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ABSTRACT 

Within the context of the climate crisis, good knowledge of our forests is needed so that we can 

manage them sustainably in order to keep forests more productive and, more importantly, to keep 

them resilient and strong. Within this concern, mixed forests seem to be our great allies. However, 

due to the complex structure of this kind of forest, measuring and evaluating the interaction of species 

with conventional measurement techniques through tools such as calipers and hypsometers is difficult 

to do – leading too much of the interactions in these forests being still largely unknown. However, 

thanks to advancements in science and technology, we can now count on devices such as Terrestrial 

Laser Scanners (TLS), which can make a faithful reproduction of reality in Three-Dimensions (3D), 

allowing us to study the forest from our computers. In the last decades, many studies have emerged 

focusing on the understanding of mixed forest structures, proving more studies are needed to be able 

to conclude a sound theory as each species seem to interact differently from each other.  

How tree species interact with each other can be quantified by the crown of the tree. For this reason 

in this study, we have analyzed the crown morphology of Pinus sylvestris together with two oak species 

(Quercus petraea and Quercus pyrenaica) in two locations in northern Spain. Different methodologies 

were applied to process TLS data, ending in a semiautomatic method thanks to the development in R 

software of an algorithm that identifies trees as clusters. We have obtained 10 variables for each tree 

from TLS data, classified as response and explanatory variables. For the mixture Pinus sylvestris-

Quercus petraea a total of 193 pines and 257 oaks were analyzed and for the mixture Pinus sylvestris-

Quercus pyrenaica 49 pines and 38 oaks. For the first mixture, we have fitted four crown variables: 

Maximum Crown Width (MCWH), Crown at Base Height (CBH), Crown Projection Area (CPA), and 

Crown Volume (CV). The explanatory variables for the models were classified in size, density, 

competition, and mixture, and each tree was analyzed within three radii of influence (5, 7.5, and 10m) 

as opposed to the traditional method of differentiation between pure and mixed stands. Thus, we can 

quantify inter and intra-specific competition of species. For the second mixture (Pinus sylvestris-

Quercus pyrenaica), firstly we analyzed how robust our fitted models for Pinus sylvestris-Quercus 

petraea mixture was, and then compared the models. We conducted three analyses, the first one 

where we utilized the models already developed and tested in the second mixture, the second analysis 

where we adjusted the coefficients of the models for this second mixture, and the third analysis, 

where we developed completely new models specifically for this second mixture. Finally, we analyzed 

wood quality using the Lean and the Sweep of the trunk in the mixture of Pinus sylvestris - Quercus 

petraea as response variables. The model selection was done through the AIC index and the residual 

analysis of the top 5 models with the lower AIC Index.  
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Our results have shown us when growing in mixed conditions, pines tend to have larger trunks with 

narrower and shorter crowns, and oaks tend to remain under a pine canopy with wider and larger 

crowns and no preference for a radius of influence has been demonstrated. Nevertheless, it was 

proven that it is necessary to fit models for each specific mixture, as the comparison between models 

(AIC index) clearly showed, that data was better explained through the mixture-specific models. 

Regarding the analysis of wood quality, our fitted models showed Lean is a characteristic of the trees 

affected by the density and competition within the forests , but Sweep was only affected by the size 

of the tree and asymmetry of the crown, suggesting it is an intrinsic feature of each tree regardless 

the forest composition.  

This study has analyzed the inter and intra-specific competition of three species widely distributed 

within the Iberian peninsula. The results represent comprehensive insights to provide management 

guidelines for the use and adaptation of mixed forests in the frame of climate change.    
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RESUMEN 

En el marco de la crisis climática es necesario tener un buen conocimiento de nuestros bosques, para 

así, poder realizar una gestión sostenible de los mismos al tiempo que conseguimos que sean más 

productivos, pero sobre todo, más resilientes y resistentes. En este respecto los bosques mixtos 

parecen ser nuestros grandes aliados. Sin embargo, la forma en que las especies interactúan entre sí 

es muy desconocida debido a la compleja estructura que presenta este tipo de bosques, que los hace 

difíciles de medir y evaluar con las técnicas de medición convencionales como la forcípula y el 

hipsómetro. Gracias al avance de la ciencia y la tecnología, ahora contamos con dispositivos como el 

escáner Láser, conocido por sus siglas en inglés TLS, que es capaz de hacer una reproducción fidedigna 

de la realidad en tres dimensiones (3D), por lo que podemos estudiar el bosque desde nuestros 

ordenadores. En las últimas décadas han surgido muchos estudios centrados en la comprensión de las 

estructuras de los bosques mixtos demostrando que se necesitan más estudios para poder tener una 

teoría sólida del manejo de los mismos ya que cada especie parece tener un comportamiento 

diferente en compañía de otras especies. 

La interacción de las especies arbóreas entre sí se puede cuantificar gracias a la copa. Por esta razón 

en este estudio hemos analizado la morfología de la copa de Pinus sylvestris junto con dos especies 

de roble (Quercus petraea y Quercus pyrenaica) en dos localidades del norte de España. Se han 

aplicado diferentes metodologías para procesar los datos TLS. Finalmente hemos trabajado con un 

método semiautomático gracias al desarrollo de un algoritmo en el software R que identifica los 

árboles como clusters. Hemos obtenido 10 variables para cada árbol a partir de los datos del TLS, 

clasificadas como variables de respuesta y explicativas. Para la mezcla Pinus sylvestris-Quercus petraea 

se han analizado un total de 193 pinos y 257 robles y para la mezcla Pinus sylvestris-Quercus pyrenaica 

49 pinos y 38 robles. Para la primera mezcla, hemos ajustado cuatro variables de copa: Anchura 

máxima de la copa (MCWH), altura de la copa en la base (CBH), área de proyección de la copa (CPA) y 

volumen de la copa (CV). Las variables explicativas de los modelos se clasificaron en tamaño, densidad, 

competencia y mezcla y cada árbol se analizó dentro de tres radios de influencia (5, 7,5 y 10 m), a 

diferencia del  tradicional método de diferenciar entre rodales puros y mixtos. De este modo, hemos 

podido cuantificar la competencia inter e intraespecífica de las especies. Para la segunda mezcla (Pinus 

sylvestris-Quercus pyrenaica), primero hemos analizado la robustez de nuestros modelos ajustados 

para la mezcla Pinus sylvestris-Quercus petraea y luego hemos comparado los modelos. Llevamos a 

cabo tres análisis, el primero donde utilizamos los modelos ya desarrollados, probándolos en la 

segunda mezcla; el segundo análisis donde ajustamos los coeficientes de los modelos para esta 

segunda mezcla; y el tercer análisis, donde desarrollamos modelos completamente nuevos 
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específicamente para esta segunda mezcla. Finalmente analizamos la calidad de la madera utilizando 

como variables de respuesta la inclinación (lean) y el retorcimiento (Sweep) del tronco en la mezcla 

de Pinus sylvestris - Quercus petraea. El modelo de selección se realizó a través del índice AIC y el 

análisis residual de los 5 mejores modelos con el menor índice AIC. 

Nuestros resultados nos han mostrado que cuando crecen en condiciones mixtas, los pinos tienden a 

tener troncos más grandes con copas más estrechas y cortas y los robles tienden a permanecer bajo 

el dosel arbóreo de los pinos con copas más anchas y grandes. Respecto al radio de influencia, no 

quedó demostrada ninguna preferencia clara. Sin embargo, se demostró que es necesario ajustar 

modelos para cada mezcla específica, ya que la comparación entre modelos (índice AIC) reveló 

claramente que los datos se explicaban mejor a través de los modelos específicos de la mezcla. En 

cuanto al análisis de la calidad de la madera, nuestros modelos ajustados mostraron que es una 

característica que afecta a los árboles según crecen en más o menos densidad y con más o menos 

competencia, pero el retorcimiento del tronco sólo se vio afectado por el tamaño del árbol y la 

asimetría de la copa, lo que sugiere que es una característica intrínseca de cada árbol 

independientemente de la composición de la masa forestal. 

Este estudio ha analizado la competencia intra e interespecífica de tres especies ampliamente 

distribuidas en la península ibérica. Los resultados representan una información exhaustiva que 

proporciona directrices de gestión para el uso y la adaptación de los bosques mixtos en el marco del 

cambio climático.    
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INTRODUCTION 

The present state of forests 

Within the last decade, the concern about the effects on Earth due to Climate Crisis has been 

increasing as it is already stressing food and forestry systems, directly impacting, among others, 

human health, ecosystem functioning, and forest structure (Pörtner et al., 2022). For this reason, 

forests have received substantial political attention within the last COP26, since it is well known that 

forests can adapt to climate change, and thus, they are critically important to mitigate and conserve 

biodiversity (Vähänen, 2021) as they are well recognized to be one of our principal resources to obtain 

climate neutrality by 2050 (Lier et al., 2022). Nevertheless, maladaptation has been observed across 

many regions and systems and occurs for many reasons including inadequate knowledge and short-

term policies (Pörtner et al., 2022).  

Forests also provide goods and ecosystem services (provisioning, regulating, and cultural) from 

plantations or cultivated forests (Pretzsch & Forrester, 2017; Uhl et al., 2015). Trends suggest social 

conscience of consuming products from sustainably managed forests is increasing (Europe, 2011). 

Based on this, management that is solely focused on wood production homogeneously throughout a 

plantation may miss opportunities to provide other ecosystem services (Himes & Puettmann, 2019) 

causing economic losses, as has already been experienced in Europe within the last 50 years, where 

the forests were impacted by extreme heat and drought impacting timber sales for example in Europe 

(Pörtner et al., 2022). For that reason, understanding forest composition, structure, and functioning 

within a frame of climate change, is crucial to ensure ecosystem services to our society (Muñoz-Gálvez 

et al., 2021). 

Shifts in the temperature-precipitation domain that many species experienced during the last decade 

are likely to increase under a warmer and drier climate, and this may lead to directional, large-scale 

changes in forest composition (Hartmann et al., 2022) as forests are dependent on different abiotic 

factors (Bohn et al., 2014). Climate change scenarios project a worrisome increase of 2–5 ◦C in the 

21st century coupled with a decrease in precipitation of up to 30%, and a higher frequency and 

intensity of extreme drought events (Muñoz-Gálvez et al., 2021). As an example, it is expected that, in 

the temperate zones, even in compliance with the Paris agreements (UNFCCC, 2015), forest 

productivity is estimated to drop by 23%, assuming forest management and composition are the same 

as we have nowadays (Bohn, 2021). 

Therefore, there is an urgent need for adequate management strategies to enhance long-term forest 
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resilience (Muñoz-Gálvez et al., 2021) as temperature changes could turn forests into carbon sinks or 

carbon sources (Bohn et al., 2014) without the proper management. For that reason, the objectives 

marked by the new European Union (EU) forest strategy for 2030 are focused on improving the 

quantity and quality of EU forests and strengthening their protection, restoration and resilience.  

The Importance of Mixed forests 

Forests cover almost one-third of the Earth’s land surface (Vähänen, 2021). Around 4% of these forests 

are undisturbed by human activity, while 29% of the managed forests are monocultures and 51% 

contain two or three species. In Europe, these mixed forests cover 23% of the pan-European region 

(UNECE & FAO, 2011).   

Under potential global warming effects, forest research has experimented with a shift from mono-

specific to more complex forest stands e.g. Aldea, 2018; Bravo-Oviedo et al., 2014; Bravo et al., 2021; 

Cattaneo et al., 2020; del Río et al., 2018, 2019; Merlin et al., 2015; Pretzsch & Schütze, 2021; Riofrio, 

2018), not only because several studies have proved high biodiversity level is linked to mixed forests 

with high forests productivity (Bayer, Seifert, & Pretzsch, 2013; Forrester & Bauhus, 2016; Liang et al., 

2016; Pretzsch & Forrester, 2017) compared to monocultures (Pretzsch & Schütze, 2014; Riofrío et al., 

2017), but also because these stands present some advantages over monospecific ones concerning 

ecological functions and services (Forrester, 2017; Pretzsch & Forrester, 2017), showing to be more 

resilient, resistant, and recover faster from storms (Bravo et al., 2021; Pretzsch et al., 2017). Most 

recently, Rodríguez De Prado et al.(2022), proved, as well, that growth rates for mixed stands were 

higher than in pure stands. However, there is a need for more data and understanding to identify 

whether these observations represent a global trend (Hartmann et al., 2022; Heym et al., 2017), since 

different tree species compositions with different growth rates and final heights will likely develop 

more structurally diverse forests than those composed of only one or few species (Pretzsch & 

Forrester, 2017). As an example of this complexity, it is even difficult to reconcile all points of view 

and to describe mixed forests in a single definition (Bravo-Oviedo et al., 2014), because the 

understanding of tree species interaction in their structure and functioning is still poor (Pretzsch, 

2014). Considering that mixed forest dynamics vary on a small scale (Metz et al., 2013) more studies 

are still needed across a variety of forest types to establish a sound theoretical approach across scales 

(Uzquiano et al., 2021). 
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Models and TLS 

To fully understand forest dynamics, especially in mixed forests, we need models that incorporate 

essential aspects such as emergent properties, multiple and multi-scale interactions or spatial, 

functional, and structural variability (Bravo et al., 2019), because it is well known in natural science 

that structures determine processes and that processes in return modify structures (Pommerening & 

Grabarnik, 2019). Diameter at Breast Height (DBH) and Total Tree Height (TH) are the two most 

common and easy variables for measuring, analyzing, and modeling forest stands (Pretzsch, 2009, 

Chapter 7). They are used separately or together in addition to tree species for estimating other 

important single-tree attributes such as the cross-sectional area, stem volume, or biomass (Luoma et 

al., 2019). 

Data of forest ecosystems are not only temporal but also spatial (Pommerening & Grabarnik, 2019). 

For this reason, Spatial systems analysis of forest ecosystems is therefore an important branch of 

ecological statistics integrating research on forest structure, sampling, monitoring, and modeling 

(Bravo et al., 2019; Pommerening & Grabarnik, 2019). However, the main limitation forestry models 

have traditionally dealt with is the reconstruction of spatial forest structure as they are usually based 

on approximations of the forest structure leading to large errors (Dassot et al., 2011), very hard to 

validate, and difficult to compare across other forest structures (Disney et al., 2018). In addition, 

forestry models ignore the three-dimensional nature of stand structure, its most important 

characteristic (Pretzsch, 2009, Chapter 7). Historically, in structure research, often, the necessary 

methods have been developed within the framework of mathematical statistics (Pommerening & 

Grabarnik, 2019). Nowadays, thanks to technological advances, this has enormously improved (Bravo 

et al., 2019) 

Terrestrial Laser Scanning (TLS) provides us with an accurate tree structure representation, enabling 

us to obtain detailed information at the tree or plot scales (Dassot et al., 2011). For this reason, TLS 

has become the main forest strategy to understand forest dynamics through its structure, which 

becomes even more complex in mixed forests (McElhinny et al., 2005). Since its implementation in 

forestry science, many authors have developed different studies based on mixed forest structures (e.g. 

(Martin-Ducup et al., 2016; Pretzsch & Zenner, 2017; Seidel et al., 2011; Wei et al., 2016) as species 

identity modifies the mixture outcomes (Bravo et al., 2021). This is why it is so necessary to study all 

possible species mixtures to define an appropriate management strategy for each species composition 

(Bravo et al., 2021) based on accurate and numerical analyses.   
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The Crown information 

The crowns of trees have been subjected to much less mensurational study (Hemery et al., 2005). 

However, as pointed out previously, due to the emerging society requirements, crowns are being 

further studied (e.g., Barbeito et al., 2017; Bicl-Sorlin & Bell, 2000; Fichtner et al., 2013; Hasenauer & 

Monserud, 1996; Zarnoch et al., 2004). The crown is a fundamental element of a tree, accomplishing 

multiple functions (W. Lin et al., 2017). For instance, crown size is closely related to the photosynthetic 

capacity of a tree (Hardiman et al., 2011; Hemery et al., 2005) and it may reflect the outcome of 

interspecific interactions (Seidel et al., 2011), looking to fully utilize limiting resources in different 

space and time (Bravo et al., 2021). 

In a mixed stand the inter and intra-specific competition effect between trees is shown through the 

crown (Barbeito et al., 2017; Cattaneo et al., 2020; Lin et al., 2017). The tree structure is highly 

dependent on the species composition of the competitors, and it can vary considerably from one 

species to another (del Río et al., 2019; Pretzsch & Schütze, 2014), but have been barely studied due 

to the difficulty in measuring and defining them accurately, as they were defined through geometric 

forms. Thus, more efficient algorithms need to be developed to calculate tree crown variables to 

facilitate the forest resource survey. (Lin et al., 2017).  

The wood quality: Lean and Sweep 

the straightening capacity of the stem and its mechanical stability (Lean and sweep) are other key 

variables in forest trees related to light capture (Sierra-de-Grado et al., 2022). despite their importance 

to the timber industry, they have not been considered (Thies et al., 2004). By studying these 

measurements we will understand the trade-off with other functions that may imply differential 

resource allocation patterns (Sierra-de-Grado et al., 2022) so that future wood resources can be better 

utilized (Höwler et al., 2017). 

Despite the necessity of study, the role of bark in the straightening process should be investigated in 

the longer term (Sierra-de-Grado et al., 2022). The information on inner wood quality is usually based 

on manipulative experiments at an early stage where data are not available before the trees are felled 

(Höwler et al., 2017) or they are based on subjective classification criteria, to avoid felling the tree 

(Thies et al., 2004). TLS allows to get around this problem and to obtain numerical measurements of 

wood quality such as the lean and the sweep of the stems objectively without felling the tree, thus, 

allowing longer-term experiments to understand how inter and intra-specific interaction acts on trees. 
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The development of wood quality models can be used to characterize the Lean and Sweep of tree 

species, which will help in understanding the cost-benefit balance of the adaptive growth of the tree 

(Thies et al., 2004) as well as understanding the different influences between neighboring trees. 

Pinus sylvestris, Quercus petraea and Quercus pyrenaica 

Determining how the variability is influenced by tree inter or intra-specific interaction status in 

different species is particularly important for tree allometry applications in forest practice and 

modeling (del Río et al., 2019). For this reason, several studies have focused on pine-pine mixtures in 

different regions of the Iberian Peninsula (Riofrio, 2018), and some others on Scots pine-oak mixtures 

(Aldea Mallo, 2018; del Río & Sterba, 2009). In both cases, it was established that mixed stands support 

a greater increase in volume per occupied area compared to monoculture suggesting a species 

interaction with reduced levels of competition in the former (Aldea Mallo, 2018; del Río & Sterba, 

2009). In either case, results from studies focused on Scots pine are quite distinct, probably due to the 

large distribution area of the species with high variability in its response to climatic conditions (Del Río 

et al., 2017). 

This research is focused on Scots pine (Pinus sylvestris L.), Sessile oak (Quercus petraea (Matt.) Liebl.), 

and Pyrenean oak (Quercus pyrenaica Willd.) to get a bit more insight into the ecology of these species. 

In the Iberian Peninsula, low altitudes sites are mainly dominated by Quercus spp., while higher and 

colder areas are dominated by conifers (mainly Pinus spp.). (Muñoz-Gálvez et al., 2021). However, it 

is very common to find them mixed (Figures 1 and 2). 
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Figure 1. Area of distribution for Pinus sylvestris, Quercus petraea, and mixed forest stands of both species in Spain. 
The study site is marked by a black triangle.  

 

Figure 2. Area of distribution for Pinus sylvestris, Quercus pyrenaica, and mixed forest stands of both species in 
Spain. The study site is marked by a black triangle. 
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Pinus sylvestris is the most widely distributed pine species in the world (Riofrio, 2018; Vallet & Perot, 

2018), the species with the biggest area extension in Europe (Aldea Mallo, 2018; Montero et al., 2008), 

and the species with a wide silviculture tradition due to its multiple functions as productive and 

protective species (Montero et al., 2008). In the Iberian Peninsula, Scots pine is mainly found in 

montane climates: 800-2000 m.a.s.l., 600-1200 mm mean annual precipitation, and summer 

precipitation above 100 mm (Montero et al., 2008) representing the southernmost distribution of this 

typical boreal species (Castro et al., 2004). It is a light-demanding pioneer species that can grow in 

half-light conditions (Riofrio, 2018). It has a deep root system with dominant oblique and long 

secondary roots that allow access to deeper soil horizons during drought (Hartmann et al., 2022).  

Quercus petraea is widespread in the temperate zone at an altitude between 0 and 1500 or even at 

1800 m.a.s.l (Reque, 2008) and is one of the most ecologically and economically important hardwood 

tree species in Central Europe (Arsić et al., 2021). It is characterized by having deep secondary 

branches and taproot (Reque, 2008). It has an important protector value as montane species, being 

the habitat of important animal species as Ursus arctos arctos (Clevenger et al., 1992; Reque, 2008; 

Ruiz-Villar et al., 2019) and is considered well adapted for future climate scenarios (Arsić et al., 2021) 

thanks to its broad ecological amplitude (Stimm et al., 2021). 

Quercus pyrenaica is distributed throughout the western Atlantic Mediterranean regions: West 

France, Portugal, Spain, and North Morocco. In Spain, the largest area distribution of this species is 

located in Castilla y Leon, which occupies 67% of its natural distribution area. It is found in sub-humid 

and continental Mediterranean climates between 400-1600 m.a.s.l. with a mean annual precipitation 

of 600 mm. It has a powerful root system, a well-developed central axis, and numerous horizontal and 

superficial roots (J. A. Bravo et al., 2008). It has a short growing season, which may determine its 

distribution. Summer drought is one of its limiting factors, and it avoids the driest areas (Aldea Mallo, 

2018). The Pyrenean oak forests have been widely managed as coppice with silvopastoral uses, such 

as firewood, livestock grazing, and charcoal. Finally, the changes in land use are making it important to 

establish a forest-based management production (Bravo et al., 2008) for this species.  

Scots Pine and both oaks (Sessile oak and Pyrenean oak) usually establish spontaneous mixed stands 

where their natural distribution area is the same (Figure 1 and 2). Our study areas, like so many other 

areas of this type, are the result of forest management strategies during the second half of the 

twentieth century that included re-introducing pine into oak coppice stands as a method of forest 

restoration and to increase stand productivity (Aldea Mallo, 2018). However, the abandonment of 

traditional forest uses and the lack of subsequent management have resulted in structurally and 
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functionally homogeneous dense stands, which are particularly vulnerable to climate change-

associated disturbances (Fernández-de-Uña et al., 2015). In this kind of mixed stand, the successional 

processes are slower and wildlife biodiversity is reduced (Maestre & Cortina, 2004; Ruano et al., 2013). 

For this reason, the study and comprehension of mixed forests are crucial for their sustainable 

management. 

Motivation of the study 

TLS allows us to quantify the admixture effect that varies so much across sites and species (Muñoz-

Gálvez et al., 2021). Recent studies related to the application of terrestrial 3D laser scanning systems 

in forestry focused on the measurement of the crown projection area and crown volume based on the 

point-cloud data; however, most studies used the laser scanning software only to process the data 

(W. Lin et al., 2017). Motivated by the still lack of scientific insights into specific advantages of mixed-

species forest (Pretzsch & Forrester, 2017) and all the potential TLS can provide us, in this research, 

we have evaluated two widespread mixtures in Spain, Pinus sylvestris – Quercus petraea and Pinus 

sylvestris – Quercus pyrenaica where the complementarity or competition between species may cause 

overgrow one over the other (Pretzsch & Forrester, 2017) making proper management of these forests 

difficult. With TLS we can collect accurate data in a way that does not destroy the forest and that 

allows us to fit new models that take into account the interaction between species, which is a 

fundamental part of forest management planning to support decision-making (Janowiak et al., 2017; 

Luoma et al., 2019). The resulting models aim to quantify these two species' composition mixtures 

and thus, managers can anticipate potential future conditions (Janowiak et al., 2017). This will serve 

as a tool to support the most appropriate decision-making to be able to do sustainably use of these 

stands. At the same time, the quantification of these species compositions will also help the work of 

policymakers and other stakeholders involved in land management. 
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OBJECTIVES  

General Objective  

The main objective of this thesis is to determine how inter and intra-specific competition affects crown 

shape on the individual crown structure and wood quality in a mixed stand composed of Pinus 

sylvestris – Quercus petraea and Pinus Sylvestris – Quercus pyrenaica to gain insight on management 

of these forests.  

Specific Objectives 

1. To obtain accurate crown and wood quality data through TLS  

To characterize the crown and wood quality of every tree within the studied plots we used 

TLS. We firstly hypothesize that TLS techniques allow foresters to obtain high-quality 

information as traditional approaches do (e.g. through tools such as calipers and 

hypsometers). Thereafter, we developed several methods to obtain accurate and objective 

variables of the crown and the stem from TLS point clouds.  

2. Determine a good approach to study the inter and intra-specific   competition  

To determine the extent of influence of the surrounding trees around the target tree, we 

determined the three radii of influence (5, 7.5, and 10 m), thus we were able to analyze the 

density, competition, and mixture effect of the trees as a continuous variable.   

3. Expanding and fitting crown and wood quality models 

To determine and quantify how species composition affects the crown shape of the trees, we 

selected crown models and expanded using explanatory variables of size, density, 

competition, and mixture and tested whether they had positive or negative relationships in 

their four crown variables (response variables): Maximum Crown Width Height (MCWH), 

Crown Base Height (CBH), Crown Projection Area (CPA), and Crown Volume (CV).  

We followed the same methodology for wood quality analysis, selecting the Lean and the 

Sweep of the stem as the response variables.  

4. To test the robustness of crown fitted models  

To verify the robustness of the first models fitted for Pinus sylvestris-Quercus petraea, we 
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conducted three analyses: (1) we applied the models to the data of the mixture Pinus 

sylvestris-Quercus pyrenaica, (2) we fitted the coefficient of the models for this second 

mixture, and (3) we fitted models specifically for our second mixture Pinus sylvestris-Quercus 

pyrenaica. We then compared all of them using residual analyses and the AIC index. 
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Graphical approach 

The research activity of the thesis is shown in Figures 3 and 4 as a linear evolution. Figure 3 shows the 

first part of this thesis, which is the collection of data with both TLS and conventional methods, thus 

our TLS data can be validated. The second part of this figure shows the steps followed for the 

acquisition of data, which were classified into two groups: (1) Response variables: Maximum Crown 

Width Height (MCWH), Crown Base Height (CBH), Crown Projection area (CPA), and Crown Volume 

(CV), and (2) Explanatory Variables, which at the same time were classified in four groups: (1) Size – 

Diameter at Breast Height (DBH), Total Height (TH) and the square DBH by the TH (d2h); (2) Density – 

Total Basal area (BAtotal); (3) Competition – Total Basal Area of Largest trees (BALtotal), Hegyi Index (C.I.) 

and crown asymmetry (Asym), and (4) the mixture that was calculated based on the ratios of BA, BAL, 

and the number of pines surrounding the target trees.  

 

 

 

Figure 3. Thesis workflow process of collecting and preparing TLS data for further analysis.  
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Figure 4 shows the second part of this thesis, which is the analysis of the TLS data. The figure shows 

the three main steps we implemented. We first created three radii of influence to fit crown models, 

taking into account the inter and intra-specific competition within those radii of influence. Then, 

models for crown variables were fitted for the Pinus sylvestris-Quercus petraea mixture and then for 

Pinus sylvestris-Quercus pyrenaica. For this second mixture, we did three analyses to check the 

robustness of our fitted models for the first mixture analysis so its outcomes performed adequately 

on a wide range of situations been unaffected by departures from the initial conditions. Finally, we 

fitted wood quality models for the mixture Pinus sylvestris-Quercus petraea. 

Figure 4. Thesis workflow process of TLS data analysis to obtain crown and wood, quality models. 
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STUDY AREA 

This study has been executed in two experimental sites that belong to the Sustainable Forest 

Management Research Institute (iuFOR). These sites consist of pine-oak mixtures. The first 

experimental site, located in Valberzoso (Palencia-Spain), is formed by Pinus sylvestris and Quercus 

petraea. The second site is located in Palacio de Valdellorma (León-Spain) and is formed by a mixture 

of Pinus sylvestris and Quercus pyrenaica. Both stands have a similar history, coming from an 

abandoned monospecific pine plantation planted during the 1970 decade that over time has allowed 

the natural resprout of oak species, which was the previous native forest type in these locations. 

Nowadays, thanks to this evolution, we have mixed forests at different development stages confirming 

a semi-uniform forest stand.  

Pinus sylvestris – Quercus petraea (Site 1) 

Study area 

Our first study area consisted of a mix of Pinus sylvestris and Quercus petraea, located in the 

municipality of Valberzoso, Northern Spain (Palencia, 42°54′48″ N, 4°14′31″ W) in the region of Castilla 

y León at an altitude of 1318 m.a.s.l. This area is located within the Cantabrian Mountain Range, at 

the border of the Atlantic climate, therefore it is characterized by both continental and Atlantic 

influences in the climate. The mean annual temperature is 9.9°C but it has a large thermal oscillation 

(Max. 25.3°C during Summer and min. -1.9°C during Winter). The mean annual precipitation is 1044 

mm (Max. 82 mm during October-November and min. 29 mm during July) (AEMET). 

The soil parent material of this area originated in the Triassic period and the soil is composed of 

sandstone and conglomerate, with small zones of oil in the occidental sector which originated during 

the Carboniferous. The soil of this area has limitations in its development due to the extreme shaping 

factors in this mountain area, i.e., cold weather, steep slope, and intense deforestation. Nevertheless, 

in those areas where the slope is less steep and vegetation-covered, high humidity allows well-

developed, deep, and acid forest soils. Classified as humic cambisol  (CMu) and lithic Leptosol (Lpq) by 

WRB FAO. 

The existing vegetation of the study area corresponds to the evolution of the landscape. It is 

characterized mainly by the presence of deciduous species, especially large oak and beech forests. 

Small natural populations of Pinus sylvestris can be found in a very singular way, however, there are 

large plantations of this species, which has enriched the ecosystem of transition to the plateau (Lopez 

Leiva et al., 2009).  
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Experimental Design  

In September 2017, two triplets were established. Each triplet consists of three plots, one next to each 

other with similar site conditions (Figure 5). The permanent plots set within each triplet are 

rectangular, and limits are marked with wooden poles 50 cm in height in each corner. Plot sizes varied 

to include at least 40 trees of each species of which at least 20 in total are dominant (Table 1). In the 

pure pine stands the proportion of pine stem varied from 73.1 to 90%, and in pure oak stands from 

85.3 to 95.3%. Finally, in the mixed stands, stem pines and oaks' proportion varies from 41.1 to 45.7%, 

and from 52.4 to 58.9% respectively.  

 

Figure 5. Triplets location. Distinguish by colors. White are triplets belonging to Triplet 1, and yellow are triplets belonging 
to Triplet 2. 
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Table 1. Inventory data of oak-pine triplets where stand indicates plot condition (pure or mixed) and the letters Ps and Qp 
stand for Pinus sylvestris and Quercus petraea respectively. n/plot represents the total number of trees within each plot; n 
pines the number of Pinus sylvestris, n oaks the number of Quercus petraea, and n other the number of other species within 
the plots different from pines and oaks.  

Triplet Plot ID 

Plot  

size (m) 

Stand n/plot n pines n oaks n other 

1 

2134101 25x25 pure-Ps 70 63 7 -- 

4234107 30x30 pure-Qp 102 0 87 15 

92434104 25x25 mix-PsQp 105 48 55 2 

2 

2134202 30x30 pure_Ps 78 57 21 -- 

4234205 20x30 pure-Qp 85 4 81 -- 

92434206 30x30 mix-PsQp 107 44 63 -- 

 

Pinus sylvestris – Quercus pyrenaica (Site 2) 

Study area 

The second experimental site was located in Palacio de Valdellorma (León, 42º 45’ 42.4’’ N, 05º 12’ 

39.6’’ W) in north-western Spain at an altitude of 990 m.a.s.l. The soil parent material of this area 

originated in the Era Cenozoic subera tertiary. This area has a moderate slope of 16% and the soil is 

composed of acid conglomerates based on Miocene clay sediments (IGN, 1991). Soil is classified as 

lithic Leptosol (LPq) and calcaric Regosol (RGc) by WRB FAO. 

This area has a continental Mediterranean climate. The mean annual precipitation is 515 mm with a 

dry season between July and August. The mean annual temperature is 11.1 ºC (Max. 27.4 ºC during 

Summer), and the probability of the frost period from December to February. 

The existing vegetation of the area is Mediterranean species such as Erika sp., and Quercus pyrenaica 

combined with Pinus sylvestris plantation. 

Experimental Design 

This second experimental site was established in 2013 following a split-plot design: one single block 

divided into nine plots 50x40m (Figure 6). Within these plots, three forest thinning effects were carried 

out regarding their Basal Area (BA) during the summer of 2015. The scannings were made in three of 

the nine plots (Figure 6), and they were made very close in time to the thinning (January 2016), thus, 

no thinning effect was taken into account in this study (Table 2).  
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Figure 6. Experimental site of Palacio de Valdellorma, following 
a split-plot design. Circled in red are the three plots taken for this 
study. 

Table 2. Inventory data of oak-pine of the experimental site of Palacio de Valdellorma. Where “treatment” indicates the 
intensity of thinning of that plot. n/plot represents the total number of trees within each plot; n pines the number of Pinus 
sylvestris, n oaks the number of Quercus pyrenaica, and n other the number of other species within the plots different from 
pines and oaks.  

Plot ID Treatment n/plot n pines n oaks n other 

A1 50% 725 316 398 11 

A2 25% 875 283 592 0 

Z2 control 774 295 472 7 
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DATA COLLECTION  

Field data 

For both sites, all trees belonging to the plots were labeled (tree ID), and each tree position (Cartesian 

x and y coordinates) was recorded with a Total Station (Topcon 220). Diameter at breast height (DBH) 

above 7.5 cm was measured with a caliper, and total height (TH) of the tree was measured with a 

hypsometer Vertex III (Haglöf Sweden) for all of the trees. In addition, for the experimental site of 

Valberzoso, Crown at Breast Height (CBH) was measured with Vertex III, and the projection radii (in 

four directions: N, E, S, W) were measured with tape to the closest cm. Tables 3 and 4 summarize the 

stand characteristics for each species and each experimental site 1 and 2, respectively.  
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Table 3. Stand characteristics of the study species. n stands for the number of total tree species. DBH is the Diameter at 
Breast Height in cm. TH is the total height of the tree in m. CBH is the Crown Base Height in m. CPA is the Crown Projection 
Area in cm2, and BA is the basal area in m2/ha. 

  Main tree species 

   Pine     Oak     

   n= 254    n= 480     

 min 13.60   7.20   

DBH (cm) mean (± SD) 29.69 ± 6.61 19.91 ± 6.51 

 Median 29.73   19.65   

  Max 53.35   60.50     

  min 10.50   4.00   

TH (m) mean (± SD) 18.23 ± 1.90 17.32 ± 2.93 

 Median 18.60   18.00   

  Max 23.90   23.70     

  min 1.10   2.00   

 mean (± SD) 12.56 ± 2.08 11.67 ± 2.21 

CBH (m) Median 12.70   12.00   

  Max 17.50   16.70     

  min 0.59   0.14   

 mean (± SD) 12.50 ± 8.80 9.88 ± 9.37 

CPA (cm2) Median 10.71   7.49   

  Max 56.61   114.20     

  min 0.17   0.06   

 mean ( ± SD) 0.92 ± 0.41 0.50 ± 0.40 

BA (m2/ha) Median 0.90   0.43   

  Max 2.49   4.96     
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TLS data collection 

For both experimental sites, data collection was the same. The diagram of the following methodology 

is shown in Diagram 1. 

Diagram 1. Flowchart of Fieldwork data collection and the processing flowchart for TLS data. 

Georeferencing 

During scanning and as supporting material georeferenced plots corners were recorded with a sub-

metric GPS Leica model SR20 frequency equipment with external antenna reception AT501. This 

equipment has an error margin of centimeters. This step was taken to speed up the tree identification 

process since data scans are metric, i.e. we can make use of TLS data to obtain the data of the 

densitometric variables but these data are not oriented, either referenced or locally or globally (UTM 

coordinates) so the correspondence between trees turns difficult. Thanks to this georeferencing we 

were able to minimize the error of the actual location of the plots, and therefore, make the 

correspondence of tree identification between field and point clouds easier.  
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For this purpose, for the first experimental site, we recorded three corners of each plot. Due to canopy 

cover, we have always chosen the corners closer to the road to ensure the GPS would find enough 

satellites (Figure 7). For the second experimental site, only five points were needed because plots 

were closer to each other, and connections between plots were possible to make (Figure 7). For each 

station, the GPS was located for 30 minutes, so that, the error was minimized.  

 

Figure 7. From left to right. Sub-metric GPS Leica Model SR20. Sketch of the experimental plots of Valberzoso and Palacio de 
Valdellorma. Red circles represent the corners where the GPS sub-metric was placed. 

 

As mentioned before, the perfect identification of these points is very important afterward in 

deskwork, thus, after each GPS station, the exact place was marked with one white sphere over a 

wooden pole (needed for the scanning process) and perfectly distinguished from the rest of white 

spheres (Figure 8).  
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Figure 8. Characterization of GPS points in the field (left) and identification of these points through the point clouds (right). 

TLS data collection  

Experimental site 1 (Valberzoso, Palencia) was scanned twice. The first time in September 2018, but 

after processing data, we observed that the quality of the data was not good enough to study tree 

architecture due to the leaves of the oak trees were obstructing the stem and crown information, 

therefore a second scan was performed between February and March 2020. Experimental site 2 

(Palacio de Valdellorma, Leon) was scanned in March 2016. 

Previous to scanning and to assure the recording of all the trees belonging to the plots and to optimize 

battery scan life, a pre-design of a multiple-scan approach on each tree-plot map was done. However, 

the final amount of scanner positions varied depending on the plot density. For experimental site 1, 

where stand density was the same across all the plots, 12 scanner positions were needed in each plot. 

For experimental site 2, where different stand density existed the final amount of scan positions were 

24 for plot A1 where the thinning intensity was 50% but for plots Z2 and A2, where the thinning 

intensity was 25% and 0%, respectively, 48 scan positions were needed.  

Terrestrial LiDAR data were captured by a Faro Focus 3D device. Panoramic spherical scans were 

captured, containing a horizontal angle from 0° to 360° and a vertical angle from -60° to 90°. The scan 

was mounted on a tripod at approximately 1.3 m above the ground. Each scan size was 8192x3414 

points, that is to say, 28.0 million points per capture and spatial resolution of 7.670 mm at 10 m. The 

rest of the characteristics are defined in Table 4.  
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Table 4. Faro Focus 3D settings characteristics were used to collect the data. 

Angular Resolution 0.6135 milirad Horizontal field of view 0°  ̶  360° 

Quality 2x Vertical field of view -60°  ̶  90° 

Scan Duration 

(mm:ss) 
approx. 02:08 Point Distance 7.670 mm @ 10 m 

Scan Size (Pt) 8192x3414   

Points captured per scan 28 M  

 

Faro Focus 3D had it owns 10 spheres of alignment which were 15 cm in diameter but based on 

previous experience (Uzquiano, 2014) to facilitate their recognition during processing data, we used 

15 bigger spheres: 18 cm diameter cistern buoys, as reference points as they could be recognizable 

from farther away (Marcos, 2021). They were winded on a one-meter high wooden pole as is shown 

in Figure 8. During this process, to ensure the correct alignment of scans, we had to take care of two 

things: (1) The scanner should be able to recognize at least three of them in each scan position. (2) As 

the number of spheres was not enough to cover the entire plot at once assuring the visibility of three 

of them in each scan position, they had to be moved as we went scanning along with the plot, 

therefore we should take care the spheres were recorded in the same position from at least two scan 

positions. The total time needed for scanning each plot was about two hours, except for plots A2 and 

Z2 of Experimental site 2, where the final scanning time per plot was 5 hours each.  

TLS data processing 

To convert scan captions in point clouds we used a Workstation Intel CORE i7-5280K. hard disk SSD 

256 GB Samsung 950 PPRO M S2. Hard disk SATA 4TB. WD Blank CPU INTEL 1022 CORE i7-5820K 3.3G. 

6 CORE 6 CACHE. 4 memories DIMM 8 GB DDR4.  

The first step needed was to convert the panoramic (2D) scans into 3D point clouds. Faro Focus 3D 

creates .fls files. This extension is only readable by Faro Focus 3D’s own software, Faro Scene (Faro 

Technologies Inc., Lake Marry, USA). We used Version 5.2 and 7.0 for experimental sites 2 and 1 

respectively. Thanks to this software, we first made the alignment of scans, i.e. the scan placements, 

where every scan position is located in its actual position in the field by the recognition of, at least 

three white spheres with enough points (Figure 9), i.e. spheres were close enough to the scan position 

to be recognized as spheres if the sphere was 10 m far from the scanner, then we would have one 
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point every 7.67 mm (table 4), but if it was 20 m then we would have one point each 15.34 mm, the 

closer to the scan, the better. This processing of the scans can be done automatically using the option 

of Pre-processing (Marcos, 2021). Once the characteristics of the spheres were set into the software, 

the program searched for them automatically. This processing time varied depending on project size. 

Our projects varied between 5 and 10 Gb and therefore this processing time varied between 2 hours 

and 6 hours, respectively. After this pre-processing step is completed, it was executed a manual 

supervision scan to check the recognition of spheres was done correctly as sometimes it recognized 

other objects such as leaves or branches as if they were spheres or, on the contrary, did not recognize 

all the spheres in the scan. Once this process was done, scans were all aligned (Figure 10), and the 

project was saved as one single point cloud file with a .xyz extension. Therefore, we could edit the plot 

point clouds in other programs.  

 

Figure 9. Recognition of at least three spheres in every scanned image to be able to do the alignment and therefore convert 
2D panoramic images of scans into 3D point clouds. 
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Figure 10. Scan positions performed in Faro Scene. Each scan position is characterized by one color. The image on the left 
shows one plot without being aligned, and on the right, the scan positions are well located after white spheres were 
recognized. 

 

To be able to identify each 3D tree with its corresponding ID the .xyz files were imported together 

with the georeferenced corner of the plots, which had a .txt format to the module IMispect from the 

software Polyworks Version 12.1.3 (InnovMetric Software Inc., Quebec, Canada) (Barbeito et al., 2017; 

Ferrarese et al., 2015; Hackenberg et al., 2015) and overlapped the point clouds layer (.xyz files) on 

the UTM points (the georeferenced corners). This process was done thanks to the characterization 

made during fieldwork, which let us know, which ones were the georeferenced points to be 

overlapped on the coordinates (Figure 8). Finally, we imported as text file (.txt format) UTM 

coordinates of all the trees belonging to the plots. This process was done manually. Since the project 

was already georeferenced, these points overlapped in their right position (Figure 11).  

 

http://www.linguee.es/ingles-espanol/traduccion/characterization.html
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Figure 11. TLS trees correlated with their correspondent ID in the field after the .txt file of UTM tree 
coordinates was overlapped on point clouds. 

 

Tree segmentation and variable extraction 

Tree segmentation consists of obtaining one point cloud for each tree belonging to the plot, i.e. we 

should have as many point clouds as trees in the plot. This segmentation was done differently in the 

two experimental sites and is described below.  

Pinus sylvestris – Quercus petraea 

For our first experimental site, tree segmentation was done in two different ways. For Triplet 1, this 

isolation was conducted manually: we edited the original point cloud in IMispect selected each tree, 

and made a copy of the point cloud for each tree. Triplet 2 trees were based on density spatial 

clustering to detect individual-tree positions. This was performed within the programming 

environment of R (R Core Team, 2016) using the R packages rlas (Roussel & De Boissieu, 2020), dbscan 

(Hahsler et al., 2019), TreeLS (De Conto, 2020), and conicfit (Gama & Chernov, 2015), which 

automatized the method. For this method, only the x- and y-axes are used as input data. Firstly, the 

rlas package was used to convert our point cloud data into an interchange of 3-dimensional point 

cloud data process, next, dbscan was automatically able to detect each tree as a cluster, i.e., each 

recognized cluster (stem), and received a unique number and therefore, could be processed 

individually. Then each cluster was individually queried as to, which stem base cluster is closest in 
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distance and whether this distance is close enough (≤0.05m) to be classified as associated points. 

Stems were detected through the Hough Transformation, adapted by Olofsson et al. (2014), 

implemented in the R Package TreeLS. Followed by De Conto (2016) directions to remove the ground 

points, leaving only the stem. Finally, dead branches were removed by fitting an ellipse by R Package 

conicfit. After this step, each tree is visually checked for completeness. If necessary, unrecognized tree 

parts are added manually, and artifacts not belonging to the tree are removed using the software 

RiSCAN PRO. More detailed information is provided in (Jacobs et al., 2019). In both cases, final refined 

data for each tree were needed and it was performed manually in IMispect and the free software 

Cloud Compare Version 2.11 alpha (Anoia) by deleting points that were not part of the trees or by 

separating trees, that were identified as only one due to their crown proximity. For this experimental 

site, all the trees belonging to the study plots were identified, but due to canopy occlusion, especially 

in oak stands, which made tree separation impossible, the study was finally conducted with 91.2% of 

the total (Table 5). The total time for the Identification, isolation, and data refining of this experimental 

site took approximately 5 months.  

Table 5. Total trees per plot (n/plot) compared to total point cloud trees isolated (TLS trees) 

Triplet Plot type surface species n/plot TLS trees 

1 

1 pure 25x25 Pine 63 61 

7 pure 25x25 Oak 87 75 

4 mixed 30x30 Pine - Oak 48 - 55 47 - 53 

2 

2 pure 30x30 Pine 57 47 

5 pure 20x30 Oak 81 74 

6 mixed 30x30 Pine - Oak 44 - 63 38 - 54 

    Total 498 449 

 

EXTRACTION OF VARIABLES 

For this experimental site, TLS dendrometric variables were extracted using the software 

“Mathematica 11” (Wolfram Research Inc., Champaign, IL, USA). In total, for each tree, we obtained 

eleven variables: Diameter at Breast Height (DBH), Total Height (TH), lean, sweep, and the crown 

metrics of Crown Base Height (CBH), Maximum Crown Width Height (MCWH), Maximum Area, Crown 

Volume (CV), Crown Surface Area (CSA), Crown Length (CL) (Figure 12), asymmetry of the crown 

concerning the stem (asymmetry) and as wood quality variables: Lean and Sweep (Figure 13). An 

extensive description of the computing process can be found in (Seidel et al., 2011) 



 

40 
 

 

Figure 12. Variables computed for each tree by “Mathematica11” software. TH= Total Height; CL= Crown 
Length; CW= Crown Width; CBH= Crown Base Height; DBH= Diameter at Breast Height; CPA= Crown 
Projection Area; MCWH= Maximum Crown Width Height; CV= Crown Volume.  
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Figure 13. Schematic draft of a stem section. Where a represents 

the height of the tree on the y axis, b the longitude of the stem, 

d the lean of the stem, and c the sweep of the stem. Image 
source: Höwler et al. (2017) 
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Pinus sylvestris – Quercus pyrenaica 

For this second case, the isolation of the trees was by a combination of the software Polyworks and 

CompuTree. In this case, the great canopy occlusion of the stands, the small diameter size of many of 

the oak trees (Figure 14), and the steep and rugged ground (Figure 15) made the isolation and 

identification of the trees especially difficult.  

 

 

Figure 14. The great occlusion of the stands and the small diameter size of many oak trees made the isolation and 
identification of trees very difficult. 



 

43 
 

 

Figure 15. The plot density together with the steep and rugged ground made the identification and isolation of trees 
especially difficult. 

On the other hand, due to the number of scan positions (24, 42, and 43) the size of the project was 

between 9 and 11 Gb, which slowed down the processing of the data. For these reasons, we decided 

to isolate the trees with a band diameter (part of other experimental plots) which were easier to 

identify from the rest of the trees (Figure 16), and from the identification of these, the identification 

of the left trees was done. This first step was done by module IMispect from Polyworks version 12.1.3 

(64 bits). 
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Figure 16. A) Creation of a subplot around trees with dendrometric bands, easy to identify from the point clouds (B). 

Once the subplots were created, they were exported as .xyz files and imported to the free software 

CompuTree version 3.418. We used a script developed by LerFob-INRAE (Nancy-France). This program 

first identifies each stem, which is validated manually, and once the recognition is done, the program 

colors each of the trees with different colors. Finally, only one tree could be selected and the rest 

deleted (Figure 17) (Uzquiano, 2016), this way we isolated a total of 54 pines and 61 oaks (Table 6). 

These data were exported as ASCII files and imported again to the IMispect module and Cloud 

Compare Version 2.11. alpha (Anoia) for the final data cleaning.  

Table 6. TLS trees that were isolated per plot and species and the total.  

Plot ID Treatment n pine n oak 

A1 50% 19 22 

A2 25% 19 22 

Z2 control 16 17 

 Total 54 61 
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Figure 17. Step by Step Isolation method performed by CompuTree. 

 

EXTRACTION OF VARIABLES 

The extraction of the variables of the tree was done with Computree. This program allowed us to 

create envelopes around each tree every 10 cm (Figure 18). The longitude and area of every envelope 

every 10 cm surrounding each of the trees were exported as a spreadsheet. This way we defined the 

DBH, TH MCWH, CPA, and CBH. The CBH was defined as the height at which the diameter of the 

envelopes was at least twice the BA of the tree (Barbeito et al., 2017).  

 

Figure 18. Envelopes that were created in CompuTree every 10 cm around every tree. 
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DATA ANALYSIS  

Data analysis was conducted using Rstudio Inc. Version 1.1.453. Packages used were: dplyr (Hadley et 

al., 2020), data.table (Dowle & Srinivasan, 2020), lme4 (Bates et al., 2015), broom (Robinson et al., 

2021), ggplot2 (Wickham, 2016), psych (Revelle, 2020), pastecs (Grosjean & Ibanez, 2018), car (Fox & 

Weisberg, 2019), gridExtra (Auguie, 2017), nls2 (Grothendieck, 2013), and tibble (Müller & Wickham, 

2020). 

before proceeding with the analysis of the variables through TLS data, we analyzed their degree of 

affinity with the field data. Firstly, we compared TLS data distribution with Field data distribution with 

the Kolmogorov-Smirnov test. Following this, we applied Lin’s concordance correlation coefficient 

(CCC) (Lin, 1989) to compare TLS and Field measurements of the same variables.   

Crown analysis  

To determine the variables we needed for the analysis of the crown variables we based on usual forest 

modeling literature, and expanded the models following the methodology applied (Lizarralde, 2008) 

adding the mixture of explanatory variables (Table 7 and Table 8). Once we had the models, we were 

able to determine and adapt our data to our four categories of explanatory variables (size, density, 

competition, and, mixture) as shown in Table 8. For the Crown Volume, the explanatory variable d2h 

(squared diameter at breast height times height) was included as a size variable since this variable 

represents a proxy for tree volume. Furthermore, for the CPA response variable, the logarithmic 

transformation of the Basal Area was included as a density explanatory variable, (Ritter & Nothdurft, 

2018). As for mixing variables, we used the Ratio variables of species, and due to the high correlation 

(ρ ≥ 0.9) to avoid multicollinearity problems, we decided to study only the ratio variables of pines, 

based on the more extensive bibliography on the subjects of pines mixture effect than oak mixture 

effects.  
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Table 7. Crown models were defined for this study. Response Variables are Maximum Crown Width height (MCWH), Crown 
Base Height (CBH), Crown Projection Area (CPA), and Crown Volume (CV), and explanatory models were classified into four 
categories. s= size, d= density, c= competition and m= mixture. 

Response 

Variables 
Equation Author 

MCWH 

𝑀𝐶𝑊𝐻 =
𝑇𝐻

1 + 𝑒𝛼1∗𝑠+𝛼2∗𝑑+𝛼3∗𝑐+𝛼4∗𝑚
 

 

(Pain & Hann, 1982) 

 

CBH 

𝐶𝐵𝐻 =
𝑀𝐶𝑊𝐻

1 + 𝑒𝛼1∗(
𝑑
𝑠

)+𝛼2∗𝑑+𝛼3∗𝑐+𝛼4∗𝑚
 

 

(Hann et al., 2003) 

 

CPA 

𝐶𝑃𝐴 =  𝑒𝛼0+𝛼1𝑠+𝛼2∗𝑑+𝛼3∗𝑐+𝛼4∗𝑚 

 

(Ritter & Nothdurft, 

2018) 

CV 𝐶𝑉 =  𝛼0 + 𝛼1 ∗ 𝑠 + 𝛼2 ∗ 𝑑 + 𝛼3 ∗ 𝑐 + 𝛼4 ∗ 𝑚 (Sanquetta et al., 2015) 

 

Table 8. Categories and variables within each category we have used to define explanatory models 

Category  Variable 

Response MCWH CBH CPA CV  

Explanatory      

- Size 
TH DBH d2h 

  

- Density 
BAtotal   

  

- Competition 
BALtotal BALpine BALoak Asymmetry 

C. I. 

- Mixture 
Ratio BApine Ratio BALpine Ratio npine 

  

 

We calculated the Basal area (BA) of each tree from their TLS point clouds and we analyzed the outliers 

for the variables: DBH, BA, TH, CBH, MCWH, CPA, and CV. Next, following Höwler et al. (2017) 

methodology, circular sample plots with a variable radius around each target tree were established. 

Radius size constraints were the size plots of the experimental site 1 (Table 1), the smallest plots we 

had. Thus, we determined three radii sizes at 5, 7.5, and 10m. Once radii sizes were defined, we used 
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R software to create point patterns (ppp) using the R package Spatstat (Baddeley & Turner, 2005) to 

first, delimit the plot size, followed by Siplab package (Garcia, 2014) to determine the Hegyi index 

(Hegyi, 1974), hereafter referred to as the Competition Index (C.I.), which was calculated according to 

Hegyi (1974) (Eq. 1) 

Eq. 1.  𝐻𝑒𝑔𝑦𝑖𝑖 = ∑
𝐷𝐵𝐻

𝐷𝐵𝐻𝑖 ∙(𝑑𝑖𝑠𝑡𝑖𝑗+1)
𝑛
𝑗=1  

Where i stands for target tree i, j for competitor tree, DBH for diameter at breast height, and distance 

between target tree and competitor tree are represented by “dist” within radii encompassing 5, 7.5, 

and 10.  

Within these circular plots, we also determined the BA, the Largest Basal Area (BAL), and the number 

of tree species around each target tree within each of the three circular subplots (Figure 19). Finally, 

response variables (CBH, MCWH, Crown Volume) and DBH and TH were compared between sites to 

see if there were significant differences between species that could explain possible differences in the 

results. 

 

Figure 19. Creation of circular subplots around each target tree with radii = 5, 7.5, and 10 m. 
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Wood Quality  

Wood quality was analyzed only for Experimental site 1. Through the trunk variables Lean and Sweep 

(Figure 13). No similar models were found in the literature, thus we decided to start applying linear 

models (Table 9) to see how our data fit.  

Table 9. Starting model equations for Lean and Sweep 

Response Variables Equation 

Lean 𝐿𝑒𝑎𝑛 =  𝛼0 + 𝛼1 ∗ 𝑠 + 𝛼2 ∗ 𝑑 + 𝛼3 ∗ 𝑐 + 𝛼4 ∗ 𝑚 

Sweep 𝑆𝑤𝑒𝑒𝑝 =  𝛼0 + 𝛼1 ∗ 𝑠 + 𝛼2 ∗ 𝑑 + 𝛼3 ∗ 𝑐 + 𝛼4 ∗ 𝑚 

Model Building  and Selection  

Pinus sylvestris – Quercus petraea 

We worked with 193 pines and 256 oaks. For the response variables: MCWH, CBH, and CPA, non-linear 

regression models were performed using a brute force algorithm from the R package nls2 

(Grothendieck, 2013). For the CV, lean, and sweep variables, simple linear regression was used.  

For each radius of influence considered (5, 7.5, and 10 m) all possible combinations of explanatory 

models (size, density, competition, and mixture) were tested. The total amount of models created for 

each variable varied depending on the number of explanatory variables within the script model. For 

MCWH and CBH we had 144 models, for CPA and CV where a third size variable (d2h), plus the 

Logarithm of BA as density variable, was included we obtained 216 models, and for Lean and Sweep 

we kept the logarithm of BA as a density variable, but we did not keep d2h as a size variable. We 

obtained a total of 180 models.   

To select the best model we followed the Akaike Information Criterion (AIC) (Eq. 2), which is a 

mathematical method for evaluating how well a model fits the data it was generated from. The best-

fit model according to AIC is the one that explains the greatest amount of variation using the fewest 

possible independent variables (Bevans, 2021).  

Eq. 2.  𝐴𝐼𝐶 = 2𝐾 − 2𝑙𝑛 (𝐿) 

Where K is the number of independent variables used and L is the log-likelihood estimate. To compare 

AIC, we calculated the Akaike weight, which is interpreted as probabilities. If the Akaike weight 

approached 1 then, model      was unambiguously supported by the data (Johnson & Omland, 2004). 

The top five models with the lowest AIC index were selected.  
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Finally, we analyzed the residuals of the top5 models for each response variable, and we calculated 

the sum of squares error (SSE) of every model to estimate the power of the regression, as well as their 

R2 to check the general explanatory power of the models. For non-linear models, we calculated the R2 

(Nagelkerke, 1991). Finally, we created the histogram, density plot, and Q-Q plot for every model to 

analyze their residuals.  

Pinus sylvestris – Quercus pyrenaica 

For the analysis of Experimental site 2 we performed three models on 49 pines and 38 oaks. (1) we 

applied the models fitted in site 1 to this new site; (2) we used the models fitted for site 1 but modified 

their coefficients for this site 2; and (3) we fitted new models for this site following the same 

methodology as in Site 1.  

For (1) and (2), where we wanted to see the goodness-of-fit of the models fitted for site 1, we firstly 

created a graph of predicted vs. actual values adjusting a regression line, predicted = β0+ β1·actual. 

Next, we performed a simultaneity test to check regression line was significantly different from the 

bisector of the first quadrant (y=x) (Herrero et al., 2019; Huang. et al., 2003): 

- H0: b0=0 & b1=1 

- H1: b0≠0 or b1≠1 

Finally, we compared the AIC between the models to determine if the models fitted in site 1 are 

applicable to site 2 and thus, create a sound model for these variables or, on the contrary, we need to 

create a new model for each site.  
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RESULTS 

TLS validation and Sites comparison  

The Kolmogorov Smirnov test was not significant (𝛼 = 0.05) for all contrasted variables, which confirms 

the distribution of TLS data was not significantly different from the data taken in the field. Then, CCC 

was tested on the two tree size variables (DBH and TH) from which, the rest of the variables derive. 

We obtained very high rates for both of them which corroborates the confidence (CI) of our analysis: 

CCCDBH: 0.9766 (95% CI 0.9719 - 0.9806) and CCCTH: 0.7429 (95% CI 0.6984 - 0.7817). From here, the 

rest of the analysis was performed with TLS data. 

Firstly, descriptive statistics of all trees classified by species and pure and mixed-species plots were 

performed (Table 10). We have observed that oaks show similar tree heights, both in pure and mixed 

stands, but they are slightly thicker (DBH one cm higher) in the mix with pines than in pure conditions. 

Unlike pines, DBH is up to almost 3.5 cm thinner in the mix with pines but slightly taller (+0.5 m) 

compared to pure plots 

Table 10. Mean Diameter at Breast Height (DBH) in cm and Total height (TH) in m of trees calculated with TLS separated by 
species and kind of plot (pure or mix). n total is the total number of trees measured. 

Species Plot n total 
DBH (cm) TH (m) 

Max mean   SD min Max mean   SD min 

pine 
Pure 113 46.98 30.99 ± 2.07 5.68 26.44 17.33 ±  6.97 11.62 

Mix 84 47.34 27.51 ±  2.13 13.96 22.36 18.04 ±  6.33 11.31 

oak 
Pure 155 61.29 19.50 ±  3.38 7.56 23.20 17.38 ±  7.42 6.39 

Mix 107 33.52 20.53 ±  2.41 10.07 20.85 17.31 ±  5.20 8.73 

 

Fitted Crown models  

Pinus sylvestris and Quercus petraea  

Models were  hierarchized according to the lowest Akaike Information Criterion (AIC). We analyzed 

the residuals and made the necessary changes in the structure of the models (Table 11) to assure 

models met the assumptions, and in the case they did not meet the assumptions after the 

transformation we rejected them. The best models for each crown variable, that we selected 

according to these criteria are shown in Table 12. For all cases, the model selected was the model with 

the lowest AIC index except for the MCWH variable in both species, where models with the second 

AIC index were selected due to residual analyses being slightly better in the second models. 
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Table 11. Final equations for each species and crown response variable. 

  Equation 

MCWH 

Pine 𝑀𝐶𝑊𝐻 =
𝑇𝐻

1 + 𝑒(−0.11·𝐶.𝐼.−0.13·𝑅𝑎𝑡𝑖𝑜𝐵𝐴𝐿𝑝𝑖𝑛𝑒)
 

Oak 𝑀𝐶𝑊𝐻 =
𝑇𝐻

1 + 𝑒(−0.0.9·𝑇𝐻+0.28·𝑅𝑎𝑡𝑖𝑜𝐵𝐴𝑝𝑖𝑛𝑒)
 

CBH 

Pine 𝐶𝐵𝐻 =
𝑀𝐶𝑊𝐻

1 + 𝑒(−22.9·
𝐵𝐴𝑡𝑜𝑡𝑎𝑙

𝐷𝐵𝐻
−0.1·𝐵𝐴𝑝𝑖𝑛𝑒−0.41·𝑅𝐴𝑡𝑖𝑜𝐵𝐴𝐿𝑝𝑖𝑛𝑒)

 

Oak 𝐶𝐵𝐻 =
𝑀𝐶𝑊𝐻

1 + 𝑒(−14.43·
𝐵𝐴𝑡𝑜𝑡𝑎𝑙

𝐷𝐵𝐻
+0.05·𝑙𝑛𝐵𝐴𝑡𝑜𝑡𝑎𝑙+0.04·𝐵𝐴𝐿𝑡𝑜𝑡𝑎𝑙+0.17·𝑅𝐴𝑡𝑖𝑜𝐵𝐴𝐿𝑝𝑖𝑛𝑒)

 

CPA 
Pine 𝐶𝑃𝐴 = 𝑒0.07·𝐷𝐵𝐻+0.02·𝐵𝐴𝑡𝑜𝑡𝑎𝑙−0.1·𝐶.𝐼.) 

Oak 𝐶𝑃𝐴 = 𝑒0.9+0.04·𝐷𝐵𝐻+0.09·𝐵𝐴𝑡𝑜𝑡𝑎𝑙−0.1·𝐵𝐴𝐿.𝑡𝑜𝑡𝑎𝑙+1.15·𝑅𝑎𝑡𝑖𝑜 𝑛 𝑝𝑖𝑛𝑒) 

CV 
Pine 𝐶𝑉 = 1.5𝑒−3 · 𝑑2ℎ + 0.44 · 𝐵𝐴𝑡𝑜𝑡𝑎𝑙 − 2.35 · 𝐶. 𝐼. 

Oak 𝐶𝑉 = −20.28+0.003 · 𝑑2ℎ + 1.03 · 𝐵𝐴𝑡𝑜𝑡𝑎𝑙 − 4.29 · 𝐵𝐴𝐿𝑡𝑜𝑡𝑎𝑙 + 46.92 · 𝑅𝑎𝑡𝑖𝑜𝐵𝐴𝑝𝑖𝑛𝑒) 
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Table 12. The explanatory models were selected as the best fit according to their lowest Akaike index and biological criteria for each response variable (Variable) and species. r= radius of 
influence (5, 7.5 and 10 m); s = size; d=density; c= competition; m= mixture; α0= Intercept; α1-4= the coefficient numbers for each explanatory variable (size, density, competition, and mixture). 
AIC = Akaike, K-S test = P-value of Kolmogorov Smirnov Test for residuals, R2= coefficient of determination of the model.  

Variable Species r s d c m α0 α1 α2 α3 α4 AIC 
K-S 

test 
R2 

MCWH 
P. sylvestris 10   C.I. Ratio BALpine    -0.11 -1.13 646.59 0.078 0.54 

Q. petraea 10 TH   Ratio BApine  -0.095   0.273 890.47 0.007 0.78 

CBH 
P. sylvestris 5 DBH  BALpine Ratio BALpine  -22.87  0.1 -0.41 557.21 0.227 0.71 

Q. petraea 10 DBH ln(BAtotal) BALtotal Ratio BALpine  -14.43 0.05 0.04 0.17 936.91 0.543 0.74 

CPA 
P. sylvestris 10 DBH BAtotal C.I.   0.0655 0.0188 -0.0964  981.45 0.194 0.66 

Q. petraea 7.5 DBH BAtotal BALtotal Ratio npine 0.81 0.039 0.089 -0.186 1.154 1203.11 0.001 0.70 

CV 
P. sylvestris 10 d2H BAtotal C.I.   0.0015 0.44 2.35  1491.12 0.100 0.55 

Q. petraea 7.5 d2H BAtotal BALpine Ratio BA -20.28 0.003 1.03 -4.29 46.92 1904.9 0.010 0.64 
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We observed that the size of the tree was a significant variable for all cases, with only one exception, 

MCWH for pines. In all the cases, tree size affected the crown shape, the bigger the tree, the higher 

the CBH and MCWH were, and the wider the CPA and CV too. That was, the bigger the tree, the higher 

and wide the crown. Competition boosted MCWH and CPA of pines, but it was observed for the rest 

of the variables that, the competition had a negative effect on crown shapes for both species, and 

crowns were shorter and narrower.  

The mixture variable was always statistically significant for oaks (Table 11). The presence of pines 

made the height of the oaks' crowns (MCWH and CBH) smaller, by contrast, it made their crown 

projection and volume larger.  

 

Pinus sylvestris and Quercus pyrenaica  

Testing site 1 fitted models in site 2 (Analysis 1) 

For this first analysis, we applied the models defined in Table 7 to our second experimental site, Palacio 

de Valdellorma. We studied how the predicted values fit against the actual values with these models. 

Models over estimated MCWH values of both pines and oaks, as well as oak CBH values. This was 

contrary to pine CBH and oak CPA values, which were underestimated. The best fit of models was for 

CV, nevertheless, all the simultaneous linear hypothesis tests were significantly different from zero 

and one (Annex 1).  

Fitting models of site 1 to site 2 (Analysis 2) 

The results for the second analysis with the statistical adjustments and fitted coefficients are shown 

in Table 13. 
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Table 13. Fitted models using variables defined for the first experimental site, fitting their coefficient for this second experimental site. 

Variable Species r s d c m α0 α1 α2 α3 α4 AIC SSE R2 

MCWH 
P. sylvestris 10 NA NA C.I. Ratio BALp NA NA NA -0.02 -0.49 114.57 26.30 69.42 

Q. petraea 10 TH NA NA Ratio BAp NA -0.03 NA NA -0.99 98.68 25.50 74.30 

CBH 
P. sylvestris 5 DBH NA BALp Ratio BALp NA 3.82 NA -1.10 0.001 132.85 36.67 44.86 

Q. petraea 10 DBH lnBAt BALt Ratio BALp NA 0.77 0.22 -1.52 0.87 115.77 35.98 40.57 

CPA 
P. sylvestris 10 DBH BAt C.I. NA NA 0.12 -0.80 0.002 NA 217.31 205.54 69.68 

Q. petraea 7.5 DBH BAt BALt Ratio np 0.15 0.02 2.46 -4.61 0.95 160.96 112.14 30.71 

CV 
P. sylvestris 10 d2h BAt C.I. NA NA 0.01 -21.93 0.42 NA 365.48 4227.52 62.92 

Q. petraea 7.5 d2h BAt BALp Ratio BAp -5.84 0.001 27.87 -37.49 11.18 251.58 1217.29 34.42 

 

 

 

 

 

 

 

 



 

56 
 

In this second analysis, the new fitting for the coefficients improved the model. As shown in Figures 

20 and 21. There are some large values where we performed the comparison between predicted 

against actual values, data follow a good correlation. In addition, the linear the multiple linear 

hypothesis tests we have conducted on the models show P-values > 0.05 in all cases, so the null 

hypothesis is accepted, slope =1 and intersection = 0.  

 

  

P value = 0.47 P value = 0.99 

  

P value = 0.93 P value = 1 

Figure 20. Predicted vs. Actual values for each variable, MCWH, CBH, CPA, and CV for Pinus sylvestris and its simultaneous 
linear hypothesis tests P-values.  
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P value = 0.44 P value = 0.84 

  

P value = 0.85 P value = 1 

Figure 21. Predicted vs. Actual values for each variable, MCWH, CBH, CPA, and CV for Quercus sp. and its simultaneous 

linear hypothesis tests P-values.  

 

Comparing the coefficient sign of the first analysis with this second analysis we observed that data 

coefficients had mostly kept the same sign for the oak species but not for the pines, where more than 

half of the coefficients changed their sign (Table 14). 
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Table 14. Difference coefficients for Pinus sylvestris and Quercus Sp. 

Variable analysis Sp. α0 α1 α2 α3 α4 Sp. α0 α1 α2 α3 α4 

MCWH 
0 

Pinus 

sylvestris 

NA NA NA -0.11 -1.13 

Quercus 

Sp. 

NA -0.09 NA NA 0.27 

2 NA NA NA -0.02 -0.49 NA -0.03 NA NA -0.99 

CBH 
0 NA -22.873 NA 0.10 -0.41 NA -14.43 0.06 0.04 0.18 

2 NA 3.823 NA -1.10 -0.003 NA 0.77 0.22 -1.52 0.87 

CPA 
0 NA 0.066 0.02 -0.10 NA 0.81 0.04 0.09 -0.19 1.15 

2 NA 0.122 -0.80 0.005 NA 0.15 0.02 2.46 -4.61 0.95 

CV 
0 NA 0.001 0.44 -2.35 NA -20.28 0.003 1.03 -4.29 46.92 

2 NA 0.008 -21.93 0.42 NA -5.84 0.001 27.87 -37.49 11.18 
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Finally, the comparison between metrics of the models (Tables 15 and 16) shows the fit of the model 

was better for the model with its parameters fitted for this second experimental site. Differences 

between the AIC index were larger for pine than for oaks, being in both cases the variable Crown 

Volume the variable with less variability. The residual analysis for the selected and the model 

candidates is shown in Annex 2. 

Table 15. Comparison of the metrics of the models for analyses 1 and 2 for Pinus sylvestris. 

Variable Analysis Species AIC Δ AIC % dif SSE R2 

MCWH 
1 P. sylvestris 228.41 113.84 49.84 268.52 71.81 

2 P. sylvestris 114.57   26.30 69.42 

CBH 
1 P. sylvestris 270.15 137.30 50.82 604.20 47.47 

2 P. sylvestris 132.85   36.67 44.86 

CPA 
1 P. sylvestris 324.69 107.38 33.07 3061.64 69.97 

2 P. sylvestris 217.31   205.54 69.68 

CV 
1 P. sylvestris 365.48 0.91 0.24 20896.15 60.97 

2 P. sylvestris 366.39   4227.52 62.92 

 

Table 16. Comparison of the metrics of the models for analyses 1 and 2 for Quercus Sp. 

Variable Analysis Species AIC Δ AIC % dif SSE R2 

MCWH 
1 Q. petraea 134.44 35.75 26.59 65.34 34.14 

2 Q. petraea 98.68   25.50 74.30 

CBH 
1 Q. petraea 171.93 56.17 32.67 157.45 -160.55 

2 Q. petraea 115.77   35.98 40.57 

CPA 
1 Q. petraea 290.32 129.36 44.56 3374.16 -1984.64 

2 Q. petraea 160.96   112.14 30.71 

CV 
1 Q. petraea 253.40 1.82 0.71 18608.5 31.20 

2 Q. petraea 251.58   1217.29 34.42 

 

Fitted models for Site 2 (Analysis 3) 

We used the same approach for model selection as for the first experimental site. A total of 144 

models for MCWH and CBH and 216 models for CPA and CV were fitted. Table 17 shows the variables, 

coefficients, and AIC values of the best resulting models. The radii of influence varied depending on 

the species and variable studied, but overall, we observed radii of influence were larger for oaks than 

for pines. Tree size and density were statistically significant variables for most of the models. Mixture 

variables were also significant for all the variables studied, except for CPA. Finally, the competition 

was only significant for oak models (except for MCWH). For pines, the competition was only significant 

for the CV variable. For those cases where competition was significant, the mixture was also significant 

with opposite sign i.e. for those cases where mixture affected negatively, competition affected 
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positively, and the other way around. Size and density tended to appear together in the best-fitted 

models, with the same sign as competition and mixture for pines. Nevertheless, for oaks, density and 

size acted positively, i.e. the larger the oak and the higher the density of pines around the tree, the 

larger CPA and CV the oak had. Annex 3 shows the complete residual analysis of the first 5 models 

with the lowest AIC index for each variable and species for this study. 
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Table 17. Estimated parameter and statistical adjustment of the models. 

Variable Species r s d c m α0 α1 α2 α3 α4 AIC K-S test R2 

MCWH 

 

P. 

sylvestris 
10 DBH BAt NA Ratio BALp NA 0.03 -0.66 NA -0.90 106.05 0.73 0.75 

Q. 

petraea 
10 TH NA NA Ratio BALp NA -0.06 NA NA -0.70 99.59 0.42 0.74 

CBH 

P. 

sylvestris 
5 DBH lnBAt NA Ratio BAp NA 12.09 -0.85 NA -0.94 125.16 0.79 0.53 

Q. 

petraea 
7.5 NA NA C.I.  Ratio np NA NA NA -0.05 0.53 110.91 0.53 0.42 

CPA 

P. 

sylvestris 
5 DBH BAt NA NA NA 0.12 -2.79 NA NA 208.73 0.78 0.73 

Q. 

petraea 
10 TH lnBAt BALp NA NA 0.26 0.43 -3.43 NA 122.43 0.86 72.1 

CV 

P. 

sylvestris 
5 d2h BAt BALp Ratio np 17.75 0.01 -152.77 105.53 -22.15 355.80 0.76 0.71 

Q. 

petraea 
10 TH BAt BALp Ratio np -20.88 1.57 31.33 -42.86 15.97 237.25 1 0. 45 
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Finally, the Akaike weights (AICcWt) are shown in Table 18. The best-fitted model is for CPA where the 

models explained 78% and 94% of the variability for pines and oaks, respectively. On the contrary, the 

worst fitting models were those for the Crown Volume variable, for both species where only 27% and 

39% of the variability for pine and oaks were explained by the model, respectively. For MCWH, the 

model was best fitted for oaks than for pines, but for CBH pines CBH data were better explained by 

the model than for oaks. 

 

Table 18. K: the number of parameters in the model. AICc: information score of the model. ΔAICc: the difference in AIC score 
between the best model and the being compared. AICcWt: the proportion of the total amount of predictive power by the 
full set of models contained in the model being assessed. Cum.Wt: the sum of the AICc weights. LL: log-likelihood (how likely 
the model is, given the data). 

Variable Species 
Mod. 

Selected 
K AICc AICcWt Cum.Wt LL 

MCWH 
pine [1] 4 106.95 0.30 0.30 -49.02 

oak [1] 2 97.84 0.58 0.58 -46.75 

CBH 
pine [1] 4 126.06 0.73 0.73 -58.58 

oak [1] 3 111.62 0.34 0.34 -52.46 

CPA 
pine [1] 3 209.26 0.78 0.78 -101.36 

oak [1] 4 114.37 0.94 0.94 -52.58 

CV 
pine [3] 5 357.50 0.27 0.27 -173.05 

oak [1] 3 174.83 0.39 0.38 -84.03 

 

Comparison of models: Analyses 2 Vs. 3 

Comparing the two analyses, which fitted our data well, the models fitted specifically for the 

experimental site of Palacio de Valdellorma (Analysis 3) were always better than the models (Analysis 

2) of the other experimental site with coefficients fitted for this second experimental site (Table 19). 

For Analysis 3, Akaike weight approaches were always up to 98% for both species, pines, and oaks.  
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Table 19. AIC comparison analyses 2 and 3. 

Species Variable Analysis K AICc Delta_AICc ModelLik AICcWt LL Cum. Wt 

Pine 

MCWH 
3 4 107.2 0 1 0.98 -49.14 0.98 

2 3 115.1 7.9 0.02 0.02 -54.28 1 

CBH 
3 4 126.07 0 1 0.98 -58.58 0.98 

2 4 133.76 7.69 0.02 0.02 -62.42 1 

CPA 
3 3 213.8 0 1 0.9 -103.63 0.9 

2 4 218.22 4.42 0.11 0.1 -104.66 1 

CV 
3 5 357.5 0 1 0.99 -173.05 0.99 

2 4 366.39 8.88 0.01 0.01 -178.74 1 

Oak 

MCWH 
3 3 99.39 0 1 0.99 -46.34 0.99 

2 2 109.85 10.46 0.01 0.01 -52.75 1 

CBH 
3 3 111.7 0 1 1 -52.5 1 

2 5 219.51 107.81 3.88E-24 3.88E-24 -103.82 1 

CPA 
3 4 114.37 0 1 1 -52.58 1 

2 5 161.66 47.28 5.40E-11 5.40E-11 -74.89 1 

CV 
3 3 244.93 0 1 0.996 -119.11 1 

2 6 255.8 10.87 0.004 0.004 -120.55 1 

 

 

Tables 20 and 21 show the models fitted with the two analyses with the best results for pines and oaks 

respectively showing, (1) Analysis 2, resulting models for site 1 with the specific coefficients for Palacio 

de Valdellorma, and (2) Analysis 3, resulting models developed specifically for site 2. For pines (Table 

20), all resulting models for site 2 (Analysis 3) were fitted with fewer variables than the resulting 

models from site1 (Analysis 2). Nevertheless, the differences between their AIC were small, being the 

largest one 8% for MCWH. On the other hand, oaks (Table 21) had a higher variability between the 

models, reaching a difference in AIC among models of 42% and 41% for CV and CPA, respectively.  
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Table 20. Comparison of analysis for Pinus sylvestris. The intercept α0 is not shown in this table since it was not statistically significant for any of the models. 

Var. Analysis r s d c m AIC Δ AIC % dif R2 SSE α0 α1 α2 α3 α4 

MCWH 
3 

10 
DBH BAt NA Ratio BALp 106.05 8.52 8.04 75.33 21.22 NA 0.03 -0.66 NA -0.90 

2 NA NA C.I. Ratio BALp 114.57   69.42 26.30 NA NA NA -0.02 -0.49 

CBH 
3 

5 
DBH lnBAt NA Ratio BAp 125.16 7.69 6.15 52.88 31.34 NA 12.09 -0.85 NA -0.94 

2 DBH NA BALp Ratio BALp 132.85   44.86 36.67 NA 3.82 NA -1.10 0.003 

CPA 
3 5 DBH BAt NA NA 208.73 8.59 4.11 73.49 179.69 NA 0.12 -2.79 NA NA 

2 10 DBH BAt C.I. NA 217.31   69.68 205.54 NA 0.12 -0.80 0.005 NA 

CV 
3 5 d2h BAt BALt Ratio np 356.11 9.37 2.63 70.60 3352.25 NA 0.01 -131.45 99.12 -5.66 

2 10 d2h BAt C.I. NA 366.39   62.92 4227.52 NA 0.01 -21.93 0.42 NA 

 

 

Table 21. Comparison of analysis for Quercus pyrenaica. 

Variable Analysis r s d c m AIC Δ AIC % dif R2 SSE α0 α1 α2 α3 α4 

MCWH 
3 

10 
NA NA NA Ratio BAp 97.50 1.19 1.22 73.74 26.05 NA NA NA NA -1.31 

2 TH NA NA Ratio BAp 98.68   74.30 25.50 NA -0.03 NA NA -0.99 

CBH 
3 7.5 NA NA C.I. Ratio np 110.91 4.85 4.38 41.89 35.18 NA NA NA -0.05 0.53 

2 10 DBH lnBAt BALt Ratio BALp 115.77   40.57 35.98 NA 0.77 0.22 -1.52 0.87 

CPA 
3 5 TH NA C.I. Ratio BALp 113.16 47.80 42.24 78.12 35.42 NA 0.22 NA -0.14 -0.49 

2 7.5 DBH BAt BALt Ratio np 160.96   30.71 112.14 0.15 0.02 2.46 -4.61 0.95 

CV 
3 

7.5 
TH NA C.I. NA 178.52 73.06 40.93 39.43 254.12 NA 0.93 NA -0.35 NA 

2 d2h BAt BALp Ratio BAp 251.58   34.42 1217.29 -5.84 0.001 27.87 -37.49 11.18 
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Fitted Wood Quality models   

Following the same methodology as for the crown variables, best models (Table 22) were selected 

according to the lowest AIC. The analyses of the residuals of the five models with the lowest AIC are 

shown in Annex 4.  

Table 22. Fitted models for Lean and Sweep variables, where is used Ø to represent models were the same for the three 
radii of influence.   

Response   

Variable 
Species 

Radius of 

influence 
Equation 

Lean 
Pine 10 𝐿𝑒𝑎𝑛 = 𝑒(−1.76−0.04·𝑇𝐻+0.003·𝐵𝐴𝑡.+0.1∙𝐴𝑠𝑦𝑚−0.26·𝑅𝑎𝑡𝑖𝑜 𝐵𝐴𝑝) 

Oak 5 𝐿𝑒𝑎𝑛 = −1 + 𝑒(0.23−0.01·𝑇𝐻−0.004·𝑙𝑛𝐵𝐴𝑡.+0.06∙𝐴𝑠𝑦𝑚+0.02·𝑅𝑎𝑡𝑖𝑜 𝐵𝐴𝑝) 

Sweep 
Pine Ø 𝑆𝑤𝑒𝑒𝑝 = 0.94 + 0.002 ∙ 𝑇𝐻 − 0.013 ∙ 𝐴𝑠𝑦𝑚 

Oak Ø 𝑆𝑤𝑒𝑒𝑝 = 0.95 + 0.002 ∙ 𝑇𝐻 − 0.01 ∙ 𝐴𝑠𝑦𝑚 

 

Lean 

Once the outliers are identified and removed, we work with 154 out of 190 possible outliers. With 

these 154 points, we fitted the linear models. We observed that the distribution of the errors followed 

a fan shape, in addition to other problems such as nonlinearity, as shown in Figure 22. Therefore, the 

resulting models were logarithmic.  

𝑙𝑜𝑔(𝐿𝑒𝑎𝑛) =  𝛼0 + 𝛼1 ∙ 𝑠𝑖𝑧𝑒 +  𝛼2 ∙ 𝐷𝑒𝑛𝑠𝑖𝑡𝑦 + 𝛼3 ∙ 𝐶𝑜𝑚𝑝𝑒𝑡𝑖𝑡𝑖𝑜𝑛 + 𝛼4 ∙ 𝑀𝑖𝑥𝑡𝑢𝑟𝑒 

 

 

Figure 22. Residuals Vs. fitted values of the linear model for the Lean variable, violations of the equal variance and linearity 

assumptions.  
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For oaks the outlier analysis let us work with 221 out of 236 trees. For this species Lean values had 

values of zero, for that reason the final model is as follows:  

 

𝑙𝑜𝑔(1 + 𝐿𝑒𝑎𝑛) =  𝛼0 + 𝛼1 ∙ 𝑠𝑖𝑧𝑒 + 𝛼2 ∙ 𝐷𝑒𝑛𝑠𝑖𝑡𝑦 + 𝛼3 ∙ 𝐶𝑜𝑚𝑝𝑒𝑡𝑖𝑡𝑖𝑜𝑛 + 𝛼4 ∙ 𝑀𝑖𝑥𝑡𝑢𝑟𝑒 

 

For both, pines and oaks all variables considered (size, density, competition and mixture) were 

statistically significant for the fitting of the Lean variable, but the radius of influence was bigger for 

pine (r = 10 m) than for oaks (r = 5m) (Table 23). 

Table 23. The explanatory models for the response variable Lean for each species (Sp), selected as the best fit according to 
their lowest AIC index and residual analysis, Pinus sylvestris (Ps) and Quercus petraea (Qp). r = radius of influence (5 and 10 
m); s = size; d = density; c = competition; m = mixture; μ = intercept; β1-4 = the coefficient numbers for each explanatory 
variable (size, density, competition, and mixture); AIC = Akaike and SSE= Residual Sum of Squares.  

Var Sp r s d c m α0 α1 α2 α3 α4 AIC SSE 

K-S 

tes

t 

L

e

a

n 

 

Ps 10 TH BAt Asym Ratio BAp -1.76 -0.043 0.003 0.096 -0.256 -547.5 0.24 0.2 

Qp 5 TH lnBAt Asym Ratio BAp 0.22 -0.012 -0.004 0.062 0.017 -646.1 0.66 0.7 

 

The significant variable for size and competition were the total height of the tree and the asymmetry 

of the crown, respectively. The sign of the parameters for each variable indicated that the higher the 

tree and the less asymmetrical the crown, the more straight the stem for both pines and oaks. The 

density variable was different for each species, total basal area for pines, and the logarithm of total 

basal area for oaks. Nevertheless, the effect on the lean was the same, the higher the density around 

the tree, the straighter the tree. Finally, both species were affected by the mixture but in a different 

sense and radius of influence. For pines the bigger ratio of BA of pines within a radius of 10m the 

straighter the pine, but for oaks, it was the other way around, the bigger the ratio of Basal Area of pines 

in a radio of 5m the leaner were the oaks.  

Sweep 

For this variable, the residual analysis indicated a good model fit for the linear models. In this case, and 

after the outlier analysis we have worked with 178 pine trees out of 190 and with 202 oak data, out of 

236 data. The best model selected is shown in Table 24.  

For this response variable, the resulting models were the same for all three radii of influence studied, 

r= 5, 7.5, and 10m. The sweep of the tree was only affected by the total height of the tree (size) and 

the asymmetry of the crown (competition), for both, pines and oaks, in the same way. The higher the 
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tree and the more asymmetric the crown concerning its trunk center, the less bent (sweep) the tree 

was.  

Table 24. The explanatory models for the response variable, Sweep, for each species (Sp), were selected as the best fit 
according to their lowest AIC index and residual analysis. Pinus sylvestris (Ps) and Quercus petraea (Qp). r = radius of influence 
(5 and 10 m); s = size; d = density; c = competition; m = mixture; μ = intercept; β1-4 = the coefficient numbers for each 
explanatory variable (size, density, competition, and mixture); AIC = Akaike and SSE= Residual Sum of Squares.  

Var Sp r s d c m α0 α1 α2 α3 α4 AIC SSE 
K-S 

test 

S

w

e

e

p 

 

Ps  TH NA Asym NA 0.94 2.11E-03 NA -0.013 NA 
- 

965.83 
0.04 0.44 

Qp  TH NA Asym NA 0.95 2.37E-03 NA -0.013 NA 

-

1128.36 

 

0.04 0.8 
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DISCUSSION  

Fitted Crown models  

In this study, we analyzed four crown variables: MCWH, CBH, CPA, and CV on a total of 242 Scots pines 

and 294 oaks Sp. through TLS in two experimental sites located in two different climate conditions 

(Atlantic and Continental Mediterranean climate) and analyzed them by linear and non-linear 

regression using as explanatory variables tree size, stand density, competition, and mixture proportion. 

Our results showed these variables affect significantly crown shape (Table 13, 20, and 21), creating a 

complex structure where the crown of pines are higher and narrower and the crown of oaks is shorter 

but wider, tending to occupy the gaps in the stand. 

Stand dynamics model development is a breakthrough in sustainable forest management (Lizarralde, 

2008b) within the last years, many studies have focused on mixed forests dynamics searching for a 

better understanding of forest species interactions (Aldea, 2018; Cattaneo et al., 2020; Himes & 

Puettmann, 2020; Juchheim et al., 2020; Riofrio, 2018; Rodríguez De Prado et al., 2022) to understand 

mixing effects and develop more precise forest practice applications (del Río et al., 2019). Within this 

regard, the characterization of crown species is crucial, because it gives us information on how species 

tend to occupy the stand canopy and helps to quantify their plasticity (Cattaneo et al., 2018). 

Moreover, the crown characterization is a fundamental element in the development of forest dynamics 

models (Fichtner et al., 2013; Lizarralde, 2008b). On the one hand, the crown provides us with 

information about the health of the forest, large dense crowns have been associated with vigorous 

growth rates, while trees with small and sparsely foliated crowns show a declining state with little or 

no growth (Zarnoch et al., 2004). On the other hand, the response of tree crowns to changes in canopy 

structure or competition occurs over a shorter period (del Río et al., 2019), thus a comprehensive 

understanding of crown structure can give us an insight into tree species interaction determination 

and thus, in decision-making and forest planning. Del Río et al. (2019) stated that the admixed species-

dependent effects on tree allometry highlight the importance of considering species composition 

instead of species diversity since tree allometry can be influenced by between-species interactions. For 

this reason, in this study we have characterized the crown of one pine species (Pinus sylvestris L.) in 

combination with two oak species (Quercus petraea L. and Quercus pyrenaica Willd), considering each 

study individual neighbors within three radii of influence (5,7.5 and 10m), i.e. the species composition 

affecting the target tree within three specific circular plots. In this way, we have been able to analyze 

the inter and intra-interaction as a continuous variable and not based on pure and mixed stand 

assumptions as has been done traditionally (e.g. (Aldea, 2018; Cattaneo, 2018; del Río et al., 2019; 

Riofrío et al., 2017). Developing tree allometry models depending on intra- and inter-specific 
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interaction is crucial when evaluating mixing effects (Forrester and Pretzsch 2015), as they allow 

upscaling of results from tree to stand level (del Río et al., 2019). 

The value of this study is based on the analysis of costly measurement of tree crown variables in 

inventories, which usually relies on the human ability to identify precisely where the crown begins on 

individual trees, most of the time, this difficulty in obtaining crown data limits the studies to a specific 

DBH size of the tree (Zarnoch et al., 2004). Traditionally, crown data availability comes from studies 

that measure the crown height with a hypsometer and the crown diameter with a tape by standing 

under the estimated drip-line of the crown at the ends of each of these axes and measuring the 

horizontal distances (Zarnoch et al., 2004). Other crown studies are based on National Forest 

Inventories (NFI) average data, to develop crown models for species-specific crown shapes (Pretzsch, 

2009). Although NFI data are a good first approach providing valuable insight, it is important to consider 

certain limitations inherent to them, as not all species are considered (del Río et al., 2019). Most of the 

important references we have nowadays to understand crown dynamics are based on these 

approaches (e.g. Assmann, 1961; Badoux, 1946), creating a compact geometric form in two-

dimensional space (Ritter & Nothdurft, 2018) and developing Weibull distribution or non-linear 

regressions to quantify the crown profile. More recent studies formulated models that track vertical 

crown development. All of them are acknowledged to be smoothed and simplistic approximations of 

crown shapes that, in reality, are more irregular with fractal dimensions (Pretzsch, 2009; Ritter & 

Nothdurft, 2018). Thanks to TLS, we have been able to obtain more accurate crown metrics (Barbeito 

et al., 2017), and represent a much more efficient usage of the growing space than the maps derived 

from the traditional allometric models enabling us to develop more complex approaches like 

quantitative structure models (QSMs) (Ritter & Nothdurft, 2018) and consequently, to gain deeper 

insight into tree crowns' response to pines and oaks mixture, focusing on the crown structural pattern 

in great detail fitting our models considering the real three-dimensional shape of the crowns.  

Within the last two decades, many studies have focused on analyses of the mixture of certain species 

with Pinus sylvestris e.g. (Cattaneo, 2018; Jacobs et al., 2019; Juchheim et al., 2020; Lizarralde, 2008; 

Riofrío et al., 2017; Seidel et al., 2013) and Quercus petraea e.g (Bicl-Sorlin & Bell, 2000; Petritan et al., 

2014) both in pure and mixed stands, but only recently studies have been focused on Quercus petraea 

together with Pinus Sylvestris(Forrester, 2017; Michelot, et al., 2012; Perkins et al., 2018; Pretzsch et 

al., 2020; Steckel et al., 2020) despite their great distribution throughout Europe. On the other hand, 

little is known about both mixed and pure conditions of the crown structure of Quercus pyrenaica (e.g. 

Adame et al., 2010; Condés & Sterba, 2005; del Río & Sterba, 2009), a very important species in Spain 

due to forestry vocation as multiple-use forest systems (Pedrosa Meca Ferreira de Castro, 2004). 
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Our results suggest there is an inter and intra-specific interaction that modifies the crown shapes of 

pines and oaks (Table 13, 20, and 21). The differences we found between the mixtures (Pinus sylvestris-

Quercus Petraea and Pinus sylvestris-Quercus pyrenaica) support what has been noted in previous 

studies, mixture effect on species productivity in temperate mixed deciduous-coniferous forests can 

depend more on species composition than on functional type (Toïgo et al., 2018). 

Structural complexity necessarily involves the interaction between many different attributes 

(variables) (McElhinny et al., 2005). Tree DBH, stand density, and stand age are known to be correlated 

with the crown diameter and other crown parameters (Zarnoch et al., 2004). For that reason, in this 

study, we have expanded and fitted the crown models fitted by Pain & Hann, 1982; Hann et al., 2003; 

Sanquetta et al., 2015; and Ritter & Nothdurft, 2018 for other species. In agreement with (Lizarralde, 

2008) we observed the general structures of the models were robust enough to be used on our studied 

species at different locations. Nevertheless, in accordance with Ritter & Nothdurft (2018), It became 

evident that each study site needs its own allometric models since the models fitted for Site 1, did not 

fit for Site 2. (Annex 1). After having adjusted the coefficients we observed the data were better fitted 

to the models (Figures 20 and 21) but when comparing these models with new coefficient vs. models 

fitted specifically for Site 2, the AIC index (Table 19) showed us clearly that data were better explained 

by models developed for each site.   

Size effect 

The relationship between crown diameter (CPA and CV) and tree size was positive in all the cases; the 

bigger the tree the bigger the crown diameter. Similar to Bonnor (1964) and Sprinz & Burkhart  (1987), 

who found a strong relationship between crown diameter and DBH for Pinus contorta Dougl, our 

results showed that DBH was a good predictor together with BA for Pinus sylvestris. This relationship 

was also found for Quercus petraea but for Quercus pyrenaica the wider crown dimensions were 

related to the TH of the tree.  

Smith (1986) found that trees exhibiting the greatest height growth are usually the largest in all 

dimensions, including crown size. Pommering & Grabarnik (2019) found that, the more growing space 

a tree is granted, the longer is its crown and the smaller its height diameter ratio. Our models suggest 

the same, as we found a positive effect in the crown width (CPA and CV) of every tree species when 

increasing the DBH or TH of the tree, but a negative effect for crown length (MCWH and CBH), i.e. the 

smaller the tree, the larger their crowns but wider. 
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Density and Competition effect 

Our results are partially in agreement with Pretzsch & Biber (2016) who found that due to a better 

supply and more efficient use of resources, maximum stand density can be larger in mixed species. An 

increase in stand density had a positive effect for Quercus petraea when growing with Pinus sylvestris 

but not the opposite. Nevertheless, Pinus sylvestris did show a positive effect on its crown when in 

mixture with Quercus pyrenaica.   

The relationship between density and competition we found for the mixture Pinus sylvestris-Quercus 

petraea, in line with  Pretzsch et al.  (2017) interspecific competition effect on tree allometry was more 

relevant for crown projection area and Crown Volume than for the other allometric relationships. 

These two variables were opposite for both species, which suggests increased inter-competition when 

decreasing total density. For Quercus petraea, this same relationship was also found for the CBH 

variable.  

This apparent rapport between oaks growing together with pines may agree with relaxing resources 

competition in mixed forests that lead tree species to temporal diversification and spatial niche 

partitioning as suggested by Williams et al. (2017) and Aldea (2018). Juchheim et al.  (2017), found in 

a mixture between Pinus sylvestris with Picea Abies and Fagus sylvatica lower BA exhibited a greater 

Stand Structural Complexity Index. For the Pine-oak mixture, we found, the same results for pines, a 

decrease in BA resulted in wider crowns increasing the inter-competition. Nevertheless, our results 

suggest the mixture benefits Quercus petraea where we found the opposite relationship, crowns were 

wider when increasing the mixture with pines and thus, their BA, decreasing the competition, creating 

a more heterogeneous and complex stand structure agreeing with (del Río & Sterba, 2009), which 

found that Scots pine-oak mixed stands support higher volume increment per occupied area compared 

to pure stands, i.e. pine did not act as a real competitor and, therefore, the oak had larger crown 

dimension when mixed with pine (del Río et al., 2019). 

The seeming complementarity between density and competition showed in our models are in line with 

other studies (Hemery et al., 2005; Jucker et al., 2015; Ritter & Nothdurft, 2018), which have shown 

that, especially in mixed-species stands, crown plasticity enables trees to optimize canopy packing, to 

reduce inter-tree competition, and to maximize the utilization of available photoactive radiation. The 

competition reduction and facilitation mechanisms found in these mixtures lead to admixture positive 

effects on forest productivity and are commonly interpreted on the basis of complementarity (Ammer, 

2019). 

McElhinny et al. (2005) found the density of shade-intolerant tree species to be the most significant 
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explanatory variable in multiple regression, this statement seems to be fulfilled for the mixture Pinus 

sylvestris-Quercus petraea but not for the mixture Pinus sylvestris-Quercus pyrenaica, our models did 

not show a significant relationship between density and competition but they were in line with del Río 

et al. (2019), showing that, oak competition did not affect Pinus sylvestris and, density did no result 

significant for Quercus pyrenaica. But oak crowns were wider the less competition for any of the crown 

studied variables. A plausible explanation for this result can be found in Muñoz-Gálvez et al. (2021) 

who stated that Quercus pyrenaica increased its competitive ability under non-limited water 

availability. Due to the Mediterranean climate characteristics of the experimental site, water 

availability is an important factor to consider.  

Muñoz-Gálvez et al. (2021) stated competition reduction usually occurs through niche partitioning, due 

to inter-specific differences in physiology, morphology, and phenology. Our models show these 

differences also occur at the intra-specific level. A result of this inter and intra-specific relation leads 

to disparate resource acquisition strategies (Forrester & Bauhus, 2016).  

Mixture effect 

Pines and oaks are classified as species with high morphological plasticity (Pretzsch & Rais, 2016) and 

changes in crown structure due to mixing effects have previously been reported for different mixtures 

(Barbeito et al., 2017; Martin-Ducup et al., 2016; Pretzsch, 2014). Inter-specific interaction was studied 

for oaks in combination with pines and it was found the presence of pines made oaks CBH lower but 

higher MCWH. the mixture affected differently on CPA of Quercus petraea and Quercus pyrenaica, 

making crowns wider for the first one and narrower for the second one. For pines, the intra-specific 

interaction was studied. We found this relation is significant for CBH and MCWH resulting in higher 

crowns the more pines with a Larger Basal Area around the target pine. Crown expansion (CV and CPA) 

was only significant for the Crown volume of the pines for the mixture Pinus sylvestris – Quercus 

pyrenaica.  

Our findings suggest that crown oaks, in presence of pines, remain under the crown pines, occupying 

the space between pine stems, that may be the reason why crown oaks are shorter but wider, contrary 

to pines where crowns start at a higher point when growing together with oaks. This way, it seems 

species mixing modify the crown size and shape, and thereby the canopy space-filling (Bauhus et al., 

2017). Some researchers have hypothesized differences in crown shape between deciduous 

broadleaves and evergreen conifers are the origin of a positive mixture effect on species productivity 

in broadleaved-conifer mixed stands (Pretzsch & Schütze, 2009). Fitted models suggested that mixture 

increases stand structural complexity index as pointed out in Juchheim et al. (2020) due to better use 

of the available light, and thus, both species benefit from mixing (Cattaneo et al., 2020; Jucker et al., 
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2014) when growing species with functional differences as shade tolerance, leaf habit and rooting 

depth (del Castillo et al., 2016). Shade-tolerant species tend to have a crown shape optimized for the 

capture of light under limiting conditions (Aiba & Nakashizuka, 2009), and within mixtures, force non-

tolerant species to grow to reach the upper canopy level. Additionally, a resource use complementarity 

appears when in winter the lack of leaves in oak allows pine trees to capture light and photosynthesize. 

These complementary functionalities between study species can lead to a higher resource use 

efficiency in mixed stands (Forrester & Bauhus, 2016). Our results suggest interactions in these pine-

oak mix forests which reduced competition, which may involve a complementary and efficient use of 

resources over time (Forrester, 2014) between shade-tolerant and shade-intolerant species 

(McElhinny et al., 2005; Pretzsch et al., 2016). Also, explained by differences in foliage persistence 

during the year (Bravo et al., 2021), which may also cause changes in tree species' crown allometry 

(Toïgo et al., 2018), creating inter-specific variations in crown architecture and height, when combining 

species with different shade tolerances or vertically-oriented species with more laterally expanding 

tree species (Ammer, 2019; Pretzsch & Schütze, 2014). 

Within this context, it seems, that shade-tolerant oak species develop safer life strategies (Cuny et al., 

2012) and we hypothesize that pine-oak mixture leads to the facilitation of oak over pine, as pine 

seemed to increase the performance of the coexisting species (Pretzsch et al., 2017). Species 

interactions such as facilitation or reduced competition between species can enable the use of more 

site resources and with greater efficiency (Forrester, 2014). Pretzsch & Zenner, 2017 found the 

complementary use of resources – mixing light-demanding with shade-tolerant species, deep-rooting 

with shallow-rooting species, or evergreen with deciduous species – to be the main cause of over-

yielding from mixed stands. Our findings seem to meet all these requirements, respectively. Pine 

species may have a more advantageous growth strategy, as they are fast-growing in springtime, 

pioneering, light-demanding, and may experience autumn growth (cell enlargement or xylem 

differentiation for maritime pine). The growth of dominant pine trees might be accelerated 

permanently thanks to reduced competition from oak (the effect of a rather translucent species) or 

facilitation (hydraulic water redistribution), and this superiority may extend over the entire tree 

lifespan (Pretzsch et al., 2017). On the other hand, the shallow rooting and shade tolerance provide 

also oak with a competitive advantage due to temporal diversification of space occupation, which may 

relax resource competition via morphological and physiological trait differences (Mallo, 2018). 

The apparent reducing competition found in Quercus petraea suggests that the asynchronous growth 

responses of mixed tree species can also decrease abiotic stress, diminish temporal growth variation 

and stabilize productivity over time (del Río et al., 2017; Jucker et al., 2014; Sterba et al., 2014). This 

crown complementarity has been proved to be greater when there are greater differences in the 
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functional traits of the species such as growth rate or crown structure (del Río et al., 2019; Williams et 

al., 2017). 

Site effect 

The radii of influences we set to study each variable were different, but it was observed a slight 

tendency for the mixture Pinus sylvestris-Quercus pyrenaica to be smaller than Pinus sylvestris-Quercus 

petraea. We hypothesized this could be related to the site conditions rather than the mixture. Since in 

the first mixture, trees were located in terraces due to the strong slope of the terrain, which may cause 

more changes in a smaller radius, this fact can also be related to the similarity between species across 

sites. Our expectations were, that developed models for both experimental sites would be more similar 

between pines than oaks, as pines were the same species, Pinus sylvestris in both sites, and oaks 

species were different. Quercus petraea for the first experimental site 1 (Valberzoso), and Quercus 

pyrenaica for the second experimental site (Palacio de Valdellorma). However, our results were the 

opposite, more similar among oaks and less among pines. These differences might be explained by 

different external factors. Del Río et al. (2019) found the higher the elevation the smaller the crown 

diameter for different species combinations, among them Pinus sylvestris and Quercus petraea. In this 

study, we had 400 m of differences across sites. And the models fitted for the higher experimental site 

(Pinus sylvestris-Quercus petraea) presented more constraints, i.e. they used more explanatory 

variables, than for the lower site (Pinus sylvestris-Quercus pyrenaica). On the other hand, positive 

interactions among species are more common in areas with high environmental stress, which is the 

case of drought-limited forests in Mediterranean mountains (Muñoz-Gálvez et al., 2021) as occurred 

in our Pinus sylvestris-Quercus pyrenaica mixture located in a Mediterranean climate.   

We hypothesized this difference was due to the dominance of pines species, similarly influencing their 

neighborhood regardless of the oak species, while oaks affect pines differently since they are different 

species and sites. So we can conclude there is a site condition effect. Some studies in mixed stands 

showed that conifers have access to shallower water resources while oak species can access deeper 

ones due to a more extensive and deep root system (del Castillo et al., 2016; Muñoz-Gálvez et al., 2021; 

Poyatos et al., 2008). 

Ecology of species  

Toïgo et al. (2018) pointed out that it exists either a competitive advantage of Quercus petraea over a 

more light-demanding species, like Pinus sylvestris or a result of the complementary use of resources 

in the mixture. For Quercus pyrenaica, competitive capacity could allow this species to maximize light 

and nutrient capture in mixed stands under non-limited water conditions (Longuetaud et al., 2013; 

Muñoz-Gálvez et al., 2021). Unlike other deciduous species, which have a remarkable capacity to adjust 
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their morphology and physiology to a particular set of light conditions (Delagrange et al., 2006). 

Mediterranean oaks present low plasticity as a result of a conservative resource-use strategy 

(Valladares & Niinemets, 2008). However, it has been found that shade-tolerant species strongly 

depend on the availability of other natural resources (Sánchez-Gómez et al., 2006).  

On the other hand, Pinus sylvestris is likely to benefit from increased nutrient availability, competition 

for light could offset positive admixture effects under moderate to high water availability conditions 

due to larger leaf areas (Jucker et al., 2014). However, in this context, Quercus pyrenaica could be 

favored over Pinus sylvestris due to its broad-leaved habit and higher tolerance to shade (Valladares & 

Niinemets, 2008). 

Fitted Wood Quality models 

Our results suggest that there are physiological and morphological differences. A total of 49 pines and 

38 oaks were analyzed. Our results (Tables 23 and 24) suggest both Pinus sylvestris and Quercus 

petraea. Opposite to Höwler et al. (2017) who found these variables to be significant in smaller radii of 

influence (5 and 7.5), we found the radius of influence does not affect the fitted models.  

Our models suggest, that the shorter the tree the less lean (bent), and the higher the tree, the more 

sweep (crooked). Benneter et al. (2018) found no influence of species diversity on wood quality, 

however, our results suggest this is true only for the sweep variable, suggesting tall trees imply higher 

relative allocation and, hence, reduced allocation to branches and photosynthetic biomass (Sierra-de-

Grado et al., 2022)  

Density, Competition, and Mixture effect 

It has been reported stem forms in forests depend on tree genetics (White et al. 2007) but our study 

seems to be more in line with Sierra-de-Grado et al., 1997 who stated, that the straightness of trees 

could be also due to mechanical stress responses. The straightness of pines and oaks, were related to 

the BA (Density) which oppositely affected each species, being pines leaner as the surrounding BA 

increased and oaks as the surrounding BA decreased. Within this regard, coefficients of the models 

showed this effect to be greater in pines than in oaks, which can be explained since deciduous trees 

shed their leaves in winter and thereby reduce the wind resistance of the crown (Pommerening & 

Grabarnik, 2019).  

Competition, seen as the asymmetry of the crown, also played a piece of significant information to this 

variable, showing for both species the more asymmetry the leaner is the stem but also less sweep. 

Different authors (e.g. Moulia et al., 2019; Moulia & Fournier, 2009; Schüler et al., 2015), found the 
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asymmetry of trees is a consequence of a physiological response of the tree when a stem is tilted 

provoking a curvature in them (Sierra-de-Grado et al., 2022). 

Finally, mixture and density affect only the lean variable, in an opposite and complementary way. For 

pines, the more density and less proportion of pines, the straighter is the stem. On the contrary, the 

less density and bigger proportion of pines the leaner is the oak. We argue, as Höwler et al. (2017) 

found for beech trees, that higher stem qualities for oaks are pure rather than in mixed conditions. 

Therefore, the straightness of a tree trunk depends not only on external factors inducing curvature but 

also on intrinsic factors (Sierra-de-Grado et al., 2022).  

Asymmetry of the crown 

According to our results, we hypothesize, as found in other studies where they studied saplings of other 

species (Apiolaza et al., 2011; Lachenbruch et al., 2010; Sierra-de-Grado et al., 2022) there was an 

intraspecific variation of the trunk regarding the sweep of the stems. Since only the height of the tree 

and the asymmetry of the crown were the significant variables in our fitted models. Reinforcing the 

hypothesis of Höwler et al. (2017), intraspecific competition is much stronger than interspecific 

interference.  

The opposite relation in Lean and Sweep we found regarding the asymmetry of the crown may be in 

line with Sierra-de-Grado et al. (2022), who found straight-type plants dedicated comparatively more 

biomass to the main stem, while crooked-type plants dedicated more resources to leaves, hence the 

crooked-type plants ‘ignored’ to some extent the function of mechanical support. 

Final remarks 

As a final remark, it should be noted our study plots had not been thinned in the last 10 years but 

previous silviculture could have been caused a residual effect in our findings due to the memory effect 

found in the forest stand dynamic (Lara et al., 2013; Pretzsch, 2009) as modified structure then affects 

the processes in the forest ecosystem (Pommerening & Grabarnik, 2019). The origin of the forest, i.e., 

plantation or natural regeneration may affect trees and associated vegetation relative to those in 

monocultures (Himes & Puettmann, 2020), the same way we are seeing in our study combining pine 

plantation with natural oak resprouting where we have found trees' neighborhood seems to be 

affecting crown allometry. 

Long-term records of forest cover and change are needed across a broad range of investigations (Feng 

et al., 2016). Within this regard, observation of mixed forests and general findings are still rare 

(Pretzsch et al., 2017) especially when involving individual tree analysis (Pommerening & Grabarnik, 
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2019). Thanks to TLS we have been able to fit new crown models and develop new quality models 

through the analysis of more than 500 individual trees, providing accurate information on species 

interactions that can be implemented in forest simulators. This information will help forest managers 

to design more effective silvicultural prescriptions to select the most suitable frame of plantation 

between species combinations, considering the size, density, competition, and mixture effect within 

species. Thanks to this, our forests will be not only more productive but also more resistant and 

resilience face to extreme and unexpected events.   
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CONCLUSIONS 

1. TLS is very useful for nondestructively examining external crown and stem characteristics of 

this tree species, which can substantially reduce fieldwork data collection. TLS is very easy to 

use and capable of adapting to any kind of terrain with batteries that last a long time. It was 

proven that not much resolution is needed to obtain good data, although they should be taken 

during periods of dormancy to ensure good visualization of the tree canopy. However, its 

greatest limitation to being perfectly incorporated as a forest management tool remains in the 

data processing time, which is still very time consuming and still only semi-automatic making 

manual intervention needed. This need for manual intervention grately limits the advantages 

that this device has in terms of data acquisition. In the last two years, much new software has 

been developed that can maybe help to solve this limitation, and thus, TLS will be perfectly 

integrated as a tool in forest management, but, for now, TLS is a great research tool as it 

allowed us to assess and quantify the crown and timber quality of three tree species. 

2. It was shown, that fitted crown models should be specific for every site and mixture. However, 

models of one site can work for other sites. When comparing the models with the AIC index, 

we saw models for each of the sites were able to explain in all cases more than 90% of data 

and adjusted coefficient no more than 5%.  

3. Our results suggest a complementarity in canopy space occupation, which creates a multi-

layered canopy (stem diameter and height variety) in oak-pine stands in Northern Spain. We 

hypothesize that multi-layered canopies are produced by the mixture complementarity of 

crown shapes of pines and oaks due to their differential crown architecture and the 

combination of shade-tolerant and shade-intolerant, resulting in oaks with wider crowns and 

pines with larger stems to be able to capture the light above oaks. 

4. This research has given us a comprehensive work focused on the crown structure of Pinus 

sylvestris – Quercus petraea and Pinus sylvestris – Quercus pyrenaica mixture. Showing more 

positive effects for oaks due to the mixture than for pines, and proving inter and intra-specific 

relations between species. Similarities between Quercus Sp. were bigger than Pinus sylvestris 

across sites, we hypothesize this is due to site conditions.  

5. We developed two models for analyzing wood quality in Pinus sylvestris and Quercus petraea 

through Lean and Sweep of stems. We found crown asymmetry is an important factor that 

compromises the straightness of the stem, adding, this way, another important value to the 

crown architecture of trees. Finally, based on our results, we hypothesized the Lean of the 

stems is determined by an interspecific relationship, but the Sweep of the stems seem to be 

an intrinsic condition of the tree.  
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CONCLUSIONES 

1. El TLS resulto ser un aparato muy útil para examinar las características externas de la copa y el 

tronco sin tener que apear el árbol y además reduce significativamente el trabajo de toma de 

datos en campo. Es muy fácil de usar y, capaz de adaptarse a cualquier tipo de terreno con 

baterías muy duraderas, y quedó comprobado que no se necesita mucha resolución para 

obtener buenos datos, aunque deben tomarse en periodos de letargo para asegurar una buena 

visualización del dosel arbóreo. Si bien, su gran limitación para incorporarse perfectamente 

como herramienta de gestión forestal sigue estando en el tiempo de procesado de los datos, 

que es muy lento ya que se trata todavía de un proceso semiautomático por lo que se necesita 

la intervención manual, descompensando totalmente la gran ventaja que tiene este dispositivo 

en cuanto a la adquisición de datos. En los dos últimos años se han desarrollado muchos 

programas informáticos nuevos que puede que ayuden a incorporar de forma definitiva el TLS 

en la gestión forestal, pero, por ahora, es una gran herramienta de investigación, ya que nos 

permitió evaluar y cuantificar los efectos de la interacción de tres especies arbóreas en su copa 

y en la calidad de la madera. 

2. Quedó demostrado que los modelos ajustados de copa deben ser específicos para cada sitio y 

mezcla. Aunque los modelos de un sitio pueden funcionar bastante bien para otros sitios, al 

comparar los modelos con el índice AIC vimos que los modelos para cada uno de los sitios eran 

capaces de explicar en todos los casos más del 90% de los datos y el coeficiente ajustado no 

superaba el 5%. 

3. Nuestros resultados sugieren una complementariedad en la ocupación del espacio del dosel, 

que crea un dosel complejo con diferentes alturas y tamaños (variedad en el diámetro y altura 

del árbol) en las masas mixtas de pino y roble del norte de España. Nuestra hipótesis es que 

esta diferencia de alturas en el dosel arboreo mixto de pinos y robles se producen por la 

complementariedad de sus formas de, debido a su arquitectura diferencial de copas y a la 

combinación temperamentos, tolerantes y no tolerantes a la sombra, lo que da como resultado 

robles con copas más anchas y pinos con troncos más largos para poder captar la luz por 

encima de los robles. 

4. Esta investigación nos ha proporcionado un trabajo exhaustivo centrado en la estructura de la 

copa de la mezcla Pinus sylvestris - Quercus petraea y Pinus sylvestris - Quercus pyrenaica. 

Mostrando efectos más positivos para los robles debido a la mezcla que para los pinos, y 

probando las relaciones inter e intraespecíficas entre las especies. Las similitudes entre 

Quercus Sp. fueron mayores que las de Pinus sylvestris en todos los emplazamientos, lo que, 

según nuestra hipótesis, se debe a las condiciones del lugar. 
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5. Desarrollamos dos modelos para analizar la calidad de la madera mediante la inclinación y el 

retorcimiento de los troncos. Encontramos que la asimetría de la copa es un factor importante 

que compromete la rectitud del tronco, añadiendo, de esta manera, otro valor importante a la 

arquitectura de la copa de los árboles y que asi como la inclinacion de los troncos si que viene 

determinada por la relacion interespecifica, el retorcimiento de los troncos parece ser una 

condicion intrinseca del arbol.  
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Annex 1. 

CROWN MODELS OF THE MIXTURE PINUS SYLVESTRIS-QUERCUS PETRAEA 
APPLIED IN THE MIXTURE PINUS SYLVESTRIS-QUERCUS PYRENAICA. 

Pinus sylvestris 

Figure 1.  Predicted Vs Actual values for pines. 



Quercus pyrenaica 

Figure 2. Predicted Vs Actual values for oaks 



ANNEX 2 
Residual analysis for the mixture Pinus Sylvestris – Quercus 

Pyrenaica (Analysis 2)
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Annex 2 

RESIDUAL ANALYSIS FOR THE MIXTURE PINUS SYLVESTRIS – QUERCUS 
PYRENAICA (ANALYSIS 2) 

1. PINE: Maximum Crown Width Height (MCWH) 

𝑀𝐶𝑊𝐻 =
𝑇𝐻

1 + 𝑒(−0.02∙𝐶𝐼−0.49∙𝑅𝑎𝑡𝑖𝑜 𝐵𝐴𝐿)

Table 1. MCWH pine analysis 2 

Residual standard error: 0.7481 on 47 d.f. 
R2 = 69.41915 

p-value = 0.5662
SSE = 26.30116
AIC = 114.5678



 

2. OAK: Maximum Crown Width Height (MCWH) 

 

𝑀𝐶𝑊𝐻 =
𝑇𝐻

1 + 𝑒(−0.03∙𝑇𝐻−0.99∙𝑅𝑎𝑡𝑖𝑜 𝐵𝐴)
 

 

Table 2. MCWH oak Analysis 2 

  

 

Residual standard error: 0.8417 on 36 degrees 
of freedom 

R2 = 74.29618 
p-value = 0.3323 
SSE = 25.50258 
AIC = 98.68469 

 

 

 

 

 

 

 

 

 



 

3. PINE: Crown at Base Height (CBH)) 

 

𝐶𝐵𝐻 =
𝑀𝐶𝑊𝐻

1 + 𝑒(3.82∙
𝐷𝐵𝐻
𝑙𝑛𝐵𝐴

−1.1∙𝐵𝐴𝐿𝑝+0.001∙𝑅𝑎𝑡𝑖𝑜 𝐵𝐴𝐿)
 

 

Table 3. CBH pine analysis 2 

  

 

Residual standard error: 0.8928 on 46 degrees 
of freedom 

R2 = 44.86449 
p-value = 0.9422 
SSE = 36.66646 
AIC = 132.848 

 

 

 

 

 

 

 

 



 

4. OAK: Crown at Base Height (CBH) 

 

𝐶𝐵𝐻 =
𝑀𝐶𝑊𝐻

1 + 𝑒(0.77∙
𝐷𝐵𝐻
𝑙𝑛𝐵𝐴

+0.22∙𝑙𝑛𝐵𝐴−1.52∙𝐵𝐴𝐿𝑡+0.87∙𝑅𝑎𝑡𝑖𝑜 𝐵𝐴𝐿)
 

 

Table 4. CBH Oak Analysis 2 

  

 

Residual standard error: 1.029 on 34 degrees of 
freedom 

R2 = 40.57473 
p-value = 0.5979 
SSE = 35.98185 
AIC = 115.7656 

 

 

 

 

 

 

 

 



 

5. PINE: Crown Projection Area (CPA) 

 

𝐶𝑃𝐴 = 𝑒(0.12·𝐷𝐵𝐻−0.8·𝐵𝐴𝑡−0.002·𝐶𝐼) 

 

Table 5. CPA pine analysis 2 

  

 

Residual standard error: 2.114 on 46 degrees of 
freedom 

R2 = 69.67994 
p-value = 0.5437 
SSE = 205.5402 
AIC = 217.3132 

 

 

 

 

 

 

 

 

 



 

6. OAK: Crown Projection Area (CPA) 

 

𝐶𝑃𝐴 = 𝑒(0.15+0.02·𝐷𝐵𝐻+2.46·𝐵𝐴−4.61·𝐵𝐴𝐿+095·𝑅𝑎𝑡𝑖𝑜 𝑛) 

 

Table 6. CPA Oak Analysis 2 

  

 

Residual standard error: 1.843 on 33 degrees of 
freedom 

R2= 30.71497 
p-value = 0.958 
SSE = 112.1433 
AIC = 160.9626 

 

 

 

 

 

 

 

 

 



 

7. PINE: Crown Volume (CV) 

 

𝐶𝑉 = 0.01 · 𝑑2ℎ − 21.93 · 𝐵𝐴𝑡 + 0.42 · 𝐶𝐼 

 

Table 7. CV pine analysis 2 

  

 

Residual standard error: 9.587 on 46 degrees of 
freedom 

Multiple R-squared:  0.8755, Adjusted R-
squared:  0.8674 

R2 = 62.92323 
p-value = 0.5593 
SSE = 4227.516 
AIC = 365.4759 

 

 

 

 

 

 

 

 

 



 

8. OAK: Crown Volume (CV) 

 

𝐶𝑉 = −5.84 ∙ 𝐷𝐵𝐻 + 0.001 · 𝑙𝑛𝐵𝐴𝑡 + 27.87 · 𝐵𝐴𝐿𝑡 − 37.49 ∙  𝑅𝑎𝑡𝑖𝑜 𝐵𝐴𝐿 

 

Table 8. CV Oak Analysis 2 

  

 

Residual standard error: 6.074 on 33 degrees of 
freedom 

Multiple R-squared:  0.3442, Adjusted R-
squared:  0.2647 

R2 = 34.41954 
p-value = 0.2659 
SSE = 1217.285 
AIC = 251.5774 
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Annex 3. 
RESIDUALS ANALYSES OF THE FIRST 5 MODELS WITH LOWER AIC THAT WERE 

DEVELOPED FOR THE MIXTURE PINUS SYLVESTRIS- QUERCUS PYRENAICA 

(ANALYSIS 3) 

 

1. PINE: Maximum Crown Width Height (MCWH) 

 

Model 1  (Radius = 10)  𝑀𝐶𝑊𝐻 =
𝑇𝐻

1+𝑒(0.03∙𝐷𝐵𝐻−0.66∙𝐵𝐴𝑡−0.9∙𝑅𝑎𝑡𝑖𝑜 𝐵𝐴𝐿) 

  

  
 

 

 

 

 

 

 



 

 

Model 2  (Radius 10) 𝑀𝐶𝑊𝐻 =
𝑇𝐻

1+𝑒(0.03∙𝐷𝐵𝐻−0.78∙𝐵𝐴𝑡−0.82∙𝑅𝑎𝑡𝑖𝑜 𝐵𝐴) 

  

  
 

 

 

 

 

 

 

 

 

 

 

 



 

Model 3  (Radius 7.5) 𝑀𝐶𝑊𝐻 =
𝑇𝐻

1+𝑒(0.03∙𝐷𝐵𝐻−1.06∙𝐵𝐴𝑡−0.95∙𝑅𝑎𝑡𝑖𝑜 𝐵𝐴𝐿) 

  

  
 

 

 

 

 

 

 

 

 

 

 

 

 



Model 4  (Radius 10) 𝑀𝐶𝑊𝐻 =
𝑇𝐻

1+𝑒(0.02∙𝐷𝐵𝐻−0.31∙𝑙𝑛𝐵𝐴𝑡−1.38∙𝑅𝑎𝑡𝑖𝑜 𝐵𝐴𝐿) 

  

  
 

 

 

 

 

 

 

 

 

 

 

 

 



Model 5  (Radius 7.5)  𝑀𝐶𝑊𝐻 =
𝑇𝐻

1+𝑒(0.03∙𝐷𝐵𝐻−1.24∙𝐵𝐴𝑡−0.87∙𝑅𝑎𝑡𝑖𝑜 𝐵𝐴) 

  

  
 

 

 

 

 

 

 

 

 

 

 

 

 

 



2. OAK: Maximum Crown Width Height (MCWH) 

 

Model 1  (Radius = 10) 𝑀𝐶𝑊𝐻 =
𝑇𝐻

1+𝑒(−1.31∙𝑅𝑎𝑡𝑖𝑜 𝐵𝐴) 

  

  
 

  



 

Model 2  (Radius = 10) 𝑀𝐶𝑊𝐻 =
𝑇𝐻

1+𝑒(−0.02∙𝐷𝐵𝐻−0.94∙𝑅𝑎𝑡𝑖𝑜 𝐵𝐴𝐿) 

  

  
 

  



 

Model 3  (Radius = 7.5)  𝑀𝐶𝑊𝐻 =
𝑇𝐻

1+𝑒(0.49∙𝐵𝐴𝐿𝑡−2.36∙𝑅𝑎𝑡𝑖𝑜 𝑛) 

  

  
 

  



Model 4  (Radius = 10)  𝑀𝐶𝑊𝐻 =
𝑇𝐻

1+𝑒(−0.06∙𝑇𝐻−0.70∙𝑅𝑎𝑡𝑖𝑜 𝐵𝐴𝐿) 

 

  

  
 

  



 

 

Model 5  (Radius = 10)  ) 𝑀𝐶𝑊𝐻 =
𝑇𝐻

1+𝑒(−1.40∙𝑅𝑎𝑡𝑖𝑜 𝑛) 

  

  
 

  



3. PINE: Crown at Base Height (CBH)) 

 

Model 1  (Radius = 5) 𝐶𝐵𝐻 =
𝑀𝐶𝑊𝐻

1+𝑒(12.09∙𝐷𝐵𝐻/𝑙𝑛𝐵𝐴−0.85∙𝑙𝑛𝐵𝐴−0.94∙𝑅𝑎𝑡𝑖𝑜 𝐵𝐴) 

  

  
 

  



 

Model 2  (Radius = 5) 𝐶𝐵𝐻 =
𝑀𝐶𝑊𝐻

1+𝑒(11.44∙𝐷𝐵𝐻−0.77∙𝑙𝑛𝐵𝐴−0.90∙𝑅𝑎𝑡𝑖𝑜 𝑛) 

  

  
 

  



 

Model 3  (Radius = 7.5) 𝐶𝐵𝐻 =
𝑀𝐶𝑊𝐻

1+𝑒(−78.55∙𝐷𝐵𝐻+2.82∙𝐵𝐴+2.22∙𝐵𝐴𝐿𝑝−0.53∙𝑅𝑎𝑡𝑖𝑜 𝑛) 

  

  
 

  



 

Model 4  (Radius = 5) 𝐶𝐵𝐻 =
𝑀𝐶𝑊𝐻

1+𝑒(11.15∙𝐷𝐵𝐻−0.69∙𝑙𝑛𝐵𝐴−0.69∙𝑅𝑎𝑡𝑖𝑜 𝐵𝐴𝐿) 

  

  
 

  



 

Model 5  (Radius = 10) 𝐶𝐵𝐻 =
𝑀𝐶𝑊𝐻

1+𝑒(−44.57∙𝐷𝐵𝐻+1.91∙𝐵𝐴+1.12∙𝐵𝐴𝐿𝑝−0.6∙𝑅𝑎𝑡𝑖𝑜 𝐵𝐴𝐿) 

  

  
 

  



 

4. OAK: Crown at Base Height (CBH) 

 

Model 1  (Radius = 7.5) 𝐶𝐵𝐻 =
𝑀𝐶𝑊𝐻

1+𝑒(−0.05∙𝐶.𝐼.+0.53∙𝑅𝑎𝑡𝑖𝑜 𝑛) 

  

  
 

  



 

Model 2  (Radius = 7.5) 𝐶𝐵𝐻 =
𝑀𝐶𝑊𝐻

1+𝑒(−0.06∙𝐶.𝐼.+0.53∙𝑅𝑎𝑡𝑖𝑜 𝑛) 

  

  
 

  



 

Model 3  (Radius = 10) 𝐶𝐵𝐻 =
𝑀𝐶𝑊𝐻

1+𝑒(−1.01∙𝐵𝐴𝐿𝑡+0.42∙𝑅𝑎𝑡𝑖𝑜 𝑛) 

  

  
 

  



 

Model 4  (Radius = 10) 𝐶𝐵𝐻 =
𝑀𝐶𝑊𝐻

1+𝑒(−1.16∙𝐵𝐴𝐿𝑝+0.46∙𝑅𝑎𝑡𝑖𝑜 𝑛) 

  

  
 

  



 

Model 5  (Radius = 7.5) 𝐶𝐵𝐻 =
𝑀𝐶𝑊𝐻

1+𝑒(−1.44∙𝐵𝐴𝐿𝑡+0.33∙𝑅𝑎𝑡𝑖𝑜 𝑛) 

  

  
 

 

  



5. PINE: Crown Projection Area (CPA) 

 

Model 1  (Radius = 5) 𝐶𝑃𝐴 = 𝑒(0.12·𝐷𝐵𝐻−1.79·𝐵𝐴𝑡) 

  

  
 

 

 

 

 

 

 

 

 

 

 

 



Model 2  (Radius = 10) 𝐶𝑃𝐴 = 𝑒(−0.54+0.07·𝐷𝐵𝐻−1.10·𝐵𝐴𝑡+0.80·𝐵𝐴𝐿𝑝) 

  

  
 

  



 

Model 3  (Radius = 10)  𝐶𝑃𝐴 = 𝑒(1.4+0.0001·𝑑2𝐻−1.65·𝐵𝐴𝑡+0.77·𝐵𝐴𝐿𝑡) 

  

  
 

  



 

Model 4  (Radius = 10) 𝐶𝑃𝐴 = 𝑒(1.41+0.0001·𝑑2𝐻−1.595·𝐵𝐴𝑡+0.76·𝐵𝐴𝐿𝑝) 

  

  
 

  



 

Model 5  (Radius = 10) 𝐶𝑃𝐴 = 𝑒(0.12·𝐷𝐵𝐻−1.06·𝐵𝐴𝑡+0.64·𝐵𝐴𝐿𝑝) 

  

  
 

 

 

 

 

 

 

 

 

 

 

 

 



6. OAK: Crown Projection Area (CPA) 

 

In this case, extremely large data observed in the graphs were analyzed to see if they are very 

influential points. We did not find any influence. For this reason, we decided to keep this data to fit 

our models.  

 

Model 1  (Radius = 5)  𝐶𝑃𝐴 = 𝑒(0.22·𝑇𝐻−0.14·𝐶.𝐼.−0.49·𝑅𝑎𝑡𝑖𝑜 𝐵𝐴𝐿𝑝) 

  

  
 

  



Model 2  (Radius = 7.5) 𝐶𝑃𝐴 = 𝑒(0.24·𝑇𝐻−0.16·𝐶.𝐼.) 

  

  
 

  



 

Model 3  (Radius = 5) 𝐶𝑃𝐴 = 𝑒(0.23·𝑇𝐻−0.22·𝐶.𝐼.) 

  

  
 

  



 

Model 4  (Radius = 10) 𝐶𝑃𝐴 = 𝑒(0.25·𝑇𝐻−0.13·𝐶.𝐼.) 

  

  
 

  



 

Model 5  (Radius = 10) 𝐶𝑃𝐴 = 𝑒(0.26·𝑇𝐻+0.43·𝑙𝑛𝐵𝐴𝑡−3.43·𝐵𝐴𝐿𝑝) 

  

  
 

  



 

7. PINE: Crown Volume (CV) 

 

Model 1 (Radius = 5) 𝐶𝑉 = 17.75 + 0.01 · 𝑑2ℎ − 152.77 · 𝐵𝐴𝑡 + 105.53 · 𝐵𝐴𝐿𝑝 − 22.15 ∙ 𝑅𝑎𝑡𝑖𝑜 𝑛𝑝 

  

  
 

  



Model 2 (Radius = 5) 𝐶𝑉 = 24.08 + 0.01 · 𝑑2ℎ − 143.08 · 𝐵𝐴𝑡 + 106.01 · 𝐵𝐴𝐿𝑝 − 29.36 ∙ 𝑅𝑎𝑡𝑖𝑜 𝐵𝐴𝑝 

  

  
 

  



Model 3 (Radius = 5) 𝐶𝑉 = 0.01 · 𝑑2ℎ − 131.45 · 𝐵𝐴𝑡 + 99.12 · 𝐵𝐴𝐿𝑡 − 5.66 ∙ 𝑅𝑎𝑡𝑖𝑜 𝑛𝑝 

  

  
 

  



Model 4 (Radius = 5) 𝐶𝑉 = 0.01 · 𝑑2ℎ − 117.28 · 𝐵𝐴𝑡 + 79.82 · 𝐵𝐴𝐿𝑡 

  

  
 

  



 

Model 5 (Radius = 10) 𝐶𝑉 = 0.01 · 𝑑2ℎ − 30.78 · 𝐵𝐴𝑡 + 24.43 · 𝐵𝐴𝐿𝑝 

  

  
 

 

  



8. OAK: Crown Volume (CV) 

 

Model 1 (Radius = 10) 𝐶𝑉 = 1.61 ∙ 𝑇𝐻 + 10.71 · 𝑙𝑛𝐵𝐴𝑡 − 43.49 · 𝐵𝐴𝐿𝑝 + 18.01 ∙  𝑅𝑎𝑡𝑖𝑜 𝐵𝐴𝑝 

  

  
 

  



Model 2 (Radius = 10) 𝐶𝑉 = 1.90 ∙ 𝑇𝐻 + 9.68 · 𝑙𝑛𝐵𝐴𝑡 − 37.46 · 𝐵𝐴𝐿𝑝 + 12.62 ∙  𝑅𝑎𝑡𝑖𝑜 𝑛𝑝 

  

  
 

  



 

Model 3 (Radius = 5) 𝐶𝑉 = 1.89 ∙ 𝑇𝐻 − 87.21 · 𝐵𝐴𝐿𝑜 − 12.23 ∙  𝑅𝑎𝑡𝑖𝑜 𝐵𝐴𝐿𝑝 

  

  
 

  



 

Model 4 (Radius 10) 𝐶𝑉 = −20.88 + 1.57 ∙ 𝑇𝐻 + 31.33 · 𝐵𝐴𝑡 − 42.86 · 𝐵𝐴𝐿𝑝 + 15.97 ∙  𝑅𝑎𝑡𝑖𝑜 𝑛𝑝 

  

  
 

  



 

Model 5 (Radius = 5) 𝐶𝑉 = 1.65 ∙ 𝑇𝐻 − 10.58 ∙  𝑅𝑎𝑡𝑖𝑜 𝐵𝐴𝐿𝑝 
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Annex 4 

RESIDUAL ANALYSES FOR LEAN AND SWEEP MODELS 

 

1. PINE: LEAN 

Before the analysis outliers were detected and eliminated for our data.  The graphs show some 
extremely large data. We analyzed the influence of those data. We did not find any influence. For 
this reason, we decided to keep this data to fit our models. 

 

Model 1  (Radius = 10) 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 = 𝑒𝑒(−1.76−0.04·𝑇𝑇𝑇𝑇+0.003·𝐵𝐵𝐵𝐵𝑡𝑡.+0.1∙𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴−0.26·𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝐵𝐵𝐵𝐵𝑝𝑝) 

  

  
 

 

 

 

 

 



 

Model 2  (Radius = 10) 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 = 𝑒𝑒(−1.83−0.04·𝑇𝑇𝑇𝑇+0.046·𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑡𝑡.+0.1∙𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴−0.25·𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝐵𝐵𝐵𝐵𝑝𝑝) 

  

  
 

 

 

 

 

 

 

 

 

 

 

 

 



 

Model 3  (Radius = 10) 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 = 𝑒𝑒(−1.86−0.04·𝑇𝑇𝑇𝑇+0.003·𝐵𝐵𝐵𝐵𝑡𝑡.+0.1∙𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴−0.18·𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑛𝑛𝑝𝑝) 

  

  
 

 

 

 

 

 

 

 

 

 

 

 

 



 

Model 4  (Radius = 10) 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 = 𝑒𝑒(−1.94−0.04·𝑇𝑇𝑇𝑇+0.044·𝑙𝑙𝑙𝑙𝐵𝐵𝐵𝐵𝑡𝑡.+0.1∙𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴−0.17·𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑛𝑛𝑝𝑝) 

  

  
 

 

 

 

 

 

 

 

 

 

 

 

 



 

Model 5  (Radius = 5) 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 = 𝑒𝑒(−1.86−0.04·𝑇𝑇𝑇𝑇+0.004·𝐵𝐵𝐵𝐵𝑡𝑡.+0.1∙𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴−0.14·𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝐵𝐵𝐵𝐵𝑝𝑝) 

  

  
 

 

 

 

 

 

 

 

 

 

 

 

 



 

2. OAK: LEAN 
 

 

Model 1  (Radius = 5, 7.5, 10) 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 = −1 + 𝑒𝑒(0.23−0.01·𝑇𝑇𝑇𝑇−0.004·𝑙𝑙𝑙𝑙𝐵𝐵𝐵𝐵𝑡𝑡.+0.06∙𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴+0.02·𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝐵𝐵𝐵𝐵𝑝𝑝) 

  

  
 

 

 

 

 

 

 

 

 

 



 

 

 

Model 2 (Radius = 10) 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 = −1 + 𝑒𝑒(0.23−0.01·𝑇𝑇𝑇𝑇−0.005·𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑡𝑡.+0.06∙𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴+0.01·𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝐵𝐵𝐵𝐵𝐵𝐵𝑝𝑝) 

  

  
 

 

 

 

 

 

 

 

 

 

 



 

 

 

Model 3 (Radius = 10) 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 = −1 + 𝑒𝑒(0.22−0.01·𝑇𝑇𝑇𝑇−0.001·𝐵𝐵𝐵𝐵𝑡𝑡.+0.06∙𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴+0.02·𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝐵𝐵𝐵𝐵𝑝𝑝) 

  

  
 

 

 

 

 

 

 

 

 

 

 



 

 

 

Model 4 (Radius = 10) 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 = −1 + 𝑒𝑒(0.23−0.01·𝑇𝑇𝑇𝑇−0.001·𝐵𝐵𝐵𝐵𝑡𝑡.+0.06∙𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴+0.01·𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝐵𝐵𝐵𝐵𝐵𝐵𝑝𝑝) 

  

  
 

 

 

 

 

 

 

 

 

 

 



 

 

 

Model 5 (Radius = 5, 7.5) 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 = −1 + 𝑒𝑒(0.23−0.01·𝑇𝑇𝑇𝑇−0.004·𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑡𝑡.+0.06∙𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴+0.02·𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑛𝑛𝑝𝑝) 

  

  
 

 

 

 

 

 

 

 

 

 

 



 

3. PINE: SWEEP 
 

Model 1  (Radius = 5, 7.5, 10) 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = 0.94 + 0.002 ∙ 𝑇𝑇𝑇𝑇 − 0.013 ∙ 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 

  

  
 

 

 

 

 

 

 

 

 

 

 



 

 

Model 2  (Radius = 5, 7.5, 10) 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = 0.97 + 0.001 ∙ 𝐷𝐷𝐷𝐷𝐷𝐷 − 0.013 ∙ 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 

  

  
 

 

 

 

 

 

 

 

 

 

 

 



 

 

Model 3  (Radius = 10) 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = 0.94− 0.001 ∙ 𝐵𝐵𝐵𝐵𝐵𝐵𝑝𝑝 + 0.038 ∙ 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑛𝑛𝑝𝑝 

  

  
 

 

 

 

 

 

 

 

 

 

 

 



 

 

Model 4  (Radius = 10) 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = 0.95− 0.002 ∙ 𝐶𝐶. 𝐼𝐼. +0.026 ∙ 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑛𝑛𝑝𝑝 

  

  
 

 

 

 

 

 

 

 

 

 

 

 



 

 

Model 5  (Radius = 10) 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = 0.94 + 0.028 ∙ 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑛𝑛𝑝𝑝 

  

  
 

 

 

 

 

 

 

 

 

 

 

 



 

4. OAK: SWEEP 
 

Model 1  (Radius = 5) 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = 0.95 + 0.002 ∙ 𝑇𝑇𝑇𝑇 − 0.01 ∙ 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 

  

  
 

 

 

 

 

 

 

 

 

 

 



 

 

Model 2  (Radius = 5) 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = 0.98 + 0.001 ∙ 𝐷𝐷𝐷𝐷𝐷𝐷 − 0.01 ∙ 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 − 0.01 ∙ 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝐵𝐵𝐵𝐵𝑝𝑝 

  

  
 

 

 

 

 

 

 

 

 

 

 

 



 

 

Model 3  (Radius = 5) 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = 0.98 + 0.001 ∙ 𝐷𝐷𝐷𝐷𝐷𝐷 − 0.01 ∙ 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 − 0.01 ∙ 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝐵𝐵𝐵𝐵𝐵𝐵𝑝𝑝 

  

  
 

 

 

 

 

 

 

 

 

 

 

 



 

 

Model 4  (Radius = 5) 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = 0.98 + 0.001 ∙ 𝐷𝐷𝐷𝐷𝐷𝐷 − 0.01 ∙ 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 − 0.01 ∙ 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑛𝑛𝑝𝑝 

  

  
 

 

 

 

 

 

 

 

 

 

 

 



 

 

Model 5  (Radius = 5) 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = 0.97 + 0.001 ∙ 𝐷𝐷𝐷𝐷𝐷𝐷 − 0.01 ∙ 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 
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