
Available online at www.sciencedirect.com
ScienceDirect

Journal of Differential Equations 361 (2023) 40–96
www.elsevier.com/locate/jde

Stratification of three-dimensional real flows I: Fitting 

domains ✩

C. Alonso-González a, F. Sanz Sánchez b,∗

a Universidad de Alicante, Departamento de Matemáticas, Carretera de San Vicente del Raspeig s/n, 03690 San Vicente 
del Raspeig Alicante, Spain

b Universidad de Valladolid, Departamento de Álgebra, Análisis Matemático, Geometría y Topología, Facultad de 
Ciencias, Paseo de Belén, 7, 47011, Valladolid, Spain

Received 22 July 2022; revised 25 January 2023; accepted 8 February 2023

Abstract

Let ξ be an analytic vector field in R3 with an isolated singularity at the origin and having only hyperbolic 
singular points after a reduction of singularities π : M → R3. The union of the images by π of the local 
invariant manifolds at those hyperbolic points, denoted by �, is composed of trajectories of ξ accumulating 
to 0 ∈ R3. Assuming that there are no cycles nor polycycles on the divisor of π , together with a Morse-
Smale type property and a non-resonance condition on the eigenvalues at these points, in this paper we 
prove the existence of a fundamental system {Vn} of neighborhoods well adapted for the description of the 
local dynamics of ξ : the frontier Fr(Vn) is everywhere tangent to ξ except around Fr(Vn) ∩ �, where 
transversality is mandatory.
© 2023 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND 
license (http://creativecommons .org /licenses /by -nc -nd /4 .0/).
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1. Introduction

This is the first of two papers dedicated to investigating the structure of the trajectory space of 
a real analytic vector field ξ in a neighborhood of an isolated singular point 0 ∈R3. In our study, 
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we impose some non-degeneracy conditions that can be read after reduction of singularities of ξ
(in the sense of Panazzolo [17]). In fact, under such conditions, our results also apply to a singular 
one-dimensional oriented foliation L defined in an analytic three-dimensional manifold M with 
boundary and corners such that ∂M is homeomorphic to the sphere, regardless of whether L is 
the pull-back of a local vector field at the origin of R3.

Roughly, our aim is to establish a theorem of stratification of the dynamics of ξ that gener-
alizes to dimension three the classical one, coming from Poincaré [19], of decomposition of a 
planar analytic vector field dynamics into parabolic, elliptic or hyperbolic invariant sectors (see 
[1]). In a second forthcoming paper we will provide a precise statement and proof of this result.

In the text at hand, we establish the existence of a fundamental system of compact neighbor-
hoods which are specially adapted to the flow of ξ in order to provide such a stratified structure. 
Those neighborhoods, called fitting domains, have the important property that their boundary 
is everywhere tangent to the flow, except for compulsorily controlled zones: near those points 
where the boundary crosses the local invariant manifolds associated with singular points after 
reduction of singularities. Apart from providing the technical preparation for our stratification 
theorem, we are convinced that the construction of fitting domains has interest in itself. They 
certainly provide good representatives for the “germ of the space of leaves” of the foliation gen-
erated by ξ , and they may be useful to undertake further studies of the local three-dimensional 
dynamics. Namely, classification under topological equivalence (this topic is treated by Alonso-
González, Camacho and Cano in [2,3], references which constitute partially the motivation for 
this text); establishment and study of the partial “Dulac’s transition maps” between transversal 
zones on the boundary (these maps have been extensively studied for planar vector fields, see for 
instance some recent references [12,13,7,14], but not yet for three-dimensional vector fields, as 
far as we know); suitable generalizations of the λ-lemma result for non-hyperbolic singularities; 
pieces for a “surgery” construction of global line foliations in three-dimensional spaces with cer-
tain prescribed local behavior at singular points, etc. Let us justify this conviction by motivating 
and describing more precisely the steps of our construction.

Consider first an analytic vector field ξ with a hyperbolic singularity at 0 ∈Rn. By Hartmann-
Grobman’s Theorem, the germ of any trajectory of ξ accumulating to the origin is contained 
in the union Ws ∪ Wu of the stable and unstable manifolds. To be able to properly state that 
Wu ∪ Ws is equal to the union of such “genuine” trajectories (not just germs) in a given fixed 
neighborhood U , one needs to require transversality conditions to the boundary of U . Typically, 
we impose that the frontier Fr(U) is transversal to ξ only along sufficiently small neighborhoods 
T s and T u of Ws ∩ ∂U and Wu ∩ ∂U , respectively. Then the whole space of trajectories of ξ in 
U can be described easily: each of them is either contained in (Ws ∪ Wu) ∩ U and accumulates 
to 0 or it is a segment from a point of T s \Ws to a point of T u \Wu and does not accumulate at 0. 
Such a neighborhood, called below of chimney type, is the simplest example of a fitting domain.

It is quite manifest that the above considerations can also be carried out for a generic non-
hyperbolic planar vector field ξ by virtue of the Seidenberg’s reduction of singularities [20]. 
To be more precise, using a real version of such a reduction of singularities by Dumortier in 
[8], there is a proper morphism π : (M, D) → (R2, 0), where M is an analytic surface with 
boundary and corners with ∂M = D � S1 such that the pull-back π∗(ξ |R2\{0}) extends to an 
analytic foliation L on M with only finitely many singularities on D, all of them with non-
nilpotent linear part. Assuming the generic conditions that all the singularities are hyperbolic, 
that D is invariant by L, and that D is not a polycycle of L (in other words, that the vector field 
is not of the center-focus type), we can “connect” the chimney-type neighborhoods at the singular 
points by means of flow-boxes in order to obtain a neighborhoods basis {Ũn}n of D in M with 
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the following properties (see Fig. 1): for any singular point p ∈ D, fixed a realization W(p) of 
the local invariant manifold of L at p being transversal to D, the frontier Fr(Ũn) is tangent to L
except on small neighborhoods Tp,n of Fr(Ũn) ∩ W(p) in Fr(Ũn) for each p.

Fig. 1. A generalized chimney-type neighborhood in dimension two.

We get a basis {Un = π(Ũn)}n of “generalized chimney-type” neighborhoods (fitting do-
mains) of the origin where the space of trajectories of ξ has a simple description: each trajectory 
either escapes in finite time (negative, positive or both) crossing the controlled transversal zone 
π(

⋃
p Tp,n), or it remains in Un for t → ±∞, and accumulates asymptotically to the origin 

in both senses. It is worth noting that the (subanalytic) invariant set � = π(
⋃

p W(p)) \ {0} is 
formed by and contains any germ of a trajectory of ξ accumulating at the origin (the so called 
characteristic orbits in Dumortier’s terminology [8]), thus being a realization of such family of 
germs. The transversal parts 

⋃
p Tp,n in the above statement can be chosen to be contained in a 

given fixed basis of neighborhoods of �.
The central objective in the current paper is to generalize the previous construction to dimen-

sion 3. To this end, we use the reduction of singularities developed by Panazzolo in [17]. So we 
have that there exists a real analytic proper morphism π : (M, D) → (R3, 0), where M is a real 
analytic manifold with boundary and corners with ∂M = D, which restricts to an isomorphism 
outside the divisor D and such that the foliation generated by π∗(ξ |R3\{0}) extends to an analytic 
foliation L in M having only elementary singularities, that is, the linear part of a local generator 
at any p ∈ Sing(L) is non-nilpotent. Assuming that 0 is an isolated singularity of ξ , we have, in 
addition, that D is homeomorphic to S2 and Sing(L) ⊂ D (notice that in Panazzolo’s procedure 
we just blow up along centers contained in the singular locus of the intermediate transformed 
foliations).

Our object of study is then a triple M = (M, D, L), coming or not from a reduction of 
singularities of a local vector field, where M is a real analytic manifold with boundary and 
corners, D = ∂M is a normal crossings divisor homeomorphic to S2 and L is a one-dimensional 
orientable singular foliation over M such that Sing(L) ⊂ D. We impose the following non-
degeneracy conditions:

(1) Non-dicriticalness.- Every component of D is invariant by L.
(2) Hyperbolicity.- All singularities are hyperbolic (therefore Sing(L) is a finite set).
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(3) Acyclicity.- The restriction L|D has neither closed regular orbits nor polycycles.
(4) Morse-Smale condition.- There are no leaves connecting two-dimensional saddle points of 

the restriction L|D and contained in the regular locus of the divisor.
(5) No saddle-resonances.- A condition that avoids certain specific resonances of the eigenvalues 

at the singular points appearing in a multiple saddle connection.

The first two conditions are generic and commonly assumed. The third condition is essential 
for our study. It corresponds to the center-focus exclusion for planar vector fields. The last 
two conditions are more specific and deserve to be commented. They appear in precedent pa-
pers, for instance those already mentioned by Alonso-González et al. [2,3]. In general, once we 
are in a scenario where all the singularities are already hyperbolic, the “classical Morse-Smale 
condition” means that two saddle singularities can never be connected along the correspond-
ing invariant stable-unstable manifolds (see for instance [16]). The fourth condition above is an 
adaptation of such a property to the consideration of the divisor, where we only permit saddle 
connections along the skeleton, that is, the set of points where at least two components of D
intersect. Morally a two-dimensional saddle connection outside the skeleton can be avoided by 
“perturbation” whereas, those in the skeleton persist unless we completely break the divisor.

The fifth condition is more involved and it is described in detail in Section 3. To have an 
idea of its meaning, consider the situation of a single connection between two saddle points p, q
along their common one-dimensional invariant manifolds, contained in the skeleton. The non 
s-resonance condition in this case is expressed saying that the quotients between the two (nec-
essarily real) eigenvalues of the same sign at p and at q do not coincide with. Dynamically, it 
prevents the situation depicted in Fig. 2, where the flow saturation of a small curve that accumu-
lates in the “middle” of the two-dimensional invariant manifold at p goes to the “middle” of the 
corresponding one at q .

Fig. 2. A resonant saddle-connection.

By means of the first and second condition, if p is a singular point of L, between the two 
local stable and unstable manifolds of L at p, either both are contained in D, or one of them is 
contained in D and the other one, denoted by W(p), is transversal to (and not contained in) D. In 
the first case, p is called a tangential saddle point. Points p ∈ Sing(L) for which dimW(p) = 2
will play a special role in what follows and will be called transversal saddle points.

As a matter of notation, if A ⊂ M , we denote by A� the set of points where A is locally 
invariant by L, that is, a ∈ A� if and only if a ∈ A and there exists a neighborhood Ua of M at 
a such that any leaf of L|Ua through a point in Ua ∩ A is contained in A. Points of A� where A
is a smooth submanifold not belonging to Sing(L) are, of course, points of tangency between L
and A�.

The main result in this paper is the following.
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Theorem 1. Assume that M = (M, D, L) satisfies conditions (1)-(5). Denote by H the set of 
singular points of L that are not tangential saddles and fix realizations of the local invariant 
manifolds W(p), for any p ∈ H . Then, given a neighborhood V of D in M and neighborhoods 
Vp of W(p) ∩ V in M , for any p ∈ H , such that Vp ∩ Vq = ∅ if p �= q , there exists a compact 
semianalytic neighborhood U ⊂ V of D in M and compact semianalytic discs Tp ⊂ Fr(U) ∩Vp , 
for each p ∈ H , satisfying the following:

(i) The frontier Fr(U) is a topological, piecewise smooth surface given by the disjoint union

Fr(U) = Fr(U)� ∪
⋃
p∈H

Tp.

(ii) Each disc Tp contains Fr(U) ∩ W(p) and, in turn, it is contained in a smooth surface of 
Vp everywhere transversal to L.

A neighborhood U as in the previous statement will be called a fitting domain for M (see 
Picture 3). The subset Fr(U)� is called the tangential frontier of U while Fr(U)� := Fr(U) \
Fr(U)� is called the transversal frontier. Roughly speaking, the result says that there exists 
a basis {Un} of fitting domains such that the sequence of their transversal frontiers {Fr(Un)

�}
“approximate”, when n → ∞, the germ of the analytic invariant set � = ∪p∈H W(p) (in a sense 
that can be made precise). Notice that � \ D realizes the family of germs at p of leaves of L
that accumulate at D (the “characteristic orbits” in analogy with the planar situation). Any such 
germ of a leaf enters ultimately in the fitting domain, which justifies that the transversal discs Tp

contain the corresponding sets Fr(U) ∩ W(p).

Fig. 3. A fitting domain in dimension three.

At this point, it is worth to remark that, although we have called transversal frontier to the 
union of the discs Tp , only the points in the interior of those discs are “properly” transversal 
points. On the contrary, a point x in the boundary of Tp may not be smooth for Fr(U) and it 
is a transversal point only in a weak sense: one of the two sides of the leaf through x may be 
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contained in Fr(U)�, while the other one escapes or enters the neighborhood U . In Theorem 50
below we will detail more in precise the relative position of Fr(U) with respect to L along the 
points in ∂Tp . The description is relatively simple if p is not a transversal saddle: namely, if 
dimW(p) = 3, then Tp = W(p) ∩ Fr(U) and L traverses from inside to outside (or vice versa) 
at any point of Tp; if dimW(p) = 1 then Tp ∩ W(p) is a singleton and L passes from Fr(U) to 
the exterior of U (or vice versa) through any point of ∂Tp . But, if dimW(p) = 2, then there is a 
finite set Zp ⊂ ∂Tp (in fact Zp has four points) such that the leaf through a point z ∈ Zp stays 
locally inside Fr(U) while, through any point of a connected component I of ∂Tp \ Zp , the leaf 
has one side contained in Fr(U) and the other one is contained either in the interior or in the 
exterior of U . As we can see, the description of the frontier of a fitting domain is more intricate 
around transversal saddles.

On the other hand, when M comes from a morphism π : M →R3 of reduction of singularities 
of a vector field ξ at 0 ∈ R3, the image of a basis of fitting domains of M by π provides a basis 
of fitting neighborhoods of the origin for ξ , i.e., their frontiers satisfy the same properties of 
Theorem 1 with respect to the foliation generated by the vector field ξ . Under this point of view, 
the fitting domains provided by Theorem 1 can be considered as “generalized chimney-type” 
neighborhoods for non-hyperbolic singularities of three-dimensional vector fields.

The paper is structured as follows. In Section 2 we review some properties of the foliation 
L that can be derived from conditions (1)-(3). Besides, we describe a planar directed graph �, 
supported in D, which schematizes the dynamics inside the divisor D and that will be our main 
combinatorial tool in the rest of the article. Its set of vertices is precisely Sing(L) and its edges 
are regular leaves, either contained in the skeleton of D or those containing the local unstable 
or stable curves at saddle two-dimensional points of the restriction of L to D. The acyclicity 
condition assures the � has no cycles as a directed graph. In particular, we can assign a length to 
any vertex p as the maximal number of edges of paths of edges starting at p.

In Section 3, we discuss conditions (4) and (5) and results that can be obtained from them. The 
principal one is Theorem 15. It asserts that, generalizing the concept of point-path introduced in 
[2], we can associate a path of edges �(ν) of � with any three-dimensional saddle p ∈ Sing(L)

and with any (local) side ν with respect to the two-dimensional invariant manifold at p, denoted 
as W 2

p , such that the saturation by L of any small curve Jν contained in ν and cutting transversally 
W 2

p , produces an invariant topological surface which accumulates to the divisor D just along the 
support of �(ν). In this way, we have a control over the saturations of such small curves Jν

and also over the saturation of the two-dimensional local invariant surface W(p) = W 2
p in the 

important case where p is a transversal saddle. These last saturations have the role of “new” two-
dimensional components of the divisor, locally defined along D, that separate the dynamics of L
(separant surfaces). In particular, we prove that the family composed of those separant surfaces, 
together with any finite family of saturations of curves Jν as above, is a family of pairwise 
disjoint elements, as long as we take a sufficiently small neighborhood of D. Besides facilitating 
the proof of Theorem 1, these results will be crucial in our second forthcoming paper.

The core of Theorem 1 proof is found in Sections 4, 5 and 6. Following the general ideas in 
the two-dimensional situation, fitting domains U are obtained as follows: first we consider small 
chimney-type neighborhoods at singular points (where the transversal frontier of U will concen-
trate); next, we extend these neighborhoods adding flow-boxes (with appearance of tubes) along 
the edges of the graph �; finally, we add new flow-boxes covering the connected components of 
the complement of the graph in D (with appearance of plateaux). Nevertheless, it is clear that 
the proof is considerably much more complicated here than in dimension two since we have 
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to match perfectly all the added flow-boxes in such a way that the frontier of U is everywhere 
tangent outside the chimney-type local neighborhoods already considered. In the one hand, by 
using recurrence with respect to the maximal length of the vertices of �, the tubes can be glued 
with the chimney-type neighborhoods after convenient refinements of the latter, creating a com-
pact neighborhood K of the support of the graph that we call a distinguished fattening. This is 
the content of Section 4. After that, when we try to glue perfectly also the plateaux “closing” 
the remaining transversal parts of Fr(K) (called free doors of K), we are led, a priori, to refine 
once more time chimneys and tubes. In order to avoid an endless sequence of refinements, in 
Section 5 we establish a result asserting that the distinguished fattening K can be assumed to 
have the property that the flow saturations of different free doors do not intersect (the so called 
property of good saturations). For this purpose, we make use of the results in Section 3 about the 
flow saturations of the aforementioned curves Jν since the boundary of a free door is an example 
of such a curve. At the same time, the separant surfaces generated at transversal saddle points 
turn into play and we need to control as well their behavior inside the fattening support. Finally, 
in Section 6, we show that a fattening with the property of good saturations can be completed, 
up to trimming the free doors, to a fitting domain by adding convenient plateau blow-boxes. This 
will conclude the proof of the main theorem.

All in all, Sections 4 and 5 are the longest and more technical ones. However, we believe 
that our constructions are flexible and versatile enough to be used to get fitting domains with 
further interesting properties. Also, the construction could be carried out in much more general 
situations in which not all hypotheses (1)-(5) are necessarily fulfilled.

2. Hyperbolic acyclic spherical foliations

2.1. Generalities on line foliations over manifolds with boundary

Let M be a three-dimensional real analytic manifold with boundary and corners. This means 
that, for any a ∈ M , there exists an open neighborhood Va of a, a value e = e(a) ∈ {0, 1, 2, 3}, and 
a homeomorphism φa : Va

∼→ (R≥0)
e ×R3−e with φa(a) = 0 such that, whenever Va ∩ Vb �= ∅, 

the map φa ◦ φ−1
b is analytic. As usual, such a map φa is called a chart and its components are 

called analytic coordinates at a. The number e(a) does not depend on the chosen chart. The point 
a ∈ M will be called an interior, trace, angle or corner point if e(a) is equal to either 0, 1, 2 or 3, 
respectively. Notice that M is a topological manifold with boundary and the point a belongs to 
∂M iff e(a) > 0. In addition, the boundary ∂M is a normal crossings divisor. We use the notation 
D = ∂M and just say that D is the divisor in M . The set of points where e(a) > 1 is called the 
skeleton of D and it is denoted by Sk(D).

The connected components of the fibers of the map e : M → {0, 1, 2, 3} are the strata of a 
locally finite stratification of M into smooth analytic subvarieties, called the standard stratifica-
tion, that we will denote by St (M). An stratum contained in the fiber e−1(k) has codimension 
equal to k in M . The closure of a two-dimensional stratum, that is, of a connected component of 
D \ Sk(D), is called a component of D. Any component E of D is a two-dimensional analytic 
manifold with boundary and corners satisfying ∂E = E ∩ Sk(D). Also, for any a ∈ M , the value 
e(a) is precisely the number of components of D containing a.

An important example of manifold with boundary and corners is the ambient space obtained 
after a sequence of real blow-ups starting from an open set M0 of R3 (for detailed definitions, 
see [15], for instance). More precisely, consider a finite composition
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π : M = Mr
πr−→ Mr−1

πr−1−→ · · · π2−→ M1
π1−→ M0

where, for any j = 1, 2, ..., r , the map πj is the blow-up with a non-singular closed center Yj−1 ⊂
Mj−1 having normal crossings with the “intermediate divisor” D(j−1) = (π1 ◦ · · ·◦πj−1)

−1(Y0), 
with D(0) = ∅. Thus, M is a real analytic manifold with boundary and corners with divisor 
D = ∂M = π−1(Y0). Notice that, in the sequence above, if the first center is a point Y0 = {p0}, 
and for any j > 1 the center Yj−1 of πj is contained in D(j−1), then D is homeomorphic to the 
sphere S2.

Let L be an analytic oriented one-dimensional singular foliation over M (just called a fo-
liation, for short). This means that for every a ∈ M , there exists an analytic vector field ξa

defined in a neighborhood of a such that, for any pair of points a, b ∈ M , the vector fields 
ξa, ξb are positively proportional along the intersection of their domains of definition. Any 
such a vector field ξa is called a local generator of L at a. The singular locus of L is the set 
Sing(L) = {p ∈ M : ξp(p) = 0}.

From now on, we will always assume that L is tangent to D = ∂M , that is, for any a ∈ D any 
local generator ξa is tangent to any component of D through a. This condition is also sometimes 
called non-dicriticalness.

A leaf (of L in M) is a maximal connected subset � of M with the following property: for 
any a ∈ �, if ξa is a local generator of L at a and γ : (−ε, ε) → M is the integral curve of ξa

with γ (0) = a, then there exists 0 < ε′ ≤ ε and some neighborhood Ua of a in M such that 
γ ((−ε′, ε′)) is equal to the connected component of � ∩ Ua containing a. For any a ∈ M , there 
is exactly one leaf containing a, denoted by �a and called the leaf at a, so that the family of 
leaves gives a partition of M . Given a leaf �, there are two possibilities: either � = �p = {p}
for some p ∈ Sing(L) (a singular leaf ), or � = γ (J ), where J is an open interval in R and 
γ : J → M is an injective immersion (a non-singular leaf, and γ is called a parametrization of 
�). Any non-singular leaf � will always be considered with the natural orientation induced by L, 
i.e., we choose a parametrization γ : J → M so that the tangent vector at each point is a positive 
multiple of the corresponding local generator. With such a parametrization, if a = γ (t) ∈ �, we 
put the sets �+

a = γ (J ∩ [t, ∞)), �−
a = γ (J ∩ (−∞, t]), and call them the positive and negative 

leaf through a, respectively. Besides, we define the α and the ω-limit set of � in M as

α(�) =
⋂

t1<t<t2

γ ((t1, t)), ω(�) =
⋂

t1<t<t2

γ ((t, t2)), (1)

where int(J ) = (t1, t2). As usual, we write α(�) = p when α(�) = {p}, and so on.
Given a subset A ⊂ M , an given a ∈ A, the restricted leaf in A at a (or simply the A-leaf at 

a) is the connected component of �a ∩ A containing a. We define similarly the positive A-leaf
and the negative A-leaf at a by using �+

a and �−
a , instead of �a , respectively. If A is open in 

M , the A-leaves are the leaves of the restricted foliation L|A. If B ⊂ A ⊂ M , we say that B is 
saturated in A if, for any b ∈ B , the A-leaf at b is contained in B . When A = M , we simply say 
that B is saturated. For instance, D is saturated by the assumed condition that L is tangent to D. 
Finally, if B ⊂ A ⊂ M , the saturation of B in A, denoted by SatA(B), is the minimal subset of 
A containing B that is saturated in A. It consists of the union of all the A-leaves at points of B . 
We also define the positive saturation (resp. negative saturation) of B in A, denoted by Sat+A(B)

(resp. Sat−(B)) as the union of positive A-leaves (resp. of negative A-leaves) at points of B .
A
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Let A be a compact semianalytic subset of M with non-empty interior. Let a ∈ Fr(A) and 
assume that a /∈ Sing(L). Taking into account that Fr(A) is also semianalytic, and due to the 
analytic nature of the foliation L, we have that each one of the two local components of �a \ {a}
at a is entirely contained either in the interior int (A), or in the exterior ext (A) = M \ A, or in 
the frontier Fr(A). Let us now denote by Y−

a , Y+
a such local components, where Y ε

a ⊂ �ε
a for ε ∈

{+, −}, and consider the map σ : {i, e, t} → {int (A), ext (A), Fr(A)} defined by σ(i) = int (A), 
σ(e) = ext (A), σ(t) = Fr(A). If u, v ∈ {i, e, t}, we will say that a is of type u-v with respect to 
A in case Y−

a ⊂ σ(u) and Y+
a ⊂ σ(v).

As said in the introduction, the tangential frontier of A, denoted by Fr(A)�, is the set of 
points in Fr(A) having a neighborhood in Fr(A) composed of points of type t-t. Hence, the 
tangential frontier is open and coincides with the set of points where Fr(A) is locally saturated 
for L. For the points a ∈ Fr(A)� such that Fr(A) is a smooth submanifold at a, the foliation L
is tangent to Fr(A) in a neighborhood of a.

As a matter of notation, we set Fr(A)� := Fr(A) \Fr(A)� and call it the transversal frontier
of A. By definition, it is a closed subset of Fr(A). Notice also that Fr(A)� contains any point in 
Fr(A) which is not of type t-t. Nevertheless, it might also contain points of type t-t or even points 
where Fr(A) is smooth and tangent to L (it will not be the case for fitting domains). Of course, 
points of type either i-e or e-i, that is, points having a genuine property of “transversality”, are 
included in Fr(A)�. To end this subsection, we define the inner frontier Fr(A)in and the outer 
frontier Fr(A)out of A, as the respective closures of the sets of points in Fr(A) of type e-i or 
of type i-e. Hence, we clearly have that Fr(A)in ∪ Fr(A)out ⊂ Fr(A)�, although, in general, 
equality may not be satisfied. We will see that it always holds for fitting domains.

2.2. Hyperbolic acyclic spherical foliations

Let us assume certain conditions on the topology of M as well as on the nature of the singu-
larities of the foliation in order to have a reasonable control of the asymptotic behavior of the 
leaves near D.

Definition 2. A hyperbolic acyclic foliated variety with spherical divisor (from now on a 
HAFVSD, for short) is a triple M = (M, D, L) where M is a real analytic manifold with bound-
ary and corners, D = ∂M , and L is an analytic foliation over M such that L is tangent to D, 
Sing(L) ⊂ D, and

• Each p ∈ Sing(L) is a hyperbolic singular point.
• The foliation L does not have cycles or polycycles contained in D.
• The divisor D is homeomorphic to the sphere S2.

Recall that a singular point p is hyperbolic if all the eigenvalues of the linear part of one (thus, 
of any) local generator of L at p have non-zero real part. On the other hand, a cycle is a non-
singular leaf homeomorphic to S1 and a polycycle is a union of a finite number of non-singular 
leaves �1, ..., �n and a finite number of singular points p1, ..., pn such that pj+1 = α(�j+1) =
ω(�j ), for j = 1, ..., n − 1, and p1 = α(�1) = ω(�n).

The condition of D being tangent (also called sometimes non-dicriticalness) implies that D
is saturated for L and, in fact, that any stratum of St (M) contained in D is also saturated. In 
particular, every corner point is singular and, if H is a 1-dimensional stratum, the connected 
components of H \ Sing(L) are non-singular leaves of L. We consider the restriction L|D as a 
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continuous one-dimensional foliation in D, analytic on each component of D. As already pointed 
out above, we have that any leaf in M is parameterized by an open interval and the singular leaves 
correspond exactly to the singular points.

By the hyperbolicity condition, the singular locus Sing(L) is finite. At any p ∈ Sing(L), we 
consider the associated local stable and local unstable manifolds, denoted by Ws(p) and Wu(p), 
respectively. They are analytic manifolds with boundary and corners, saturated in a neighborhood 
of p and uniquely determined as germs at p (for further information on such manifolds, see for 
instance [11] and [6]). When the singularity p is a three-dimensional saddle point, that is, both 
stable and unstable manifolds have positive dimension, we denote by W 1

p and W 2
p the elements 

of dimension 1 and dimension 2 in the set {Ws(p), Wu(p)}, respectively. It holds W 1
p ⊂ D, if 

e(p) ≥ 2, and W 2
p ⊂ D, if e(p) = 3.

Fig. 4. Transversal saddles (above) and tangential saddles (below).

Let us introduce the following terminology. Given p ∈ Sing(L), we say that p is a D-saddle
if there is at least one component Di of D at p such that p is a two-dimensional saddle point for 
the restriction L|Di

. Otherwise, we say that p is a D-node. A D-node can be a D-attractor or a 
D-repeller if the restriction of L to each component of D at p is respectively a two-dimensional 
attractor (both eigenvalues with negative real part) or a repeller (both eigenvalues with positive 
real part). We denote by S, Na and Nr the sets of D-saddles, D-attractors and D-repellers, 
respectively. Notice that a D-saddle point is a three dimensional saddle, whereas a D-node can 
be a three dimensional saddle (in which case e(p) = 1 and W 2

p ⊂ D) or a three dimensional 
attractor or repeller (the three eigenvalues have real part with the same sign). A D-saddle point 
p is called a transversal saddle point if W 2

p �⊂ D or a tangential saddle point if W 2
p ⊂ D. In the 

last case, W 2
p coincides with one of the components of D, as germs at p. Notice that a transversal 

saddle is either an angle or a trace point, whereas a tangential saddle is either an angle or a corner 
point (see Fig. 4). In the remain of the paper we denote by Str ⊂ S the set of transversal saddle 
points and by Stg ⊂ S the set of tangential saddle points.

Remark 3. Concerning the leaves asymptotic behavior, observe that, using the acyclicity condi-
tion and the Poincaré-Bendixson Theorem on the sphere (see for instance [16,18]), for any leaf 
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� ⊂ D, the sets α(�) and ω(�) are singletons and they do not coincide. On the other side, in 
light of the Hartman-Grobman’s Theorem (see [10,9]) at hyperbolic points, we can extend this 
property in a sufficiently small open neighborhood U of D: the α-limit set (and also the ω-limit 
set) of an U -leaf is either a singular point in D or an empty set.

2.3. The associated graph

Let M = (M, D, L) be a HAFVSD. We consider the directed planar graph � = �M defined 
in the following way:

• The set of vertices of � is V (�) := Sing(L).
• The set of edges of �, denoted by E(�), consists of the non-singular leaves σ of L|D

satisfying one of the following (non-exclusive) properties:

(a) either σ is contained in the skeleton,
(b) or σ is contained in a component Di of D for which at least one of the limit points 

p ∈ {α(σ), ω(σ)} is a two-dimensional saddle point of the restriction L|Di
(hence, at 

any such limit point p the germ of σ coincides with one of the local invariant one-
dimensional manifolds of L|Di

at p).

• An edge σ is adjacent to a vertex p if p = ε(σ ) for ε = α or ε = ω.
• The orientation of the edges of � is the one induced by the one of L.

By Remark 3, adjacency in � is well defined and any edge σ is adjacent to exactly two distinct 
vertices, its α and ω-limit points. Notice also that both V (�) and E(�) are finite sets. We put 
σ = [p, q] if p = α(σ) and q = ω(σ) and use expressions of the form “σ starts at p and ends 
at q”. An edge contained in Sk(D) is called a skeleton edge, otherwise is called a trace edge. 
As usual, a path of edges is a sequence of edges γ = (σ1, ..., σr) such that α(σj+1) = ω(σj ) for 
j = 1, ..., r − 1 and we say that γ starts at α(σ1) and ends at ω(σr). A path of edges starting 
and ending at the same vertex is called a cycle. We want to emphasize the following important 
property of the graph � which is a consequence of the acyclicity condition in Definition 2:

The oriented graph � has no cycles.

We will adopt the usual terminology for graphs. For instance: a subgraph of � is a directed 
graph G for which V (G) ⊂ V (�) and E(G) ⊂ E(�) (we write G < �); the subgraph generated 
by a subset of vertices W ⊂ V (�) is the subgraph G = G(W) < � such that V (G) = W and 
σ ∈ E(G) if, and only if, the vertices adjacent to σ belong to W ; the subgraph generated by
a subset of edges F ⊂ E(�) is the subgraph G = G(F) < � such that E(G) = F and V (G)

is the set of vertices adjacent to some σ ∈ F ; the edge-complement of a subgraph G in � is 
the subgraph, denoted by Gc, generated by the set of edges that do not belong to E(G), that is 
Gc = G(E(�) \E(G)). For instance, if γ = (σ1, . . . , σn) is a path of edges, we see γ also as the 
subgraph generated by the set of edges {σ1, . . . , σn}. If G < � is a subgraph, the support of G is 
the compact subset of D defined by

|G| = V (G) ∪
⋃

σ.
σ∈E(G)
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A face of � is a connected component of D \ |�|. It is an open subset of D, saturated by L
and contained in a unique component of D. In addition, � induces a stratification on D, denoted 
by St�(D), where faces, edges and vertices are the strata of dimension 2, 1 and 0, respectively. 
Due to the possible presence of trace edges, such a stratification is finer than the stratification 
St (M)|D induced by the standard stratification in M .

We summarize some of the properties satisfied by � in the following result.

Lemma 4. Let � be the graph associated to a HAFVSD M. Then it holds:

(i) For any p ∈ S there exist at least a path of edges γ passing through p such that α(γ ) ∈ Nr

and ω(γ ) ∈ Na .
(ii) We have #N − #Str = 2. In particular N �= ∅. Moreover, Na �= ∅ and Nr �= ∅.

(iii) A vertex p ∈ V (�) is a transversal saddle point if, and only if, there are exactly four edges 
adjacent to p such that two of them start at p and the other two end at p.

(iv) If there exists a vertex p which is isolated in � (no edge is adjacent to p), then V (�) =
{p, q}, where p, q are two different D-nodes, and E(�) = ∅.

(v) For any face � of � there exist two different vertices p, q ∈ V (�) such that any leaf � in �
satisfies α(�) = p and ω(�) = q . (We write p = α(�) and q = ω(�)). Moreover, either we 
are in the situation of item (iv), that is, � = D \ {p, q}, or the topological frontier of � in 
D is the support of a subgraph F(�) < � consisting of exactly two paths of edges from p
to q (which may share some edges but only in an initial and/or final segment of the path).

Proof. (i) Let Di be a component of D for which L|Di
has a two-dimensional saddle at p. The 

stable and unstable manifolds of L|Di
at p are contained in respective edges σ , τ of � such that 

ω(σ) = p and α(τ) = p. If α(σ) is a D-node, this is a starting point for the required path γ . 
Otherwise, we restart the same argument for the D-saddle point α(σ). Doing analogously with 
the point ω(τ) and using the acyclicity condition, the result follows.

(ii) Following the ideas of Brunella in [5], it is possible to assign a Poincaré index to the 
restricted (continuous) foliation L|D at any singularity p ∈ V (�). It is easy to check that this 
index is equal to 1, 0 or -1 when p is a D-node, a tangential saddle or a transversal saddle 
point, respectively. Thus, the formula is a consequence of the Theorem of Poincaré-Hopf in the 
sphere (see [18] for differentiable vector fields, although it also works for continuous vector 
fields with isolated singularities). To show the last claim, assume that p is a D-node and p ∈ Na , 
for instance. We take a leaf � of L contained in D such that ω(�) = p and we conclude that 
α(�) = q ∈ Sing(L), where q is either a D-saddle or a D-repeller point. In the second case, we 
are done. In the first case, we use item (i).

(iii) Consider p ∈ Sing(L). If p is a D-node, then either any edge adjacent to p starts at p
(when p ∈ Nr ) or any edge adjacent to p ends at p (when p ∈ Na). On the other hand, suppose 
that p is a tangential saddle and assume, for instance, that W 2

p is the stable manifold at p. Then 
there is a unique edge σ that starts at p. Indeed, if Dj is a component of D at p not containing 
W 2

p , then L|Dj
has a two-dimensional saddle point at p and hence its unstable manifold, equal 

to W 1
p , is a curve and W 1

p \ {p} is contained in an edge σ (notice also that W 1
p has only one 

side in this case, since it is transversal to D). Finally, suppose that p ∈ Str . If for instance W 2
p is 

stable, then the two connected components of W 2
p ∩D \{p} are contained in corresponding edges 

ending at p, whereas the two connected components of W 1
p \ {p} are contained in corresponding 

edges starting at p.
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(iv) If p is an isolated vertex, then p is a D-node by item (i). Moreover, there is a unique 
component, say D0, of D at p (i.e., e(p) = 1). Assume, for instance, that p ∈ Nr . Let B be a 
compact neighborhood of p in D, homeomorphic to a disc, whose boundary ∂B is smooth and 
transversal to L. We have that any nonsingular leave of L|D issued at a point in B cuts ∂B at 
a single point. In fact, we may identify ∂B with the set H of non-singular leaves � in D with 
α(�) = p, so that we equip H with the topology of ∂B . Using Remark 3, for any � ∈ H we must 
have ω(�) = q�, where q� �= p. It remains to show that q� does not depend on �. Let q be the 
ω-limit point of a fixed element �0 of H and let us show that the set Hq = {� ∈ H : ω(�) = q} is 
open and closed in H . To see that Hq is open in H , notice that if � ∈ Hq , then the germ of � at q
is contained in the stable manifold of L at q . Moreover, if � is contained in a component Di of 
D, then q must be a two-dimensional attractor of L|Di

(otherwise, � would be contained in W 1
q

and � would be an edge adjacent to p). Similarly, we show that Hq is closed in H : given � ∈ Hq

and taking q� = ω(�), we have that � ∈ Hq�
and we have shown above that Hq�

is open. Hence 
any �′ ∈ H in a neighborhood of � would satisfy ω(�′) = q�. In particular, if we take such �′ in 
Hq we have q = q�, which shows that � ∈ Hq .

We can see that |H | := ⋃
�∈H � is a face of �: it is connected, open inside D0, disjoint with 

|�| and closed inside the two-dimensional stratum of St (M) contained in D0 (using similar 
arguments as above).

Let us show that q is also an isolated vertex. Notice that q ∈ D0, since �0 ⊂ D0. Moreover, the 
germ of any element � ∈ H at q is contained in the stable manifold Ws(q). Since H is infinite, 
Ws(q) must be of dimension at least 2 and must contain the germ of D0 at q . If q is not an 
isolated vertex, we must have an edge σ1 ending at q which is contained in the closure of |H |
(if there are edges adjacent to q not in D0 we must have e(q) > 1 so that necessarily there are 
such edges contained in D0). Let q1 = α(σ1). We have that q1 �= p because p is an isolated 
vertex. Moreover, since q1 is in the closure of |H |, we could not have that q1 is a repeller point 
of the restriction LD0 (since, otherwise, we would have α(�) = q1 for several � ∈ H , contrary to 
q1 �= p). Thus, q1 is a two-dimensional saddle point of LD0 and we obtain an edge σ2 ending at 
q1 and contained in the closure of |H |. Repeating the argument, we find a sequence of vertices 
q, q1, q2, ..., all saddle points of the restriction LD0 , contradicting the acyclicity condition.

We conclude that D0 is the unique component of D at q and that q ∈ Na . As we have shown 
above, H is the family of leaves � satisfying both α(�) = p and ω(�) = q . Taking a compact 
neighborhood B ′ of q in D0 whose boundary cuts exactly once each element � ∈ H , the flow 
establishes a homeomorphism ∂B → ∂B ′ given by a �→ �a ∩ ∂B ′. By standard arguments, one 
proves that the subset {p, q} ∪ ⋃

�∈H � of D is homeomorphic to S2 and then it is equal to D, 
which gives the result.

(v) Notice that the face � is saturated by L and contained in a single component of the divisor. 
Denote such component by D�. If � is a leaf contained in �, then the limits p = α(�) and 
q = ω(�) are different singular points that belong to D�. Let us see that they do not depend on �. 
We have that p and q are nodes (repeller and attractor, respectively) of the restriction L|D� : for 
instance, if p is a saddle of L|D� , its invariant stable and unstable manifolds, being both disjoint 
with �, would be contained in α(�), which is not possible. Similarly to the item (iv), we obtain 
that the subset R ⊂ � defined by the union of leaves inside � with limits at p and q , is open and 
closed in �. Hence, R = �, as wanted. The second part of statement (v) is a general result in the 
theory of planar graphs (Fig. 5). �

The acyclicity condition permits us to state the following definition.
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Fig. 5. A graph � with three components. Points 3, 4 are transversal saddles, 1 is a tangential saddle whereas 2, 5, 6 and 
7 are nodes.

Definition 5. For any vertex p ∈ V (�) we define the length of p, and denote it by l(p), as the 
maximal number of edges in a path of edges starting at p. The value l(�) = max{l(p) : p ∈
V (�)} is called the length of �.

Put l := l(�). For j = 0, 1, ..., l, we denote by �j the subgraph of � whose set of vertices 
is V (�j ) = {p ∈ V (�) : l(p) ≤ j} and whose set of edges is the set of edges of � starting at a 
point in V (�j ). We have the following filtration of �, which will be very useful in what follows:

�0 < �1 < · · · < �l−1 < �l. (2)

Notice that we have V (�j ) \ V (�j−1) = {p ∈ V (�) : l(p) = j}, for j = 1, ..., l. Concerning 
the edges, we have E(�0) = ∅ and, for j ≥ 1,

E(�j ) \ E(�j−1) =
⋃

p∈V (�j )\V (�j−1)

α−1(p). (3)

Notice also that V (�0) = Na , except for the exceptional case described in Lemma 4 item (iv), in 
which �0 = � consists of two isolated vertices (by the way, the unique case where � has length 
equal to zero).

2.4. The local s-components

From now on, it will be convenient to consider separately the two sides in which the two-
dimensional invariant manifold divides a neighborhood at a transversal saddle point. To unify 
notation, we define such “sides” at any singular point p ∈ Sing(L). More precisely, take an 
analytic chart (Up, x) at p where the domain Up is small enough so that, when p is a three-
dimensional saddle, the two-dimensional invariant manifold W 2

p is well defined in Up and given 
by a plane coordinate in the x variables. In this case, D̃p = (D ∩ Up) ∪ W 2

p is a normal crossing 
divisor, contained in the union of the plane coordinates of the chart. When p is not a three-
dimensional saddle point, we simply put D̃p = D ∩ Up and require the condition of Up \ D̃p

being connected.
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Definition 6. The germ at p of a connected component of Up \ D̃p does not depend on the chart 
(Up, x) and will be called a local saddle-component (or just a local s-component for short) at p.

By definition, if p is a D-node or a tangential saddle point then there is exactly one local 
s-component at p. On the contrary, if p is a transversal saddle point, then there are two local 
s-components at p.

We use the generic letters ν, η, etc. either to denote local s-component at some point or rep-
resentatives of them. In this way, the notation ν refers, either to the germ of the closure of a 
representative of ν or to a representative of it. Besides, if p is a D-node or a tangential saddle 
point, we denote ν = νp the unique local s-component at p. If p is a transversal saddle point, 
we denote by ν+

p , ν−
p the two local s-components at p. Denote also by V(�) the set of all local 

s-components at singular points. More generally, if G < � is a subgraph, we denote by V(G) the 
set of local s-components at points in V (G).

We consider a partial ordering in the set V(�) of local s-components by putting ν ≤ μ if, 
and only if, either ν = μ or there exists a path of edges (σ1, ..., σr) such that σ1 ∩ ν �= ∅ and 
σr ∩ μ �= ∅.

Finally, we extend the notions of α and ω-limits of edges stated in (1) as follows: given an 
edge σ ∈ E(�) and ν ∈ V(�), we say that ν is an α̃-limit (respectively a ω̃-limit) of σ , if the germ 
of σ at α(σ) (respectively at ω(σ)) is contained in ν. We consider then α̃, ω̃ as correspondences 
from E(�) to V(�) so that we use, for instance, the notation σ ∈ α̃−1(ν) to indicate that ν is an 
α̃-limit of σ . In addition, if � is a face of �, we put α̃(�) and ω̃(�) to denote the unique local 
s-component at the vertex α(�) and ω(�), respectively.

3. Morse-Smale non-resonant foliations

Let M = (M, D, L) be a HAFVSD and � its associated graph. An edge σ = [p, q] of � is 
called a saddle connection if there exists a component Di of D such that σ ⊂ Di and p, q are 
both two-dimensional saddles of the restriction L|Di

. In this situation, notice that σ is locally 
contained in the unstable manifold (respectively stable manifold) of L|Di

at p (respectively at 
q). A multiple saddle connection is a path of edges γ = (σ1, . . . , σr) such that each σj is a saddle 
connection.

Definition 7. The HAFVSD M is said to be of Morse-Smale type if any saddle connection is a 
skeleton edge.

The Morse-Smale condition implies, in particular, that if σ is a trace edge of � and Di is the 
(unique) component of D containing σ , then one of the extremities of σ is a saddle and the other 
one is a node of the restricted foliation L|Di

. More precisely, being σ = [p, q], we must have:
- If p is a saddle point of L|Di

, then q can be either a D-node or a tangential saddle for which 
L|Di

has a node at q . Notice that in this last case, q is either an angle or a corner point.
- If p is node point of L|Di

, then q is a saddle point of L|Di
(in this case q cannot be a corner 

point).

As discussed in the introduction, we impose also a requirement concerning a “non-resonance” 
condition of multiple saddle connections. The rest of this section is devoted to explain what is 
behind this condition and to establish some relevant consequences for the dynamics. Let us men-
tion that such condition was introduced for the first time in Alonso-González et al. [2,3], where 
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it was stated as the absence of “infinitesimal saddle connections” in the context of a topological 
classification of vector fields with Morse-Smale type reduction of singularities.

3.1. Trace marks

First, we define what we call trace marks, curves attached to points in the “middle” of the two 
dimensional invariant manifold at a saddle point.

If p ∈ Sing(L) is a three dimensional saddle point, we denote by D̃p the germ at p (or a rep-
resentant of it) of D ∪W 2

p , a normal crossing divisor extending D. Notice that D̃p coincides with 
the germ of D at p if p is a tangential saddle point. Denote by Sk(D̃p) the union of intersections 
of pairs of components of D̃p (in particular Sk(D) ⊂ Sk(D̃p)).

Definition 8. Let p ∈ Sing(L) be a three-dimensional saddle point and let ν be a local s-
component at p. A trace mark on ν is the image T = β([0, ∞)) of an injective analytic parame-
terized curve β : [0, ∞) → ν such that there exists b := limt→∞ β(t) with b ∈ W 2

p \ Sk(D̃p). If 
we need to specify the limit point, we will say that T is a trace mark attached to b.

Remark 9. Suppose that p is a three-dimensional saddle point, that ν is a local s-component 
and that T is the image of an injective analytic curve contained in ν such that T ∩ W 2

p is a 
single point b with b �= p (a trace mark on ν, for instance, although more generally we may have 
b ∈ Sk(D̃p)). By means of the Hartman-Grobman’s Theorem, if b is close enough to p and V is 
a sufficiently small neighborhood of p containing b, we have:

(SatV (T ) ∩ V ) \ SatV (T ) = (�b ∪ (W 1
p ∩ ν)) ∩ V

where �b is the leaf of L at b (so that �b ∩ V is contained in W 2
p if V is small enough). Notice 

that, if p is a D-saddle point, there is a unique edge σ adjacent to p such that σ ∩ ν �= ∅ and such 
σ contains W 1

p ∩ ν. On the contrary, if p is a D-node, then W 1
p ∩ ν does not intersect the divisor 

D.

3.2. Angle marks

Next, we describe the curves attached to points in the (extended) skeleton that we will con-
sider. They have some explicit “tangency order” with respect to the components of the divisor. 
We start with the following definition, that adapts the one that already appears in Section 6 of 
[4].

Definition 10. Let c : [0, ∞) → R2
>0 be an injective analytic parameterized curve such that 

limt→∞ c(t) = (0, 0). Write c(t) = (c1(t), c2(t)) in the cartesian coordinates. We say that c has 
a quasi-order if there exist ρ > 0, t0 > 0 and constants k1, k2 with 0 < k1 < k2 < ∞ such that

k1c1(t)
ρ < c2(t) < k2c1(t)

ρ for any t ≥ t0.

In this case, the univocally determined value ρ is called the quasi-order of c (with respect to 
the x-axis). A subset C ⊂ R2

>0 is said to be a curve with quasi-order ρ if C is the support of a 
parameterized analytic real curve c with quasi-order ρ.
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Notice that if C ⊂ R2
>0 has quasi-order ρ then ρ does not depend on the parametrization c. 

Moreover, given ψ : R2≥0 → R2≥0 an analytic isomorphism, a subset C ⊂ R2
>0 has quasi-order 

if, and only if, ψ(C) also does. If ρ is the quasi-order of C, then the quasi-order of ψ(C) is 
ρ, in case ψ preserves each coordinate axis, or 1/ρ, when ψ inverts them. In particular, the 
quasi-orders of a curve with respect to the x and the y-axis are mutually inverse.

Let a ∈ D be a non-singular point of L. A planar section at a is a germ of two-dimensional 
analytic submanifold � of M passing through a and everywhere transversal to the foliation 
L. We recall that the word “submanifold” is taken with the meaning of analytic manifold with 
boundary and corners. In particular, ∂� = � ∩D and (�, a) is either isomorphic to a closed half 
space (R ×R≥0, 0) if e(a) = 1, or to a quadrant (R2≥0, 0), if e(a) = 2.

Definition 11. Let σ be a skeleton edge and let a ∈ σ . An angle mark at a is a subset � of a 
planar section � at a such that there exists an analytic chart ψ : � → R2≥0 so that ψ(�) is a curve 
with quasi-order. In this case, if D1, D2 are the two components of D such that σ ⊂ D1 ∩ D2
then, for i = 1, 2, the quasi-order of � with respect to Di (or Di -quasi-order) is the quasi-order 
ρi of ψ(�) with respect to the coordinate axis ψ(� ∩ Di) (and thus ρ1ρ2 = 1).

Notice that if �′ is a planar section at a different point a′ ∈ σ and φ : � → �′ is the analytic 
isomorphism induced by the foliation L, then � ⊂ � is an angle mark at a iff φ(�) ⊂ �′ is an 
angle mark at a′ with the same quasi-order. Any such curve φ(�) will be said to be an angle 
mark associated to σ without explicit mention of the point a′.

3.3. Transition of trace and angle marks

Denote by S′ ⊂ S the set of D-saddle points for which the one-dimensional invariant manifold 
is contained in the skeleton. In other words, the set S′ is composed of the tangential saddle corner 
points and the transversal saddle angle points. In the following two propositions, we adapt a 
couple of results that appear in [2], in order to describe the transition of trace and angle marks 
through a saddle point p ∈ S′. Roughly speaking, the saturation of a trace mark near a point 
p ∈ S′ produces an angle mark associated to the skeleton edge that supports W 1

p.

Given p ∈ S′, if Di, Dj are the two components of D such that W 1
p ⊂ Di ∩ Dj and λk is the 

eigenvalue of a local generator of L at p associated to the invariant curve Dk ∩ W 2
p , for k = i, j , 

we define the Di-weight of p (respectively the Dj -weight of p) as the value

wDi
(p) = λj/λi (respectively wDj

(p) = λi/λj ).

Observe that the weights are independent of the chosen local generator and that they are mutually 
inverse positive real numbers.

Proposition 12. Let p ∈ S′ and let ν be a local s-component at p. Denote by σ the edge contain-
ing W 1

p ∩ν and by Di, Dj the components of D such that σ ⊂ Di ∩Dj . Let T be a trace mark on 
ν. Then, in a sufficiently small neighborhood V of p, if � is a planar section at some a ∈ σ ∩ V , 
the curve � = � ∩ SatV (T ) is an angle mark at a with Dk-quasi-order equal to wDk

(p), for 
k = i, j .

Proof. Let (V , (x, y, z)) be a chart at p such that Di ∩ V = {z = 0}, Dj ∩ V = {y = 0}, W 2
p =

{x = 0} and ν = {x > 0}. For any given ρ > 0, the ρ-weighted blow-up with center Y = Di ∩
56



C. Alonso-González and F. Sanz Sánchez Journal of Differential Equations 361 (2023) 40–96
Dj ∩ V is the map πρ : M → V , where M is the analytic manifold with boundary and corners 
constructed from two charts (Mi, (xi, yi, zi)), i = 1, 2, by identifying points in M1 \ {z1 = 0}
with points in M2 \ {y2 = 0} so that πρ is well defined by the respective expressions

x = x1, y = y1, z = z1y
ρ
1 ; x = x2, y = y2z

1/ρ
2 , z = z2

(see [17] or [15] for intrinsic definitions). The map πρ is a continuous proper surjection and 
restricts to an analytic isomorphism outside the exceptional divisor H = π−1

ρ (Y ) (given by equa-
tions {y1 = 0} and {z2 = 0} in M1 and M2, respectively). Notice that, given the planar section 
�a = {x = x(a)} at some a ∈ σ and the image � ⊂ �a \{a} of a parameterized analytic injective 
curve, � is an angle mark with Di -quasi-order equal to ρ if, and only if, π−1

ρ (�) accumu-
lates on the fiber π−1

ρ (a) along a subset contained in a segment inside M1 ∩ M2 of the form 
{y1 = 0, x = x(a), k1 ≤ z1 ≤ k2}, where 0 < k1 < k2.

The transformed foliation L̃ = π∗
ρ L|V on M \ H extends continuously to H leaving H in-

variant. More precisely, consider an analytic local generator ξ of L at p written as

ξ = x(α + A)∂x + y(λi + B)∂y + z(λj + C)∂z

with αλi < 0, λiλj > 0 and A(0) = B(0) = C(0) = 0. The transformed vector field ̃ξ = π∗
ρ ξ is a 

generator of L̃ on M \ H . We have that ξ1 = ξ̃ |M1 is written as:

ξ1 = x1(α + A ◦ πρ)∂x1 + y1(λi + B ◦ πρ)∂y1 + z1
(
(λj − ρλi) + (C − ρB) ◦ πρ

)
∂z1 (4)

(and a similar expression for ξ2 = ξ̃ |M2 ). The two vector fields ξ1, ξ2 extend continuously to H
and, in fact, these extensions are of class C1 at any point of M1 ∩ M2 ∩ H , independently of ρ. 
When ρ < 1 (respectively ρ > 1), it is possible that ξ1 (respectively ξ2) is not of class C1 at the 
origin of M1 (respectively of M2). If this is the case for instance for ξ1, we can make a change of 
variables y1 � y

1/ρ

1 (valid in M1 \ H ) so that ξ1 transforms into a vector field written similarly 

as in equation (4) but replacing λi with λiρ and A ◦ πρ with ρA(x1, y
1/ρ
1 , z1y1), etc. This new 

vector field is then of class C1 also at the origin of M1.
Consider the special weight ρ = wDi

(p). Taking into account the expression (4), we have the 
following properties:

(a) The leaves of L̃|H are given by the lines {y1 = 0, z1 = c}c∈R≥0 in M1 ∩ H (or by {z2 =
0, y2 = c}c∈R≥0 in M2 ∩ H ).

(b) The fiber π−1
ρ (0) = π−1

ρ (W 2
p) ∩ H is composed of singular points of L̃.

(c) At any point t ∈ π−1
ρ (0) ∩M1 ∩M2, the linear part of ξ1 (or ξ2) has one positive, one negative 

and one null eigenvalue. Moreover, the fiber π−1
ρ (0) is the (unique) center manifold Wc(t) of 

L̃ at t , whereas the center-unstable and center-stable manifolds satisfy {Wcu(t), Wcs(t)} =
{H, π−1

ρ (W 2
p)}.

(d) Up to making a ramification of the variable y1 (or of the variable z2) as mentioned above, 
we have the same conclusion as in item (c) for ξ1 at the origin of M1 (or for ξ2 at the origin 
of M2).

Using the properties (b-d) above and applying the Theorem of Reduction to the Center Man-
ifold of vector fields of class C1 (see [11], for instance), we show that for a sufficiently small 
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Fig. 6. Transition of a trace mark.

neighborhood Ṽ of π−1
ρ (0) and for any point t ∈ π−1

ρ (0), there is exactly one non-singular leave 
of L̃|Ṽ contained in π−1

ρ (W 2
p) and accumulating to t .

Now, suppose that T is a trace mark attached to a point b. Notice that by definition of a 
trace mark we have b ∈ W 2

p \ (Di ∪ Dj). Let �b ∩ V ⊂ W 2
p be the leaf of L|V through b and 

�̃b = π−1
ρ (�b ∩ V ). If V is sufficiently small, as we have said, �̃b accumulates to a single point 

tb of the fiber π−1
ρ (0). Necessarily, tb is not the origin of none of the charts M1, M2 (because 

b /∈ Di ∪ Dj and only the transforms by πρ of the two edges intersecting W 2
p ∩ Di or W 2

p ∩ Dj

accumulate to those origin points). Again by the Theorem of Reduction to the Center Manifold 
applied to ξ1 at tb, if we put T̃ = π−1

ρ (T ) and Ṽ = π−1
ρ (V ), we have that,

(
SatṼ (T̃ ) \ SatṼ (T̃ )

)
∩ Ṽ = �̃b ∪ {tb} ∪ �′,

where �′ is a non-singular leave of L̃|H∩Ṽ that accumulates to tb (see Fig. 6). By the property 
(a), �′ cuts any transversal section of the form π−1

ρ ({x = x(a)}) with a ∈ σ in a unique point 
with coordinates (x1, y1, z1) = (a, 0, z1(tb)). Since z1(tb) �= 0, the observation above proves that 
� = SatV (T ) ∩ {x = x(a)} is an angle mark. This ends the proof. �

The converse of Proposition 12 is not necessarily true: from the proof just discussed, one can 
construct an angle mark � whose saturation may accumulate to a set with non-empty interior in-
side W 2

p . However, if the angle mark � has Dk-quasi-order different from wDk
(p), its saturation 

will accumulate to an edge adjacent to p contained in W 2
p and produce angle marks associated 

to that edge. In the following proposition we make this result precise.
With the previous notation, take p ∈ S′ and σ an edge intersecting W 1

p with σ ⊂ Di ∩Dj . Let 
τi, τj be the two edges adjacent to p and containing Di ∩ W 2

p , Dj ∩ W 2
p , respectively. Finally, 

let α, λi, λj be the eigenvalues of a generator of L at p associated to the directions of σ, τi, τj , 
respectively.

Proposition 13. Let � be an angle mark associated to σ with Dk-quasi-order equal to ρk for 
k = i, j . Assume that ρi �= wDi

(p) (thus also ρj �= wDj
(p)). Define ε ∈ {i, j} as the unique index 

satisfying ρε > wDε (p). Then, in a sufficiently small neighborhood V of p, we have

SatV (�) ∩ D ∩ V = (σ ∪ {p} ∪ τε) ∩ V. (5)
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Moreover, if p is a corner saddle point (so that τi, τj are skeleton edges) then, for any planar 
section � at some point in τε ∩ V , we have that �̃ = SatV (�) ∩ � is an angle mark associated 
to τε with Dε -quasi-order equal to

ρ̃ε = λε′ − λερε

α
, where {ε, ε′} = {i, j}. (6)

Conversely, when p is a corner saddle point, if �̃ is an angle mark associated to τi (respectively 
to τj ) with Di -quasi-order (respectively Dj -quasi-order) equal to ρ̃, then, for any planar section 

� at some point in σ ∩V , SatV (�̃) ∩� is an angle mark with Di-quasi-order equal to λj

λi
− ρ̃ α

λi

(respectively with Dj -quasi-order equal to λi

λj
− ρ̃ α

λj
).

Proof. Assume that ρi > λj/λi (i.e., ε = i). Let (V , (x, y, z)) be a chart at p with the same 
properties as in Proposition 12, and consider the ρi-weighted blow-up π = πρi

: M → V with 
center Y = σ ∩ V . Keeping the same notations as in the proof of Proposition 12, we have that 
Y ′ = π−1(τi) is the y1-axis of the first chart M1 of π . The transformed foliation L̃ = π∗L has 
a local generator ξ1 in M1 given by the expression in (4), where ρ is replaced with ρi . As we 
have already pointed out, this vector field is not necessarily of class C1 at the origin of M1. 
However, up to performing a ramification of the variable y1, we obtain a vector field ξ̄1 of class 
C1 on M1 which is topologically equivalent to ξ1 and has a similar expression as (4), although 
the eigenvalue λi may be replaced with ρiλi . In particular, taking into account that ρi > wDi

(p), 
the point p1 is a hyperbolic saddle point of ξ̄1, for which the divisor H = π−1(Y ) is the two-
dimensional invariant manifold, and the y1-axis is the one-dimensional invariant manifold.

Assume that the angle mark � is contained in a transversal section at some a ∈ σ of the form 
�a = {x = x(a)}. Since � has Di quasi-order equal to ρi , we have that π−1(�) is contained in 
a compact subset of M1 of the form

K = {x1 = x(a), k1 ≤ z1 ≤ k2, 0 ≤ y1 ≤ ε},

where 0 < k1 < k2. The saturation of K in M by L̃ can be computed by using the vector field ξ̄1, 
since K ⊂ M1 and M1 is saturated for L̃. Applying Hartman-Grobman’s Theorem to ξ̄1 at p1 as 
in Remark 9, we conclude that SatM(K) ∩ π−1(D) is contained in H ∪ Y ′ and contains Y ′ (see 
Fig. 7). This proves the required property (5).

Fig. 7. Transition of an angle mark.
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In order to prove (6), we notice first that the eigenvalues of the linear part of ξ̄1|H at p1
are α, λj − ρiλi (both of the same sign), associated to the directions of the x1 and z1-axis, 
respectively. Thus, any trajectory of ξ̄1|H in a neighborhood of p1, except for those two axis, has 
quasi-order equal to ̃ρi with respect to the x1-axis (identifying H ∩M1 = {y1 = 0, x1 ≥ 0, z1 ≥ 0}
with the quadrant R2≥0 by means of the coordinates (x1, z1)). In particular, SatM(K) ∩ H is 
enclosed by two such trajectories. We perform a new ρ̃i-weighted blow-up π ′ = πρ̃i

: M ′ → M1
with center Y ′ = {x1 = z1 = 0}, written in the two charts (M ′

1, (x
′
1, y

′
1, z

′
1)), (M

′
2, (x

′
2, y

′
2, z

′
2))

defining M ′ as

x1 = x′
1, y1 = y′

1, z1 = z′
1(x

′
1)

ρ̃i ; x1 = x′
2(z

′
2)

1/ρ̃i , y1 = y′
2, z1 = z′

2.

A computation as in the proof of Proposition 12 shows that ξ ′
1 = π ′ ∗ξ̄1 is a vector field of class 

C1 on M ′
1 ∩M ′

2 for which any point q ∈ π ′−1(p1) ∩M ′
1 ∩M ′

2 is a singular point with eigenvalues 
α, λi, 0 (independent of the point r). At any such point q , the fiber π ′−1(p1) is the center man-
ifold of ξ ′

1 (unique in this case), whereas the center-unstable and center-stable manifolds satisfy 
{Wcu(q), Wcs(q)} = {π ′−1(H), H ′}, where H ′ = π ′−1(Y ′) is the divisor of π ′. We obtain that 
trajectories of ξ̄1|H outside {x1z1 = 0} are lifted by π ′ to curves accumulating to a single point 
of π ′−1(p1) ∩ M ′

1 ∩ M ′
2. Also, the leaves of ξ ′

1|H ′ are the lines {x′
1 = 0, z′

1 = c}c≥0. Using these 
observations and the same arguments as in the proof of Proposition 12, we conclude that the 
saturation �̃ of (π ◦ π ′)−1(�) by ξ ′

1 is contained in a region of the form {k′
1 ≤ z′

1 ≤ k′
2} for some 

constants 0 < k′
1 < k′

2. Thus, for u > 0 sufficiently small, we have π ◦ π ′(�̃ ∩ {y′
1 = u}) is an 

angle mark associated to τi inside the transversal section �u = {y = u} with quasi-order equal 
to ρ̃i with respect to Di = {z = 0}. This proves the second assertion of the proposition. The rest 
of the statement concerning the transition of angle marks associated to τi or τj to an angle mark 
associated to σ can be proved analogously. �

With the notations of Proposition 13, when p is a corner saddle point, the map ρε �→ ρ̃ε

defined by (6) for ε ∈ {i, j} will be called the transition from σ to τε and denoted by Tσ,τε , 
whereas its inverse will be called the transition from τε to σ and denoted by Tτε,σ . Notice that 
Tσ,τε defines an affine bijection from the interval (wDε(p), +∞) into the interval (0, +∞).

3.4. Saddle-resonance

Now we can introduce the main definitions of this section.

Definition 14. (Resonant s-connections) Let p, q ∈ S′ with p �= q and let γ = (σ0, σ1, ..., σn) be 
a multiple saddle connection from p to q . We say that γ is saddle-resonant (or s-resonant for 
short) if the following conditions are satisfied:

• Each edge σi is a skeleton edge.
• The first edge σ0 (respectively the last edge σn) intersects W 1

p (respectively W 1
q ).

• For i = 0, . . . , n − 1, let Di be the component of D which contains σi and σi+1. Take ρ0 =
wD0(p). Then ρ0 belongs to the domain of Tσ0,σ1 . By defining recursively, for i = 1, . . . , n −
1, the value

ρi =
{

Tσi−1,σi
(ρi−1), if Di−1 = Di

1/T (ρ ), if D �= D ,
σi−1,σi i−1 i−1 i
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we have that ρi belongs to the domain of Tσi,σi+1 when i < n.
• It holds Tσn−1,σn(ρn−1) = wDn−1(q).

The HAFVSD M will be called s-resonant if it has any s-resonant multiple saddle connection.

3.5. Saturation of trace marks

Now we state the main result in this section. Roughly speaking, under the conditions of Morse-
Smale and not s-resonance, the saturation of a given trace mark near a point p ∈ S will be a 
surface accumulating along the support of a path of edges that does not depend on the trace 
mark. As a consequence, the saturation of the two-dimensional invariant manifold at any p ∈ Str

shares an analogous property.
In the following statement, we fix realizations of the invariant manifolds W 2

p for any p ∈ Str

and denote

D̃ = D ∪
⋃

p∈Str

W 2
p.

Notice that, according to the notation already introduced before Definition 8, the germ of D̃ at 
any p ∈ Str is equal to D̃p .

Theorem 15. Let M = (M, D, L) be a HAFVSD and assume that it is not s-resonant and of 
Morse-Smale type. Consider a D-saddle point p ∈ S and a local s-component ν at p. Then there 
exists a unique path of edges �(ν) with extremities at p and another point q = q(ν), which is a 
D-node, satisfying the following property: for any sufficiently small neighborhood U of D in M , 
and for any trace mark T on ν contained in U , we have

SatεU (T ) ∩ D̃ = �ε
b ∪ |�(ν)|, (7)

where ε = + (respectively ε = −) in case W 1
p is the unstable (respectively stable) manifold at p

and b ∈ W 2
p is the point where T is attached.

Proof. Assume for instance that W 1
p = Wu(p). We proceed by induction on the length l(p) (cf. 

Section 2). Let σ1 = [p, p1] be the edge starting at p which contains W 1
p ∩ ν. Take T a trace 

mark on ν attached to a point b ∈ W 2
p \ Sk(D̃p) sufficiently near to p. Using Remark 9, in a 

small open neighborhood V0 of p we have

Sat+V0
(T ) ∩ D̃ ∩ V0 = (�+

b ∪ {p} ∪ σ1) ∩ V0 (8)

Put T1 = Sat+(T ) ∩ �1, where �1 is a transversal section at some point a1 ∈ σ1 ∩ V0. From (8), 
if U is a sufficiently small neighborhood of D, we obtain that

Sat+U(T ) ∩ D̃ = �+
b ∪ {p} ∪ σ1 ∪

(
Sat+U(T1) ∩ D̃

)
. (9)

Now, we have several possibilities:
61



C. Alonso-González and F. Sanz Sánchez Journal of Differential Equations 361 (2023) 40–96
(a-1) The point p1 is a D-node. Hence, necessarily p1 ∈ Na . We put �(ν) = (σ1). As in 
Remark 9, the result follows from equation (9) by applying Hartman-Grobman’s Theorem at the 
point p1. This situation occurs when l(p) = 1, so we can start our induction argument with this 
case (a-1).

(b-1) The point p1 is a D-saddle point and the edge σ1 is a trace edge. In this case, by 
the Morse-Smale condition, the component of D which contains σ1 coincides with the two-
dimensional invariant manifold W 2

p1
locally at p1, that is, p1 ∈ Stg . Thus, by using the flow, we 

can see the curve T1 as a trace mark on the (unique) local s-component at p1, denoted by ν1. Us-
ing the induction hypothesis, we consider the path of edges �(ν1) starting at p1 and satisfying 
(7) for ν1 and T1. By means of (9), the path �(ν) = (σ1, �(ν1)) satisfies the requirements of the 
theorem.

(c-1) The point p1 is a D-saddle point and the edge σ1 is a skeleton edge. Let D1, D2 be the 
two components of D such that σ1 ⊂ D1 ∩ D2. By Proposition 12, the curve T1 is an angle mark 
associated to σ1 with Di -quasi-order equal to wDi

(p), for i = 1, 2. It turns out that there exists 
a unique edge σ2 = [p1, p2] such that, in a small enough neighborhood V1 of p1, and assuming 
that a1 is sufficiently close to p1, we have

SatV1(T1) ∩ D̃ ∩ V1 = SatV1(T1) ∩ D ∩ V1 = (σ1 ∪ {p1} ∪ σ2) ∩ V1. (10)

Indeed, if σ1 is contained in W 2
p1

locally at p1 (that is, either W 2
p1

⊂ D1 or W 2
p1

⊂ D2) then 
(10) holds with σ2 the edge intersecting W 1

p1
, by Remark 9. On the other hand, if σ1 intersects 

W 1
p1

then, by the non-resonance hypothesis, we have that wDi
(p) �= wDi

(p1), for i = 1, 2, and 
equation (10) holds as a consequence of Proposition 13. Put T2 = Sat+(T1) ∩ �2, where �2 is a 
transversal section at some point a2 ∈ σ2. Using equations (9) and (10), we obtain that if U is a 
small enough neighborhood of D then

Sat+U(T ) ∩ D̃ = �+
b ∪ {p} ∪ σ1 ∪ σ2 ∪

(
Sat+U(T2) ∩ D̃

)
.

Take σ2 = [p1, p2]. Now, we have the same three possibilities for the extremity p2 as those we 
had for p1, namely:

(a-2) The point p2 ∈ Na . We finish by taking � = (σ1, σ2).
(b-2) The point p2 belongs to Stg and σ2 is a trace edge (thus intersecting W 2

p2
⊂ D). Taking 

a2 sufficiently near to p2, we have that T2 is a trace mark at p2. By induction hypothesis on 
l(p2) < l(p), we finish by taking � = (σ1, σ2, �(ν2)) where ν2 is the local s-component at p2
containing T2.

(c-2) The point p2 belongs to S and σ2 is a skeleton edge. Applying Proposition 13 to p1 and 
T1, we have that T2 is an angle mark associated to σ2.

Since the graph � is finite and has no cycles, by repeating the arguments, we obtain a path 
(σ1, . . . , σr) with the following properties:

• The path (σ1, . . . , σr−1) is a multiple saddle connection.
• For j ∈ {2, . . . , r}, define Tj = Sat+(Tj−1) ∩ �j , where �j is a transversal section at some 

point aj ∈ σj . Then Tj is an angle mark for j < r and, if U is a sufficiently small neighbor-
hood of D, we have

Sat+(T ) ∩ D̃ = �+ ∪ {p} ∪ σ1 ∪ σ2 ∪ · · · ∪ σr ∪
(

Sat+(Tr) ∩ D̃
)

.
U b U
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• The extremity pr = ω(σr) is either in the situation (a-r), i.e. pr ∈ Na , or in the situation 
(b-r), i.e., pr ∈ Stg and σr is a trace edge intersecting W 2

pr
⊂ D.

If pr ∈ Na , we put �(ν) = (σ1, ..., σr) and the result follows. In the situation (b-r), we may 
assume that Tr is a trace mark on νr , the (unique) local s-component at pr . By induction hypoth-
esis, we get a path �(νr) satisfying (7) for νr and Tr . Finally, the path �(ν) = (σ1, . . . , σr, �(νr))

satisfies the required property for ν and T . This ends the proof. �
Remark 16. From the construction of the path �(ν) in Theorem 15, it follows that there is no 
trace edge in �(ν) which ends (resp. starts) at a transversal saddle point if W 1

p is the unstable 
manifold (resp. the stable manifold) at p.

Corollary 17. With the same conditions as above, given a transversal saddle point p ∈ Str , there 
are two paths of edges �1

p, �2
p starting (resp. ending) at p and ending (resp. starting) at some D-

node point when W 2
p is unstable (resp. stable), such that for any sufficiently small neighborhood 

U of D in M we have

SatU(W 2
p) ∩ D̃ = W 2

p ∩ U ∪ |�1
p| ∪ |�2

p|. (11)

As a consequence, two different elements in the family {SatU(W 2
p)}p∈Str are always mutually 

disjoint, for U small enough.

Proof. Assume, for instance, that W 2
p is the unstable manifold. In light of Lemma 4, there are 

exactly two edges starting at p, say σi = [p, pi], i = 1, 2. Moreover, they are trace edges and 
satisfy W 2

p ∩ D ⊂ σ1 ∪ σ2 ∪ {p}. By the Morse-Smale condition, the extremity pi , for i = 1, 2, 
is either a D-node or a tangential saddle point, and hence, there is a unique local s-component 
νi at pi . Consider a neighborhood Ui of σi and a transversal section �i at some point in σi ∩ νi , 
both sufficiently small to guarantee that Ti = Sat+Ui

(W 2
p) ∩ �i is a trace mark on νi . Put �i

p =
(σi, �(νi)), i = 1, 2. Property (11) follows by applying Theorem 15 to the local s-components 
ν1, ν2 and the trace marks T1, T2, respectively. Now, notice that if p′ ∈ Str and p′ �= p, then (11)
implies that SatU(W 2

p) ∩ W 2
p′ ⊂ D. On the other hand, we have SatU(W 2

p) ∩ D = {p} ∪ σ1 ∪ σ2, 
where σ1, σ2 are as above. These two observations prove the last claim in the corollary, taking 
into account that none of those two edges cuts W 2

p′ , by virtue of the Morse-Smale condition. �
Note that the paths in Corollary 17 associated to different transversal saddle points may share 

common edges. This means that, although the saturations of the two-dimensional invariant man-
ifolds at different transversal saddle do not intersect, their closures in M could.

Remark 18. The disjointness property of the family of sets in the last part of Corollary 17 can be 
extended to saturations of trace marks. More in precise: assume that for each ν ∈ V(�) we take 
a (possibly empty) family {T 1

ν , . . . , T sν
ν } of mutually disjoint trace marks in ν, attached to points 

not in |�|. Then, for a sufficiently small neighborhood U of D in M , the elements of the family

F = {SatU(W 2
p)}p∈Str ∪ {SatU(T j

ν )}ν∈V(�), j=1,...,sν

are pairwise disjoint. To see this, notice that if ν is associated to a transversal saddle, then equa-
tion (7) is true for any T j

ν (deleting the exponent ε ∈ {+, −} that indicates the sense of the flow). 
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On the contrary, if ν is not associated to a transversal saddle and T j
ν is attached to aj , then 

aj ∈ D for j ∈ {1, . . . , sν}. By pushing T j
ν by the flow, we get two trace marks T j

ν (+), T j
ν (−)

on the local s-components ω̃(�aj ) and α̃(�aj ), respectively, and we have

SatU(T
j
ν ) ∩ D̃ =

(
Sat+U(T

j
ν (+)) ∩ D̃

)
∪ �aj ∪

(
Sat−U(T

j
ν (−)) ∩ D̃

)
.

The fact that two different elements of F do not intersect follows, as in Corollary 17, from these 
observations along with the corresponding properties (7) and (11) applied to those elements.

4. Distinguished neighborhoods from chimneys

Let M = (M, L, D) be a non s-resonant of Morse-Smale type HAFVSD. In this section we 
construct a convenient base of neighborhoods of the support |�| by using the so-called distin-
guished fattenings that we define below. These fattenings will constitute the first pieces in order 
to get the fitting domains announced in Theorem 1. Each one of them will be constructed by 
considering small local neighborhoods at points of Sing(L) of chimney-shape connected along 
the edges of the graph in such a way we control perfectly the transversal frontier of the resulting 
neighborhood. The constructions in this section are inspired in those ones presented by Alonso-
González, Cano and Camacho in [2,3].

For ease of its reading, since we introduce a considerable amount of notation and intermediate 
technical results, we organize this section in several subsections.

Notation.- In what follows, a subset I ⊂ M will be called an (open or closed) interval if I
is homeomorphic to an (open or closed) interval of R and its closure I is homeomorphic to 
a compact interval [a, b] ⊂ R. In this case, the points a′, b′ of I corresponding to a, b by an 
homeomorphism are called the extremities of I , while we use the notation İ = I \ {a′, b′}. An 
interval I will be called non-trivial if it is non-empty and not reduced to a single point. On the 
other hand, a subset of M homeomorphic to a (open or closed) two-dimensional disc will be 
also called a (open or closed) disc. In this situation, expressions of the type “boundary” of a disc 
T ⊂ M , etc., refer to the subset of T which corresponds to the boundary of the genuine disc by 
a homeomorphism.

4.1. Chimney-shape neighborhoods at singular points

Let p ∈ Sing(L) be a singular point and assume that p is a three-dimensional saddle. Let 
(V , x = (x, y, z)) be an analytic chart of M at p such that the local invariant manifolds at p are 
analytic submanifolds of V given by

W 2
p ∩ V = {z = 0}, W 1

p ∩ V = {x = y = 0}.

The coordinate z can take values either on R+ (when p ∈ N ∪ Stg) or on R (when p ∈ Str ). 
For convenience, we use the notation ε = + in the first case and ε ∈ {+, −} in the second one. 
According to the definition in Section 2, the local s-components at p are the germs at p of the 
open sets {εz > 0}, denoted by νε

p , where ε is chosen with that convention. For any such ε and 
any δ > 0, we consider the closed cylinder B = Bε

δ = {x2 + y2 ≤ δ, 0 ≤ εz ≤ δ} and distinguish 
the followings three components on its boundary:
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b(B) = {x2 + y2 ≤ δ, z = 0},
t (B) = {x2 + y2 ≤ δ, z = εδ},
w(B) = {x2 + y2 = δ,0 ≤ εz ≤ δ},

called, respectively, the base, the top and the wall of B . Notice that b(B) = B ∩ W 2
p and that 

t (B) cuts transversally W 1
p at a unique point. The base and the top are closed discs, whereas 

the wall is either a disc or homeomorphic to the cylinder S1 × [0, 1], the latter case occurring 
if and only if p ∈ N . When w(B) is a disc, its boundary is the union of four closed intervals: 
w(B) ∩ t (B), w(B) ∩ b(B) and the two connected components of D∗

p ∩ w(B), where D∗
p is the 

union of components of D containing W 1
p .

We will always assume that δ is sufficiently small so that p is the only singular point of 
L in B and L is transversal to the top and to the wall. By means of the Hartman-Grobman 
Theorem, this implies that, for any a ∈ w(B) \b(B), the leaf �a of L|B through a cuts t (B) \W 1

p

at a single point, thus establishing a homeomorphism w(B) \ b(B) � t (B) \ W 1
p . Moreover, if 

a ∈ b(B) \ {p}, then �a ∩ B is a B-leaf, completely contained in W 2
p , that cuts once w(B) and 

accumulates to p.

Definition 19. Given B = Bε
δ as above, a fence in B is a semi-analytic subset F ⊂ w(B) which 

is homeomorphic to the wall w(B) and satisfies (see Fig. 8)

(1) F ∩ t (B) = ∅.
(2) The set b(F ) = F ∩ W 2

p , called the base of F , is equal to b(B) ∩ w(B).

(3) If w(B) is a disc and J̃ is a connected component of D∗
p ∩ w(B), then J = J̃ ∩ F is a non 

trivial closed interval. Any such J is called a doorjamb of the fence.

Recall that either F is homeomorphic to S1 × [0, 1] or F is a closed disc. In the first case 
F has no doorjambs, while in the second case it has two doorjambs, denoted by J1, J2. In both 
cases, the fence F is a topological surface with boundary, and its boundary ∂F contains the 
base b(F ) and the doorjambs of F (if they exist). The handrail of the fence F is defined as 
h(F ) := ∂F \ (b(F ) ∪ J1 ∪ J2), (and hence ∂F = b(F ) ∪ J1 ∪ J2 ∪ h(F ), where J1 = J2 = ∅ if 
F has no doorjambs). The handrail of F does not intersect the base b(F ). It is homeomorphic to 
S1 if F � S1 × [0, 1] or a closed interval if F is a disc. Moreover, in this latter case, the handrail 
h(F ) cuts each doorjamb just in a single point, which is a common extremity of both.

Definition 20. Let ν be a local s-component at p. A chimney neighborhood (or a c-nbhd for 
short) in ν, is a set of the form C = CB,F = SatB(F ) ∩ B , where F is a fence in a cylinder 
B = Bε

δ such that ν ⊂ B (see Fig. 8). We say that F is the fence of C, and denote it by FC , if 
we want to emphasize that it is associated to C. A refinement of C = CB,F is another c-nbhd of 
the form C′ = CB,F ′ , where F ′ is a fence in B contained in FC . We will use the notation C′ < C. 
(Notice that the cylinder frame B is the same for C and for any of its refinements).

A c-nbhd C is a compact three dimensional topological manifold with boundary and a semi-
analytic set of M . Notice that its boundary ∂C contains the topological frontier Fr(C) inside 
M , but that the equality does not hold (unless p ∈ Str ) since we are working in M , having 
itself a boundary. More precisely, ∂C \ Fr(C) is equal to the interior inside ∂C of ∂C ∩ D, a set 
which is locally invariant by L. Therefore, there is no ambiguity in adopting, from now on, the 
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Fig. 8. Chimney with elements.

notation ∂C� := Fr(C)� for the transversal frontier of C (according to the definitions introduced 
in Section 2). Observe that ∂C� consists of two connected components: the fence F = FC of C
and the set L = LC := C ∩ t (B), called the lid of C. The lid is a closed disc, independently of 
the topology of the fence. More precisely, we have {∂Cin, ∂Cout } = {FC, LC}, where ∂Cin = FC
(resp. ∂Cin = LC ) if, and only if, W 2

p is the stable (resp. unstable) manifold. Considered as 
manifolds with boundary, points in the interior of ∂Cin (resp. ∂Cout ) are of type e-i (resp. i-e), 
relatively to C, while points in the boundary of ∂Cin (resp. ∂Cout ) are of type e-t (resp. t-e).

Notice that, if p is a tangential saddle or a D-node point, and νp is the unique local s-
component at p, then a c-nbhd in νp is actually a neighborhood of p in M . On the contrary, 
if p is a transversal saddle point, the union of the respective chimney neighborhoods C+, C− in 
the two local s-components ν+

p , ν−
p at p, is a neighborhood of p.

So far, we have constructed chimney neighborhoods for three-dimensional saddles. In order 
to unify notation, if p ∈ Sing(L) is not a three-dimensional saddle point and ν = νp is the unique 
local s-component at p, a chimney neighborhood (or a c-nbhd for short) in ν is a pair (C, F) of 
sets where:

- C = {x2 + y2 + z2 ≤ δ} ⊂ ν in some analytic coordinates x = (x, y, z) at p such that ∂C \ D

is everywhere transversal to L;
- F is a subset of ∂C�(:= Fr(C)� = ∂C \ D) which is the image of a one-to-one continuous 

map ϕ : (∂C ∩ D) × [0, 1] → ∂C� such that ϕ(t, 0) = t for any t ∈ ∂C ∩ D.
For the sake of simplicity, we just say that C is a c-nbhd and that F = FC is the fence of C. 

The set b(F ) := ∂C ∩ D is called the base of the fence F and the set h(F ) := ϕ((∂C ∩ D) × {1})
is called the handrail of the fence F ; both are semi-analytic curves homeomorphic to S1. As 
in the case of a three-dimensional saddle D-node, there are no doorjambs of F . Finally, the 
set L = ∂C� \ F is called the lid of the c-nbhd C. It is a semi-analytic closed disc, satisfying 
∂L = h(F ).

4.2. Doors and pre-doors of a chimney neighborhood

Definition 21. Let C be a c-nbhd in some ν ∈ V(�) with fence F = FC and lid L = LC . A 
pre-door of C is a semi-analytic disc D ⊂ ∂C�, either contained in F or in L, such that:
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(i) D contains at most one point of the set ∂C∩|�|. If such a point exists, it is called the center
of D.

(ii) If D ⊂ L, then SatC(D) is a refinement of C. The set b(D) := D ∩ D is called the base of 
D in this case.

(iii) If D ⊂ F , the set b(D) := D ∩ b(F ), called the base of D, is a non-trivial closed interval 
(necessarily contained in ∂D).

(iv) If D ⊂ F and F has doorjambs J1, J2, then at most one of the two sets J1 ∩ D, J2 ∩ D is 
non empty and, if Ji ∩D �= ∅ for i ∈ {1, 2}, then Ji ∩D is a non-trivial closed interval with 
one extremity in b(D). If Ji ∩D �= ∅ then Ji ∩D is called the fixed doorjamb of D.

(v) If a is the center of D, then a is an interior point of b(D) ∪J , where J is the fixed doorjamb 
of D or J = ∅ if D has no fixed doorjamb (for instance, when D ⊂ L).

Fig. 9. Predoors D1, D2 and doors D3, D4, all of them with their doorjambs in bold line.

Given a pre-door D in C, a framing of D is the choice of a non-trivial closed interval h(D) ⊂
∂D, called a handrail of D, which satisfies the following rules (see Fig. 9):

• The interior ˙h(D) of h(D) does not intersect D ∪ W 2
p .

• If D is contained in the lid of C then h(D) = ∂D \ b(D).
• If D is contained in the fence FC then h(D) contains D ∩ h(FC) and ∂D \ ( ˙b(D) ∪ ˙h(D)) =

J ∪ J ′, where J, J ′ are two nontrivial closed disjoint intervals such that one of them is the 
fixed doorjamb of D if D has a fixed doorjamb.

Once we have assigned a handrail to D, we will say that D is a framed pre-door. Notice 
that there is only a possible frame in case D is contained in the lid. Moreover, in this case, 
SatC(h(D)) ∩ FC is the handrail of the fence of the refinement SatC(D) < C. On the contrary, if 
D ⊂ FC , the two intervals J, J ′ in the definition of frame are called the doorjambs of the framed 
pre-door D. One of them coincides with the fixed doorjamb of D, in case it exists (hence, it does 
not depend on the chosen frame). A doorjamb of D that is not equal to the fixed doorjamb is 
called an unfixed doorjamb of D.

Two pre-doors D1, D2 in C will be said compatible if either D1 ∩ D2 = ∅ or if there exist 
respective frames such that D1 ∩ D2 is a common doorjamb of both of them (necessarily a 
common unfixed doorjamb).
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Definition 22. A door of the c-nbdd C with fence F and lid L is a framed pre-door D in C such 
that:

(i) If D ⊂ L, then D = L.
(ii) If D ⊂ F , then the handrail of D is equal to h(D) =D ∩ h(F ).

(iii) If D ⊂ F and D has a fixed doorjamb J , then J is also a doorjamb of F .

We will also say that D is an in-door or an out-door if it is contained either in ∂Cin or in ∂Cout , 
respectively.

4.3. Distinguished fattenings of the graph

We use the notations introduced in Section 2. In particular, recall that if G < �, then V(G)

denotes the family of local s-components at vertices of G.

Definition 23. Let G < � be a subgraph of �. A fattening of G is a map K from V(G) ∪ E(G)

into the family of compact subsets of M satisfying:

(i) For each ν ∈ V(G), the set K(ν) is a c-nbdh in ν.
(ii) For each edge σ = [p, q] ∈ E(G), there are points a1, a2 ∈ σ and respective transversal 

sections �i at ai , for i = 1, 2, both compact discs, such that K(σ ) is a flow box, with 
respect to the foliation L, from �1 to �2.

(iii) The set

|K| =
⋃

ν∈V(G)

K(ν) ∪
⋃

σ∈E(G)

K(σ ),

is a neighborhood of |G| in M . It is called the support of K.

The elements K(σ ) for σ ∈ E(G) are also called tubes. Notice that the transversal sections 
�1, �2 in Definition 23 are the inner and outer frontier of the tube K(σ ), denoted by ∂K(σ )in, 
∂K(σ )out , respectively.

Given a fattening K of G, a refinement of K is a fattening K̃ of G such that K̃(ν) is a refinement 
of c-nbhd of K(ν) for any ν ∈ V (G), and such that K̃(σ ) satisfies ∂K̃(σ )in ⊂ ∂K(σ )in and 
∂K̃(σ )out ⊂ ∂K(σ )out , for any σ ∈ E(G) (we just say that K̃(σ ) is a refinement of the tube 
K(σ )). Notice that a refinement K̃(σ ) is completely determined by either its inner or its outer 
frontier. On the other hand, if K is a fattening of G and G′ < G is a subgraph, we denote by K|G′
the fattening of G′ given by the restriction of K to V(G′) ∪ E(G′).

Definition 24. Let K be a fattening of a subgraph G < �. Given p ∈ V (G), we will say that K
is pre-distinguished at p if the following properties hold:

(a) If σ, τ are different edges of G adjacent to p, then K(σ ) ∩K(τ ) = ∅.
(b) If p ∈ Str and ν+

p , ν−
p are the two local s-components at p, then the c-nbhs K(ν+

p ) and K(ν−
p )

have equal base.
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(c) For any edge σ ∈ E(G) starting at p and for any ν ∈ α̃(σ ), the set ∂K(σ )in ∩ K(ν) is a 
door of K(ν), and we have ∂K(σ )in = ⋃

ν∈α̃(σ ) ∂K(σ )in ∩ K(ν). Moreover, if p ∈ Str and 
σ ∩ W 2

p �= ∅, then the two doors ∂K(σ )in ∩K(νε
p), ε ∈ {+, −}, have equal base.

(d) For any edge σ ∈ E(G) ending at p and for any ν ∈ ω(σ), the set ∂K(σ )out ∩ K(ν) is a 
pre-door of K(ν), and we have ∂K(σ )out = ⋃

ν∈ω̃(σ ) ∂K(σ )out ∩K(ν). Moreover, if p ∈ Str

and σ ∩ W 2
p �= ∅ then the two pre-doors ∂K(σ )out ∩K(νε

p), ε ∈ {+, −}, have equal base.

The fattening K will be called distinguished at p (or also distinguished at ν if ν is a local 
s-component at p) if K is pre-distinguished at p and in item (d) we may replace “pre-door” with 
“door”. Finally, K is said to be pre-distinguished (resp. distinguished) if it is pre-distinguished 
(resp. distinguished) at every p ∈ V (G) (Fig. 10).

Fig. 10. Distinguished fattening.

Notice that being distinguished is the same thing as being pre-distinguished both for L and 
for the reverse foliation −L.

Definition 25. Let K be a pre-distinguished fattening of the whole graph � and let ν be a local 
s-component at some p ∈ V (�). Assume that K is distinguished at p ∈ V (�) or that ∂K(ν)out =
FK(ν). In this case, an unfree K-door at ν (or in K(ν)) is any of the sets of the form FK(ν) ∩K(σ ), 
where σ is an edge satisfying σ ∩ ν �= ∅. Also, a free K-door at ν (or in K(ν)) is the closure of 
a connected component of FK(ν) \ H , where H is the union of the unfree K-doors at ν.

Notice that both the unfree or free K-doors at ν are actually doors of the c-nbhd K(ν). Besides, 
a free K-door does not cut the support of the graph �. When K is distinguished, given a face �
of �, there are exactly two free K-doors intersecting � and we say that they are associated to �. 
One of them, denoted by Dout

K,�
, is an out-door of K(α̃(�)) and the other one, denoted by Din

K,�
, 

is an in-door at K(ω̃(�)). On the other hand, if p is a transversal saddle and K is distinguished 
at p then there is a unique free K-door at any of the two local s-components ν+

p , ν−
p and none of 

them cuts the divisor. We say also that they are associated to p. Notice that any free K-door is 
either associated to a face or associated to a transversal saddle point.

In the following statement we summarize the structure of the points on the frontier of a dis-
tinguished fattening support according to the definitions in Section 2 (see Fig. 11). The proof 
follows straightforwardly by construction.
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Fig. 11. Different type points.

Proposition 26. Let K be a distinguished fattening of � and F the family of all free K-doors. 
Then, the transversal frontier of |K| is equal to

Fr(|K|)� =
⋃
D∈F

D ∪
⋃
q∈N

LK(νq ),

and this set does not contain points of type e-e nor i-i (relatively to |K|). Consider now p ∈ V (�), 
ν a local s-component at p and D a free K-door in K(ν). Assume for instance that D ⊂ ∂K(ν)in. 
Let J1, J2 be the doorjambs of D with extremities h(Ji) := Ji ∩ h(D), b(Ji) := Ji ∩ b(D), for 
i = 1, 2. Then we have the following types, relatively to |K|, of points in Fr(|K|)�:

(i) If p ∈ S, then

int (D) ∪ ˙b(D), ˙h(D), J̇1 ∪ J̇2 ∪ {b(J1), b(J2)}, {h(J1), h(J2)}

are, respectively, the sets of points in D of type e-i, e-t, t-i and t-t.
(ii) If p ∈ N and p is a three-dimensional saddle, then the interior (resp. the boundary) of 

LK(ν) is the set of points in LK(ν) of type i-e (resp. t-e).
(iii) If p ∈ N and p is not a three-dimensional saddle, then any point of int (LK(ν)) is of type 

i-e whereas the sets

D \ (J1 ∪ J2), J1 ∪ J2

are, respectively, the sets of points in D of type e-i and t-i.

The situation in completely analogous in case D ⊂ ∂K(ν)out .

4.4. Obtaining distinguished fattenings

It is clear that the family of supports of fattenings of � forms a base of neighborhoods of |�|. 
Our main objective in this subsection is to prove that this is also true for the family of supports 
of distinguished fattenings. Let us first introduce a definition and a lemma whose proof is direct.
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Definition 27. Let ν ∈ V(�) and let C be a c-nbhd in ν. A system of entrances (resp. sources) of 
C is a finite collection E = {D1, . . . , Dr} of mutually compatible framed pre-doors in ∂Cin (resp. 
∂Cout ). The system E will be called complete if the set C′ = SatC(

⋃r
i=1 Di ) is a refinement of C. 

In this last case, we say that C′ is the c-nbhd associated to the complete system E .

Notice that, if some D ∈ E is contained in LC , then E = {D} and E is complete. On the other 
hand, if E = {D1, . . . , Dr} and any Di ⊂ FC , then E is complete if, and only if, 

⋃r
i=1 b(Di ) =

b(C). Finally, if E is a complete system of entrances and C′ is the associated c-nbhd, then each 
element of E is a door of C′.

Lemma 28. Any system of entrances E = {D1, . . . , Dr} of a c-nbhd C can be extended to a 
complete one Ẽ ⊃ E . As a consequence, there exists a refinement C′ < C for which any Di is a 
door of C′.

Theorem 29. Let M = (M, D, L) be a non s-resonant of Morse-Smale type HAFVSD and � its 
associated graph. Then given any fattening K of �, there exists a distinguished fattening K̃ of �
such that |K̃| ⊂ |K|.

In the proof of Theorem 29, we proceed recursively on the components of the filtration (2) of 
the graph � defined in Section 2. Let us notice that we may assume that K satisfies that for any 
p ∈ Str , the two c-nbds K(ν+

p ) and K(ν−
p ) have the same base.

First step.- Getting pre-distinguished fattenings. We first show that the set of pre-distinguished 
fattenings is a base of neighborhoods of |�|. More precisely, given a fattening K of �, there exists 
a pre-distinguished fattening K′ such that |K′| ⊂ |K|. To do this, we use the filtration (2), where 
l := l(�) is the length of �, and we construct, by recurrence on j = 0, . . . , l, a pre-distinguished 
fattening Kj of �j such that |Kj | ⊂ |K|�j |. At the end, the desired pre-distinguished fattening 
is given by K′ := Kl .

For j = 0 we just take K0 = K|�0 .
Assume that Kj−1 is constructed for j > 0. Given an edge σ ∈ E(�j ) \E(�j−1), we consider 

a tube Tσ ⊂ K(σ ) from a disc A(σ) to a disc B(σ) such that, if σ = [p, q], they satisfy the 
following conditions:

(i) If ̃α(σ) = {ν}, then A(σ) is a pre-door of K(ν) contained in ∂K(ν)out with center the point 
∂K(ν)out ∩ σ .

(ii) If p ∈ Str and ̃α(σ) = {ν+
p , ν−

p }, then A(σ) is the union of two pre-doors with equal base, 
one of them in ∂K(ν+

p )out and the other one in ∂K(ν−
p )out , both with equal center (at 

∂K(ν+
p )out ∩ σ ).

(iii) If ω̃(σ ) = μ then B(σ) is a pre-door of K(μ) contained in ∂K(μ)in.
(iv) If q ∈ Str and ω̃(σ ) = {ν+

q , ν−
q }, then B(σ) is the union of two pre-doors with equal base 

and equal center, one of them in ∂K(ν+
q )in and the other one in ∂K(ν−

q )in.

Notice that, in the situation (ii) (resp. in (iv)) we just have to guarantee that the boundary of A(σ)

(resp. B(σ)) cuts only once W 2 (resp. W 2). Observe also that both (ii), (iv) do not occur simul-
p q
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taneously by the Morse-Smale condition.1 Moreover, the tubes Tσ for σ ∈ E(�j ) \ E(�j−1)

should be chosen small enough to be mutually disjoint. We put Kj−1(σ ) := Tσ for any such σ .
Now, if ν ∈ V(�j ) \ V(�j−1), the family Eν = {A(σ) ∩ K(ν) : ν ∈ α̃(σ )} is a system of 

sources of K(ν). Applying Lemma 28, there exists a refinement Cν < K(ν) such that each el-
ement of Eν is a door of Cν . Put Kj (ν) := Cν . Summarizing, we have defined Kj at the local 
s-components at vertices of �j that are not in �j−1, and at the edges starting at them. We extend 
these values to �j−1 < �j by putting Kj |�j−1 = Kj−1 so that we get a fattening on �j , using 
(3). By construction and recurrence, Kj is pre-distinguished and |Kj | ⊂ |K|�j |, as wanted.

Second step.- Getting distinguished fattenings. To finish the proof of Theorem 29, it is enough 
to prove that any pre-distinguished fattening has a distinguished refinement. This will be a con-
sequence of the following more general result, which will be useful to us later. It is stated for 
subgraphs of � and asserts that the refinement K̃ can be chosen to preserve some prescribed 
systems of entrances.

Proposition 30. Let G be a subgraph of � and let K be a pre-distinguished fattening of G. 
Suppose that for any ν ∈ V(G) there exists a (possible empty) system of entrances Eν of K(ν)

satisfying the following property

D ∩ ∂K(σ )out = ∅ for any D ∈ Eν and for any σ ∈ E(G) ∩ ω̃−1(ν). (12)

Then there exists a distinguished refinement K̃ of K such that, for any ν ∈ V(G) and for any 
D ∈ Eν , D is a door of K̃(ν).

Proof. Let g = g(G) be the maximal length of the vertices of G. Notice that the filtration (2)
induces a filtration

G0 < G1 < · · · < Gg = Gg+1 = · · · = Gl = G,

where, for any j , the graph Gj is the intersection of �j and G, that is, V (Gj ) = V (�j ) ∩ V (G)

and E(Gj) = E(�j ) ∩ E(G). The proof goes by induction under g.
If g = 0, then G = G0 consists only of finitely many D-nodes (all of them attractors, ex-

cept, possibly, for the exceptional case described in Lemme 4, (iv)) and contains no edges. The 
proposition follows by applying Lemma 28 to every element of V(G).

Suppose that g > 0 and assume that the result holds for any subgraph G′ < � with g(G′) <
g. Let ν ∈ V(G) \ V(Gg−1). First, we apply Lemma 28 to the system Eν , so that we obtain a 
refinement Cν < K(ν) for which any D ∈ Eν is a door of Cν . Now, for any given σ ∈ α̃−1(ν), 
we can take a refinement Tσ < K(σ ) determined by an inner transversal part ∂T in

σ ⊂ ∂K(σ )in in 
such a way that, being {cσ } = σ ∩ ∂K(ν), the following conditions are satisfied:

(a) If ̃α(σ) = {ν} and ω̃(σ ) = {η} are both singletons, then we choose ∂T in
σ to be a door of Cν

contained in ∂Cout
ν and centered at cσ (hence, ∂T out

σ is a pre-door in ∂K(η)in).
(b) If α̃(σ ) = {ν} and ω̃(σ ) = {ν+

q , ν−
q } with q ∈ Str , then we choose ∂T in

σ to be a door in 
∂Cout

ν centered at cσ and such that the resulting outer part ∂T out
σ is the union of a pre-door in 

∂K(ν+
q )in and a pre-door in ∂K(ν−

q )in, both sharing their base.

1 In any case, there is no particular problem here to guarantee both conditions (ii) and (iv), because W2
p , W2

q are 
analytic manifolds.
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(c) If ν is associated to some p ∈ Str and ̃α(σ) = {ν+
p , ν−

p } = {ν, ν′}, then we choose ∂T in
σ =

A ∪ A′, where A is a door in ∂Cout
ν and A′ is a door in ∂Cout

ν′ , both centered at cσ with equal 
base. Notice that the Morse-Smale hypothesis implies that in this case ω̃(σ ) is a singleton. We 
conclude, as in case (a), that ∂T out

σ is a pre-door in ∂K(νq)
in.

To see that there exists such a tube Tσ (determined by its inner frontier) with the above 
properties, only the case (b) deserves a comment: in this case, the Morse-Smale hypothesis 
implies that σ crosses the boundary of Cν necessarily through the fence, thus equal to ∂Cout

ν . 
This is enough to guarantee that the door ∂T in

σ can be chosen so that its boundary cuts the an-
alytic curve Sat|K|(W 2

q ) ∩ ∂K(ν)out only at cσ and at another point belonging to the handrail 
h(∂T in

σ ) ⊂ h(FCν
) (see Fig. 12). As a consequence, ∂T out

σ intersects W 2
q along a closed interval 

and hence it holds the required property stated in (b).

Fig. 12. Getting distinguished neighborhoods.

Now we consider for any μ ∈ V(Gg−1) the following family of pre-doors of K(μ) in ∂K(μ)in:

Ẽμ=Eμ

⋃
{∂T out

σ ∩∂K(μ)in : σ ∈E(G) with μ∈ω̃(σ ), α̃(σ ) ∩ V(Gg−1) =∅}. (13)

Using (12) for Eμ and the construction of the tubes Tσ above, we have that the family Ẽμ is a 
system of entrances of the c-nbhd K(μ) for any μ ∈ V(Gg−1). Moreover, the collection {Ẽμ} still 
satisfies (12) when we replace G by Gg−1 (notice that Ẽμ only differs from Eμ if μ ∈ V(Gg−1) \
V(Gg−2), and there are no edges of the graph Gg−1 ending at those local s-components). By the 
induction hypothesis, there exists a distinguished refinement K̃1 of K|Gg−1 such that for any μ ∈
V(Gg−1) and for any D ∈ Ẽμ, D is a door of K̃1(μ). Let K̃ be the fattening of G = Gg defined 
by K̃|Gg−1 = K̃1 and also by putting K̃(ν) = Cν and K̃(σ ) = Tσ , for any ν ∈ V(G) \ V(Gg−1)

and any σ ∈ E(G) \ E(Gg−1). By construction, we have that K̃ is a distinguished refinement of 
K satisfying the desired requirements. �
Proof of Theorem 29. In light of the first step above described, we may assume that the initial 
fattening K is pre-distinguished. Applying Proposition 30 to G = � and taking Eν = ∅ for any 
ν ∈ V(�), we have that there is a distinguished refinement K̃< K, and we are done. �
Scholium 31. It is clear that the distinguished refinements construction given in the proof of 
Proposition 30 is by no means unique, so it can be adapted to many different situations. We 
take advantage of this adaptability along the rest of the paper in order to construct distinguished 
fattenings with additional properties. To systematize the arguments and notations in such con-
structions, let us summarize the proof of Proposition 30 in the following way:
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The resulting distinguished refinement K̃ < K is constructed recursively as a final step in a 
sequence

K = Ng+1 > Ng > · · · > N1 > N0 = K̃ (14)

of predistinguished fattenings of G such that, for j ∈ {0, 1, . . . , g}, Nj only differs from Nj+1
on the local s-components at points of V (Gj ) \ V (Gj−1) and also on the edges starting at them 
(with V (G−1) = ∅). In other words, for any such index j (and putting Gg+1 = G), we have

Nj |Gj−1 = K|Gj−1 ,

Nj |(Gj+1)c∩G = Nj+1|(Gj+1)c∩G,
(15)

where (Gk)c ∩ G is the complement of Gk in G, i.e., the subgraph of G generated by the edges 
of E(G) \ E(Gk) (cf. Section 2). In particular, Nj is distinguished at any ν ∈ V(G) \ V(Gj−1), 
for any j .

5. Good saturations

As mentioned in the introduction, the fitting neighborhoods we are looking for are obtained 
by extending the support of an appropriate distinguished fattening. To this end, we adapt the 
construction in Proposition 30 in order to get distinguished fattenings with controlled free doors 
saturations (the good saturations property). Recall that these free doors form essentially the 
transversal frontier of the fattening (Proposition 26) and those associated to faces of the graph 
must be “closed” to the purpose of getting fitting domains.

We fix again a non s-resonant of Morse-Smale type HAFVSD M = (M, D, L).

5.1. Definitions and statements

Let K be a pre-distinguished fattening of �. Given p ∈ Str , a fixed mark (of K) at p is the 
intersection of W 2

p with the boundary of a tube K(σ ), where σ is adjacent to p and intersects 
W 2

p . If ν is a s-component at p, we say also that we have a fixed mark (of K) at ν. Since there 
are two of those edges σ , there are also two fixed marks at p. If we need to distinguish them, we 
just say that the fixed mark is associated to the edge σ . Notice that a fixed mark associated to σ
provides, by saturation, a trace mark in the local s-component at the extremity of σ that is not p
(cf. proof of Corollary 17).

Definition 32. Let K be a distinguished fattening of �. We say that K has

• Good saturations for fixed marks (gsfm) if given p, q ∈ Str with p �= q and fixed marks 
Ip, Iq of K at p and q , respectively, we have

Sat|K|(Ip) ∩ Sat|K|(Iq) = ∅.

• Good saturations for free doors (gsfd) if for any pair of different free K-doors D, D′ which 
are not associated to the same face of �, we have

Sat|K|(D) ∩ Sat|K|(D′) = ∅.
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• Good saturations for fixed marks with respect to free doors (gsfmfd) if for any fixed mark Ip

at some p ∈ Str and any free K-door D at ν ∈ V(�) such that ν /∈ {ν+
p , ν−

p }, we have

Sat|K|(Ip) ∩D = ∅.

We say that K has good saturations if the three conditions above hold.

The main result in this section is that any distinguished fattening has a refinement with the 
property of good saturations. More in precise:

Theorem 33. Assume that M = (M, L, D) is non s-resonant and of Morse-Smale type. Given a 
distinguished fattening K over �, there exists a refinement K̃ of K which is distinguished and 
has good saturations.

Remark 34. Notice that the germ along the divisor of a fixed mark does not depend on the con-
sidered fattening and that, using Corollary 17, we could assume that our given distinguished 
fattening K already has good saturations for fixed marks (gsfm). Moreover, such property is 
preserved by refinements. On the contrary, this is not the case for conditions (gsfd) and (gsfmfd) 
given that they involve free doors and these elements strongly depend on K. This fact explains the 
technical difficulties to prove the existence of neighborhoods with the good saturations property: 
reasoning by recurrence on the length of subgraphs in the filtration (2), as done in Theorem 29, 
eventually at some stage we are forced to impose proper refinements of tubes that, in turn, pro-
voke modifications of the free doors where the good saturations condition must be reconsidered.

5.2. The stains

In a first step towards the proof of Theorem 33, we show that good saturations can be obtained 
by dealing just with fixed marks and free doors doorjambs saturations. Let us introduce some 
related notation.

Definition 35. Let R be a pre-distinguished fattening over �. Take ν ∈ V(�) and C a refinement 
of R(ν).

• A fixed stain (of R) in C is a non-empty subset of FC of the form A = Sat|R|(I \{b(I)}) ∩FC , 
where I is a fixed mark of R at some p ∈ Str such that ν /∈ {ν+

p , ν−
p } and b(I) = I ∩ D. We 

say that A is generated at p (or also at ν+
p or at ν−

p ) and that I is the generating mark of A. 
Denote by ϒR

C the family of fixed stains of R in C.
• A mobile stain (of R) in C is a non-empty subset of FC of the form A = Sat|R|(J \ {b(J )}) ∩

FC , where J is a doorjamb of a free R-door at some μ ∈ V(�) at which R is distinguished 
(see Definition 25) and b(J ) = J ∩ b(R(μ)). We will say that A is generated at μ and that 
J is the generating mark of A. Denote by �R

C the family of mobile stains of R in C.

Remark 36. Notice that, if there exists a fixed or mobile stain A in C < R(ν) generated at 
μ ∈ V(�), then ν is related to μ with respect to the partial ordering on V(�) established in 
Section 2. Moreover, if for instance μ ≤ ν and J is the generating mark of A, then we have 
A = Sat+ (J \ b(J )) ∩ FR(ν) (that is, only the saturation in one sense suffices to create a stain).
|R|
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For convenience, if κ ∈ {<, ≤, >, ≥, �=}, we will denote by �R(κ)

C ⊂ �R
C the family of mobile 

stains in C generated at a local s-component μ satisfying μκν. We use also the notation ϒR(>)

C
(resp. ϒR(<)

C ) for the family of fixed stains in C generated at some μ with μ < ν (resp. μ > ν).

Let us start with a lemma that provides a first description of the stains in a general fattening.

Lemma 37. Assume that R is distinguished. Fix ν ∈ V(�) and consider A a fixed or mobile stain 
of R in R(ν). Then the closure A has a finite number of connected components and intersects 
D ∪ b(R(ν)) along a finite (possibly empty) set of points. Moreover, if a ∈ A ∩ (D ∪ b(R(ν)), 
then the germ of A \ {a} at a is non-empty and one of the following possibilities holds (see
Fig. 13):

(a) The point a belongs to FR(ν) ∩ |�|. In this case, some representant of the germ of A \ {a} at 
a has finitely many connected components, all of them being intervals. Moreover, given such 
an interval Y , there is a local s-component μY with μY ≤ ν and a trace mark TY in μY such 
that a ∈ |�(μY )| and Y is contained in Sat+(TY ).

(b) The point a belongs to b(R(ν)) \ |�|. In this case, A is semi-analytic at a. In case ν is not 
associated to a transversal saddle (i.e., b(R(ν)) ⊂ D) then the germ of A at a coincides with 
the germ of a doorjamb of a free R-door in R(ν).

(c) The point a ∈ D \ b(R(ν)). In this case a is an extremity of the handrail h(FR(ν)) and the 
germ of A at a coincides with the germ of h(FR(ν)).

Proof. If A is a stain generated at ν itself, then it is a doorjamb of a free door, that is, a mobile 
stain, and it satisfies (b) straightforwardly. Also, if A is a fixed stain generated at some ν′ imme-
diately preceding or immediately succeeding ν then A is a semianalytic interval satisfying (a). 
From these two starting situations, by a natural recurrence, using Remark 36 (and up to replace 
L with −L) it will be sufficient to prove the following claim:

Claim. Let μ, μ′ ∈ V(�) be two local s-components connected by an edge σ going from μ to 
μ′. Let A ∈ ϒ

R(<)

R(ν)
∪ �

R(<)

R(ν)
and assume that A satisfies all the statement properties for ν = μ. 

Then the subset of FR(μ′) given by

A′ = Sat+R(μ)∪R(σ )∪R(μ′)(A) ∩ FR(μ′)

also satisfies the statement properties for ν = μ′.

To be convinced why this claim ends the proof of Lemma 37, we point out two facts about 
the set A′. In the one hand, A′ is contained in a stain Ã (with the same generating mark as A), 
but it may occur that A′ �= Ã; in fact, the stain Ã is the union of several subsets of the form A′
corresponding to different edges ending at μ′. On the other hand, A′ is semi-analytic at any point 
of A′ except possibly at points of A′ ∩|�|, where A′ and the whole stain Ã locally coincide (using 
(b) or (c) for A). This will show that the closure of Ã has finitely many connected components. 
The rest of the statement for Ã will be deduced by the claim.

To prove the claim we distinguish two cases:
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Fig. 13. Stains in a fence. A1,A2,A3 and A4 are in situation a). A5,A6 are in situation b) and A7 in situation c).

Case I: ∂R(μ)out = LR(μ). Being R distinguished, we could have ∂R(σ )out = LR(μ′), only 
if σ is skeletical, by the Morse-Smale condition. Otherwise, ∂R(σ )out must be an unfree R-door 
contained in FR(μ′). Putting H = FR(μ′) \ b(R(μ′)) in the first situation and H = ∂R(σ )out \
b(∂R(σ )out ) in the second one, the flow defines an analytic isomorphism

ψ : FR(μ) \ b(R(μ)) → H

sending A to A′. We conclude that A′ has finitely many connected components. We need to show 
that A′ ∩ (

D ∪ b(R(μ′))
)

is finite and that the germ of A′ at each point of that set is in one of the 
situations (a)-(c). To do this, if a ∈ A∩ (

D ∪ b(R(μ))
)

and B is a sufficiently small representant 
of the germ of A \ {a} at a, it suffices to prove that B ′ = ψ(B) accumulates to a single point in 
D ∪ b(R(μ′)) where (a), (b) or (c) holds.

- Suppose that B satisfies (a) at a. Let Y be a connected component of B and μY ≤ ν, TY as 
stated in item (a). Observe that ν cannot be associated to a transversal saddle point in this case; 
otherwise the edge containing the point a must be an element of the path �(μY ) and also end g at 
ν, contradicting Remark 16). In particular, Y is either a trace mark (if e(a) = 1) or an angle mark 
(if e(a) = 2). Denote Y ′ = ψ(Y ), a connected component of B ′. If ∂R(σ )out ⊂ FR(μ′), then 
Y ′ accumulates to a′ = σ ∩ FR(μ′) (using Remark 9). On the contrary, if ∂R(σ )out = LR(μ′), 
by the observation above asserting that Y is a trace or an angle mark and taking into account 
that σ ⊂ Sk(D), we have that Y ′ accumulates to a single point a′ ∈ |�| ∩ FR(μ′) (using the 
non s-resonant condition along with Propositions 12 and 13). In both cases, the hypothesis Y ⊂
Sat+(TY ) implies that a′ ∈ σ ⊂ |�(μY )| and Y ′ ⊂ Sat+(TY ) too. This proves that B ′ satisfies (a) 
at the point a′.

- If B satisfies (b) at a, then B is connected and it is itself a trace mark in ν. We prove as in the 
case above that B ′ accumulates to a point a′ ∈ FR(μ′) ∩ |�|. Since B ′ ⊂ Sat+(B) by definition, 
B ′ satisfies again (a) at the point a′.

- If B satisfies (c) at a, then a belongs to the domain of ψ and hence, being a′ = ψ(a) (a 
point in the leaf through a, thus contained in D), we have that B ′ \ B ′ = {a′}. By the definition 
of distinguished fattening, we have that, if ∂R(σ )out ⊂ FR(μ′), then B ′ is contained either in an 
unfixed doorjamb or in the handrail of the door ∂R(σ )out . Hence, B ′ is in one of the situations 
(b) or (c) at a′. Otherwise, if ∂R(σ )out = LR(μ′), then B ′ is in the situation (c) at a′.

Case II: ∂R(μ)out = FR(μ). Denote P = ∂R(σ )in, P ′ = ∂R(σ )out and φ : P → P ′ the 
analytic isomorphism given by the flow of L. Notice that A ∩ P is semi-analytic at any of its 
points, except possibly at the center cP = P ∩ σ , if cP ∈ A. In this last case, A satisfies the 
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properties of item (a) at cP . In any case, the set A ∩P has finitely many connected components 
and we have

A′ = Sat+R(σ )∪R(μ′)
(
A ∩P

) ∩ FR(μ′).

We distinguish several subcases:
- If ∂R(μ′)in = FR(μ′) and μ′ is not associated to a transversal saddle, then P ′ ⊂ FR(μ′) and 

φ sends A ∩P to A′. The claim follows easily given that φ sends cP to the center of P ′ as well 
as the germs of the handrail and the unfixed doorjambs of P (at the points where they cut D) to 
the germs of the handrail and the unfixed doorjambs of P ′, respectively.

- If ∂R(μ′)in = FR(μ′) and μ′ is associated to some q ∈ Str , then P ′ �= P ′ ∩ FR(μ′) and A′ is 
the image by φ of A ∩P ∩ φ−1(P ′ ∩ FR(μ′)). We conclude as in the previous subcase provided 
that we can ensure that there are representants of the germs of A and SatR(σ )(W

2
q ) ∩FR(μ) at cP

that are mutually disjoint. Since A is contained either in the saturation of W 2
p , with some p ∈ Str

different from q , or in the saturation of a trace mark attached to a point not in the support of �, 
this is guaranteed by Remark 18.

- If P ′ = LR(μ′), then A′ = Sat+R(μ′)
(
φ(A ∩ P)

) ∩ FR(μ′) and the claim can be proved as in 
Case I. Notice that in this case, μ is not associated to a transversal saddle point (by the Morse-
Smale condition). Moreover, if σ is a trace edge, then A ∩P is not in the situation (a) at the point 
cP (since σ cannot belong to the path of some μ1 with μ1 < μ). �
Remarks 38. Going over the proof of Lemma 37, one can point out the following:

(38-1) If A is a stain in R(ν) in situation (a), it is possible that the point a ∈ A ∩ (b(R(ν)) ∩
|�|) is not unique or that there is more than one local component Y at such a. However, if 
Sat|R|(A) does not cut any fixed mark of R (except the one that generates A, in case A is a fixed 
stain), then A = Y has a unique local connected component at a and μA and the trace mark TA

stated in item (a) does not depend on ν, but only on the generating mark of A. In fact, if A is a 
fixed stain generated at some ν+

p , then μA is a local s-component immediately connected to ν+
p

and TA = Sat(W 2
p) ∩ FR(μA); if A is a mobile stain generated at some ν1 with generating mark 

J , then either ν1 = μA and TA = J , or {ν1, μA} = {α̃(�), ω̃(�)} for � a face of �. In this case 
TA is the image of J by the flow of L.

(38-2) If A is either a stain in R(ν) in situation (b) with b(R(ν)) ⊂ D or in situation (c), then 
A is a mobile stain generated at some ν′ such that ν, ν′ are associated to points in the boundary 
subgraph ∂� of a face � of �. In fact, in the situation (b), either ν = ν′ or {ν, ν′} = {α̃(�), ω̃(�)}.

(38-3) Note that Lemma 37 also holds for a pre-distinguished fattening R if, being ν1 a lo-
cal s-component where the stain is generated, we assume that R is distinguished at any vertex 
belonging to any path of edges with extremities at ν and ν1. This slightly weakening of the 
statement hypothesis will be useful in the next paragraph.

According to Lemma 37, the family of stains of a general distinguished fattening may present 
a really complicated behavior, especially those whose saturation cuts either some fixed mark or 
some free door doorjamb, different from the one that generates them. The following definition 
captures a situation where we have a nicer “picture” for the stains behavior.
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Definition 39. Let R be a distinguished fattening. We say that R has the property of disjoint 
stains ((DS) for short) if given ν ∈ V(�) and given different stains A, A′ ∈ ϒR

R(ν)
∪ �R

R(ν)
, we 

have A ∩ A′ = ∅.

Remark 40. By means of Remark 18, in general (with or without the (DS) condition), two stains 
A, A′ of R in R(ν) with different generating marks can only intersect in a finite number of 
points, except in the case where A, A′ are mobile stains with respective generating doorjambs 
J, J ′ of free R-doors associated to the same face of �, and such that their germs at the base 
points b(J ), b(J ′) are connected by the flow. In this exceptional case, if A ∩ A′ is infinite, then 
A, A′ accumulate to the same point of b(R(ν)) ∪D and they share a common germ at that point. 
Notice that, in this situation, the condition (DS) would imply that A = A′, even if J �= J ′.

Our purpose is to prove that to get good saturations it is enough to have the (DS) property. To 
this end, we introduce the following definition and state a very helpful lemma.

Definition 41. Let R be a distinguished fattening at some ν ∈ V(�). An interval Y contained 
in FR(ν) will be called a well-positioned curve (relatively to R at ν) if there exists an unfree 
R-door P in FR(ν) such that Y is a closed non-trivial interval contained in P with:

• Y does not intersect neither the base nor the doorjambs of P .
• The set of extremities of Y is {cP , h(Y )}, where cP is the center of P and h(Y ) is a point in 

the interior ˙h(P) of the handrail of P .
• Y = Y \ {cP } (thus Y is a half-open interval containing the extremity h(Y )).

We also say that Y is well-positioned inside P .

Lemma 42. Assume that R is a distinguished fattening with the (DS) property. Let A be a stain 
of R in R(μ) for some μ ∈ V(�).

(a) If A is a fixed stain generated at p ∈ Str , then μ belongs to the path �1
p ∪ �2

p (cf. Corol-
lary 17)) and A is a well-positioned curve.

(b) If A is a mobile stain generated at ν, where ν < μ and FR(ν) ⊂ ∂R(ν)in, then μ belongs to 
the path �(ν) (cf. Theorem 15) and A is a well-positioned curve.

(c) If A is a mobile stain generated at ν with ν < μ and FR(ν) ⊂ ∂R(ν)out , then A is contained 
in an unfree R-door PA in R(μ). Moreover, either A is a well-positioned curve, in case it 
intersects the interior of PA, or A is the unfixed doorjamb of PA, in case it cuts an unfixed 
doorjamb of PA, or A is contained in h(PA), in other case.

Items (b) and (c) also hold if we replace ν < μ with ν > μ and we interchange the superscripts 
“in” and “out”.

Proof. Put A = Sat|R|(J ) ∩ FR(μ), where J is either the generating fixed mark at p, in case (a), 
or a free door doorjamb in R(ν), in cases (b) or (c).

Let us prove (a) and (b) jointly, since the proof is the same. Notice that the hypothesis in (b) 
implies that A = Sat+|R|(J ) ∩ FR(μ). Without lost of generality, we suppose that in case (a) we 

have that W 2 is the unstable manifold at p.
p
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First, we show that if ν′ > ν and P is a R-door (free or unfree) at ν′, then the set

BP = {x ∈ J̇ : �+
x ∩ |R| cuts P}

is open and closed in J̇ , thus either empty or equal to J̇ . To see that BP is closed, suppose that 
x ∈ J̇ is the limit point of a sequence {xn} ⊂ BP . If yn ∈ �+

xn
∩ |R| ∩ P , by compactness of P , 

we may assume that there exists y = limn yn ∈ P . By continuity of the flow, we have y ∈ �+
x , 

which shows that x ∈ BP . On the other side, to show that BP is open, let us take x ∈ BP and put 
�+
x ∩ P = {y}. Now, given that points in an interval of �+

x to the right of x are of type i-i (J̇ is 
contained in the interior of R in the case (a), and by the hypothesis FR(ν) ⊂ ∂R(ν)in in the case 
(b)), we have that the point y must be of type i-i or i-e relatively to |R|. This is consequence of 
the fact that, by the (DS) property, the type can not switch to i-t along the open segment between 
x and y in �+

x (recall that, by Proposition 26, the points of type i-t are contained in doorjambs of 
free R-doors). We conclude that y belongs to P \ ∂P , an open subset of FR(ν′). This proves that 
x is an interior point of BP using again the continuity of the flow. Notice that we have shown 
that Sat+|R|(J̇ ) ∩P ⊂ (P \ ∂P).

The proof of statements (a) and (b) can be deduced now from Theorem 15 as follows. In 
case (b), we have that J is a trace mark in ν at its base point b(J ). In case (a), the positive 
saturation of J produces, in turn, a trace mark in an immediate successor of p in �1

p ∪ �2
p

(cf. proof of Corollary 17). In both cases, for ν′ ∈ V(�), Theorem 15 guarantees that there is 
a subinterval J̃ ⊂ J̇ with extremity b(J ) satisfying Sat+|R|(J̃ ) ∩ FR(ν′) �= ∅ if, and only if, ν′

belongs to the path �(ν), in case (b), or to the path �1
p ∪ �2

p , in case (a). Moreover, in this 

situation, Sat+|R|(J̃ ) ∩ FR(ν′) is an interval accumulating at the center of an R-unfree door Pν′

at ν′ and, by the property just proved, we must have BPν′ = J̇ . In this way, we put J̃ = J̇ and 
Sat+|R|(J̇ ) ∩ FR(ν′) is an interval contained in Pν′ \ ∂Pν′ . Applied to ν′ = μ, we deduce that A

is a well positioned curve inside Pμ: the extremity of A different from the center of Pμ cannot 
belong to an unfixed doorjamb of Pμ (by means of the (DS) property since this doorjamb is itself 
a mobile stain), nor to a fixed doorjamb contained in D. This proves (a) and (b).

Let us prove (c). First, we show that A is contained in the union of unfree R-doors in R(μ). 
Reasoning by contradiction, suppose that there exists some x ∈ J such that �+

x ∩ |R| cuts the 
fence FR(μ) at some y ∈ A which does not belong to any unfree R-door. Using that the union of 
unfree R-doors at μ is closed in FR(μ), we may assume that x ∈ J̇ . By hypothesis, the point x
is of type i-t relatively to |R|, and all the points in an open subinterval of �+

x to the right of x are 
of type t-t. Also, the point y can not be of type t-t, because y does not belong to any unfree door 
(the set of points of type t-t in FR(μ) is equal to the union of the handrails of unfree doors, by 
Proposition 26)). Consequently, there is a first point z �= x in the segment of the leaf �+

x between 
x and y where the type has switched to t-i or to t-e. Let us see that this is not possible.

Suppose that the point z is of type t-i. Then z is in J̇ ′, where J ′ is an unfixed doorjamb of 
a free R-door at some ν′ ∈ V(�). Moreover, z �= y since J ′ is also a doorjamb of an unfree 
R-door at ν′. Hence ν < ν′ < μ. On the other hand, necessarily FR(ν′) ⊂ ∂R(ν′)in, thus we are 
in the situation of item (b) for the mobile stain Sat|R|(J ′ \ {b(J ′)}) ∩FR(μ) generated at ν′. As a 
consequence, the leaf �+

z ∩ |R| can only intersect FR(μ) inside an unfree door. This contradicts 
the existence of y.

Assume now that the point z is of type t-e. This implies that z = y and that �+
x ∩ |R| is just 

the segment from x to y in the leaf �x . Notice that y is an interior point (not an extremity) of the 
handrail h(D) of a free R-door D at μ. In other words, x belongs to the set
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K = {a ∈ J̇ : �+
a ∩ |R| cuts ˙h(D)},

which is open in J̇ (using similar arguments as those we have used for the set BP in items (a), 
(b) above). If K = J̇ then the base point b(J ) of J is an accumulation point of K and hence the 
positive leaf �+

b(J ) either ends in a singular point (placed between ν and μ) or it cuts h(D). In the 

first case we would find some x′ ∈ J̇ whose positive �+
x′ has points of type t-i, contrary to what we 

have proved above. In the second case we have also a contradiction: if ν is a local s-component 
associated to a transversal saddle q ∈ Str , then b(J ) is in a fixed mark at q and then h(D) (hence 
D) will cut the saturation of a fixed stain, i.e., some fixed stain, against statement (a); if ν is not 
associated to a transversal saddle, then b(J ) ∈ D, so that �b(J ) ⊂ D, whereas h(D) ∩ D = ∅. On 
the other hand, if K is a proper subset of J̇ , there is some w ∈ J̇ \ K in the frontier of K in J̇ . 
By the flow continuity, the leaf �+

w cuts the handrail h(D) in an extremity point w′, since w is 
not in K . Hence, w′ belongs to the intersection of A with a doorjamb of D, which gives also a 
contradiction with the (DS) hypothesis.

Thus, we can assure that A ⊂ ⋃
P∈Q P , where Q is the family of unfree R-doors at μ. Let us 

finish proving that there is one single PA ∈ Q such that A ⊂ PA and that the last sentence in (c) 
holds. We have different cases.

- If there exists some P ∈ Q and some y ∈ A ∩ int (P) with y ∈ �+
x , x ∈ J̇ , then, being x of 

type i-t and y of type i-i with respect to |R|, there must be some z of type t-i in the piece of leaf 
between x and y. That is, z belongs to a doorjamb J ′ of some free R-door in R(ν′) for some ν′ ∈
V(�) with ν < ν′ < μ. By the (DS) property, we have that Sat|R|(J \b(J )) ∩FR(ν′) = J ′ \b(J ′)
and hence A is a mobile stain in R(μ) generated by J ′. We conclude that A is well-positioned 
inside P by item (b). Put PA := P and we conclude (c) in this case.

- If A intersects the unfixed doorjamb L of some P ∈ Q, being L also a stain in R(μ), then 
A coincides with L \ b(L), by the (DS) property. We conclude again by putting PA := P .

- In the remaining case, we have A ⊂ ⋃
P∈Q

˙h(P). By using similar arguments as above, for 
each P ∈ Q, the set {x ∈ J̇ : �+

x ∩ |R| cuts h(P)} is open and closed in J̇ . We deduce that there 
is a single P ∈ Q such that A ∩P �= ∅ and, for this P(=: PA) we have A ⊂ ˙h(PA), concluding 
also (c) in this case. �

In light of the Lemma 42 we prove that, to get good saturations, it is enough to have the (DS) 
property.

Proposition 43. Let R be a distinguished fattening. If R has the property of disjoint stains, then 
R has good saturations.

Proof. To prove we have the condition (gsfm), suppose that there are fixed marks Ip, Iq at dif-
ferent transversal saddle points p, q ∈ Str , and that there exists some x ∈ Sat|R|(Ip) ∩Sat|R|(Iq). 
Being x in |R|, the |R|-leaf through x cuts the c-nbhd R(ν) for some ν ∈ V(�), then it cuts also 
the fence FR(ν). Hence, the fixed stains at ν with generating marks Ip and Iq share some point, 
in contradiction with the (DS) property.

The condition (gsfmfd) is a direct consequence of item (a) in Lemma 42, which asserts, in 
particular, that a fixed stain cannot cut a free R-door.

To finish, let us prove that R satisfies the condition (gsfd). Suppose, by contradiction, that 
there are free R-doors D ⊂ FR(ν) and D′ ⊂ FR(ν′) not associated to the same face of � together 
with some x ∈ D such that �x ∩ |R| cuts D′ at some point z. Assume, for instance, that ν′ > ν, 
so the orientation of L in the leaf �x goes from x to z. We have several possibilities:
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• D ⊂ ∂R(ν)in and D′ ⊂ ∂R(ν′)in. We have that x cannot belong to any of the doorjambs of 
D, by Lemma 42, (b). Also, z cannot belong to any of the doorjambs of D′; otherwise, x would 
be in an unfree R-door by the last sentence in Lemma 42 concerning item (c) with ν := ν′ and 
μ := ν (incompatible with the fact that x does not belong to a doorjamb of D). As a consequence, 
z is of type e-i or e-t relatively to |R|, so that the negative leaf �−

z scapes from |R|, contradicting 
the existence of z.

• D ⊂ ∂R(ν)in and D′ ⊂ ∂R(ν′)out . As above, x does not belong to any of the doorjambs of 
D and z does not belong to any of the doorjambs of D′. Using similar arguments as in the proof 
of Lemma 42, one can see that, if x ∈ ˙h(D) (resp. if x ∈ (D \ ∂D)), then �+

x′ ∩ |R| cuts D′ for any 
x′ ∈ ˙h(D) (resp. for any x′ ∈ (D \ ∂D)). By continuity, this last property must be also true for 
points in the closure of ˙h(D) (resp. D \ ∂D), thus for some points in the doorjambs of D. This is 
a contradiction with Lemma 42, (b).

• D ⊂ ∂R(ν)out and D′ ⊂ ∂R(ν′)in. The point x belongs to one of the doorjambs of D; 
otherwise, x would be of type t-e or i-e relatively to |R| and the positive leaf �+

x would scape 
from |R|. By the same reason, z belongs to one of the doorjambs of D′. Notice, moreover, that 
x ∈ D if, and only if, z ∈ D. This is the forbidden situation in which D and D′ are associated to 
the same face of �. The case where x and z belong to doorjambs of the respective free doors D
and D′, but x, z /∈ D, gives also a contradiction with the (DS) property.

• D ⊂ ∂R(ν)out and D′ ⊂ ∂R(ν′)out . As in the precedent case, x belongs to one of the 
doorjambs of D and hence, by Lemma 42, (c), z belongs to some unfree R-door of FR(ν′), 
thus in one of the doorjambs of D′. This gives again a contradiction with the last sentence of 
Lemma 42 concerning (b) with ν := ν′, μ := ν. �
5.3. Proof of the good saturations property

The following result along with Proposition 43, gives the proof of Theorem 33.

Theorem 33′. Assume that M = (M, L, D) is not s-resonant and of Morse-Smale type. Given a 
distinguished fattening K over �, there exists a distinguished refinement K̃< K that satisfies the 
(DS) property.

The strategy is to obtain the refinement K̃ after applying Proposition 30 to the initial fattening 
K by imposing convenient systems of entrances at the graph sources, i.e., the repeller D-node 
points. The systems of entrances will be chosen so that the stains at those points are disjoint, and 
so that this property is susceptible to be propagated “along” the graph. To do this, we introduce 
an auxiliary definition that highlights the intermediate steps in the recursive procedure towards 
the (DS) property.

Definition 44. Let R be a predistinguished fattening of � and let ν ∈ V(G). Assume that R is 
distinguished at the vertex corresponding to ν.

(DS) We say that R has the Property (DS)≤ν if any pair of distinct stains A, A′ ∈ ϒR
R(ν)

∪
�
R(≤)

R(ν)
are mutually disjoint.

(qDS) We say that R has the Property (qDS)>ν if, given A ∈ ϒR
R(ν)

∪ �
R(>)

R(ν)
, we have that:

- If J is a doorjamb of a free R-door at ν, then either A ∩ J = ∅ or the germs of A and J
at b(J ) coincide.
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- If A∩b(R(ν)) �= ∅ then any connected component Y of A satisfies also Y ∩b(R(ν)) �= ∅
and, either Y does not intersect the interior of an unfree R-door or Y is a well-positioned 
curve on it. Moreover, in this last situation, if A′ is another stain A′ of R in R(ν) and 
Y ∩ A′ �= ∅, then Y ⊂ A′.

Proof of Theorem 33′. We may assume that K, hence any pre-distinguished refinement of K, 
already satisfies the property of good saturations for fixed marks (gsfm) (cf. Remark 34). Thus, 
any two different fixed stains of a refinement of K do not intersect.

Consider now refinements Cq < K(νq) for any q ∈ Nr in such a way that, being

Aq =
⋃

A∈�R
Cq

∪ϒR
Cq

A

the union of all stains of R in Cq , then it holds:

(i) Any connected component Y of Aq is an interval whose closure is a closed interval with 
extremities b(Y ), h(Y ), where b(Y ) ∈ b(Cq) and h(Y ) ∈ h(FCq

).

(ii) If Y, Y ′ are two connected components of Aq then either the intersection Y ∩ Y ′ is empty 
or it contains just the common extremity b(Y ) = b(Y ′).

Such refinements Cq (see Fig. 14) can be obtained by means of Lemma 37, to guarantee item (i), 
and Remark 18 to get item (ii).

The distinguished refinement K̃ required in Theorem 33′ is obtained by applying Proposi-
tion 30 to the whole graph G = � together with the collection {Eν}ν∈V(�) of systems of entrances 
of K, where Eν = ∅, if ν /∈ Nr , and Eνq = {LCq

}, if q ∈ Nr (thus Eνq is a complete system of en-
trances of K(νq) and the corresponding refinement obtained from it is precisely Cq).

As we know, if we apply Proposition 30, we can get many possible resulting refinements as 
application. To get one of them, say K̃, having the (DS) property, we need to control the process 
according to what was discussed in Scholium 31. To be more precise, if l = l(�) is the length of 
the graph �, the refinement K̃ will be the last of a sequence of pre-distinguished refinements

K = Nl+1 > Nl > · · · > N1 > N0 = K̃, (16)

satisfying the conditions in (15). Theorem 33′ will be a consequence of the following claim.

Claim. Refinements in (16) can be performed so that, given j , the fattening Nj satisfies Property 
(DS)≤ν , for any ν ∈ V(�) \ V(�j−1), and Property (qDS)>μ, for any μ ∈ V(�j ) \ V(�j−1).

The claim proof goes by inverse recursion for j = l, l − 1, ..., 0. Although a priori it seems 
that only condition (DS)≤ν counts to get Theorem 33′, we are led to consider also condition 
(qDS) for the recurrence to work, as we will see next.

Let us start by constructing Nl . Notice that, if ν ∈ V(�) \ V(�l−1), then ν = νq is the unique 
local s-component associated to a D-repeller point q ∈ Nr . For any such q , we have fixed the 
value Nl(νq) := Cq , a refinement of K(νq). Let τ be an edge starting at q and let Pτ = ∂K(τ )in

be the unfree K-door at q with center at cτ , where {cτ } = FK(ν ) ∩ τ . Taking into account the 

q
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Fig. 14. Refinement of K(νq ) to get the (DS) property.

properties imposed to Cq , we may consider a refinement Tτ < K(τ ) defined by setting its inner 
part equal to ∂T in

τ = P ′
τ , where P ′

τ ⊂ IntFK(νq )
(Pτ ) ∩ FCq

is a door in FCq
(in particular, the 

doorjambs of P ′
τ do not intersect the ones of Pτ ) with center at cτ and so that, if Y is a connected 

component of Aq , then Y ∩P ′
τ �= ∅ if, and only if, Y has one extremity at cτ and, in this case, Y

is contained in P ′
τ and does not intersect the doorjambs of P ′

τ (see Fig. 14).
Now, let Nl be the fattening over � defined by Nl(νq) := Cq and Nl(τ ) := Tτ , for any q ∈

V (�) \V (�l−1) and any τ ∈ α−1(q), and by putting Nl = K elsewhere. By construction, Nl is a 
pre-distinguished refinement of K and it is distinguished at any q ∈ V (�) \ V (�l−1). Moreover, 
the fattening Nl has the property (DS)≤νq for any q ∈ V (�) \V (�l−1) (observe that ϒNl

Cq
= ϒK

Cq

and that �Nl (≤q)

Cq
consists only on the family of subsets of the form J \ {b(J )}, where J is an 

unfixed doorjamb of a door P ′
τ with τ ∈ α−1(q)). Finally, we check that Nl satisfies the property 

(qDS)>νq for any q ∈ V (�) \ V (�l−1). Let A ∈ ϒ
Nl

Nl (νq )
∪ �

Nl (>)

Nl (νq )
. In the case that A is a new 

stain not existing for R = Nl+1 (that is, A is mobile generated at an immediate successor ν′ of 
νq , only in case that Nl is distinguished also at the point corresponding to ν′), we have that A is 
contained in the boundary of a door of the form P ′

τ and its germ at A∩ b(Nl(νq)) coincides with 

that of a doorjamb of P ′
τ . Otherwise, A coincides with some element of ϒR

Nl(νq )
∪ �

R(>)

Nl (νq )
and it 

is contained in the union of the doors P ′
τ , where τ runs over α−1(q). By construction, we show 

the required properties for (qDS)>νq in both cases.

Assume that for some k ≤ l we have already constructed a subsequence Nl > Nl−1 > · · · >

Nk of (16) such that any of its terms satisfies the claim. We build the next fattening Nk−1 in three 
steps:

(1) We determine certain refinements Cμ < Nk(μ) and Tτ < Nk(τ ), for any μ ∈ V(�k−1) \
V(�k−2) and any τ ∈ α̃−1(μ).

(2) We define Nk−1 by setting Nk−1(μ) := Cμ and Nk−1(τ ) := Tτ for μ, τ as in 1), and Nk−1 :=
Nk elsewhere.

(3) We check that Nk−1 is distinguished at any μ ∈ V(�k−1) \ V(�k−2) and satisfies the claim 
for index j := k − 1.
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A pertinent remark should be made about the last step: in order to check that Nk−1 satisfies 
the claim, we just need to show that it satisfies properties (DS)≤μ and (qDS)>μ for any μ ∈
V(�k−1) \ V(�k−2). In turn, by virtue of Remark 36, these properties depend exclusively on 
the modifications of Nk performed at μ, that is, the values Cμ and Tτ for τ ∈ α̃−1(μ). In other 
words, we check properties (DS)≤μ and (qDS)>μ while we build the refinements Cμ, Tτ , even 
if we are not completely done with the first step yet.

We distinguish several situations according to the possibilities for μ ∈ V(�k−1) \ V(�k−2).

(s0) The local s-component μ = νq is associated to a D-repeller q ∈ Nr . In this case, we just 
put Cμ = Cq , where this last c-nbhd is the refinement of K(νq) (= Nk(νq)) fixed at the beginning 
of the proof. For any τ ∈ α̃−1(μ), we determine a refinement Tτ < Nk(τ ) by setting ∂T in

τ = P ′
τ , 

where P ′
τ is a door in FCq

with the same properties as stated for j = l. Analogously to that case, 
we conclude that Nk−1 is distinguished at μ and satisfies properties (DS)≤μ and (qDS)>μ.

(s1) The lid LNk(μ) of Nk(μ) coincides with ∂Nk(μ)in, and we are not in the situation (s0).
In this case, there is a single edge σ ending at μ. Besides, by the Morse-Smale condition, there 
is a unique local s-component ν where σ starts. Since Nk is pre-distinguished, ∂Nk(σ )out is a 
predoor of LNk(μ) and we put Cμ to be the refinement of Nk(μ) for which LCμ

= ∂Nk(σ )out (in 
fact, this is the unique way to assign a value Nk−1(μ) := Cμ in order that Nk−1 in the sequence 
(16) is distinguished at μ). Also, since Nk is distinguished at ν, the inner part Pσ = ∂Nk(σ )in is 
either equal to the lid LNk(ν) or to an unfree Nk-door in the fence FNk(ν). We show first that the 
following property is satisfied:

(P1) Given A ∈ ϒ
Nk

Cμ
∪ �

Nk

Cμ
accumulating in the base b(Cμ), then A is a union of finitely 

many mutually disjoint intervals whose closure has one extremity in b(Cμ) and the other one 
in h(FCμ

).

To do that, notice that A1 = Sat|Nk |(A) ∩ FNk(ν) ∈ ϒ
Nk

Nk(ν)
∪ �

Nk

Nk(ν)
. In case Pσ ⊂ FNk(ν) we 

have that A1 is contained in Pσ , an unfree Nk-door, and accumulates to its center. Also, if 
{J, J ′} is the family of unfixed doorjambs of Pσ (it may hold J = J ′), then h(Pσ ) ∪ J ∪ J ′
is sent homeomorphically to h(FCμ

) by the flow. Property (DS)≤ν for Nk along Lemma 42, 

in case A1 ∈ �
Nk(≤)

Nk(ν)
, or Property (qAS)>ν for Nk , in case A1 ∈ ϒ

Nk

Nk(ν)
∪ �

Nk(>)

Nk(ν)
, make that 

any connected component of A1 is a well-positioned curve inside Pσ and hence property (P1) 
follows for A. In the case Pσ = LNk(ν), we have that A1 accumulates to some point of b(Nk(ν)). 

If A1 ∈ �
Nk(≤)

Nk(ν)
then, again by (DS)≤ν , each connected component of A1 is an interval with 

one extremity in b(Nk(ν)) and the other one in h(FNk(ν)). If A1 ∈ ϒ
Nk

Nk(ν)
∪ �

Nk(>)

Nk(ν)
, the same 

happens, in virtue of (qDS)>ν and taking into account that in this situation each connected 
component of A1 accumulates to some point in b(FNk(ν)) ∩ |�|. The required property (P1) for 
A follows as above since h(FNk(ν)) is sent homeomorphically to h(FCμ

) in this case.
As a consequence of property (P1), any doorjamb of a free K-door in FR(μ) cuts only once 

the handrail h(FCμ
). Hence, if τ is an edge starting at μ, the set Pτ := ∂K(τ )in ∩ FCμ

is a door 
in FCμ

. More generally, any connected component of a stain B of Nk in Cμ that accumulates 
to b(Cμ) \ |�| also cuts once the handrail h(FCμ

). Notice that such stain B different from a 
doorjamb of some door Pτ may appear only if μ is associated to a transversal saddle and B is 
generated at some μ′ > μ. In particular, such B cannot cut any other stain A′ of Nk in Cμ (if 
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such intersection occurs, Sat|Nk |(B) ∩ FNk(ν) would be contained in a stain in Nk(ν) generated 
at some ν′ > ν, contradicting the hypothesis (qDS)>ν for Nk .

Fig. 15. Refinement of unfree doors in Nk(μ) in situation (s1).

Taking these remarks into account, we can consider a refined door P ′
τ = P ′

τ (μ) < Pτ (see 
Fig. 15) such that:

- For any A ∈ ϒ
Nk

Cμ
∪ �

Nk

Cμ
that accumulates in b(Cμ), either A ∩P ′

τ = ∅ for any τ ∈ α̃−1(μ)

or, if A∩P ′
τ �= ∅, then A ∩P ′

τ is a finite union of mutually disjoint well-positioned curves inside 
P ′

τ . In particular, P ′
τ does not cut any unfixed doorjamb of Pτ .

- The unfixed doorjamb of P ′
τ does not intersect any A ∈ ϒ

Nk

Cμ
∪ �

Nk

Cμ
.

- If μ is associated to some q ∈ Str (so that μ ∈ {μ+
q , μ−

q }), then the two doors P ′
τ (μ

+
q ),

P ′
τ (μ

−
q ) have equal bases (notice that both μ+

q , μ−
q belong to V(�k−1) \ V(�k−2) and are in the 

situation (s1), in this case).

Remark 45. It is worth noticing that if we do not assume property (P1), or similar, we could not 
obtain a door P ′

τ with the above properties, as Fig. 16 suggests. This important remark justifies 
the introduction of the (qDS) condition, an essential tool in the proof of property (P1).

The refinement Tτ of the tube K(τ ) to be considered for any τ ∈ α̃−1(μ) is the one determined 
by setting ∂T in

τ = P ′
τ , in case that μ is associated to some vertex q /∈ Str , or the union of the two 

doors P ′
τ (μ

ε
q), ε = ±, if μ is associated to some q ∈ Str . In this way, since P ′

τ is a door in FCμ

for any such τ , we guarantee that the fattening Nk−1

Let us check that Nk−1 satisfies the property (DS)≤μ as follows. Take A, A′ ∈ ϒ
Nk−1
Cμ

∪
�
Nk−1(≤)

Cμ
with A �= A′. If both A, A′ are fixed doorjambs, we know already that they do not 

intersect, since Nk−1 satisfies (gsfm). If some of them is a doorjamb of a free Nk−1-door (i.e., an 
unfixed doorjamb of P ′

τ for some edge τ starting at μ), then by construction A ∩ A′ = ∅. Other-
wise, the sets Sat|Nk−1|(A) ∩FNk(ν) and Sat|Nk−1|(A′) ∩FNk(ν) are contained (equal in this case) 

in respective elements A1, A′
1 of ϒNk

Nk(ν)
∪ �

Nk(≤)

Nk(ν)
with A1 �= A′

1 (unless one of them, say A, is 
fixed and generated at ν, in which case A1 is a fixed mark). In any case, we have A1 ∩ A′

1 = ∅
since Nk satisfies property (DS)≤ν . We deduce that A ∩ A′ = ∅.
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Fig. 16. Situation where the refinement of the unfree door associated to τ is not possible.

Finally, we check that Nk−1 satisfies property (qDS)>μ. Let A ∈ ϒ
Nk−1
Nk−1(μ)

∪ �
Nk−1(>)

Nk−1(μ)
. If A

is a “new” stain of Nk−1 appearing from the modification of some of the tubes Tτ (that is, A =
Sat|Nk−1|(J \ b(J )) ∪ FCμ

, where J is an unfixed doorjamb of ∂T out
τ ∩ FNk−1(μ

′) for μ′ ∈ ω̃(τ ), 
and in the case where this last disc is a door in FNk−1(μ

′)), then A coincides with a doorjamb 
J of some P ′

τ , as germs at b(J ). Moreover, A is an interval and does not intersect the interior 
of any unfree Nk−1-door. This proves (qDS)>μ for this situation. Otherwise, A is contained in 
some B ∈ ϒ

Nk

Cμ
∪�

Nk

Cμ
(recall that Nk−1(μ) = Cμ). By construction B does not cut any doorjamb 

of a door P ′
τ , which shows the first part of property (qDS)>μ for A. Assume now that A ∩

b(Nk−1(μ)) �= ∅. By property (P1), we have that each connected component Y of B is an interval 
with extremities b(Y ) ∈ b(Nk−1(μ)) and h(Y ) ∈ h(FNk−1(μ)). Moreover, b(Y ) ∈ |�| for any 
such Y , so that, Y is a well-positioned curve inside one of the doors P ′

τ (by construction, Y does 
not intersect the doorjambs of such P ′

τ ). But, being Y ⊂ P ′
τ , we have that Y is also a connected 

component of A. This proves the first part of (qDS)>μ. Now, if A′ is another stain of Nk−1 in 
Nk−1(μ) that intersects Y , by construction, A′ cannot be one of the unfixed doorjambs of the 
doors P ′

τ (the “new” stains in Nk−1) and then A′ is contained in some stain B ′ of Nk in Cμ. 
Take Sat|Nk−1|(A) ∩ FNk(ν) and Sat|Nk−1|(B ′) ∩ FNk(ν), which are contained in respective stains 
A1, B ′

1 of Nk in Nk(ν). Moreover, Y1 = Sat|Nk−1|(Y ) ∩FNk(ν) is connected and contained in A1. 
Since Y ∩ A′ �= ∅ by hypothesis, we have Y1 ∩ B ′

1 �= ∅. Using that Nk satisfies (qDS)>ν , we 
must have Y1 ⊂ B ′

1, and hence also Y ⊂ A′. This proves the second part of (qDS)>μ for Nk−1.

(s2) The inner part ∂Nk(μ)in coincides with the fence FNk(μ). Let ω̃−1(μ) = {σ1, . . . , σr} be 
the family of edges ending at μ and ci the point defined by σi ∩ FNk(μ) = {ci}, for i = 1, . . . , r . 
Since Nk is pre-distinguished, the intersection Di := ∂Nk(σi)

out ∩FNk(μ) is a predoor in FNk(μ), 
and we have Di ∩Dj = ∅, if i �= j . Using that Nk is distinguished at any p ∈ V (�k) \V (�k−1), 
it holds one of the following possibilities for each Ti = ∂Nk(σi)

in (see Fig. 17):

(a) α̃(σi) = {νi} and Ti is the lid of Nk(νi);
(b) α̃(σi) = {νi} and Ti is a door in FNk(νi );
(c) α̃(σi) = {ν+

i , ν−
i } and Ti is the union of two doors T +

i , T −
i , in FNk(ν

+
i ) and FNk(ν

−
i ), respec-

tively, with equal base.
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To cover all cases, we write νε
i , T ε

i , etc., with ε ∈ {+, −} if #(α̃(σi)) = 2, or ε does not appear 
otherwise.

Fig. 17. Situation (s2) with μ corresponding to a tangential saddle.

Let us prove first that the following property is satisfied:

(P2) Let A ∈ �
Nk(>)

Nk(μ)
∪ ϒ

Nk

Nk(μ)
and let Y be a connected component of A accumulating in 

b(Nk(μ)). Then we have Y ∩ b(Nk(μ)) = {ci} for some i ∈ {1, . . . , r} and Y ∩ Di is an 
interval with a extremity at ci and the other one in Fr(Di) \ (b(Nk(μ)) ∪ D).

Proof of (P 2).- If A is fixed and generated at some νε
i (case (c)), then (P2) is true (with a single 

component Y ) provided that Nk is pre-distinguished. If A is fixed but generated at some ν < μ

with ν �= νε
j for any j, ε, then Sat|Nk |(A) ∩ FNk(ν

ε
i ) �= ∅ for at least one index i (and some 

ε ∈ {+, −} if Di is in case (c)). Any such non-empty intersection is contained in a fixed stain 
A1 with the same generating mark as A. In the light of Lemma 42 (notice that we have the 
condition (DS)≤νε

k by hypothesis), the indices i, ε are unique and A1 is a well-positioned curve 
relatively to an unfree Nk-door PA1 in FNk(ν

ε
i ). More precisely, PA1 = T ε

i in cases (b) or (c), 
whereas int (PA1) and h(PA1) are sent by the flow, respectively, into int (Ti) and ∂Ti , in case 
(a). We deduce that A = Sat|Nk |(A1) ∩ FNk(μ) is connected and contained in Di and that (P2) 
is satisfied. Finally, suppose that A is either mobile or fixed but generated at some ν > μ and 
let Y be a connected component of A accumulating in b(Nk(μ)). Applying Lemma 37 and 
Theorem 15 we get Y ∩b(Nk(μ)) = {ci}, for some i ∈ {1, ..., r}. Thus, Sat|Nk |(A ∩Di ) ∩FNk(ν

ε
i )

is non-empty (for some ε ∈ {+, −}, if Di is in case (c)) and hence contained in some stain 
A1 ∈ ϒ

Nk(>)

Nk(ν
ε
i )

∪ �
Nk(>)

Nk(ν
ε
i )

. Moreover, as above, A1 intersects the interior of some unfree Nk-

door PA1 and accumulates in b(Nk(ν
ε
i )). Using that Nk already satisfies (qDS)>νε

i , we get 
that A1 ∩ PA1 is a union of mutually disjoint well-positioned curves inside PA1 , one of them 
containing necessarily Sat|Nk |(Y ∩Di ) ∩PA1 . Since PA1 is mapped by the flow into Di , property 
(P2) holds for Y as in the previous situation.
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Now, for each i ∈ {1, . . . , r}, we consider a framing of the pre-door Di by distinguishing two 
cases as follows:

(C1) The s-component μ is not associated to a transversal saddle.- (see Fig. 17) In this case, 
the base b(Di ) has one or two extremities in D \ |�|. For any such extremity a, we have to 
choose an unfixed doorjamb Ja of Di with base point at a. Being �a the face of � contain-
ing a, we have that a is an accumulation point of a mobile stain Aa ∈ �

Nk(<)

Nk(μ)
, generated at 

μ1 := α̃(�a), and that the germs of Aa and ∂Di at a coincide. We claim that Aa does not in-
tersect any stain B ∈ ϒ

Nk

Nk(μ)
∪ �

Nk

Nk(μ)
unless the germs of B and Aa at a are equal. To prove 

this claim, suppose otherwise that those germs are different and that Aa ∩ B �= ∅. Being J1 the 
generating mark of Aa (a doorjamb of a free Nk-door at μ1) and l1 = l(μ1) the length of μ1, 
we would have that Sat|Nl1 |(B) ∩ FNl1 (μ1) is contained in some stain B1 of Nl1 in Nl1(μ1) that 
intersects J1, but the germs of B1 and J1 at b(J1) do not coincide. This contradicts the recur-
rence hypothesis that Nl1 satisfies (qDS)>μ1 (notice that l1 ≥ k). We notice also that Aa ⊂ ∂Di

(using for instance Lemma 42 and taking into account that Nk satisfies property (DS)≤η for any 
η ∈ V(�) \ V(�k−1)).

If Aa does not intersect h(FNk(μ)) then we set Ja := Aa . But it is possible that Aa cuts this 
handrail, in which case, the whole stain Aa could not be chosen as the doorjamb Ja of a new free 
Nk−1-door. Instead, we take Ja to be a closed interval inside Aa with set of extremities equal to 
{a, b} and which does not intersect h(FNk(μ)). Without any further modification, this would be 
an inconvenience for having the property (DS)≤μ (since Aa and Ja would be two different stains 
that intersect). We propose to reconsider a new sequence of refinements R =N ′

l+1 > N ′
l > · · · >

N ′
k such that |N ′

j | = |Nj | \ Sat|R|(Q) where Q is a closed disc inside Di whose boundary is the 
union of two intervals (see Figure 18): one is given by L := Aa \ Ja and the other one is an 
interval L′ going from b to the extremity of L different from b, entirely contained in int (Di )

(except for its extremities) and such that Q cuts no stain of Nj in R(μ) for any j , except Aa

(this is possible since Aa cuts no other stain of Nk).
The fattenings in the resulting sequence (N ′

j )j=l+1,...,k are hence pre-distinguished, they sat-
isfy the properties (15) in the schema proposed in the Scolium and moreover, they satisfy the 
corresponding recurrence properties (DS)≤ν and (qDS)>ν stated in the Claim. With this modi-
fication, Ja is a mobile stain of N ′

k in N ′
k(μ), with generating mark at μ1 equal to a subinterval 

J ′
1 ⊂ J1 (concretely J1 \ Sat|Nk |(L)), whereas the other boundary interval Sat|Nk |(L′) becomes 

part of the handrail of the unfree N ′
k-door having J ′

1 as a doorjamb. In other words, we rename 
again Nk := N ′

k and we assume that we are in the precedent case; that is, that Ja := Aa is equal 
to the mobile stain with generating mark J1.

Fig. 18. Situation where we have to remove a disc Q from Di .
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(C2) The s-component μ is associated to a transversal saddle q .- In this case, we have r = 2
and, by the Morse-Smale condition, α̃(σi) = {νi} and FNk(νi ) = ∂Nk(νi)

out , for i = 1, 2. Put 
Yi = Sat|Nk |(W 2

q ∩ FNk(μ) \ σi) ∩ FNk(νi ), i = 1, 2, the fixed stain of Nk at νi generated at q . 
They are connected and well-positioned inside the door Ti , because Nk is pre-distinguished. In 
particular, Yi cuts the handrail h(Ti) in a single point bi which does not belong to any of the 
doorjambs of Ti (see Fig. 19).

Fig. 19. Situation (s2) with μ corresponding to a transversal saddle.

Notice that the flow sends bi to one extremity ai of b(Di ) (⊂ W 2
q ), the one that does not 

belong to D, and sends one of the two local connected components of h(Ti) \ {bi} at bi , say Hi , 
into ∂Di \ W 2

q . We choose the unfixed doorjamb Jai
of Di at ai to be the image of Hi with the 

requirement that Hi is sufficiently small so that it does not intersect any stain (fixed or mobile) 
of Nk in Nk(νi). This is possible thanks to the fact that Nk satisfies (DS)≤νi and (qDS)>νi . As 
a consequence, Jai

does not intersect any stain B ∈ ϒ
Nk

Nk(μ)
∪ �

Nk(�=)

Nk(μ)
.

In both cases (C1), (C2), we obtain a system of entrances Eμ = {D1, . . . , Dr} in Nk(μ). By 
Lemma 28 along with the choice of framings for Di just made, we can extend Eμ to a complete 
system Ẽμ in such a way that no new added door D ∈ Ẽμ \ Eμ intersects with any element of 

ϒ
Nk

Nk(μ)
∪ �

Nk(�=)

Nk(μ)
. We set then Cμ to be the refinement of Nk(μ) given by the complete system 

Ẽμ. On the other hand, in this situation (s2), there is a unique edge τ starting at μ. Thus, we 
consider the refinement Tτ of the tube Nk(τ ) as the one determined by ∂T in

τ = LCμ
. In this way, 

we guarantee that the next fattening Nk−1 with values Nk−1(μ) = Cμ and Nk−1(τ ) = Tτ , will 
be distinguished at μ.

Let us show that Nk−1 satisfies (DS)≤μ. Let A, A′ be two elements of ϒNk−1
Cμ

∪ �
Nk−1(≤)

Cμ

and suppose that they have non-empty intersection. By construction, both A, A′ are contained 
in the union of the Nk−1-doors Di and hence we can assume that A ∩ A′ ∩ Di �= ∅, for some 
fixed index i. Hence the sets Ã = Sat|Nk |(A) ∩FNk(ν

ε
i ) and Ã′ = Sat|Nk |(A′) ∩FNk(ν

ε
i ) have non-

empty intersection inside T ε
i , for a convenient choice of ε if necessary. These sets are contained 

in respective stains A1, A′
1 of Nk in Nk(ν

ε
i ) if both A, A′ are either fixed or generated at some 

local s-component strictly smaller than μ. By the recurrence hypothesis that Nk satisfies (DS)≤ν

for any ν < μ, we get that A1 = A′
1 which gives also A = A′. If for instance A = Ja is one of 

the doorjambs of a new free Nk−1-door constructed above in case (C1), since A = Ja is also a 
mobile stain generated at some μ1 < μ, as we have already discussed, Ã is also a stain of Nk

in FNk(ν
ε
i ) with the same generating mark. We conclude as well A = A′. Finally, if for instance 

A = Ja or A = Ja in case (C2) above, then A cannot cut any other stain of Nk in Nk(μ).
1 2
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To finish, we show that Nk−1 satisfies the property (qDS)>μ. Consider a stain A ∈ ϒ
Nk−1
Nk−1(μ)

∪
�
Nk−1(>)

Nk−1(μ)
. Then, A is contained in a stain B in ϒNk

Nk(μ)
∪ �

Nk(>)

Nk(μ)
with the same generating mark 

as A. By construction, B does not intersect any of the new doorjambs in FNk−1(μ) and hence so 
does A. This shows the first part of (qDS)>μ. Now, assume that A accumulates in b(Nk−1(μ)), 
necessarily only along the points {ci} by property (P 2). Let Y be a connected component of A
and take an index i such that Y ⊂ Di . We would have that Sat|Nk |(A) ∩ FNk(ν

ε
i ) is contained in 

some stain A1 of Nk in Nk(ν
ε
i ) which, moreover, accumulates to b(Nk(ν

ε
i )) and which contains 

the connected non-empty set Ỹ = Sat|Nk |(Y ) ∩ FNk(ν
ε
i ). Using that Nk satisfies (qDS)>νε

i , we 

have that Ỹ is contained in some connected component Y1 of A1 which is a well-positioned curve 
inside T ε

i . Since Y1 ⊂ T ε
i , this shows that Ỹ = Y1 and that Y is a well-positioned curve inside Di . 

Take now another stain A′ of Nk−1 in Nk−1(μ) with Y ∩ A′ �= ∅. Then SatNk−1(A
′) ∩ FNk(ν

ε
i )

is contained in some stain A′
1 of Nk in Nk(ν

ε
i ) such that Y1 ∩ A′

1 �= ∅. Again, since Nk satisfies 
(qDS)>νε

i we must have that Y1 ⊂ A′
1 which shows as above that Y ⊂ A′. This gives the second 

part of (qDS)>μ.

Summarizing, once we have analyzed the different situations (s0), (s1), (s2) above, we have 
constructed a pre-distinguished refinement Nk−1 < Nk that is, in particular, distinguished at μ
and satisfies (DS)≤μ and (qDS)>μ, for any μ ∈ V(�k−1) \ V(�k−2). On the other hand, Nk−1

coincides with Nk at any ν ∈ V(�) with l(ν) �= k − 2. Hence Nk−1 continues the sequence (14)
according to Scholium (15) and, by the recurrence hypothesis, the claim to be proved holds for 
the value k − 1. This ends the proof of Theorem 33′. �
6. Extendable fattenings. Proof of the main theorem

In this section, we gather all the results showed so far in order to give a proof of Theorem 1. 
As mentioned in the introduction, fitting domains will be built from convenient fattenings. Apart 
from being distinguished and with the property of good saturations, we need an additional feature 
that permit to close up the free doors associated to faces of the graph.

Definition 46. Let K be a distinguished fattening of � and let U be a neighborhood of D con-
taining |K|. Given a face � of �, we say that K is extendable on � inside U if the following 
conditions hold:

(i) For any x ∈ Dout
K,�

, the positive U -leaf through x cuts K(ω̃(�)) and the first intersection 

point, denoted by φ(x), belongs to Din
K,�

.

(ii) The map φ : Dout
K,�

→ Din
K,�

is bijective (thus a homeomorphism) and preserves the respec-
tive doorjambs and handrails.

(iii) Given x ∈ Dout
K,�

, if κx denotes the piece of U -leaf from x to φ(x), we have that κx cuts |K|
if, and only if, x belongs to one of the doorjambs of Dout

K,�
. In this case, κx is contained in 

Fr(|K|∂�|).

The fattening K is called extendable inside U if it is so on any face of the graph. It is called 
extendable if it is extendable inside U for some U .
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Assume that K is distinguished and extendable inside some neighborhood U of D. Hence, 
given a face � of �, there is a flow-box K�, formed by the union of pieces κx of U -leaves as 
defined in item (iii) above where x runs over Dout

K,�
. Define the extended support of K as the set

K̂ := |K| ∪
⋃

� a face

K�.

Notice that K̂ does not depend on U , as long as K is extendable inside U . In this situation, using 
Proposition 26, we can prove the following lemma that describes the type of any point in the 
frontier of K̂.

Lemma 47. The extended support K̂ is a compact semianalytic neighborhood of D. Moreover, 
Fr(K̂) is a topological, piecewise smooth surface whose transversal frontier Fr(K̂)� (cf. Sec-
tion 2) is the union of the following discs:

(a) The lids of the c-nbhds K(νq), where q ∈ N .
(b) The free K-doors of FK(νε

p), where p ∈ Str and ε ∈ {+, −}.

More precisely, if H is one of the discs as in (a) or (b) then, always relatively to K̂, int(H) is 
formed of points of type i-e or e-i. Moreover,

- If H = LK(νq ) and q is not a three dimensional saddle, then all the points of ∂H are of type 
e-i or i-e.

- If H = LK(νq ) and q is a three dimensional saddle, then all the points of ∂H are of type e-t 
or t-e (as in case (ii) of Proposition 26).

- If H is a free K-door then the type of the different points in ∂H is exactly the one described 
in case (i) of Proposition 26 taking H in the role of D.

Proposition 48. Let M be a non s-resonant and of Morse-Smale type HAFVSD. Let K be a 
distinguished fattening over � having the property (DS). Then there exists a refinement K̃ of K
which is distinguished, extendable and has also the property (DS).

Proof. Given a face � of �, let us denote Dα
� = Dout

K,�
and Dω

� = Din
K,�

the respective free K-
doors at α̃(�) and ω̃(�) corresponding to the face �. Since K is distinguished, we can consider 
a neighborhood U of D in M and pre-doors D̃α

� ⊂ Dα
� and D̃ω

� ⊂ Dω
� for any � such that:

(i) For u ∈ {α, ω}, we have b(D̃u
�) = b(Du

�).
(ii) For any point x ∈ D̃α

�, the positive U -leaf starting at x cuts a first time D̃ω
� at a point φ�(x)

so that φ� : D̃α
� → D̃ω

� is a homeomorphism.
(iii) For u ∈ {α, ω}, there is a framing of D̃u

� whose set of doorjambs {J̃ u
�,1, J̃

u
�,2} satisfies J̃ u

�,i =
D̃u

� ∩Ju
�,i , for i = 1, 2, where {Ju

�,1, J
u
�,2} is the set of doorjambs of Du

�. Moreover, φ� maps 
the handrail and the doorjambs of D̃α

� to the handrail and the doorjambs of D̃ω
� , respectively.

(iv) If x ∈ int(D̃α
�), then the U -leaf from x to φ�(x) does not intersect |K|.

In particular, if u ∈ {α, ω}, the framed predoor D̃u
� is compatible with any other free or unfree 

K-door at ũ(�) different from Du .
�
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For any face � of �, we consider the subsets of |K| (see Fig. 20):

Eα
� = Sat−|K|

(
IntFK(α̃(�))

(Dα
� \ D̃α

�)
)
, Eω

� = Sat+|K|
(
IntFK(ω̃(�))

(Dω
� \ D̃ω

�)
)
,

Fig. 20. Extending K to the component �.

and put E = ⋃
� Eα

� ∪ Eω
� . Define the map

K̃ : V(�) ∪ E(�) → P(U)

by setting K̃(ρ) = K(ρ) \ (E ∩ K(ρ)), where ρ is either a local s-component or an edge of the 
graph �. We claim that K̃ is a distinguished refinement of K satisfying the required properties. 
To check this, let us point out the following observations, valid for any ν ∈ V(�):

(a) By means of Lemma 42, given � a face of �, the set Eα
� cuts FK(ν) only if ν is in the path 

�(α̃(�)) (cf. Theorem 15). In this case, the set Eα
� ∩ FK(ν) is contained in the interior, with 

respect to FK(ν), of an unfree K-door. In fact, Eα
� ∩FK(ν) is contained in the “wedge” domain 

bounded by the two mobile stains Sat−|K|(J
α
i ) ∩ FK(ν), i = 1, 2, both being well-positioned 

curves inside such a door.
(b) The set K̃(ν) is a c-nbhd at ν and also refinement of K(ν). Its fence is obtained by removing 

from FK(ν) the subsets of the form FK(ν) ∩ Eα
� , where � runs over the set of faces. If Eα

�

cuts the fence FK(ν), the handrail h(K̃(ν)) differs from h(K(ν)) precisely along the frontier 
of FK(ν) ∩ Eα

� inside FK(ν), as depicted in Figure 21. In particular, Jα
�,i \ J̃ α

�,i is a segment 
of the handrail of FK̃(α̃(�)).

(c) Fixed stains in K̃ coincide with those in the fattening K thanks to property (DS). Moreover, 
if ν belongs to the path �(α̃(�)) for some face � such that ν �= α̃(�), in light of Lemma 42, 
the mobile stains of the form Sat−|K̃|(J̃

α
�,i) ∩ FK̃(ν) ∈ �K̃

K̃(ν)
, for i = 1, 2, are contained in the 

corresponding elements of �K
K(ν)

which, in addition, are well-positioned inside an unfree 

K-door. In fact, those mobile stains of K̃ are contained in an unfree K̃-door at ν and do not 
intersect any doorjamb of a free K̃-door.

(d) The same properties (a), (b), (c) above hold if we replace α with ω and Sat− with Sat+.
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Fig. 21. The new handrail h(K̃(ν)).

In sum, the fattening K̃ is an extendable distinguished refinement of K. Moreover, K̃ and K
have equal fixed stains, the free K̃-doors and the free K-doors at local s-components associated 
to transversal saddle points coincide, and the free K̃-doors associated to faces of the graph are 
contained in the corresponding free K-doors. Moreover, the doorjambs of these last free K̃-doors 
are contained in the corresponding doorjambs of free K-doors and the doorjambs of the K̃-doors 
Dα

�, Dω
� associated to the same face � are mapped one to the other by the flow. This proves that 

K̃ has the property (DS) and we are done. �
Remark 49. In the statement of Proposition 48, we may replace the hypothesis that K satisfies 
the (DS) condition by the slightly weaker hypothesis that K has good saturations. In fact, in the 
items (a)-(c) considered in the proof above we simply use that K has the property (DS)≤ν (cf. 
Definition 44) for ν equal to the α̃-limit of a face of the graph. This last property can be obtained 
as a consequence of having good saturations.

We end by proving Theorem 1, the main result of the paper. Let us restate it here in slightly 
more precise terms.

Let M = (M, D, L) be a non s-resonant of More-Smale type HAFVSD. For any p ∈ N ∪ Str

(i.e., any singular point which is not a tangential saddle point) fix a realization W(p) of the local 
invariant manifold which is transversal to D. More precisely, W(p) is a neighborhood of p, if 
p ∈ N is not a three-dimensional saddle, W(p) = W 1

p , if p ∈ N is a three-dimensional saddle and 
W(p) = W 2

p , if p is a transversal saddle point. Moreover, we tacitly assume that the boundary 
of W(p), as a topological manifold with boundary, satisfies that ∂W(p) ∩ D is a disc (resp. an 
interval) when p ∈ N is not a three-dimensional saddle (resp. when p ∈ Str ) and that ∂W(p) \D

is everywhere transversal to L.

Theorem 50. Let V be a neighborhood of D in M and Vp neighborhoods of W(p) ∩ V in M
for any p ∈ N ∪ Str such that Vp ∩ Vq = ∅, if p �= q . Then there exist a compact semianalytic 
neighborhood U ⊂ V of D in M and compact semianalytic discs Tp ⊂ Fr(U) ∩ Vp , for any 
p ∈ N ∪ Str , satisfying the following:
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(i) The frontier Fr(U) is a topological, piecewise smooth surface given by the disjoint union

Fr(U) = Fr(U)�
⋃

p∈N∪Str

Tp.

(ii) Each disc Tp contains Fr(U) ∩ W(p) and, in turn, it is contained in a smooth analytic 
surface in Vp everywhere transversal to L. Moreover, W(p) ∩ Tp is equal to: Tp , when 
dimW(p) = 3; a singleton in int (Tp), when dimW(p) = 1; a closed interval Ip with 
extremities in ∂Tp and such that İp ⊂ int (Tp), when dimW(p) = 2.

Furthermore, the type of points in Tp relatively to Fr(U) is given by (assuming for instance that 
W(p) is the stable manifold, otherwise change each type a-b with b-a):

• Points of int (Tp) are of type e-i.
• If dimW(p) = 3, points in ∂Tp are of type e-i.
• If dimW(p) = 1, points in ∂Tp are of type e-t.
• If dimW(p) = 2, then there are exactly four points in ∂Tp of type t-t, none of them in Ip . 

Besides, among the four intervals in which these points divide ∂Tp, there are two of them, 
say L1

p , L2
p , intersecting Ip and formed by points of type t-i, while the other two do not 

intersect Ip and are formed by points of type e-t.

In addition, we may assume that the elements in the family

{SatU(W(p)))}p∈Str ∪ {SatU(L1
p \ Ip),SatU(L2

p \ Ip))}p∈Str (17)

are mutually disjoint subsets of U .

Proof. Arguing as in the construction of pre-distinguished fattenings in the proof of Theorem 29, 
we consider first a pre-distinguished fattening K0 over � satisfying

(a) If p ∈ N and dimW(p) = 3, then K0(νp) = W(p).
(b) If p ∈ N and dimW(p) = 1, then K0(νp) ⊂ V and LK0(νp) ⊂ Vp .
(c) If p ∈ Str , then b(K0(ν

+
p )) = b(K0(ν

−
p )) = W(p) and FK0(ν

+
p ) ∪ FK0(ν

−
p ) ⊂ Vp .

(d) For any q ∈ Stg we have K0(νq) ⊂ V and for any edge σ ∈ E(�) we have K0(σ ) ⊂ V .
By virtue of Theorem 29, there is a distinguished refinement K1 < K0.
Now Theorem 33′ along with Proposition 48 allows us to consider an extendable distinguished 

refinement K2 < K1. Being K2 a refinement of K0, it necessarily satisfies the same properties 
(a), (b), (c), (d) above.

We may assume that the extended support K̂2 of |K2| is contained in V , except for the c-nbhds 
of K2 at points p in the situations (a) or (c), since our transversal manifolds W(p) are fixed a 
priori and not contained in V . We modify K2 at those points as follows. In the case (a), we take 
a c-nbhd Cνp ⊂ K2(νp) = W(p), with the same fence as K2(νp) and such that Cνp ⊂ V . In the 
case (c), we take c-nbhds Cνε

p
⊂ K2(ν

ε
p) for ε ∈ {+, −}, with equal bases, contained in V and 

such that the unfree doors of K2 at νε
p are doors of Cνε

p
.

We consider the fattening K, which coincides with K2 except for the values K(ν) := Cν when 
ν = νp with p in the situation (a) or ν = νε

p with p in the situation (c). By construction, K is 
distinguished and extendable inside V . Taking U := K̂, we may check, using Lemma 47, that U
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satisfies the requirements of Theorem 50. More precisely, the disc Tp in the statement is given by 
Tp = LK(νp), if dimW(p) ∈ {1, 3}, and by Tp = DK,ν+

p
∪ DK,ν−

p
, where DK,νε

p
is the (unique) 

free K-door at νε
p , for ε ∈ {+, −}, if dimW(p) = 2. Finally, in light of Proposition 48, the sets 

in the family (17) are mutually disjoint since K has the property (DS). �
Data availability
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