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Abstract: The aim of this paper is to evaluate the evolution of irregularity and variability of airflow
(AF) signals as sleep apnoea-hypopnoea syndrome (SAHS) severity increases in children. We analyzed
501 AF recordings from children 6.2 ± 3.4 years old. The respiratory rate variability (RRV) signal,
which is obtained from AF, was also estimated. The proposed methodology consisted of three phases:
(i) extraction of spectral entropy (SE1), quadratic spectral entropy (SE2), cubic spectral entropy
(SE3), and central tendency measure (CTM) to quantify irregularity and variability of AF and RRV;
(ii)‘feature selection with forward stepwise logistic regression (FSLR), and (iii) classification of subjects
using logistic regression (LR). SE1, SE2, SE3, and CTM were used to conduct exploratory analyses
that showed increasing irregularity and decreasing variability in AF, and increasing variability in
RRV as apnoea-hypopnoea index (AHI) was higher. These tendencies were clearer in children with a
higher severity degree (from AHI ≥ 5 events/hour). Binary LR models achieved 60%, 76%, and 80%
accuracy for the AHI cutoff points 1, 5, and 10 e/h, respectively. These results suggest that irregularity
and variability measures are able to characterize paediatric SAHS in AF recordings. Hence, the use of
these approaches could be helpful in automatically detecting SAHS in children.

Keywords: sleep apnoea-hypopnoea syndrome; airflow; respiratory rate variability; spectral entropy;
central tendency measure; children

1. Introduction

The sleep apnoea-hypopnoea syndrome (SAHS) is a chronic respiratory disorder characterized by
recurrent events of apnoea (complete absence of airflow) or hypopnoea (significant airflow reduction)
during sleep time [1,2]. SAHS increases the risk for adverse and serious medical consequences in
paediatric patients affected by this frequent condition. SAHS may affect cardiovascular and central
nervous systems, as well as decrease somatic growth and promote nocturnal enuresis, all of which
lead to decreases in health and quality of life [3]. Moreover, paediatric SAHS is an underdiagnosed
disease with high prevalence, affecting up to 4% of the childhood population [3,4].

SAHS can affect both children and adults. However, its physical and cognitive consequences are
different. In this sense, excessive daytime sleepiness and depression are more frequent in adults with
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SAHS, whereas reduced growth and abnormalities in neurocognitive and behavioral development
are common in affected paediatric patients [5,6]. Similarly, the main causes of SAHS also differ
in adult and childhood population. Children suffering from SAHS usually present adenotonsillar
hypertrophy that causes narrowing of the upper airways [5,6]. In contrast, narrowing of the upper
airway is commonly associated with increased adipose tissue in adults, in the context of concurrent
obesity [5,6]. In this regard, the majority of children affected by SAHS are not overweight, although
both overweight and frank obesity increase the risk of suffering from the disease. The rules of the
American Academy of Sleep Medicine (AASM) for scoring apnoeas and hypopnoeas are also somewhat
different for adults and children [2]. Ten-second durations or longer are required to score an apnoea or
a hypopnea event in the case of adults, whereas only six seconds (or, alternatively, two respiratory
cycles) are required for children [2]. Thus, the less restrictive criteria for children are also evident
when diagnosing and treating SAHS. The apnoea-hypopnoea index (AHI), calculated as the number
of apnoeas and hypopnoeas per hour of sleep, is used to diagnose SAHS and determine its severity
in both adults and children [7]. Nonetheless, adults with AHI < 5 events/hour (e/h) are considered
free of SAHS, whereas AHI ≥ 1 e/h has been often used as indicative of the presence of the disease
in children [8–11]. Similarly, when a paediatric subject shows AHI ≥ 5 e/h, a surgical treatment
(adenotonsillectomy) is commonly recommended, whereas this is only the cutoff point of mild severity
for an adult, and treatment is rarely if ever prescribed under these circumstances [8,11]. Similarly,
10 e/h still corresponds to mild SAHS in adults, but determines severe SAHS in children [8–11].

Due to the serious consequences of paediatric SAHS, early detection and treatment are critical.
The gold standard diagnostic test is nocturnal polysomnography (PSG) [12]. PSG implies the overnight
monitoring of the patient at a specialized sleep unit in order to record multiple biomedical signals
during sleep. These include electrocardiogram (ECG), electroencephalogram (EEG), electrooculogram
(EOG), electromyography (EMG), photoplethysmography (PPG), blood oxygen saturation (SpO2),
and airflow (AF), usually assessed using nasal pressure recordings and thermistor-derived airflow
qualitative assessments. The recordings are used to calculate the AHI, whose evaluation lets the
sleep specialist determine the presence and severity of SAHS. Despite its effectiveness, PSG requires
expensive equipment to acquire the biomedical signals. It is also a labour-intensive task for physicians,
who have to spend substantial time and effort evaluating the recordings [13]. These issues generate
long waiting lists, as well as delays in diagnosis [13]. Moreover, PSG is particularly uncomfortable and
inconvenient for children, due to the multiple sensors attached on their bodies and the need to spend a
night at the laboratory facility [14].

Alternative diagnostic methods have been proposed to overcome the PSG limitations.
One common approach has been the analysis of a reduced set of those signals involved in the PSG.
In this regard, ECG, PPG, SpO2, and AF have been already manually evaluated [15] or, alternatively, by
the use of automatic processing techniques [16–23]. Direct event-detection of apnoeas and hypopnoeas
is a common approach [17–19]. In addition, the overall characterization of biomedical signals in time
and frequency domain have been also adopted to help in the diagnosis of childhood SAHS [20–22].
These studies showed that there is no consensus in the threshold used to establish paediatric SAHS and
its severity. Several of the published studies used the most conservative AHI cutoff (1 e/h) [15,16,23],
whereas others applied less restrictive ones (3 e/h, 5 e/h, or 10 e/h) [8,17–22,24]. None of these studies
however, assessed the evolution of irregularity and variability as AHI increases.

In this study, AF and the respiratory rate variability (RRV) signals were analyzed. The analysis
of AF is justified since it is directly involved in the definition of apnoeas and hypopnoeas [1,2].
Several studies have already shown its usefulness in the diagnosis of SAHS in adults [22,25,26].
When an apnoeic event occurs, the amplitude of AF tends to values close to zero (apnoea) or decreases
significantly (hypopnoea). These amplitude variations not only modify AF in the time domain, but
their recurrence also causes alterations in the frequency domain. In addition to the AF signal, the
analysis of RRV is also proposed. RRV is directly derived from single-channel AF, and is calculated as
the elapsed time between consecutive breaths [27]. RRV has been already used to assist with SAHS
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diagnosis in adults [25]. When a complete cessation or reduction of AF occurs, the elapsed time
between two consecutive complete respiratory cycles varies [25]. Therefore, apnoeas and hypopnoeas
also cause alterations in RRV time series. Moreover, as in the case of AF, the recurrence of these events
also modifies its spectrum.

According to the aforementioned considerations, we propose the use of irregularity and
variability measures applied to single-channel AF recordings, to assist in paediatric SAHS diagnosis.
Our hypothesis was that these analyses are able to characterize the presence and severity of SAHS
based on the AF signal obtained from children during sleep. Accordingly, our objectives were to
evaluate the evolution of the irregularity and the variability of single-channel AF as AHI increases, as
well as to assess the diagnostic ability of the information provided by these analyses.

In order to measure irregularity and variability of AF and RRV, spectral entropy (SE1), quadratic
spectral entropy (SE2), cubic spectral entropy (SE3), and central tendency measure (CTM) of both
AF and RRV were proposed. Spectral entropies (SE) are commonly used to quantify irregularity in
biomedical signals [20,28–31]. They have been successfully used to estimate the irregularity of EEG
and magnetoencephalogram (MEG) recordings in Alzheimer’s disease [28], to identify different cardiac
arrhythmias in heart rate variability (HRV) signals [29], and, in the context of SAHS, to help to diagnose
adults and children with HRV [30], to identify affected children using SpO2 recordings [20], as well
as to help to detect apnoea events from ECG recordings [31]. CTM is a non-linear feature used to
measure variability in biomedical time series [25,32–34]. It has been successfully used to quantify the
variability of EEG recordings in Alzheimer’s disease [32], to help to identify congestive heart failure
from ECG recordings [33], as well as to improve the diagnostic ability of SpO2 in the detection of
SAHS [34]. In order to evaluate the evolution of SE and CTM as AHI is higher, we divided our subject
database in four groups of increasingly severity. We have already mentioned that there is no consensus
on those AHI cutoff points that should be used to determine SAHS and its severity. However, 1 e/h,
5 e/h, and 10 e/h are commonly used thresholds [8–10,24]. In this regard, several studies suggest a
classification of severity based on the association of AHI < 1 with no-SAHS, 1 ≤ AHI < 5 with mild
SAHS, 5 ≤ AHI < 10 with moderate SAHS, and AHI ≥ 10 with severe SAHS [8–10,24]. Therefore, our
database division followed these severity groups.

After the irregularity and variability analyses of AF and RRV, an automatic feature selection stage
was conducted to obtain an optimum feature subset that maximizes the diagnostic potential of the
extracted information. In order to automatically select this feature subset, the well-known forward
stepwise logistic regression (FSLR) method was proposed [35]. Finally, the diagnostic ability of logistic
regression models (LR) built with the selected optimum features was evaluated.

2. Materials and Methods

2.1. Subjects and Signals

The population under study consisted of 501 paediatric subjects. All of them were suspected of
suffering from SAHS since they presented common symptoms of the disease, such as snoring and
breathing pauses during sleep time. PSGs of these children were recorded in the Paediatric Sleep Unit
at the Comer Children’s Hospital of the University of Chicago. The study protocol was approved by the
Ethics Committee and all legal caretakers of the children gave their informed consent. The paediatric
subjects were diagnosed by medical specialists following the standards of the AASM [2]. Accordingly,
apnoea was defined as a decrease ≥ 90% of oronasal airflow during at least two respiratory cycles.
Similarly, hypopnoea was defined as a decrease ≥ 30% in the nasal pressure airflow signal lasting
at least two respiratory cycles, accompanied by a desaturation of oxygen in blood ≥ 3% and/or an
arousal [2].

The population under study was randomly allocated into two groups, training (50%) and test
(50%), to train and validate the proposed methodology, respectively. The subjects who did not suffer
from SAHS (AHI < 1) composed the control group in both datasets. Table 1 shows the demographic
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and clinical data of the paediatric subjects under study. No significant differences (p-value < 0.01) were
found in age, gender, body mass index (BMI), and AHI between the training group and the test group
when the non-parametric Mann-Whitney U test was conducted.

Table 1. Demographic and clinical data from the paediatric subjects under study. Data are presented as
median [interquartile range] or n (%); BMI: body mass index; AHI: apnoea–hypopnoea index.

Characteristics All Training Group Test Group

Subjects (n) 501 250 251
Age (years) 6 [3, 9] 6 [4, 8] 6 [3, 9]
Males (n) 314 (62.67%) 160 (64%) 154 (61.35%)

BMI (kg/m2) 17.81 [15.75, 22.21] 17.39 [15.57, 21.97] 18.14 [16.11, 22.44]
AHI (e/h) 3.2 [0.95, 8.08] 2.69 [0.77, 7.28] 3.53 [1.37, 9.06]

AHI ≥ 1 (e/h) 367 (73.25%) 170 (68%) 197 (78.49%)
AHI ≥ 5 (e/h) 180 (35.93%) 83 (33.2%) 97 (38.65%)

AHI ≥ 10 (e/h) 104 (20.76%) 48 (19.2%) 56 (22.31%)

The recordings were acquired using a digital polysomnography (Polysmith, Nihon Kohden
America Inc., Irvine, CA, USA). The AF signal used in the study was acquired with a thermistor
during the PSG. The sampling frequency of AF was 100 Hz, as recommended by the AASM [2].
A preprocessing phase was carried out to remove the artifacts present on the AF signal. Artifacts were
discarded using a methodology based on the comparison of the mean and the kurtosis of AF segments.
Statistically significant differences between AF segments with noise or signal loss and the remaining
segments were shown in these measures. The age of the subjects under study ranged from zero to
13 years old. In order to minimize possible differences among children due to this age span, AF
recordings were normalized as proposed by Varady et al. [36]. RRV was obtained by computing the
time between consecutive inspiratory onsets in the AF signal [27]. Hence, we looked for AF intervals
containing turning points by finding positive segments followed by negative ones in its derivative [25].
Once these intervals were located, the elapsed times between consecutive maximum points were
computed to obtain RRV [25]. Since AF-derived RRV samples do not follow a constant rate, a cubic
spline interpolation was applied (100 Hz) in order to enable subsequent analysis in the frequency
domain [25].

2.2. Methods

The proposed methodology consists of three phases: (i) extraction of SE and CTM to measure the
irregularity and variability of AF and RRV; (ii) feature selection with FSLR, and (iii) classification of
subjects using LR. Figure 1 shows the general scheme of the methodology carried out in our study.

2.2.1. Feature Extraction

SE requires the prior estimation of power spectral density (PSD) of the AF and RRV recordings.
It was computed using the Welch method which uses the Fast Fourier Transform [37]. This method
is mathematically described as follows [25,37]: the original time series is divided into M overlapped
segments of length L. Each of the segments is averaged using a function w[n] that smoothes the edges
and improves the spectral resolution of the estimator. After that, the modified periodogram of each
segment vm[n] is calculated by applying the FFT:

P̂[ f ] =
|V[ f ]|2

fsLU
(1)

where fs is the sampling frequency, and V is the discrete Fourier transform (DFT) of N points of
segment vm[n]:
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V[ f ] = ∑ N−1
n=0 vm[n]e−j(2πk/N)n k = 0, . . . , N − 1 (2)

and U is a normalization constant dependent of w[n]:

U =
1
M ∑ M−1

n=0 |w[n]|2 (3)

Finally, all periodograms are averaged to estimate PSD. In the present study, we used 215 samples
Hamming window, 50% overlap and 216 point discrete Fourier transform length.

SE is calculated from PSD to characterize the oscillatory behavior of a signal through the
flatness/peakedness of its spectral distribution, i.e., it quantifies irregularity [28]. Furthermore,
higher-order SE may potentiate the changes in the breathing pattern due to apnoeic events. SE1,
SE2, and SE3 are based on Shannon’s entropy and require normalization of PSD (PSDn) in a selected
frequency range f 1–f 2. They can be computed as follows [28,30]:

SEi = −∑ f2
f= f1

PSDni ( f )· log[PSDni ( f )] (4)

where PSDni (f ) is [29,31]:

PSDni ( f ) =
|PSD ( f )|i

∑
f2
f= f1

∣∣∣PSD ( f )
∣∣∣i i = 1, 2, 3 (5)

and i is the order of entropy. The flatter the spectrum of the signal, the closer the value of SE to 1.
This would indicate more irregularity for the signal in the time domain. By contrast, the higher
spectral peakedness, the closer the value of SE to 0, which would indicate less irregularity in the
time domain. Normal breathing in children is confined within a narrow band of PSD (0.20 Hz to
0.40 Hz approximately) [30,38]. As in the case of adults [39], it is expected that apnoeic-related events
contribute to more frequency components, i.e., to broaden the spectrum. Thus, AF and RRV signals
from more SAHS severity children are expected to have higher SE values. Hence, SE is presented as a
suitable tool to evaluate the evolution of irregularity as AHI increases.

CTM is a non-linear parameter for measuring the variability of biomedical time series [25,32–34].
This feature is based on first-order difference plots, which are scatter diagrams centered on the origin
that represent displaced subsequences of the original time series: (x[i + 2] − x[i + 1]) vs. (x[i + 1] − x[i]),
where each x[i] is the value of the AF time series at time i [33,34]. CTM quantifies the dispersion
of data as the quotient between the number of points located within a circular region of radius r
centered on the origin and the total number of points. Thus, CTM can be calculated with the following
expression [33,34]:

CTM =
∑N−2

i=1 δ (i)
N − 2

(6)

where N is the number of points of the time series and δ (i) is:

δ(i) =

{
1, if((x[i + 2]− x[i + 1])2 + (x[i + 1]− x[i])2)

1/2
< r

0, otherwise
(7)

If data are widely scattered throughout the plot, a great number of points are located outside
the circular region. When this happens, CTM value is close to 0, indicating high variability of data.
Nevertheless, if data are concentrated around the origin, a high number of points fall within the
circular region. In this case, CTM tends to 1, indicating low variability of the data. According to (6)
and (7), it is expected that the absence of breathing will cause less variability (higher CTM) in AF, as
well as higher variability (lower CTM) in the time between breaths, i.e., in RRV signal. Consequently,
CTM is a priori a suitable tool to measure the evolution of variability as AHI increases. A good choice
of r is fundamental for this purpose. Hence, it has to be experimentally optimized in the training set.
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In this regard, we have assessed several r values for both AF and RRV. The CTM variables obtained for
each of them where correlated with the AHI. This correlation is shown in Figure 2. Then we chose
those r values showing the highest Spearman’s correlation coefficient (RHO) between CTM and AHI
(rAF = 0.0004 and rRRV = 7).
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Figure 2. Spearman’s correlation coefficient between central tendency measure (CTM) with different
r values and the apnoea-hypopnoea index (AHI) for: (a) airflow (AF) and (b) respiratory rate
variability (RRV).

2.2.2. Feature Selection

After feature extraction, eight characteristics (SE1
AF, SE2

AF, SE3
AF, CTMAF, SE1

RRV, SE2
RRV,

SE3
RRV, and CTMRRV) were obtained. Next, a feature selection phase was then conducted to find

an optimum subset of parameters that maximized the diagnostic potential of the irregularity and
variability information extracted in the training set. In this regard, we applied the FSLR method
proposed by Hosmer and Lemeshow, which is based on the LR classifier [35].

FSLR has already shown its usefulness in previous studies involving SAHS detection in
adults [25,40]. This method allows us to explore the original feature space to find an optimal subset
without having to evaluate all possible combinations [41]. It finds a feature subset as a result of the
sequential incorporation of the most relevant variables, which is followed by the elimination of those
that contribute with redundant information to a LR model [42]. The relevance and redundancy of a
feature is defined according to the p-value of the likelihood ratio test when it is included or removed
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from a specific model [35]. Thus, the algorithm includes a candidate feature in the LR model if the
p-value of its likelihood ratio test is less than a certain input threshold αI. Once included, the method
accomplishes a redundancy analysis of the variables in the model, excluding those whose p-value is
greater than a certain output threshold αO. The algorithm ends when none of the candidate variables
meet the input condition and none of the included variables meet the output condition [35].

2.2.3. Classification

LR is a standard for binary classification [35]. It allows estimation of the posterior probability
of the occurrence of a certain event, defined by a dichotomous dependent variable, as a function
of independent predictor variables [35]. In our case, the dependent variable was composed of the
classification of the subjects under study in the positive class or negative class, whereas the predictors
were the features of the optimum subset previously selected. Thus, LR allowed us to estimate the
posterior probability that a subject had SAHS, without making any a priori assumption about the
statistical nature of the data. LR follows the expression [35]:

π(x) =
eβ0+β1x1+β2x2+...+βkxk

1 + eβ0+β1x1+β2x2+...+βkxk
(8)

where π(x) is the posterior probability of membership to the SAHS class, β0 is interceptor,
βi (i = 1, . . . , k) are coefficients associated to each predictor variable, and k the number of features in
the model. LR estimates β0 and βi by the maximum likelihood optimization method.

2.2.4. Statistical Analysis

The features extracted of AF and RRV did not pass the Lilliefors normality test. Hence, the
nonparametric Mann–Whitney U test was used to assess statistically differences between each
pair of SAHS severity groups. Boxplots were used to show differences in features according to
SAHS severity degree. The diagnostic ability of our proposal was assessed in terms of sensitivity
(percentage of subjects with the disease correctly classified), specificity (percentage of subjects without
the disease correctly classified), and accuracy (percentage of subjects correctly classified) [43,44].
Receiver Operating Characteristics (ROC) curves were also used to evaluate the sensitivity vs.
1-specificity pairs resulting from the variation of the classification threshold obtained from LR [44].
Moreover, the area under the ROC curve (AROC) was calculated to estimate the diagnostic robustness
of the model [44]. Ten-fold cross-validation was applied in order to ensure the generalization of our
approach, i.e., the results of the logistic regression models are independent of the partition into training
and test datasets [45]. Hence, the test group was randomly divided into 10 subsets, with the same
proportion of subjects of each class than in the case of the original test set. Nine subsets constituted the
training set, and one formed the test set. This process was repeated ten times, until each subset was
used as test set.

3. Results

3.1. Training Group

3.1.1. Exploratory Analysis

Figure 3 shows the averaged PSDs of groups AHI < 1, AHI [1, 5), AHI [5, 10), and AHI ≥ 10 of
the AF and RRV recordings from the training group. Each of these groups was composed of 80, 87, 35,
and 48 paediatric subjects, respectively. Notice that there was no substantial spectral information in
frequencies greater than 0.6 Hz in AF and 0.2 Hz in RRV. Hence, the frequency range f 1–f 2 used to
compute SE in AF and RRV was 0–0.6 Hz and 0–0.2 Hz, respectively. In the case of AF, the averaged
PSD of the groups AHI < 1 and AHI [1, 5) shows scarce differences between them, whereas the group
AHI [5, 10) presented some differences around 0.20 Hz and 0.30 Hz. By contrast, large differences
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could be qualitative observed between the AHI ≥ 10 group and the other groups. It was also observed
that the two groups with higher SAHS severity showed flatter spectra. In the case of RRV, only slight
differences for the AHI ≥ 10 group was observed (around 0.03 Hz and 0.10 Hz).

Entropy 2017, 19, 47 8 of 15 

 

Figure 4 shows the boxplots of the features extracted from the AF signal in the training group 
(SE1AF, SE2AF, SE3AF, CTMAF). Statistically significant differences between each pair of severity groups 
are also shown. Since the size of the groups involved in a hypothesis test comparison influences the 
p-value, and each of our comparison involved a different number of subjects, two significance 
thresholds were used (after Bonferroni correction for multiple comparisons): 0.05 (less conservative) 
and 0.01 (more conservative). The boxplots of the groups AHI < 1 and AHI [1, 5) did not present 
visual differences between them in any of the four features. This agreed with the obtained p-values, 
since these did not show statistically significant differences (neither for p-value = 0.01 nor for p-value 
= 0.05), even though the number of subjects in this comparison was the highest (167 subjects). 
Conversely, the boxplots of the group AHI ≥ 10 showed higher values than the remaining groups in 
all features. Thus, its SE and CTM values were closer to 1, which implies greater irregularity and less 
variability. This was also reflected in the p-values, since SE2 from group AHI ≥ 10 showed significant 
differences with all groups (p-value < 0.01 with AHI < 1 and AHI [1, 5) and p-value < 0.05 with AHI 
[5, 10)). The group AHI [5, 10) did not show as clear visual differences as the group AHI ≥ 10, 
although its upward evolution in SE1, SE2, and CTM could be observed too. Moreover, this group 
had significant differences (p-value < 0.05) with the group AHI ≥ 10, even though the number of 
subjects compared is the lowest (83 subjects). 

Figure 5 shows the boxplots of the features extracted from the RRV signal of the training group 
as well as the statistical differences between each pair of SAHS severity groups. As in the case of AF, 
the boxplots and p-values of the groups AHI < 1 and AHI [1, 5) did not show any differences. The 
highest visual differences were shown in CTM of the AHI ≥ 10 group. This was also shown in the 
p-value analysis, since the group AHI ≥ 10 presented significant differences with all groups (p-value 
< 0.01 with AHI < 1 and AHI [1, 5) and p-value < 0.05 with AHI [5, 10)). Similarly, the group AHI [5, 
10) significantly differed from AHI < 1 and AHI ≥ 10 groups in CTM. However, no visual or 
significant differences among the spectral entropies of the four groups could be appreciated. 

 
(a)

 
(b)

Figure 3. Averaged power spectral density (PSD) of the groups AHI < 1, AHI [1, 5), AHI [5, 10), and 
AHI ≥ 10 for (a) AF and (b) RRV. Figure 3. Averaged power spectral density (PSD) of the groups AHI < 1, AHI [1, 5), AHI [5, 10), and

AHI ≥ 10 for (a) AF and (b) RRV.

Figure 4 shows the boxplots of the features extracted from the AF signal in the training group
(SE1

AF, SE2
AF, SE3

AF, CTMAF). Statistically significant differences between each pair of severity
groups are also shown. Since the size of the groups involved in a hypothesis test comparison influences
the p-value, and each of our comparison involved a different number of subjects, two significance
thresholds were used (after Bonferroni correction for multiple comparisons): 0.05 (less conservative)
and 0.01 (more conservative). The boxplots of the groups AHI < 1 and AHI [1, 5) did not present visual
differences between them in any of the four features. This agreed with the obtained p-values, since
these did not show statistically significant differences (neither for p-value = 0.01 nor for p-value = 0.05),
even though the number of subjects in this comparison was the highest (167 subjects). Conversely,
the boxplots of the group AHI ≥ 10 showed higher values than the remaining groups in all features.
Thus, its SE and CTM values were closer to 1, which implies greater irregularity and less variability.
This was also reflected in the p-values, since SE2 from group AHI ≥ 10 showed significant differences
with all groups (p-value < 0.01 with AHI < 1 and AHI [1, 5) and p-value < 0.05 with AHI [5, 10)).
The group AHI [5, 10) did not show as clear visual differences as the group AHI ≥ 10, although its
upward evolution in SE1, SE2, and CTM could be observed too. Moreover, this group had significant
differences (p-value < 0.05) with the group AHI ≥ 10, even though the number of subjects compared is
the lowest (83 subjects).

Figure 5 shows the boxplots of the features extracted from the RRV signal of the training group as
well as the statistical differences between each pair of SAHS severity groups. As in the case of AF, the
boxplots and p-values of the groups AHI < 1 and AHI [1, 5) did not show any differences. The highest
visual differences were shown in CTM of the AHI ≥ 10 group. This was also shown in the p-value
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analysis, since the group AHI ≥ 10 presented significant differences with all groups (p-value < 0.01
with AHI < 1 and AHI [1, 5) and p-value < 0.05 with AHI [5, 10)). Similarly, the group AHI [5, 10)
significantly differed from AHI < 1 and AHI ≥ 10 groups in CTM. However, no visual or significant
differences among the spectral entropies of the four groups could be appreciated.Entropy 2017, 19, 47 9 of 15 
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3.1.2. Selected Features and Model Training

The input to the FSLR selection algorithm were the eight features obtained in the extraction stage
(SE1

AF, SE2
AF, SE3

AF, CTMAF, SE1
RRV, SE2

RRV, SE3
RRV, and CTMRRV). FSLR was used for the AHI

cutoff points 1, 5, and 10 e/h. SE1
AF and CTMRRV were automatically selected for 1 e/h, while SE2

AF

and CTMRRV were selected for 5 and 10 e/h. The optimal subsets obtained for each cutoff point fed
three LR classifiers. Hence, for AHI = 1 e/h, a LR model (LR1) was trained with SE1

AF and CTMRRV,
while for AHI = 5 e/h and AHI = 10 e/h two LR models (LR5 and LR10, respectively) were built with
the SE2

AF and CTMRRV values of the subjects from the training set.

3.2. Test Group

All subjects in the test set were considered to compute the diagnostic ability for each cutoff
point (1, 5, and 10 e/h), i.e., LRcutoff differentiates subjects with AHI < cutoff from subjects with
AHI ≥ cutoff. The diagnostic ability results in the test set of LR1, LR5, and LR10 are shown in Table 2
and Figure 6. LR1 and LR5 reached 60% Acc (0.590 AROC) and 76% Acc (0.780 AROC), respectively.
LR10 outperformed LR1 and LR5, reaching 80% Acc and 0.798 AROC.

Table 2. Diagnostic ability of the logistic regression (LR) models for the cutoffs 1 e/h, 5 e/h, and 10 e/h,
considering all subjects in the test set. Se: sensitivity; Sp: specificity; Acc: accuracy.

Model Se (%) Sp (%) Acc (%)

LR1 60.5 58.6 60.0
LR5 65.0 80.6 76.0
LR10 83.3 79.0 80.0
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4. Discussion

In this paper, we assessed the evolution of irregularity and variability of AF and RRV signals
as SAHS severity increases in children. SE and CTM were used to conduct an exploratory analysis
that showed increasing irregularity (increasing SE1

AF, SE2
AF and SE3

AF) and decreasing variability
(increasing CTMAF) tendencies in AF as AHI is higher. However, the obtained p-values showed that
these tendencies were only significant from AHI ≥ 5 e/h onwards. In contrast, no irregularity changes
in RRV emerged among the SAHS severity groups, although variability of the most severe group was
qualitatively higher (CTMRRV was lower). This was supported by p-values, since the CTMRRV of the
group AHI ≥ 10 presented significant differences with all groups. Additionally, the group AHI [5, 10)
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showed statistically significant differences with the AHI < 1 and AHI ≥ 10 groups, even though the
number of involved subjects was smaller than in other comparisons (115 and 83 subjects, respectively).

No qualitative differences were appreciated in the peakedness of RRV PSDs among severity
groups and only the AHI [5, 10) and AHI ≥ 10 groups revealed flatter AF PSDs. This fact, along with
the lack of significant differences in SE, suggests that apnoeic events do not affect irregularity of RRV
signal. Additionally, the groups AHI < 1 and AHI [1, 5) did not show significant differences between
them in none of the AF or RRV features, even though the number of subjects in these comparisons
was the largest (167 subjects). This suggests that when AHI is less than 5 e/h, there is an insufficient
number of events to modify the irregularity and variability in AF and RRV. Since AF signals are directly
involved in apnoea and hypopnoea definitions, our irregularity analysis may have been supporting
those studies that used 5 e/h or 10 e/h as thresholds to establish SAHS or, at least, a high severity
degree. The variability analysis of AF and RRV also agreed with this concept, since the CTM statistical
differences among severity groups were present in AHI [5, 10) and, especially, in AHI ≥ 10. Further
analyses would be required to assess direct relationships between irregularity and variability of AF
and RRV with severity-related symptoms. However, our study of the evolution of irregularity and
variability was consistent with those severity groups showing increased risk for major adverse health
consequences. Indeed, it has been reported that the cutoff points 5 e/h and 10 e/h establish the limits
of those groups that present higher risk of developing morbidities [46]. In this regard, an AHI ≥ 10
has been associated with cardiac strain, while an AHI ≥ 5 appears to be associated with an increased
C-reactive protein level [10]. Moderate-severe SAHS have been associated with an increased blood
pressure [10], as well as increased risk for neurocognitive deficits [47]. In addition, the threshold
AHI ≥ 5 is commonly used to determine whether a surgical treatment is recommended [46]. However,
paediatric subjects with severe SAHS are at an increased risk for residual SAHS. In this regard,
overnight observation is recommended after adenotonsillectomy in children with AHI ≥ 10 e/h [12].
Hence, early detection is essential to start immediate treatment in these cases. Moreover, automatic
detection of more severe cases would reduce the workload of physicians who are then able to focus on
the more dubious cases.

The most notable differences among the severity groups were observed in SE1
AF, SE2

AF, CTMAF,
and CTMRRV. Although CTMAF was found redundant during the FSLR automatic selection, the
complementarity of the irregularity and variability analyses was shown since SE1

AF, SE2
AF, and

CTMRRV were selected for LR1 (SE1
AF and CTMRRV), LR5 (SE2

AF and CTMRRV), and LR10 (SE2
AF and

CTMRRV). This also highlighted the complementarity of the information contained in AF and RRV
signals. As expected, LR1 reached the lowest diagnostic performance: 60% Acc and 0.590 AROC.
The LR5 and LR10 models, however, achieved moderate-to-high diagnostic ability, reaching high Acc
(76% and 80%) and AROC (0.780 and 0.798). In this regard, LR10 outperformed LR1 and LR5 in all
the diagnostic statistics (Se, Sp, Acc, and AROC). These results agreed with those observed in the
exploratory and p-value analyses, since the group AHI≥ 10 showed greater irregularity and variability
differences when compared to the other groups.

Several previous studies have evaluated the use of a reduced set of biomedical signals to detect
SAHS in children. Table 3 shows the performance of previous research in the context of detection of
paediatric SAHS. The number of subjects involved in these state-of-the-art studies ranges from very low
(21) to moderate (167), which limits the generalizability of their results. A relatively small sample size
may be also behind the fact that most of them do not consider the assessment of their methodologies
according to SAHS severity. In contrast, we have reliably shown irregularity and variability tendencies
as AHI increases by the application of our methods to a large cohort (n = 501). In addition, we have
shown that irregularity and variability information is able to achieve high diagnostic ability in the
more severely affected children.

This study has some limitations. Although the number of subjects is the largest out of those found
in the literature, an even greater database would reinforce the universal characteristics of our findings.
In addition, the proportion of subjects belonging to each of the four SAHS severity groups may have
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been better balanced. However, the proportion of subjects in our severity groups reflects realistic
severity ratios of children derived from clinical practice in pediatric sleep units. Another limitation
is the aforementioned lack of consensus on the cutoff points that should be used to limit each level
of severity. Several studies used different cutoff points (usually 1, 3, 5, and 10 e/h) to discriminate
the paediatric subjects with SAHS from those who do not suffer from it [8–10,15–24]. This hinders the
comparison with the results from published studies. Nevertheless, our results regarding the evolution
of irregularity and variability support those studies that chose 5 e/h and 10 e/h as cutoff points
to discriminate moderate-to-severe SAHS [8–10,17–21,24]. Notwithstanding these considerations,
AF features with ability to discriminate children with AHI below 1 e/h will be the object of future
investigations. In order to complement our analyses, future investigation of AF signals when obtained
in the patients’ home would be an interesting follow-up study. Finally, the assessment of more complex
automatic classifiers, with the ability to maximize the diagnostic ability of the AF-extracted information,
is another future goal.

Table 3. Summary of the state-of-the-art in the context of detection of paediatric SAHS.

Studies Subjects
(n) Signal AHI

(e/h) Methods (Analysis/Selection/Classifier) Se
(%)

Sp
(%)

Acc
(%)

Shouldice et al. [16] (2004) 50 ECG 1 Temporal and spectral analysis/–/QDA 85.7 81.8 84

Gil et al. (2009) [17] 21 PPG 5 Spectral analysis of HRV and DAP events
detection/Wrapper methodology/LDA 87.5 71.4 80

Lázaro et al. [18] (2014) 21 PPG 5 Spectral analysis of PRV and DAP events
detection/Wrapper methodology/LDA 100 71.4 86.7

Gil et al. (2010) [19] 21 PPG 5 Analysis of PTTV/Wrapper methodology/LDA 75 85.7 80

Garde et al. [20] (2014) 146 SpO2
PRV 5 Temporal and spectral analysis/Selection algorithm

optimizing the AROC/LDA 88.4 83.6 84.9

Dehkordi et al. [21] (2016) 146 PPG 5 Temporal and spectral analysis/LASSO/LASSO 76 68 71

Sahadan et al. [23] (2015) 93 PR 1 Automatic calculation and analysis of PR
parameters/–/–/ 18 97 49.5 *

Velasco-Suarez et al. [15] (2013) 167 SpO2 1 Quantification of clusters of desaturations/–/–/ 86.6 98.9 93.4 *

Gutiérrez-Tobal et al. [22] (2015) 50 AF
SpO2

3 Spectral features and oxygen desaturation index of
3% (ODI3)/FSLR/LR 85.9 87.4 86.3

Tsai et al. [24] (2013) 148 SpO2

1
Oxygen desaturation index of 4% (ODI4) /–/–/

77.7 88.9 79 *
5 83.8 86.5 85.1 *
10 89.1 86 87.1 *

Tan et al. [8] (2014) 100
ECG 1 Comparison of the AHI obtained from PSG with

the AHI directly estimated of respiratory
polygraphic (RP)/–/–/

82.5 90 86 *
AF

SpO2
5 62.5 100 85 *

RIP 10 65 * 100 * 93 *

Our proposal 501 AF
1

SE and CTM/FSLR/LR
60.5 58.6 60

5 65 80.6 76
10 83.3 79 80

QDA: Quadratic discriminant analysis; HRV: Heart rate variability; DAP: Decreases in amplitude fluctuations of
the PPG signal; LDA: Linear discriminant analysis; PRV: Pulse rate variability; PTTV: Pulse transit time variability;
AROC: Area under the receiver operating characteristics curves; LASSO: Least absolute shrinkage and selection
operator; PR: Pulse rate; FSLR: Forward stepwise logistic regression; LR: Logistic regression model; RIP: Chest and
abdominal movement by respiratory inductance plethysmography; SE: Spectral entropy; CTM: Central tendency measure.
* Computed from reported data.

5. Conclusions

To the best of our knowledge, this is the first time that irregularity and variability measures
from AF and RRV are automatically quantified and combined to assist in paediatric SAHS diagnosis.
In addition, this is also the first time that the evolution of irregularity and variability measures as a
function of SAHS severity is assessed in this context. We found higher irregularity and lower variability
in the AF signals of children with AHI ≥ 5 e/h, as well as higher variability in the RRV signals from
these same groups. Regarding the lack of consensus of AHI cutoffs to be used, these results support
5 e/h and 10 e/h as those related to the most important changes in the AF information associated
with paediatric SAHS. Our results also showed complementarity between AF and RRV signals, as
well as between irregularity and variability analyses. Therefore, LR models trained with optimum
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irregularity and variability features from both AF and RRV reached moderate-to-high diagnostic
ability for AHI = 5 e/h and 10 e/h thresholds. Accordingly, our results suggest that irregularity and
variability measures are able to characterize paediatric SAHS in AF recordings. Hence, the use of these
approaches could be helpful to automatically screen for moderate-to-severe SAHS cases in children
with a high pre-test probability of disease.
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