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Abstract: A combination of physical-chemical analysis has been used to monitor the aging of red
wines from D.O. Toro (Spain). The changes in the chemical composition of wines that occur over
the aging time can be used to distinguish between wine samples collected after one, four, seven and
ten months of aging. Different computational models were used to develop a good authenticity tool
to certify wines. In this research, different models have been developed: Artificial Neural Network
models (ANNs), Support Vector Machine (SVM) and Random Forest (RF) models. The results
obtained for the ANN model developed with sigmoidal function in the output neuron and the RF
model permit us to determine the aging time, with an average absolute percentage deviation below
1%, so it can be concluded that these two models have demonstrated their capacity to predict the age
of wine.
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1. Introduction

In the last decade, consumers have become interested in foods identified with a place of origin [1],
and in their characteristics and quality [1,2]. One of these products is wine, a beverage obtained from
the alcoholic fermentation of grapes [3]; it is one of the most popular [4], complex [5] and consumed
alcoholic beverages around the world [6]. In the European Union (EU), wines produced in specified
regions are clearly identified and controlled [7]. In this sense, there are different quality schemes
under a geographical indication according to specific characteristics: (i) protected designation of
origin (PDO), (ii) protected geographical indication (PGI) and (iii) geographical indication of spirit
drinks and aromatized wines (GI) [8]. As is understandable, the use of these schemes impacts on
market recognition and even results in higher sale prices. For this reason, the improper use of these
geographical indications can be injurious to producers and consumers [1]. South European countries
(Spain among others) are involved in food authentication studies, for example in wines and foodstuffs
registered as, among others, PDO [9].

Wine adulterations such as water dilution or mixing with cheaper wine are common [10].
Nowadays, quality and commercial value are linked to elaboration procedures and geographical
places [10], as for example, Tempranillo red wine from D.O (Denominación de Origen) Toro (Spain),
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where the wine authenticity is a key factor in terms of differentiation, which has a significant influence
on the final sale price [10].

A wine’s quality and organoleptic properties can be influenced by oenological parameters such
as grape variety and winemaking process, among others [11]. Its quality can be evaluated through
chemical/biological tests and sensory tests using different classification models [12]. Due to these
parameters being related to the wine´s quality/price, the possible to find a relationship between
physicochemical parameters and the wine’s age (D.O. Toro) can be interesting, especially if the wine´s
characterization and its combination with chemometric treatment can provide good results that also
reduce the operative costs compared to other methods like the use of expert panellists [2].

In the literature, different methods for wine age prediction have been reported, such as single
block regression methods [13], multiblock regression methods [14] and latent variable methods [15–17].
In this research, four different models are presented: (i) two Artificial Neural Networks models (ANNs),
(ii) one Support Vector Machine (SVM) model, and iii) one Random Forest (RF) model.

Related Works WITH This Research

ANNs are a computational technique which draw upon biological neural system [18–21].
In their research, McCulloch and Pitts [22] introduced the concept of the artificial neuron [23]. These
interconnected units (artificial neurons or nodes) are able to model complex nonlinear relationships
between independent variables (also called inputs) and dependent variables (outputs) [20,24]. ANN
models based on a multi-layer perceptron (MLP), one of the most popular ANN topologies [23],
were used in this research. An MLP is a feed-forward ANN model that maps input data onto output
data [25]. This kind of model has multiple layers of neurons (input, hidden and output), with each layer
being connected to the next network layer [25]. One of the most important advantages is that ANN
models can extract information from complex data matrices due their ability to learn the relationship
between independent and dependent variables [26]. For this reason, ANNs are applied in many
different research fields, such as:

(i) Hydrology, to model the water quality using different water quality variables [27],
(ii) Biotechnology, to optimize 1,3-propanediol production using microorganisms like Lactobacillus

brevis N1E9.3.3 [28] or to optimize oil extraction from Bauhinia monandra seed [18],
(iii) Food technology, to develop an authentication model to predict the cultivar, the production type

and the harvest date for tomatoes [29] or to authenticate extra virgin oil varieties [30],
(iv) Chemistry, to predict percolation temperature [31], to predict the solvent accessibility of

proteins [32], or in other fields where the ANN has proved its capacity for medical, economic or
agro-food science purposes [21].

Support vector machines were first introduced by Boser et al. in 1992 [33,34]. The SVM is a
powerful non-linear method to develop classification and regression models [25,35]. A SVM model
uses input data to construct a hyperplane, or a group of hyperplanes, in a high-dimensional space [25].
These hyperplanes allow the SVM model to be used for different purposes [25]. Its main advantage,
in comparison with other classification techniques, for example, Partial Least Squares-Discriminant
Analysis (PLS-DA), is that it is flexible to model complex classification non-linear problems [35].
For this reason, Support Vector Machine models can serve in many studies and applications such as:

(i) To determine air specific heat ratios at elevated pressures [36],
(ii) to classify glaucoma, a progressive optic neuropathy disease [37],
(iii) to forecast electrical loads due to their importance in the regional power system strategy

management [38] or,
(iv) to evaluate real-time crash risk in active traffic management (ATM) [39], among other fields.

Random forest is a learning method for classification or regression [40,41] that was proposed by
Breiman in 2001 [41,42]. RF models consist of a classifier with different decision trees, where the final
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prediction is obtained by all the single classification trees [41,43], that is, for a quantitative response,
the prediction is the average of each individual tree predicted value [44]. This ability is the key that
converts Random Forest into a powerful prediction method [44]. Random forest corrects the problem of
overfitting that presents the decision trees [40], and has been used in multiple research fields, such as:

(i) Medicine, to estimate the survivability of cancer patients [40],
(ii) Food technology, to develop a model focused on the volatile organic compounds responsible for

the olfactory perception [44],
(iii) Ecology, to classify invasive plants [45], or to estimate high-density biomass for wetland

vegetation [46], inter alia.

Therefore, the main objective of this paper is to develop different prediction models as tools for
determining wine authenticity, i.e., that could predict the aging time (1-4-7-10 months) of red wines
from D.O. Toro (Spain).

2. Results and Discussion

The use of alternative products (chips, staves...) is a common practice in the winemaking sector.
However, the differentiation of wines according to their aging system is very complicated. During
the ageing process of the same red wine with alternative products+MOX, a series of process reactions
take place as a result of the wine coming into contact with the wood [47]. The toasting level of the
oak wood is very important, as it regulates the transfer of the compounds from the wood to the wine.
During wine ageing, the higher the toasting level of the oak wood, the more substances responsible
for the spicy and smoky aromas can be appreciated [48]. Aging with chips is faster than traditional
barrel aging, so wines have a more volatile acidity and more phenolic compounds than barrel wines.
However, the differentiation of wines is complicated, and work is needed on the development of tools
for differentiation. Numerous ANN models were developed using a trial and error method to find the
best neural model topology. Over seven thousand neural network models with different topologies
and training cycles were developed (varying the number of intermediate neurons between one and
2n+1, where n is the number of input variables). The best neural model was chosen based on its
validation performance, and then the best models were rechecked with the querying data group.

Table 1 shows the adjustments for the best ANN1 model selected. It can be observed that the
neural model developed with linear function in the output layer presents a good determination
coefficient in all phases (between 0.998 for the validation phase and 0.989 for querying phase). For the
training phase, the error is below 10% (an acceptable error for this type of variable -aging time-). Similar
behaviour is observed in the validation phase. In both phases, the root mean squared error in under
0.29 months. In the querying phase, the ANN1 model presents a good R2 (0.989); nevertheless, a slight
worsening is observed in the prediction in terms of root mean squared error (RMSE = 0.40 months)
and average absolute percentage deviation (AAPD = 13.51%).

Table 1. Coefficient of determination (R2), root mean squared error (RMSE) and average absolute
percentage deviation (AAPD) for training, validation and querying phase, for each model present
in this research (artificial neural network with linear function in output neuron (ANN1), artificial
neural network with sigmoidal function in output neuron (ANN2), support vector machine (SVM) and
random forest (RF)).

Training Validation Querying

Model R2 RMSE AAPD (%) R2 RMSE AAPD (%) R2 RMSE AAPD (%)

ANN1 0.994 0.28 8.07 0.998 0.20 8.20 0.989 0.40 13.51
ANN2 1.000 0.02 0.42 1.000 0.04 0.87 1.000 0.03 0.84
SVM 0.995 0.24 6.72 0.973 0.56 12.86 0.988 0.37 16.35

RF 1.000 0.00 0.00 1.000 0.00 0.00 1.000 0.00 0.00
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Figures 1 and 2 show the real value of aging time (light brown) and the values predicted by the
best ANN1 model (dark blue) developed in this research. It can be observed in the validation cases
(Figure 1) that the ANN1 model overestimated the real value for the cases 1 and 2, while for cases 4, 6
and 8, the overestimation is very slight (between 1.28% and 4.46%). Cases 1 and 2 present a high error;
in fact, the real value is 1 and the values predicted were 1.31 and 1.41, respectively. For the rest of the
validation cases, the estimates are slightly lower than the real values (between -0.81% and -2.84%).
For query cases (Figure 2), it can be seen how the linear ANN model presents overestimation of the
aging time value in nine of the twelve cases reserved (especially in the cases 1, 3 and 4). Once again,
the cases with real aging time of 1 month were those with bigger errors. Cases 1 and 3 present an
individual percentage deviation of 68.70% and 37.25%. This is the reason for the increase of RMSE
and the AAPD values in the querying phase. This behaviour is also observed in the training phase,
where cases with one month of aging show greater errors between -0.91% and 69.43% (1 month vs.
1.69 months predicted). This is probably because there is still no significant differentiation between
wines, since they have only been in contact with wood for one month, and it is possible that in each
system the speed of aging is different. In view of these results, it can be concluded that the ANN1

model presents a general good performance in all its phases, but that for low aging times, the model
does not work at all well.
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Figure 1. Bar graph for validation cases according to the real value of aging time (light brown) and
the values predicted by the artificial neural network with linear function in output neuron (ANN1,
dark blue), artificial neural network with sigmoidal function in output neuron (ANN2, dark brown),
support vector machine (SVM, olive) and random forest (RF, light blue).

The next model developed was the ANN model (ANN2) with logistic function in its output neuron.
As can be seen in Table 1, the adjustment parameters improve the fits of the ANN1 model. It can be
seen that for the training and the validation phase, the model presents coefficients of determination
of one, improving the R2 of the ANN1 model. It is also clear that the ANN2 model improves the
adjustments in terms of RMSE and AAPD, going from an RMSE of 0.20 months to 0.04 months, for the
validation phase of the ANN1 and ANN2 model, respectively. This good behaviour is also observed in
the querying phase where the ANN2 model presents a good determination coefficient (R2 = 1.000),
which corresponds with a low value of root mean squared error (RMSE = 0.03 months) and an average
absolute percentage deviation below 0.85%.
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In Figure 1, the real value of aging time (light brown) and the values predicted by ANN2 model
(dark brown) for validation cases can be seen. The ANN2 model predicts with accuracy the real value
of aging time. This behaviour is also observed for the query cases (Figure 2); it can be seen how the
logistic ANN model presents a good prediction of the aging time value for all cases which means that
the adjustments of this phase are good (0.03 months of RMSE and 0.84% of APPD. In contrast to the
previous ANN model, in this model, high errors were not observed in any of the aging periods studied;
in fact, individual percentage deviation remains between −1.63% and 3.99%. With these results, it can
be said that ANN2 can predict with accuracy the aging time of red wines from D.O. Toro (Spain).

A new model based on a support vector machine was developed using library LIBSVM by Chang
and Lin [25,49]. Gamma and C values were studied using a trial and error method to find the best
combination according to the range proposed by the updated guide provided by Hsu et al. (2003) [50].

In Table 1, the adjustments for the selected SVM model can be seen. It can be observed that the
model presents a good determination coefficient in the training phase (0.995) with a low APPD, i.e.,
around 6.72% (RMSE of 0.24 months). For the validation phase, it can be seen how the value of the
determination coefficient falls slightly to 0.973 and the average absolute percentage deviation increases
to 12.86%, corresponding with a root mean squared error of 0.56 months. This high AAPD in the
validation phase is due to the case number 2, in which the model predicts an aging value of 1.85, when
the real value is 1 month, that is, the model predicts this case with an 85.12% of individual percentage
deviation (see Figure 1). This high error significantly affects the model’s AAPD value for the validation
phase (12.86%, see Table 1). Another two cases, 9 and 11, present an error close to the one considered as
acceptable (10%), −9.64 % and −10.73%, respectively. The same behaviour can be seen in the querying
phase. In this case, the R2 increases to 0.988 and the RMSE decreases to 0.37 months. Nevertheless, the
APPD increases to 16.35%; this value is, once again, due to the prediction for cases with one month of
aging time (see Figure 2). For cases 1 and 3, the individual percentages deviations are around 46.07%
and an 80.85%, respectively, while the individual percentage deviation for case 2 is −36.03%. These
high values distort the value of the APPD in the querying phase. In view of these results, it can be
concluded that the SVM model presents bad results for low aging times.
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Finally, the last model developed in this research is a Random Forest model. According to the
parameters exposed above, the best Random Forest model is the one with only one tree, which provided
the results shown in Table 1. It can be observed that the model presents an optimum determination
coefficient which causes the other analysed parameters, RMSE and APPD, to be zero (Table 1). The
random forest model found that the variables that dominate the determination of aging time are the
total-SO2 (T-SO2), the alcoholic grade (AD) and the free-SO2 (F-SO2). During wine aging, both free
SO2 and combined SO2 is lost over time. These losses are due to the interactions of SO2 with wine
components and with the oxygen that the wine receives during the process. In addition, with aging
time, the wine suffers a slight concentration effect due to the evaporation processes that occurs in
the barrel, increasing its alcoholic degree. A random forest with only one tree and with these three
parameters is enough to predict with total accuracy all cases of the training, validation and querying
phase (Figures 1 and 2). These results show that the RF model can predict the aging time with accuracy.

It seems clear that the adjustments obtained for the ANN1 and SVM models are not good when
wines with only one month of aging come into play. For other aging times, both models work
reasonably well. The results obtained for ANN2 (developed with thirteen input variables) and the RF
model (that used three input variables) can be used to guarantee red wine aging authenticity. These
two models are able to predict, with accuracy, the aging time with, in the worst case scenario (ANN2),
an average absolute percentage deviation below 1%, which corresponds to a maximum error of 0.04
months (in terms of RMSE). These results improve the principal component analysis (PCA) model
developed by Apetrei et al. (2012) using the oenological parameters where the analysis can describe
a 61% (28% for the first principal component, of the information; 21% for the second and a 12% for
the third) [51]. The partial least squares-discriminant analysis (PLS-DA) using the physicochemical
analyses can only explain 59% of the variance in calibration and 77% in predictions presenting an
RMSE up to 0.347 [51].

Regarding the RF model, and to our understanding, a single tree in the random forest model seems
to indicate that the wines of the Toro designation of origin studied in this research show particular
characteristics that can be a key factor in predicting aging times. In addition to this, it is expected that
the inclusion of new experimental data from different wines, batches and months could lead to the
development of RF models with more trees.

3. Materials and Methods

3.1. Data Set

A red wine, variety Tempranillo or Tinta de Toro belong to D.O. Toro (Spain), was studied.
A total of 16 batches were used, which had undergone 3 different aging systems, traditional (barrels),
alternative (chips+microxygenation, MOX) and stainless steel tank. Nine 210 L stainless steel tanks
were used to study alternative wine aging: 1-2-3) chips with light toast level and MOX; 4-5-6) chips
with medium toast level and MOX; 7-8-9) chips with heavy toast level and MOX. The traditional aging
system was studied in 6 barrels of light, medium and strong toast level in a duplicated way. Both
the barrels and the chips were made with oak French (allier, Q. sessilis) by the same cooperage
(Doreau, France). All tanks were used with small doses of oxygen (MOX) with an equipment
(OenoAZ3) simulating the micro-oxygenation which occurs due to the wood pores in the barrel,
the microoxygenation in the range 2.0–3.0 mL L−1 month−1 O2. In addition, a control (without
contact with wood) wine in a stainless steel tank was studied during the experiment. In this research,
the 58 samples reported by Apetrei et al. (2012) in their original research were used [51].

3.2. Physical-chemical Analysis

Independent variables were obtained by Apetrei et al. (2012) using conventional chemical analyses
of the wines according to international regulations of International Organisation of Vine and Wine [52].
These parameters were: tartaric acid (T) using a colorimetric method, glycerol (G) using a gases
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chromatography method, potassium (K) using an atomic absorption spectroscopy method, total
polyphenol index (TPI) using a spectrophotometric method, total acidity (TA) using a potentiometric
method, alcoholic grade (AD) using a distillation method, dry extract (DE) using densimetric method,
volatile acidity (VA) expressed as acetic acid using an enzymatic method, total-SO2 (T-SO2) and
free-SO2 (F-SO2) according to an iodometric method, reducing sugars (S) using an enzymatic method,
relative density (DEN)according to electronic densimeter method and pH. All methods are certified by
the National Accreditation Entity (ENAC).

3.3. Methodologies

According to the main purpose of this research, it is possible to locate in the literature artificial
neural networks, support vector machines and random forest models focused on different fields
related to wine. It is possible to find research papers about neural models conceived to verify the
origin of wines [53], to classify Slovak white wines from different producers, varieties and production
year [54], or for geographical classification [3,55], among others. Additionally, SVM has been used
to classify Syrah wines according to their origin (Mendoza—Argentina- and Central Valley—Chile-)
and then compared with neural networks [3] to authenticate wines from South Africa, Hungary,
Romania and Czech Republic [33], to characterize and authenticate different Spanish PDO wine
vinegars (Vinagre de Jerez, Vinagre de Montilla-Moriles and Vinagre del Condado de Huelva) [35],
to predict enological parameters and determine rice wine age [56] or to predict wine’s grade [4], inter
alia. Finally, Random Forests have been used to classify wines according to their production regions
using trace elements [41], to model the impact of climate change on wine regions (Hungary) [57] or in
different European wine regions [58], and to classify the cultivars on the basis of different chemical
present in wine [59], among others.

The first model developed was an ANN model. To obtain the best ANN model, it is necessary
to develop different ANN topologies with many configuration options using a trial and error
procedure [23,60]. The ANN model’s topology is composed of different kinds of layers: (i) a first
layer (called input layer) is destined to introduce the experimental data into the network, (ii) next,
another kind of layer or layers (called hidden or intermediate), and finally, (iii) a last layer (output
layer) where the predicted value is generated. During the ANN training phase, the value connection
between neurons (called weights) is adjusted to achieve the minimum error between the experimental
and the predicted output [61]. This process occurs in the hidden layers and output layer, and allows
the neural network to learn based on training experimental cases. A trial and error approach was used
to find the best neural model. Different topologies and training cycles were used to provide the best
results according to statistics in the validation phase.

In this research, two types of ANN have been analysed. The first network, ANN1, with a
backpropagation algorithm, sigmoidal function in its intermediate neurons and a linear function in
the output neuron, and a second type, ANN2, also with backpropagation algorithm and sigmoidal
function in all intermediate and output neurons. A disadvantage of neural models based on the
back-propagation algorithm is that it requires huge computational time to optimize the different
parameters which constitute the neural model [3,62]. For this reason, other techniques such as SVM
and RF have been studied to reduce computational costs and times of execution. SVM is a powerful
technique for classification and regression [25]; in our case, it was used for regression tasks using
epsilon-SVR and nu-SVR SVM types [25]. The SVM model finds an optimum separating hyperplane
to maximize the borderline of the decision surface [3]. In this study, the LIBSVM learner by Chang and
Lin [25,49] was used. Our SVM model used the RBF kernel; the configuration of parameters, gamma
and C, were studied according to the range proposed by the updated guide provide by Hsu et al.
(2003) [50].

In the Random Forest regression model, three parameters were optimized: (i) the number of trees
(1 to 100 in twenty linear steps), (ii) the least square criterion, (iii) maximal depth (−1 to 10 in eleven
linear steps), and (iv) apply pre-pruning (true or false).
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3.4. Model’s Prediction Statistics

Data from the original paper were split randomly into three groups, one group used to develop
the model (called training group, 35 cases), another formed by 11 cases (validation group) used to
validate the model, and a third group to query the selected model (querying group, 12 cases). In this
research, the predictive power of the different models was determined as a function of the coefficient
of determination (R2), the Root Mean Squared Error (RMSE) (Equation (1)) and the Average Absolute
Percentage Deviation (AAPD) (Equation (2)).

RMSE =

√
∑n

t=1(ŷt − yt)
2

n
(1)

AAPD =
100%

n

n

∑
t=1

∣∣∣∣ ŷt − yt

yt

∣∣∣∣ (2)

3.5. Equipment and Software

Neural models have been implemented in an AMD Ryzen 7 1800X Eight-Core Processor 3.60 GHz
(Advanced Micro Devices, Inc, Sunnyvale, CA, USA) with 16 GB of RAM memory. ANN1, SVM and
RF models were developed using a Trial/Free version of RapidMiner Studio from RapidMiner Inc
(Boston, MA, USA). The Neural model ANN2 was developed using the EasyNN plus v14.0d software
from Neural Planner Software Ltd (Cheadle Hulme, England). Data were fitted using Microsoft Excel
from Microsoft Office Professional Plus 2013. Figures were drawn with Sigmaplot 13 from Systat
Software Inc (San José, CA, USA).

4. Conclusions

In this study, different models were developed to monitor red wines from D.O. Toro (Spain). In
view of the results obtained by the models, ANN1 and SVM, it would be advisable to continue with
the analysis of wines of the D.O. Toro, and even to incorporate wines from close appellations of origin.
The results obtained by the ANN model with sigmoidal function in the output neuron and the random
forest model, which used physical-chemical parameters, allowed us to determine aging times, with an
average absolute percentage deviation of below 1%.

Author Contributions: G.A., J.C.M., V.M.-M., I.N., M.A.-S. and J.S.-G. conceived and designed the experiments,
drafted and revised the manuscript, approving the final version.

Funding: This work received financial support from Programa de Cooperación Interreg V-A España–Portugal
(POCTEP) 2014-2020 (project Ref: 0377_IBERPHENOL_6_E).

Acknowledgments: Astray G. thanks to Xunta de Galicia, Consellería de Cultura, Educación e Ordenación
Universitaria, for his postdoctoral grant B, POS-B/2016/001. Martínez-Martínez V. thanks Iberphenol for his
postdoctoral contract.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Luykx, D.M.A.M.; van Ruth, S.M. An overview of analytical methods for determining the geographical
origin of food products. Food Chem. 2008, 107, 897–911. [CrossRef]

2. Saurina, J. Characterization of wines using compositional profiles and chemometrics. Trac-Trend Anal. Chem.
2010, 29, 234–245. [CrossRef]

3. da Costa, N.L.; Llobodanin, L.A.G.; de Lima, M.D.; Castro, I.A.; Barbosa, R. Geographical recognition of
Syrah wines by combining feature selection with Extreme Learning Machine. Measurement 2018, 120, 92–99.
[CrossRef]

http://dx.doi.org/10.1016/j.foodchem.2007.09.038
http://dx.doi.org/10.1016/j.trac.2009.11.008
http://dx.doi.org/10.1016/j.measurement.2018.01.052


Molecules 2019, 24, 826 9 of 11

4. Chen, B.; Tawiah, C.; Palmer, J.; Erol, R. Multi-class wine grades predictions with hierarchical support vector
machines. In Proceedings of the ICNC-FSKD 2017-13th International Conference on Natural Computation,
Fuzzy, Guilin, China, 29–31 July 2018.

5. Rapeanu, G.; Vicol, C.; Bichescu, C. Possibilities to asses the wines authenticity. Innovative Romanian Food
Biotech. 2009, 5, 1–9.

6. Hu, L.; Yin, C.; Ma, S.; Liu, Z. Rapid detection of three quality parameters and classification of wine based
on Vis-NIR spectroscopy with wavelength selection by ACO and CARS algorithms. Spectrochim. Acta Part A
2018, 205, 574–581. [CrossRef] [PubMed]

7. Riovanto, R.; Cynkar, W.U.; Berzaghi, P.; Cozzolino, D. Discrimination between Shiraz wines from different
Australian regions: The role of spectroscopy and chemometrics. J. Agr. Food Chem. 2011, 59, 10356–10360.
[CrossRef] [PubMed]

8. Quality Schemes Explained. European Commission. Available online: https://ec.europa.eu/info/food-
farming-fisheries/food-safety-and-quality/certification/quality-labels/quality-schemes-explained_en
(accessed on 1 February 2019).

9. Danezis, G.P.; Tsagkaris, A.S.; Camin, F.; Brusic, V.; Georgiou, C.A. Food authentication: Techniques, trends
& emerging approaches. TrAC, Trends Anal. Chem. 2016, 85, 123–132.

10. Moldes, O.A.; Mejuto, J.C.; Rial-Otero, R.; Simal-Gandara, J. A Critical Review on the Applications of
Artificial Neural Networks in Winemaking Technology. Crit. Rev. Food Sci. Nutr. 2017, 57, 2896–2908.
[CrossRef] [PubMed]

11. Serrano-Lourido, D.; Saurina, J.; Hernández-Cassou, S.; Checa, A. Classification and characterisation
of Spanish red wines according to their appellation of origin based on chromatographic profiles and
chemometric data analysis. Food Chem. 2012, 135, 1425–1431. [CrossRef] [PubMed]

12. Andonie, R.; Johansen, A.M.; Mumma, A.L.; Pinkart, H.C.; Vajda, S. Cost efficient prediction of Cabernet
Sauvignon wine quality. In Proceedings of the 2016 IEEE Symposium Series on Computational Intelligence,
Athens, Greece, 6–9 December 2016.

13. Rendall, R.; Pereira, A.C.; Reis, M.S. Advanced predictive methods for wine age prediction: Part I—A
comparison study of single-block regression approaches based on variable selection, penalized regression,
latent variables and tree-based ensemble methods. Talanta 2017, 171, 341–350. [CrossRef] [PubMed]

14. Campos, M.P.; Sousa, R.; Pereira, A.C.; Reis, M.S. Advanced predictive methods for wine age prediction:
Part II–A comparison study of multiblock regression approaches. Talanta 2017, 171, 132–142. [CrossRef]
[PubMed]

15. Pereira, A.C.; Reis, M.S.; Saraiva, P.M.; Marques, J.C. Development of a fast and reliable method for long-
and short-term wine age prediction. Talanta 2011, 86, 293–304. [CrossRef] [PubMed]

16. Pereira, A.C.; Reis, M.S.; Saraiva, P.M.; Marques, J.C. Aroma ageing trends in GC/MS profiles of liqueur
wines. Anal. Chim. Acta 2010, 659, 93–101. [CrossRef] [PubMed]

17. Pereira, A.C.; Reis, M.S.; Saraiva, P.M.; Marques, J.C. Madeira wine ageing prediction based on different
analytical techniques: UV–vis, GC-MS, HPLC-DAD. Chemometr. Intell. Lab. 2011, 105, 43–55. [CrossRef]

18. Akintunde, A.M.; Ajala, S.O.; Betiku, E. Optimization of Bauhinia monandra seed oil extraction via artificial
neural network and response surface methodology: A potential biofuel candidate. Ind. Crops Prod. 2015,
67, 387–394. [CrossRef]

19. Haykin, S. Neural networks, a comprehensive foundation. Knowl. Eng. Rev. 1999, 13, 409–412.
20. Bishop, C.M. Neural Networks for Pattern Recognition; Oxford University Press: Oxford, UK, 1995.
21. Gonzalez-Fernandez, I.; Iglesias-Otero, M.A.; Esteki, M.; Moldes, O.A.; Mejuto, J.C.; Simal-Gandara, J.

A critical review on the use of artificial neural networks in olive oil production, characterization and
authentication. Crit. Rev. Food Sci. Nutr. 2018. [CrossRef] [PubMed]

22. McCulloch, W.S.; Pitts, W. A logical calculus of the ideas immanent in nervous activity. Bull. Math. Biophys.
1943, 5, 115–133. [CrossRef]

23. Dawson, C.W.; Wilby, R.L. Hydrological modelling using artificial neural networks. Prog. Phys. Geog. 2001,
25, 80–108. [CrossRef]

24. Beck, H.E.; Van Dijk, A.I.J.M.; Miralles, D.G.; De Jeu, R.A.M.; Bruijnzeel, L.A.; McVicar, T.R.; Schellekens, J.
Global patterns in base flow index and recession based on streamflow observations from 3394 catchments.
Water Resour. Res. 2013, 49, 7843–7863. [CrossRef]

http://dx.doi.org/10.1016/j.saa.2018.07.054
http://www.ncbi.nlm.nih.gov/pubmed/30075438
http://dx.doi.org/10.1021/jf202578f
http://www.ncbi.nlm.nih.gov/pubmed/21842866
https://ec.europa.eu/info/food-farming-fisheries/food-safety-and-quality/certification/quality-labels/quality-schemes-explained_en
https://ec.europa.eu/info/food-farming-fisheries/food-safety-and-quality/certification/quality-labels/quality-schemes-explained_en
http://dx.doi.org/10.1080/10408398.2015.1078277
http://www.ncbi.nlm.nih.gov/pubmed/26464111
http://dx.doi.org/10.1016/j.foodchem.2012.06.010
http://www.ncbi.nlm.nih.gov/pubmed/22953876
http://dx.doi.org/10.1016/j.talanta.2016.10.062
http://www.ncbi.nlm.nih.gov/pubmed/28551149
http://dx.doi.org/10.1016/j.talanta.2017.04.064
http://www.ncbi.nlm.nih.gov/pubmed/28551119
http://dx.doi.org/10.1016/j.talanta.2011.09.016
http://www.ncbi.nlm.nih.gov/pubmed/22063544
http://dx.doi.org/10.1016/j.aca.2009.11.060
http://www.ncbi.nlm.nih.gov/pubmed/20103109
http://dx.doi.org/10.1016/j.chemolab.2010.10.009
http://dx.doi.org/10.1016/j.indcrop.2015.01.056
http://dx.doi.org/10.1080/10408398.2018.1433628
http://www.ncbi.nlm.nih.gov/pubmed/29381389
http://dx.doi.org/10.1007/BF02478259
http://dx.doi.org/10.1177/030913330102500104
http://dx.doi.org/10.1002/2013WR013918


Molecules 2019, 24, 826 10 of 11

25. RapidMiner Documentation. RapidMiner. Available online: https://docs.rapidminer.com/ (accessed on 1
February 2019).

26. Chiang, Y.; Chang, F. Integrating hydrometeorological information for rainfall-runoff modelling by artificial
neural networks. Hydrol. Processes 2009, 23, 1650–1659. [CrossRef]

27. Gazzaz, N.M.; Yusoff, M.K.; Aris, A.Z.; Juahir, H.; Ramli, M.F. Artificial neural network modeling of the
water quality index for Kinta River (Malaysia) using water quality variables as predictors. Mar. Pollut. Bull.
2012, 64, 2409–2420. [CrossRef] [PubMed]

28. Narisetty, V.; Astray, G.; Gullón, B.; Castro, E.; Parameswaran, B.; Pandey, A. Improved 1,3-propanediol
production with maintained physical conditions and optimized media composition: Validation with
statistical and neural approach. Biochem. Eng. J. 2017, 126, 109–117. [CrossRef]

29. Hernández Suárez, M.; Astray Dopazo, G.; Larios López, D.; Espinosa, F. Identification of relevant
phytochemical constituents for characterization and authentication of tomatoes by general linear model
linked to automatic interaction detection (GLM-AID) and artificial neural network models (ANNs).
PLoS ONE 2015, 10, e0128566. [CrossRef] [PubMed]

30. Bucci, R.; Magrí, A.D.; Magrí, A.L.; Marini, D.; Marini, F. Chemical authentication of extra virgin olive
oil varieties by supervised chemometric procedures. J. Agric. Food. Chem. 2002, 50, 413–418. [CrossRef]
[PubMed]

31. Montoya, L.A.; Moldes, O.A.; Cid, A.; Astray, C.; Gálvez, J.F.; Mejuto, J.C. Influence prediction of alkylamines
upon electrical percolation of AOT-based microemulsions using artificial neural networks. Tenside Surfact.
Det. 2015, 52, 473–476. [CrossRef]

32. Ahmad, S.; Gromiha, M.M. Design and training of a neural network for predicting the solvent accessibility
of proteins. J. Comput. Chem. 2003, 24, 1313–1320. [CrossRef] [PubMed]

33. Capron, X.; Massart, D.L.; Smeyers-Verbeke, J. Multivariate authentication of the geographical origin of
wines: A kernel SVM approach. Eur. Food Res. Technol. 2007, 225, 559–568. [CrossRef]

34. Boser, B.E.; Guyon, I.M.; Vapnik, V.N. A Training Algorithm for Optimal Margin Classifiers. In Proceedings
of the 5th Annual Workshop on Computational Learning Theory (COLT’92), Pittsburgh, PA, USA,
27–29 July 1992.

35. Ríos-Reina, R.; Elcoroaristizabal, S.; Ocaña-González, J.A.; García-González, D.L.; Amigo, J.M.; Callejón, R.M.
Characterization and authentication of Spanish PDO wine vinegars using multidimensional fluorescence
and chemometrics. Food Chem. 2017, 230, 108–116. [CrossRef] [PubMed]

36. Kamari, A.; Mohammadi, A.H.; Bahadori, A.; Zendehboudi, S. Prediction of air specific heat ratios at elevated
pressures using a novel modeling approach. Chem. Eng. Technol. 2014, 37, 2047–2055. [CrossRef]

37. Chan, K.; Lee, T.-W.; Sample, P.A.; Goldbaum, M.H.; Weinreb, R.N.; Sejnowski, T.J. Comparison of machine
learning and traditional classifiers in glaucoma diagnosis. IEEE Trans. Biomed. Eng. 2002, 49, 963–974.
[CrossRef] [PubMed]

38. Pai, P.; Hong, W. Forecasting regional electricity load based on recurrent support vector machines with
genetic algorithms. Electr. Pow Syst. Res. 2005, 74, 417–425. [CrossRef]

39. Yu, R.; Abdel-Aty, M. Utilizing support vector machine in real-time crash risk evaluation. Accid. Anal. Prev.
2013, 51, 252–259. [CrossRef] [PubMed]

40. Alhaj, M.A.M.; Maghari, A.Y.A. Cancer survivability prediction using random forest and rule induction
algorithms. In Proceedings of the ICIT 2017—8th International Conference on Information Technology,
Al-Zaytoonah University of Jordan, Amman, Jordan, 17 May 2017.

41. Tian, Y.C.; Yan, T.; Zhang, H.; Tang, H.; Li, J.; Yu, J.; Bernard, L.; Chen, S.; Martin, N.; Delepine-Gilon, J.;
et al. Classification of wines according to their production regions with the contained trace elements using
laser-induced breakdown spectroscopy. Spectrochim. Acta B 2017, 135, 91–101. [CrossRef]

42. Breiman, L. Random Forests. Machine Learn. 2001, 45, 5–32. [CrossRef]
43. Breiman, L.; Friedman, J.; Olshen, R.; Stone, C. Classification and Regression Tree; CRC Press: Boca Raton, FL,

USA, 1984.
44. Vigneau, E.; Courcoux, P.; Symoneaux, R.; Guérin, L.; Villière, A. Random forests: A machine learning

methodology to highlight the volatile organic compounds involved in olfactory perception. Food Qual. Prefer.
2018, 68, 135–145. [CrossRef]

45. Cutler, D.R.; Edwards, T.C., Jr.; Beard, K.H.; Cutler, A.; Hess, K.T.; Gibson, J.; Lawler, J.J. Random forests for
classification in ecology. Ecology 2007, 88, 2783–2792. [CrossRef] [PubMed]

https://docs.rapidminer.com/
http://dx.doi.org/10.1002/hyp.7299
http://dx.doi.org/10.1016/j.marpolbul.2012.08.005
http://www.ncbi.nlm.nih.gov/pubmed/22925610
http://dx.doi.org/10.1016/j.bej.2017.07.003
http://dx.doi.org/10.1371/journal.pone.0128566
http://www.ncbi.nlm.nih.gov/pubmed/26075889
http://dx.doi.org/10.1021/jf010696v
http://www.ncbi.nlm.nih.gov/pubmed/11804505
http://dx.doi.org/10.3139/113.110399
http://dx.doi.org/10.1002/jcc.10298
http://www.ncbi.nlm.nih.gov/pubmed/12827672
http://dx.doi.org/10.1007/s00217-006-0454-2
http://dx.doi.org/10.1016/j.foodchem.2017.02.118
http://www.ncbi.nlm.nih.gov/pubmed/28407890
http://dx.doi.org/10.1002/ceat.201400261
http://dx.doi.org/10.1109/TBME.2002.802012
http://www.ncbi.nlm.nih.gov/pubmed/12214886
http://dx.doi.org/10.1016/j.epsr.2005.01.006
http://dx.doi.org/10.1016/j.aap.2012.11.027
http://www.ncbi.nlm.nih.gov/pubmed/23287112
http://dx.doi.org/10.1016/j.sab.2017.07.003
http://dx.doi.org/10.1023/A:1010933404324
http://dx.doi.org/10.1016/j.foodqual.2018.02.008
http://dx.doi.org/10.1890/07-0539.1
http://www.ncbi.nlm.nih.gov/pubmed/18051647


Molecules 2019, 24, 826 11 of 11

46. Mutanga, O.; Adam, E.; Cho, M.A. High density biomass estimation for wetland vegetation using
WorldView-2 imagery and random forest regression algorithm. Int. J. Appl. Earth Obs. 2012, 18, 399–406.
[CrossRef]

47. Gallego, L.; Nevares, I.; Fernández, J.A.; Del Álamo, M. Determination of low-molecular mass phenols in
red wines: The influence of chips, staves and micro-oxygenation aging tank. Food Sci. Technol. Int. 2011,
17, 429–438. [CrossRef] [PubMed]

48. Gallego, L.; Del Alamo, M.; Nevares, I.; Fernández, J.A.; De Simón, B.F.; Cadahía, E. Phenolic compounds
and sensorial characterization of wines aged with alternative to barrel products made of Spanish oak wood
(Quercus pyrenaica Willd.). Food Sci. Technol. Int. 2012, 18, 151–165. [CrossRef] [PubMed]

49. Chang, C.C.; Lin, C.J. LIBSVM: A Library for support vector machines. ACM Trans. Intell. Syst. Tech. 2011, 2.
[CrossRef]

50. Hsu, C.W.; Chang, C.C.; Lin, C.J. A Practical Guide to Support Vector Classification. Technical report.
Department of Computer Science, National Taiwan University: Taiwan, 15 July 2003. Available online:
https://www.csie.ntu.edu.tw/~{}cjlin/papers/guide/guide.pdf (accessed on 1 February 2019).

51. Apetrei, I.M.; Rodríguez-Méndez, M.L.; Apetrei, C.; Nevares, I.; del Alamo, M.; de Saja, J.A. Monitoring of
evolution during red wine aging in oak barrels and alternative method by means of an electronic panel test.
Food Res. Int. 2012, 45, 244–249. [CrossRef]

52. International Organisation of Vine and Wine, OIV. Recueil des méthodes internationales
d’analyse des vins et des mouts. OIV: Paris, France, 2018; Volume 2. Available online:
http://www.oiv.int/fr/normes-et-documents-techniques/methodes-danalyse/recueil-des-methodes-
internationales-danalyse-des-vins-et-des-mouts-2-vol (accessed on 1 February 2019).

53. Aires-De-Sousa, J. Verifying wine origin: A neural network approach. Am. J. Enol. Vitic. 1996, 47, 410–414.
54. Kruzlicova, D.; Mocak, J.; Balla, B.; Petka, J.; Farkova, M.; Havel, J. Classification of Slovak white wines using

artificial neural networks and discriminant techniques. Food Chem. 2009, 112, 1046–1052. [CrossRef]
55. Šelih, V.S.; Šala, M.; Drgan, V. Multi-element analysis of wines by ICP-MS and ICP-OES and their classification

according to geographical origin in Slovenia. Food Chem. 2014, 153, 414–423. [CrossRef] [PubMed]
56. Yu, H.; Lin, H.; Xu, H.; Ying, Y.; Li, B.; Pan, X. Prediction of enological parameters and discrimination of rice

wine age using least-squares support vector machines and near infrared spectroscopy. J. Agr. Food Chem.
2008, 56, 307–313. [CrossRef] [PubMed]

57. Gaál, M.; Moriondo, M.; Bindi, M. Modelling the impact of climate change on the Hungarian wine regions
using Random Forest. Appl. Ecol. Environ. Res. 2012, 10, 121–140. [CrossRef]

58. Moriondo, M.; Jones, G.V.; Bois, B.; Dibari, C.; Ferrise, R.; Trombi, G.; Bindi, M. Projected shifts of wine
regions in response to climate change. Climatic Change 2013, 119, 825–839. [CrossRef]

59. Ahammed, B.; Abedin, M.M. Predicting wine types with different classification techniques. Model Assisted
Stat. Appl. 2018, 13, 85–93. [CrossRef]

60. Iglesias-Otero, M.A.; Fernández-González, M.; Rodríguez-Caride, D.; Astray, G.; Mejuto, J.C.;
Rodríguez-Rajo, F.J. A model to forecast the risk periods of Plantago pollen allergy by using the ANN
methodology. Aerobiologia 2015, 31, 201–211. [CrossRef]

61. Dai, X.; Shi, H.; Li, Y.; Ouyang, Z.; Huo, Z. Artificial neural network models for estimating regional reference
evapotranspiration based on climate factors. Hydrol. Processes 2009, 23, 442–450. [CrossRef]

62. Huang, G.; Zhu, Q.; Siew, C. Extreme learning machine: Theory and applications. Neurocomputing 2006, 70,
489–501. [CrossRef]

Sample Availability: not available.

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.jag.2012.03.012
http://dx.doi.org/10.1177/1082013211414786
http://www.ncbi.nlm.nih.gov/pubmed/21954308
http://dx.doi.org/10.1177/1082013211427782
http://www.ncbi.nlm.nih.gov/pubmed/22414933
http://dx.doi.org/10.1145/1961189.1961199
https://www.csie.ntu.edu.tw/~{}cjlin/papers/guide/guide.pdf
http://dx.doi.org/10.1016/j.foodres.2011.10.034
http://www.oiv.int/fr/normes-et-documents-techniques/methodes-danalyse/recueil-des-methodes-internationales-danalyse-des-vins-et-des-mouts-2-vol
http://www.oiv.int/fr/normes-et-documents-techniques/methodes-danalyse/recueil-des-methodes-internationales-danalyse-des-vins-et-des-mouts-2-vol
http://dx.doi.org/10.1016/j.foodchem.2008.06.047
http://dx.doi.org/10.1016/j.foodchem.2013.12.081
http://www.ncbi.nlm.nih.gov/pubmed/24491748
http://dx.doi.org/10.1021/jf0725575
http://www.ncbi.nlm.nih.gov/pubmed/18167072
http://dx.doi.org/10.15666/aeer/1002_121140
http://dx.doi.org/10.1007/s10584-013-0739-y
http://dx.doi.org/10.3233/MAS-170420
http://dx.doi.org/10.1007/s10453-014-9357-z
http://dx.doi.org/10.1002/hyp.7153
http://dx.doi.org/10.1016/j.neucom.2005.12.126
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Results and Discussion 
	Materials and Methods 
	Data Set 
	Physical-chemical Analysis 
	Methodologies 
	Model’s Prediction Statistics 
	Equipment and Software 

	Conclusions 
	References

