_NO_LANGEVIN_0)

158 L_series_loops_no_langevin = length(

PH_CIRC_LOOPS_NO_LANGEVIN_0)

159 PH_CIRC_LOOPS_NO_LANGEVIN_1 [1:

L_series_loops_no_langevin -1] =

PH_CIRC_LOOPS_NO_LANGEVIN_0 [2: L_series_loops_no_langevin]

160 n_nolang = sum(abs.( PH_CIRC_LOOPS_NO_LANGEVIN_1 -

PH_CIRC_LOOPS_NO_LANGEVIN_0))

161 push!( ndefects_no_langevin ,n_nolang)

162 push!( wn_total_no_langevin , pop!(

PH_CIRC_LOOPS_NO_LANGEVIN))

163 end

164 #We compute the mean and standard deviation of the

number of defects obtained from all the series which start

at different cores

165 N_defects_binning = [mean(ndefects_binning),std(

ndefects_binning)]

166 N_defects_no_langevin = [mean(ndefects_no_langevin),

std(ndefects_no_langevin)]

167 #We set the total winding number of the sample as the

value of the circulation fo the last loop of the series
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168 WN_total_binning , WN_total_no_langevin = pop!(

wn_total_binning), pop!( wn_total_no_langevin)

169 return N_defects_binning ,N_defects_no_langevin ,

WN_total_binning , WN_total_no_langevin , q_binning_whole ,

q_no_langevin_whole , patch_indices_binning

170

171 elseif version_algorithm == "circle" #Circles algorithm

172 #We set the arrays to count the number of defects for

each smoothing method

173 ndefects_binning , ndefects_no_langevin = [], []

174 #Also , we set an array to keep the value of the last

circulation loop

175 wn_total_binning , wn_total_no_langevin = [], []

176 for cs in core_spirals

177 #Initial loop. Loops start in the southwest (SW)

point and continue in counterclockwise order.

178 # (W,E), (S,N) are the x and y coordinates

respectively of the most exterior points of the loop.

179 cs_x , cs_y = cs

180 if (cs_x != Nx) & (cs_y != Ny)

181 W,S = cs_x , cs_y

182 E,N = cs_x+1, cs_y+1

183 elseif (cs_x == Nx) & (cs_y != Ny)

184 W,S = cs_x -1, cs_y

185 E,N = cs_x , cs_y+1

186 elseif (cs_x != Nx) & (cs_y == Ny)

187 W,S = cs_x , cs_y -1

188 E,N = cs_x+1, cs_y

189 else

190 W,S = cs_x -1, cs_y -1

191 E,N = cs_x , cs_y

192 end

193 loop = [[W,S],[E,S],[E,N],[W,N],[W,S]]

194

195 #CIRCULATION OF THE PHASE ON THE FIRST LOOP

196 #Binning_2d

197 L = length(loop)

198 phi_0_binning = [q_binning[i[1],i[2]] for i in

loop] #Array with the field phase at every site which

belongs to the loop

199 phi_f_binning = copy(phi_0_binning)

200 phi_f_binning [1:L-1] = phi_0_binning [2:L] #Copy

the phase at every point of the loop but displaced one

index

201 phase_circulation_loop_binning = sum(Ph_diff(

phi_0_binning ,phi_f_binning))/(2*pi) #Sum of all the small

phase differences around the loop

202 #We set an array to save the value of the

integration of the phase for each loop in the series of
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closed loops

203 PH_CIRC_LOOPS_BINNING = [0.0]

204 push!( PH_CIRC_LOOPS_BINNING ,

phase_circulation_loop_binning)

205 #No_langevin

206 phi_0_no_langevin = [q_no_langevin[i[1],i[2]] for

i in loop] #Array with the field phase at every site

which belongs to the loop

207 phi_f_no_langevin = copy(phi_0_no_langevin)

208 phi_f_no_langevin [1:L-1] = phi_0_no_langevin [2:L]

#Copy the phase at every point of the loop but displaced

one index

209 phase_circulation_loop_no_langevin = sum(Ph_diff(

phi_0_no_langevin ,phi_f_no_langevin))/(2*pi)#Sum of all

the small phase differences around the loop

210 #We set an array to save the value of the

integration of the phase for each loop in the series of

closed loops

211 PH_CIRC_LOOPS_NO_LANGEVIN = [0.0]

212 push!( PH_CIRC_LOOPS_NO_LANGEVIN ,

phase_circulation_loop_no_langevin)

213

214 #SERIES OF LOOPS

215 while (N-S) + (E-W) < (Nx+Ny) -2 #The maximum loop

goes from [1,1] to [Nx ,Ny]

216 S = (S > circle_step) ? S-circle_step : 1 #

Bottom

217 E = (E < Nx-circle_step) ? E+circle_step : Nx

#Right

218 N = (N < Ny-circle_step) ? N+circle_step : Ny

#Top

219 W = (W > circle_step) ? W-circle_step : 1 #

Left

220

221 #Loop

222 loop = union ([[i,S] for i in W:E], [[E,j] for

j in S:N], [[k,N] for k in E:-1:W], [[W,l] for l in N:-1:

S], [[W,S]])

223 L = length(loop)

224

225 #Circulation loops

226 #We proceed in the same way as with the

circulation of the first loop

227 #Binning_2d

228 phi_0_binning = [q_binning[i[1],i[2]] for i

in loop]

229 phi_f_binning = copy(phi_0_binning)

230 phi_f_binning [1:L-1] = phi_0_binning [2:L]

231 phase_circulation_loop_binning = sum(Ph_diff(
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phi_0_binning ,phi_f_binning))/(2*pi)

232 push!( PH_CIRC_LOOPS_BINNING ,

phase_circulation_loop_binning)

233 #No_langevin

234 phi_0_no_langevin = [q_no_langevin[i[1],i[2]]

for i in loop]

235 phi_f_no_langevin = copy(phi_0_no_langevin)

236 phi_f_no_langevin [1:L-1] = phi_0_no_langevin

[2:L]

237 phase_circulation_loop_no_langevin = sum(

Ph_diff(phi_0_no_langevin ,phi_f_no_langevin))/(2*pi)

238 push!( PH_CIRC_LOOPS_NO_LANGEVIN ,

phase_circulation_loop_no_langevin)

239 end

240

241 #We consider now the arrays in capital letters.

Each element of the array consist of the phase circulation

around one loop. The first element accounts for the first

loop. The subsequent elements accounts for the loops

which have grown from this first loop. Eventually , the

last element accounts for a loop which includes the whole

sample.

242 #We compute the number of times the difference

between the circulation along two consecutive loops in the

series has changed sign

243 #Binning_2d

244 PH_CIRC_LOOPS_BINNING_0 = PH_CIRC_LOOPS_BINNING

245 PH_CIRC_LOOPS_BINNING_1 = copy(

PH_CIRC_LOOPS_BINNING_0)

246 L_series_loops_binning = length(

PH_CIRC_LOOPS_BINNING_0)

247 PH_CIRC_LOOPS_BINNING_1 [1: L_series_loops_binning

-1] = PH_CIRC_LOOPS_BINNING_0 [2: L_series_loops_binning]

248 nbinning = sum(abs.( PH_CIRC_LOOPS_BINNING_1 -

PH_CIRC_LOOPS_BINNING_0))

249 push!( ndefects_binning ,nbinning)

250 push!( wn_total_binning ,pop!( PH_CIRC_LOOPS_BINNING

)) #This array records the circulation of the last loop

251 #No_langevin

252 PH_CIRC_LOOPS_NO_LANGEVIN_0 =

PH_CIRC_LOOPS_NO_LANGEVIN

253 PH_CIRC_LOOPS_NO_LANGEVIN_1 = copy(

PH_CIRC_LOOPS_NO_LANGEVIN_0)

254 L_series_loops_no_langevin = length(

PH_CIRC_LOOPS_NO_LANGEVIN_0)

255 PH_CIRC_LOOPS_NO_LANGEVIN_1 [1:

L_series_loops_no_langevin -1] =

PH_CIRC_LOOPS_NO_LANGEVIN_0 [2: L_series_loops_no_langevin]

256 n_nolang = sum(abs.( PH_CIRC_LOOPS_NO_LANGEVIN_1 -
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PH_CIRC_LOOPS_NO_LANGEVIN_0))

257 push!( ndefects_no_langevin ,n_nolang)

258 push!( wn_total_no_langevin ,pop!(

PH_CIRC_LOOPS_NO_LANGEVIN))

259 end

260 #We compute the mean and standard deviation of the

number of defects obtained from all the series which start

at different cores

261 N_defects_binning = [mean(ndefects_binning),std(

ndefects_binning)]

262 N_defects_no_langevin = [mean(ndefects_no_langevin),

std(ndefects_no_langevin)]

263 #We set the total winding number of the sample as the

value of the circulation fo the last loop of the series

264 WN_total_binning , WN_total_no_langevin = pop!(

wn_total_binning), pop!( wn_total_no_langevin)

265 return N_defects_binning ,N_defects_no_langevin ,

WN_total_binning , WN_total_no_langevin , q_binning_whole ,

q_no_langevin_whole , patch_indices_binning

266 end

267 end

Two final remarks about this function. The first one is that some of

the parameters of this function must be chosen carefully as the final number

of defects may be affected by them. In particular, diameter_patch_mean and

number_steps, in the smoothing functions, and spiral_step and circle_step

in the main function. In general, a previous calibration must be performed

with the help of one known sample before using this function to measure a

series of samples of similar nature.

The second remark is that this algorithm always provides a result, even

in a configuration where there are no vortices –for instance, a configuration

in the symmetric phase. Besides, measurements from same sample which

have been smoothed by different methods are different if the configuration is

random. However, it is observed that both values converge when vortices are

formed. This constitutes a proof of the consistency of the function, but it also

reveals its limitations: their results can only be trusted from the time when

we are certain that vortices are formed, not before. Although the convergence
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of results from different smoothing methods give us an approximate value of

such a time, a more rigorous criterion must be used to determine it.

11.2 Correlation length. Power spectrum

This function are used to obtain the power spectrum of the square fluctua-

tions of the field [64],

I(k) = lim
L→∞

L3

(2π)3
⟨
[
Q(k)− Q̄(k)

]2⟩ (11.1)

We can use this spectrum to compute the correlation length of the fluc-

tuations,

ξ =

∫
dkk2 Re(I(k))∫
dkRe(I(k))

. (11.2)

1 function power_spectrum(A, Nx, Nz, dx)

2 #Computes the power spectrum of the fluctuations of the

field

3 k_values = fftfreq(Nx ,2*pi/dx)

4 k_values_z = fftfreq(Nz ,2*pi/dx)

5 k_mod2 = [i^2+j^2+k^2 for k in k_values_z for j in

k_values for i in k_values] #for loops need to be defined

in this order

6 k_mod2_matrix = reshape(k_mod2 ,(Nx,Nx,Nz))

7

8 delta_A = A .- mean(A)

9 correlation_delta_A = zeros((Nx ,Nx ,Nz))

10 for i in 0:Nx -1, j in 0:Nx -1, k in 0:Nz -1

11 delta_A_displaced = zeros ((Nx,Nx,Nz))

12 delta_A_displaced [1:Nx-i,1:Nx-j,1:Nz-k] = delta_A [1+i

:Nx ,1+j:Nx ,1+k:Nz]

13 correlation_delta_A[i+1,j+1,k+1] = mean(delta_A .*

delta_A_displaced) #Correlation of the fluctuations of the

field

14 end

15

16 delta_A_fourier = fft(correlation_delta_A) #Fast Fourier

Transform

17 I_k = delta_A_fourier .*conj(delta_A_fourier) #Power

spectrum

18
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19 #Correlation length is estimated through different

estimators

20 #k^2

21 k_mod_matrix_A = k_mod2_matrix

22 estimator_k2 = sum(real(I_k).* k_mod_matrix_A)/sum(real(

I_k))

23 #k^-2

24 k_mod_matrix_B = k_mod2_matrix .^-1

25 k_mod_matrix_B [1,1,1] = 0.0

26 estimator_kminus2 = sum(real(I_k).* k_mod_matrix_B)/sum(

real(I_k))

27 #mod_k

28 k_mod_matrix_C = sqrt.( k_mod2_matrix)

29 estimator_modk = sum(real(I_k).* k_mod_matrix_C)/sum(real(

I_k))

30

31 return k_values , I_k , estimator_k2 , estimator_kminus2 ,

estimator_modk

32 end

11.3 Mean-field relaxation time and correla-

tion length

This functions are used to compute the relaxation time and correlation length

in the mean field regime of our model. The reason to include them is that

they are used as auxiliary functions. Notice that it computes both the radial

and the angular contributions in the broken phase. Formulas are derived in

section 5.1.

1 #Returns the relaxation times obtained theoretically from the

mean field.

2 function tau(a0,b,c1,gamma ,eps)

3 tau_q = zeros(Float32 ,length(eps))

4 tau_6 = copy(tau_q)

5 index = 1

6 for i in eps

7 if i<0

8 tau_q[index] = gamma / (a0*abs(i))

9 tau_6[index] = gamma / (3.0* abs(c1)) *(b/(a0*abs(

i)))^2

10 elseif i>0
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11 tau_q[index] = gamma / abs(a0*i)

12 end

13 index += 1

14 end

15 return tau_q ,tau_6

16 end

17

18 #Returns the correlation length obtained theoretically from

the mean field.

19 function zeta(a0,b,c,c1,gx,gz,eps)

20 g_eff = (gz*gx^2) ^(1/3)

21 zeta_q = zeros(Float32 ,length(eps))

22 zeta_6 = copy(zeta_q)

23 index = 1

24 for i in eps

25 if i<0

26 zeta_q[index] = sqrt(g_eff /(4* abs(a0*i)))

27 zeta_6[index] = sqrt(g_eff /(3* abs(c1)))*b/(a0*abs

(i))

28 elseif i>0

29 zeta_q[index] = sqrt(g_eff/abs(a0*i))

30 end

31 index += 1

32 end

33 return zeta_q ,zeta_6

34 end
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Chapter 12

Main function

Besides integrating the equation of motion from the initial conditions and

computing and saving the relevant data, this function set and classify several

time intervals during a quench. Specifically, it distinguishes four different

time-intervals. The first interval takes into account the time that the system

spends evolving before the quench starts. In this first interval, the tem-

perature –or the mass term– remains fixed at some value above the critical

temperature. This time is required to ensure that the system is thermalised

before it starts cooling. Afterwards, the system begins to cool. The second

time-interval spans from this moment to the point when the critical temper-

ature is reached –i.e., it covers the cooling in the symmetric phase. The third

time-interval starts at the moment the temperature has passed through the

critical temperature and finishes when the temperature gets to its final value

–i.e., the time the system spends cooling in the broken phase. Finally, we let

the system evolve at the final temperature for some more time. This is the

fourth and last time-interval.

1 #We set sample rates to save different observables

2 NDEFECTS_SAVE = 200; #Number of time steps between two

consecutive measurements of the number of defects and

other observables
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3 PS_SAVE = 1000; #Number of time steps between two consecutive

computations of the power spectrum

4 FIELD_SAVE = 500; #Number of time steps between two

consecutive savings of the field.

5

6 function main_function(a0, b, c, c1, gx, gz, eps_0 , eps_final

, Tc, theta_0 , gamma , r_q , time_steps , initial_state ,

boundary , dx , Nx , Nz , dt , seed0=false)

7 #= Update the field q ’time_steps ’ times following the

Langevin equation.

8 --INPUTS --

9 (a0 ,b,c,c1 ,gx ,gz) are the parameters of the free energy.

10 eps_0 is the initial reduced temperature (adimensional).

11 eps_final is the final reduced temperature in a quench (

adimensional).

12 Tc is the critical temperature.

13 theta_0 is the initial temperature (not reduced

temperature !) of the langevin term. If theta ="

self_consistent", then is related with eps: Tc*(eps+1) and

may vary with time if there is a quench. If theta does

not relate with eps , then is a constant number.

14 r_q is the quenching rate (in 1/[ time])). If r_q = 0, it

remains in the same temperature.

15 gamma is the damping coefficient.

16 ’time_steps ’ is the number of times the equation is

updated.

17 ’initial_state ’ indicates the initial setup of the mesh.

If it is string type , we start from a certain initial

conditions described in the function init. If it is a

number (let ’s call it t0), we start the simulation from

the final value of other simulation at time t=t0.

18 ’boundary ’ indicates the type of boundary conditions

imposed on the system.

19 (dx , Nx , Nz , dt) are used to define the space and time

steps and also the size of the grid.

20 seed0 is the seed for the random number generator.=#

21

22 #We seed the program

23 seed = (seed0 == false) ? rand (1:1000) : seed0

24 S_rng = Xoroshiro128Star(seed)

25

26 #Space_step

27 dy , dz = dx , dx

28

29 #Grid dimensions

30 Ny = Nx

31

32 #Time array
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33 t0::Int32 = (typeof(initial_state) == String) ? 0 :

initial_state #Initial time from which we will choose a

fixed time_steps value

34 time_steps ::Int32 = time_steps

35 time = range(t0+1,stop=time_steps+t0)

36 if r_q != 0

37 #If the system quenches , we will also distinghish

four different regimes

38 time_steps_cool_symmphase = round(Int ,eps_0/(r_q*dt))

39 time_steps_cool = round(Int ,(eps_0 -eps_final)/(r_q*dt

))

40

41 t1::Int32 = 1000 #This time needs to be high enough

to ensure that the system is thermalised

42 t2::Int32 = t1 + round(Int ,time_steps_cool_symmphase)

43 t3::Int32 = t2 + round(Int ,time_steps_cool)

44 t4::Int32 = time_steps

45

46 time_1 = range(1,stop=t1) #Cooling in the symmetric

phase before the freezing

47 time_2 = range(t1+1,stop=t2) #Cooling in the

symmetric phase while freezing

48 time_3 = range(t2+1,stop=t3) #Cooling in the broken

phase while freezing

49 time_4 = range(t3+1,stop=t4) #Time spend in the

broken phase at eps_final with no cooling

50 end

51

52 #Directory name

53 if typeof(initial_state) == String

54 directoryname = string("data/quench/a0=",a0,"_b=",b,"

_c1=",c1 ,"_g=",gx ,"_eps0=",eps_0 ,"_Tc=",Tc ,"_theta0=",

theta_0 ,"_rq=",r_q ,"_gamma=",gamma ,"_Nx=",Nx ,"_Nz=",Nz ,"

_dx=",dx ,"_dt=",dt ,"_BC=",boundary ,"_initial_state=",

initial_state ,"_time_steps=",time_steps ,"_seed=",seed)

55 else

56 directoryname = string("data/quench/a0=",a0,"_b=",b,"

_c1=",c1 ,"_g=",gx ,"_eps0=",eps_0 ,"_Tc=",Tc ,"_theta0=",

theta_0 ,"_rq=",r_q ,"_gamma=",gamma ,"_Nx=",Nx ,"_Nz=",Nz ,"

_dx=",dx ,"_dt=",dt ,"_BC=",boundary ,"_initial_state=time",

initial_state ,"_time_steps=",time_steps ,"_seed=",seed)

57 end

58 #Create a new directory if it is not created

59 (( directoryname in readdir("./")) == false) && mkdir("./"

*directoryname)

60

61 #= We save the ratio between the space_step and the

lowest correlation length at a given temperature , as well

as the ratio between the total length of the sample (dx*Nx
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) and the largest of the correlation lengths =#

62 correlation_lengths = zeta(a0 , b, c, c1 , gx , gz , [eps_0])

63 cl_min = (eps_0 >0) ? correlation_lengths [1][1] : min(

correlation_lengths [1], correlation_lengths [2]) [1]

64 cl_max = (eps_0 >0) ? correlation_lengths [1][1] : max(

correlation_lengths [1], correlation_lengths [2]) [1]

65 space_resolution_factor = cl_min/dx #How many space steps

are required to get the lowest correlation length

66 grid_factor , grid_factor_z = [Nx ,Nz].*(dx/cl_max) #How

many largest -correlation length fit into the sample

67 writedlm(directoryname*"/0 _spaceresolution_gridfactor.txt

", [space_resolution_factor , grid_factor , grid_factor_z ])

68

69 #Initial_state

70 if typeof(initial_state) == String

71 q = init(a0,b,c,c1,gx,gz,gamma ,eps ,Tc,Nx,Ny,Nz,dx,dy,

dz, initial_state ,amplitude_perturbation ,S_rng=

Xoroshiro128Star ())

72 else

73 #We define the recovering parameters as the same as

the ones we are using in the new simulation.

74 #However , we may change if there was need:

75 recover_a0 ,recover_b ,recover_c1 ,recover_gx ,

recover_Tc , recover_gamma = a0, b, c1, gx, Tc, gamma

76 recover_eps_0 , recover_theta_0 , recover_r_q = eps_0 ,

theta_0 , r_q

77 recover_Nx , recover_Nz , recover_dx , recover_dt = Nx,

Nz, dx, dt

78 recover_boundary , recover_time_steps ,

recover_initial_state = boundary , time_steps , "

no_perturbation" ########

79 recover_seed , recover_t0 , recover_eps = seed , t0 ,

eps_0 -dt*min(r_q*t0 ,ceil((eps_0 -eps_final)/(dt)))

80

81 #We rebuild the matrix of the field with an auxiliary

function

82 q = recover_q(recover_a0 , recover_b , recover_c1 ,

recover_gx , recover_eps_0 , recover_Tc , recover_theta_0 ,

recover_r_q , recover_gamma , recover_Nx , recover_Nz ,

recover_dx , recover_dt , recover_boundary ,

recover_initial_state , recover_time_steps , recover_seed ,

recover_t0 , recover_eps)

83

84 #We also need to update the random number calls

before we go on with the simulation from the time we left

85 eps_aux = (recover_initial_state == "instant_quench")

? abs(eps_0) : eps_0 #eps_sym if recover_initial_state ==

’instant_quench ’ else eps_0

86 recover_initial_state_aux = "no_perturbation"
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87 q_init_aux_rd = init(a0 ,b,c,c1,gx,gz,gamma ,eps_aux ,Tc

,Nx ,Ny,Nz,dx,dy,dz,space_resolution_factor ,grid_factor ,

recover_initial_state_aux ,S_rng)

88 for i in range(1,stop=trunc(Int ,t0/5))

89 randn(S_rng ,ComplexF64 ,(Nx,Ny,Nz ,5))

90 end

91 randn(S_rng ,ComplexF64 ,(Nx,Ny,Nz,t0%5))

92 end

93

94 #Arrays to record the number of defects and total winding

number

95 TIME_DEFECTS = []

96 N_DEFECTS_FILTER , N_DEFECTS_FILTER_ERROR , TOTAL_WN_FILTER

= [], [], []

97 N_DEFECTS_NO_LANG , N_DEFECTS_NO_LANG_ERROR ,

TOTAL_WN_NO_LANG = [], [], []

98

99 #Arrays to record the different force contributions

100 POT_A1 , POT_A2 , POT_B1 , POT_B2 , POT_C1 , POT_C2 , POT_1 ,

POT_2 , GRAD_1 , GRAD_2 , LANG_1 , LANG_2 , MOD_FORCES ,

MOD_FORCES_NOLANG , PHS_FORCES , PHS_FORCES_NOLANG =

[],[],[],[],[],[],[],[],[],[],[],[],[],[],[],[]

101

102 #Arrays to record the modulus mean and std

103 MOD_MEAN , MOD_STD = [],[]

104

105 #Arrays to record the varianze of k for several

observables: q1, q2, abs(q), phs(q), q

106 VAR_K_Q1 , VAR_K_Q2 , VAR_K_MODQ , VAR_K_PHSQ , VAR_K_Q = [],

[], [], [], []

107 VAR_Q1 , VAR_Q2 , VAR_MODQ , VAR_PHSQ , VAR_Q = [], [], [],

[], []

108

109 #We set the algorithm and the seed for the

counting_defects function

110 version_algorithm = 1 #Spirals

111 seed_cores0 = 666 #Random choice

112

113 t_old_ndef , t_old_ps = 0, 0 #Label to erase old data

files

114

115 if r_q == 0.0

116 #We do not include this case , since it is less

interesting

117 else #Quench rate different from zero

118

119 #If it is a recovered simulation , we distinguish

between four cases:

120 if 0 <= t0 < t1
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121 time_1 = range(t0+1,stop=t1)

122 time_2 , time_3 , time_4 = time_2 , time_3 , time_4

123 elseif t1 <= t0 < t2

124 time_1 = []

125 time_2 = range(t0+1,stop=t2)

126 time_3 , time_4 = time_3 , time_4

127 elseif t2 <= t0 < t3

128 time_1 , time_2 = [], []

129 time_3 = range(t0+1,stop=t3)

130 time_4 = time_4

131 elseif t3 <= t0 < t4

132 time_1 , time_2 , time_3 = [], [], []

133 time_4 = range(t0+1,stop=t4)

134 end

135 time_spend_cooling = min(t0,t3)

136

137 #We change the name of eps_0 , since now is a dynamic

(non -static) variable:

138 eps = eps_0 - dt*r_q*time_spend_cooling

139

140 if length(time_1) != 0 #Cooling in the symmetric

phase before the freezing.

141 for t in time_1

142 #Update equation

143 q, eps , pot_forces_a1 , pot_forces_a2 ,

pot_forces_b1 , pot_forces_b2 , pot_forces_c1 , pot_forces_c2

, grad_forces_1 , grad_forces_2 , langevin_forces_1 ,

langevin_forces_2 , mod_forces , phase_forces ,

mod_forces_withoutlang , phase_forces_withoutlang = step(q,

a0 , b, c, c1 , gx , gz , gamma , eps , Tc, theta_0 , 0.0, dt,

Nx, Ny, Nz, dx, dy, dz, boundary , S_rng)

144 #Save data.

145 if t%FIELD_SAVE == 0 || (t-t0) == 1.0

146 writedlm("./"*directoryname*"/

order_parameter_real_part_time"*string(t)*"_eps"*string(

round(eps ,digits =3))*".txt",real(q))

147 writedlm("./"*directoryname*"/

order_parameter_im_part_time"*string(t)*"_eps"*string(

round(eps ,digits =3))*".txt",imag(q))

148 end

149

150 #Computation of the power spectrum

151 if (t-t0)%PS_SAVE == 0

152 #First component of the field

153 k_values ,I_k ,variance_k = power_spectrum(

real(q), Nx , Nz , dx)

154 push!(VAR_K_Q1 ,variance_k)

155 push!(VAR_Q1 ,ifft(I_k)[1,1,1])
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156 #The power spectrum of other quantities

are also computed

157

158 #Save the data of the variance_k for all

observables and remove the old ones

159 writedlm("./"*directoryname*"/

ps_q1_variance_k_time"*string(t)*".txt",VAR_K_Q1)

160 if t_old_ps != 0

161 rm("./"*directoryname*"/

ps_wholefield_variance_k_time"*string(t_old_ps)*".txt")

162 end

163 t_old_ps = t

164 end

165

166 #Number of defects and winding number

167 if (t-t0)%NDEFECTS_SAVE == 0

168 N_defects_filter ,N_defects_no_langevin ,

total_wn_filter , total_wn_no_langevin , q_filter_whole ,

q_no_langevin_whole , patch_indices_filter =

counting_defects(q, a0 , b, c, c1 , gx , gz , gamma , eps , dt ,

Nx , Ny, Nz, dx, dy, dz, boundary ,

diameter_patch_mean_filter , iterations_filter ,

patch_indices_filter , number_steps_no_Langevin ,

spiral_step , circle_step , version_algorithm , seed_cores0)

169

170 #Filter_2d

171 push!( N_DEFECTS_FILTER ,N_defects_filter

[1])

172 push!( N_DEFECTS_FILTER_ERROR ,

N_defects_filter [2])

173 push!( TOTAL_WN_FILTER ,total_wn_filter)

174 #No_langevin

175 push!( N_DEFECTS_NO_LANG ,

N_defects_no_langevin [1])

176 push!( N_DEFECTS_NO_LANG_ERROR ,

N_defects_no_langevin [2])

177 push!( TOTAL_WN_NO_LANG ,

total_wn_no_langevin)

178

179 #Modulus mean and std

180 push!(MOD_MEAN ,mean(abs.(q)))

181 push!(MOD_STD ,std(abs.(q)))

182

183 #Save the data of the number_vortices and

total_winding_number and remove the old data files

184 end

185 end

186 end
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187 if length(time_2) != 0 #Cooling in the symmetric

phase while freezing.

188 for t in time_2

189 #Idem as time 1

190 end

191 end

192 if length(time_3) != 0 #Cooling in the broken phase

while freezing.

193 for t in time_3

194 #Idem as time 1

195 end

196 end

197 end

198 if length(time_4) != 0 #Time spend in the broken

phase at eps_broken_freeze with no cooling.

199 r_q = 0.0 #We stop the cooling

200 for t in time_4

201

202 end

203 end

204 end

205 return q, eps

206 end

207 end
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Comments and conclusions

In this work, we have performed numeric simulations to reproduce the process

of vortex formation after a phase transition takes place. We focus on the

case where a global symmetry is broken. Inspired by the structural phase

transition which occurs in the hexagonal manganites, we present a theoretical

model for a scalar field based on the Landau theory for phase transitions of

the second kind. This model reproduces the most characteristic feature of

the hexagonal manganites –the non-trivial discrete topology of the vacuum

manifold Z6. We make use of the formalism developed by Langevin [51, 52] to

include thermal fluctuations as an stochastic contribution of non-correlated

noise in the equations of motion, which we formulate in the over-damped

regime.

We discuss the problems which arises in the customary implementations

of such formalism, namely the possible double-counting of thermal effects.

Indeed, the coefficient of the mass term of the theory is forced to vary as an

explicit function of the temperature. Simultaneously, thermal fluctuations

are introduced in the dynamics through the already mentioned stochastic

contributions. We give arguments to support that the change in the value

of the coefficient of the mass term must be only caused by the effective

renormalization induced by the thermal fluctuations –the Langevin noise.

Thus, no external law must be imposed on the coefficient. We propose a
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modification of the usual procedure to avoid this possible issue.

Furthermore, we present different scenarios to test the Kibble-Zurek mech-

anism. We have performed quenches in three different regimes: ultra-fast

quenches; finite quenches varying the temperature of the Langevin term

whilst maintaining constant the mass term; and finite quenches varying the

bare value of the coefficient of the mass term whilst maintaining constant

the noise temperature.

First, we consider the regime of ultra-fast quenches. This regime is

achieved when the time that the system spends cooling is much shorter than

any other relevant time scale of the problem –in particular, the time of vortex

formation. This limit tries and reproduce the regime of experimental set-ups

where it has been reported that the Kibble-Zurek prescription is reversed [38]

–i.e., faster quenches produce less defects. In our approach to this regime,

the dynamics of the system is entirely caused by the final temperature of

the system –therefore, independent on the quench rate. In this investigation,

we conclude that the vortex formation process involves three distinguishable

and complementary mechanisms. Namely, the diffusive dynamics of the or-

der parameter in configuration space as a result of its coupling to the thermal

bath; the local relaxation of its phase as a result of the tension forces be-

tween adjacent domains; and the global relaxation of the amplitude of the

order parameter as it rolls down the effective potential. Each of these ef-

fects posses characteristic times, τd, τ0, and τ1, respectively. The primordial

vortex network shows up at τ0, whereas its consolidation takes place at τ1.

Hence, the spatial distribution of vortices is not determined by their core

radius, but by the correlation length of the phase of the order parameter

at τ0, ξ0. While the alternative choice of τ1 as the characteristic time for

this determination is also possible, it is less physical since then the inter-
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twined dynamics of both the phase and the amplitude have an impact on

the resulting topological structure. In fact, from a practical perspective, the

unambiguous connection between the phase relaxation time and the density

of primordial vortices is one of main results of our work. We find that the

distance between the primordial vortices increases monotonically with the

final temperature of the quench. We explain this behaviour as a result of

the persistent thermal fluctuations of the order parameter throughout the

transition. Moreover, τd as well as the intervals between the times τd, τ0,

and τ1 increase for higher temperatures, which then causes an effective delay

of the phase transition together with an increase on the average distance

between vortices. In some sense, this can be seen as a sort of ancestor for

some intrinsic deviations from the KZ scaling that have been predicted for

slow quenches [65]. In the weak-anisotropy regime, once formed, vortices

and antivortices annihilate at a rate inversely proportional to time. In turn,

all these effects hinder the dissipation of energy, causing a delay in the ac-

complishment of the thermalization process. Including a six-fold anisotropy

we find that, whereas the vortex formation process is unaffected, their anni-

hilation rate slows down, signalling the impact of the Z6-anisotropy in the

short-range vortex-antivortex interaction.

Next, we consider quenches at finite rates. We distinguish two different

ways of perform quenches which are compatible with our way of simulating

the thermal effects in our model. Though, both can be related if the func-

tional dependence of the bare parameter with the critical temperature of the

system is known –see equation (6.9). In one prescription, we decrease the

temperature of the Langevin term while maintaining the rest of parameters

unchanged. This is in contrast with the usual way to simulate quenches in the

literature, which fix the temperature of the Langevin term to a constant free
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parameter –e.g., see [61]. In the second prescription, we fix the temperature

of the Langevin term while varying the bare value of the coefficient of the

mass term. The dynamics reproduced in this two scenarios differs from the

quenches in the ultra-fast limit. This is due to the fact that the amplitude

of the thermal fluctuations in this case is much larger than in the latter case.

Nevertheless, the description of the different regimes during the process of

vortices formation is still valid in the essence. In this case, we find that the

number of vortices do follow a scaling law with respect the quench rates, as

the mechanism of Kibble-Zurek suggests. Though, the scaling coefficients

obtained from fitting the data are not in accordance with the mean-field

prediction.

In the analysis of our simulations, we do not observe the phenomenology

described in the Kibble-Zurek mechanism. Indeed, we do not detect the

freezing of domains of correlated phase in a neighbourhood of the transition

point, since the thermal fluctuations erase all memory of the system of its

previous state during the symmetric phase. The scaling behaviour that we

observe is due to causes different to causality and criticality in the transition

point.

Lastly, we also present a detailed collection of all the code scripts used

to performed this work. In the third part we comment how our model is

implemented numerically. It is of special relevance the function used to

count the number of vortices, described in section 11.1.

To conclude, let us summarise our findings and relate them with the

objectives of our work:

• A new approach to include thermal fluctuations through a Langevin

term is proposed. It avoids some of the problems of the customary

prescriptions, such as a possible double-counting of thermal effects.
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• The process of vortex formation involves three different regimes, each

with a characteristic time. First, the order parameter diffuses around

the origin due to thermal fluctuations. Second, the complex phase

relaxes, leading to the formation of domains of homogeneous phase.

Lastly, the modulus of the order parameter relaxes, causing the vortex

consolidation.

• The freezing of domains of correlated phase in the symmetric phase

predicted by the Kibble-Zurek argument is not detected. Criticality

and causality are not the responsible of domain formation in our model.

• The phase relaxation time is the most suitable time to measure the

density of primordial vortices. Before this time, no patches of homoge-

neous phase are formed, so no vortices can be properly defined.

• There exist important differences in the dynamics of the phase transi-

tion depending on how the quench is performed. Regardless, the former

conclusions are valid in all instances.
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Yu. G. Makhlin, B. Plaçais, G. E. Volovik, and W. Xu. Vortex forma-

tion in neutron-irradiated superfluid 3he as an analogue of cosmological

defect formation. Nature, 382(6589):334–336, July 1996.
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