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Abstract: Mixed matrix membranes (MMMs) consisting of a blend of a hydroxypolyamide (HPA)
matrix and variable loads of a porous polymer network (PPN) were thermally treated to induce
the transformation of HPA to polybenzoxazole (β-TR-PBO). Here, the HPA matrix was a hydroxy-
polyamide having two hexafluoropropyilidene moieties, 6FCl-APAF, while the PPN was prepared
by reacting triptycene (TRP) and trifluoroacetophenone (TFAP) in a superacid solution. The most
probable size of the PPN particles was 75 nm with quite large distributions. The resulting membranes
were analyzed by SEM and AFM. Up to 30% PPN loads, both SEM and AFM images confirmed quite
planar surfaces, at low scale, with limited roughness. Membranes with high hydrogen permeability
and good selectivity for the gas pairs H2/CH4 and H2/N2 were obtained. For H2/CO2, selectivity al-
most vanished after thermal rearrangement. In all cases, their hydrogen permeability increased with
increasing loads of PPN until around 30% PPN with ulterior fairly abrupt decreasing of permeability
for all gases studied. Thermal rearrangement of the MMMs resulted in higher permeabilities but
lower selectivities. For all the membranes and gas pairs studied, the balance of permeability vs. selec-
tivity surpassed the 1991 Robeson’s upper bound, and approached or even exceeded the 2008 line, for
MMMs having 30% PPN loads. In all cases, the HPA-MMMs before thermal rearrangement provided
good selectivity versus permeability compromise, similar to their thermally rearranged counterparts
but in the zone of high selectivity. For H2/CH4, H2/N2, these nonthermally rearranged MMMs
approach the 2008 Robeson’s upper bound while H2/CO2 gives selective transport favoring H2 on
the 1991 Robeson’s bound. Thus, attending to the energy cost of thermal rearrangement, it could be
avoided in some cases especially when high selectivity is the target rather than high permeability.

Keywords: mixed matrix membranes; gas separation; hydrogen separation; thermal rearrangement;
porous polymer network

1. Introduction

The eventual depletion of the world’s fossil fuel reserves and growing public con-
cern about climate change have been caused by soaring levels of carbon dioxide in the
atmosphere. This is prompting calls for new, clean, and abundant energy sources. Many
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authors [1–3] have envisioned a hydrogen economy [4] based on energy from renewable
sources and on hydrogen as a method of storing and transporting such primary energy [5].
Besides, hydrogen can be used as an input to H2 fuel cell systems, which operate with
a relatively high efficiency without carbon oxides being produced [6,7]. The European
Commission foresees that for effective progress towards a zero-greenhouse-gas economy
by 2050, hydrogen should play an essential role [8].

Hydrogen can be produced via water electrolysis by low carbon or renewable energy.
However, although electrolysis could be integrated in a number of different hybrid sys-
tems [8], this technology currently requires further development to reach industrial scale-up
to reduce operational costs [5,9]. Other useful sources of hydrogen include the following:

• Steam–methane reforming (SMR) [9]. This starts by reacting methane with water steam
at 750–800 ◦C to produce syngas, which is a mixture of hydrogen (H2) and carbon
monoxide (CO). In the second step, known as a water–gas shift (WGS), CO reacts with
water over a catalyst to form H2 and carbon dioxide (CO2). Subsequently, carbon
capture and storage or usage (CCS/CCU) can be used to prevent CO2 emissions to
the atmosphere.

• Methane cracking separates CH4 at high temperatures under an inert atmosphere to
produce elemental carbon (which precipitates) and H2 with no CO2 emissions [10].
This procedure requires unreacted CH4 to be separated from H2 and recirculated into
the reactor.

• H2 can also be produced from coal gasification combined with carbon capture for
use or storage [9]. The purification process of synthesis gas, obtained from steam
reforming of natural gas, is a key step and CO2 separation from H2 plays a crucial
role [11].

• Biogas/biomethane reforming and biomass gasification and pyrolysis can also be
a source of hydrogen from industrial or agriculture waste [12–14]. For instance, in
dark fermentation, different proportions of H2, CO2, and CH4, depending on the
microorganisms used, need to be purified.

Hydrogen saving is also relevant. For example, ammonia synthesis [15] involves the
use of vast amounts of H2, because efficiency is low. The purge gas contains 60–70% H2 and
20–25% N2; therefore, recovering H2 from the purge gas and reusing it for ammonia syn-
thesis or any other additional purpose is environmentally and economically beneficial [16]
making the H2/N2 separation extremely interesting and important.

Different methods are accessible to separate H2 from complex gas mixtures. Among
them, the most popular ones are pressure swing adsorption (PSA) and cryogenic methods.
Cryogeny requires high-energy consumption [17] and pretreatment steps, to attain purity
levels of nearly 99% [18]. PSA is currently responsible for up to 85% of the hydrogen
produced worldwide [19] and can achieve 99.999% hydrogen purity, but only reaches
65–90% hydrogen recovery [18]. Both methods are complex and cannot be scaled up from
low to high gas fluxes, thus, they lack flexibility [18,20].

Membrane-based separations are a proven alternative to conventional gas separation
processes due to its high energy efficiency, low capital costs and footprint, along with its
high robustness and its easy operation and maintenance. These advantages have been
further enhanced with the new polymeric formulations proposed for hydrogen separations
in the last 20 years [21]. In effect, at present, gas separation membranes have already
been successfully used for H2/CO2 [19] and H2/CH4 [22] separations. Although this
technology is already available at a commercial scale, further research in materials science
is needed to prepare membranes with better and optimum balances between permeability
and selectivity. In fact, currently polymeric membranes have a central presence in the
membrane market for hydrogen separation, because they admit economical large-scale
processing [23]. Among the many diverse types of polymeric membranes, as an evolution
of blended and crosslinked polymers [24], MMMs are one of the most well-researched
and promising approaches [25–27]. Chuah et al. [27] summarized the recent advances
on MMMs with different emerging fillers that are potentially interesting for hydrogen
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separation. Mostly, researched fillers for MMMs include zeolites, graphene, or nanotubes;
metal–organic frameworks (MOFs); and porous polymer networks (PPN) or covalent–
organic frameworks (COFs).

Thermally rearranged (TR) polymeric matrices, using ortho-hydroxypolyimides (HPIs
α-TR), ortho-hydroxypolyamides (HPAs β-TR), or other thermally rearrangeable polymers
are promising materials thanks to their ability to develop hourglass-shaped cavities and
to give unusually high selectivity [28]. Polymers of intrinsic microporosity (PIM) have
also promising properties, although physical aging and plasticization apparently challenge
them due to their high fractional free volume, which threatens their applicability for
membrane gas separation [29]. TR polymers are specially resistant to plasticization but
have low solubility in common solvents for membrane preparation, which is the main
obstacle for their exploitation and industrialization, together with their high cost and
the need for high-thermal-treatment temperature [30]. β-TR polymers are less expensive
and need up to 100 ◦C less than α-TR to allow thermal rearrangement [31]. The lower
rearrangement temperature of β-TR polymers is due to their hydroxyl groups in the initial
HPA having higher mobility in comparison with the hydroxyl groups in HPIs required to
obtain α-TR polymers. This is especially relevant attending to their scale-up due to the
associated lower energy consumption. Moreover, β-TRs are suitable for separating small
gases via size-sieving due to their micropore sizes being smaller than those of α-TRs [30,32].

Besides, the inclusion of nanoparticles with engineered pore volume, pore size, and/or
surface adsorption properties [32] as nanoporous fillers to form Mixed Matrix Membranes
(MMMs) can add fast and selective pathways for gas transport. In fact, it has been shown
to improve membrane permeability, selectivity, or sometimes both. This improvement has
been detected both for pure non-TR-able polymers [33] and also for thermally rearrangeable
ones [34–37].

Recently, we blended some porous polymer networks (PPNs) [38] with both α and
β-TR-able polymer matrices that resulted in high-performance gas separation materials
with excellent balances of permeability and selectivity [35,38,39]. Our aim here is to test
some previously prepared mixed matrix membranes for their ability to separate hydrogen
mixtures. In this study, MMMs were prepared via a combination of a poly(o-hydroxyamide)
(HPA) and a microporous polymer network and tested as hydrogen purification materials.
First, the hydrogen permselectivity versus CH4, CO2, and N2 was evaluated in these novel
MMMs. Subsequently, these MMMs were thermally treated to convert the HPA matrix to a
polybenzoxazole one (β-TR-PBO), thus generating the corresponding β-TR-PBO MMM
(TR-MMMs).

2. Materials and Methods

The 6FCl-APAF poly(o-hydroxyamide), HPA, was synthesized in our lab following a
methodology previously described [35]. To prepare the mixed matrix membranes (MMMs),
a porous polymer network (PPN) was synthetized prior to this work by reacting triptycene
(TRP) and 2,2,2-trifluoroacetophenone (TFAP), according to the methodology described
by Lopez-Iglesias et al. (2018) [35,38]. Porous features of this PPN were also described in
the article abovementioned. In particular, a moderately high BET area of 655 m2/g was
measured by Lopez-Iglesias et al. [38] by N2 adsorption isotherms.

MMMs were prepared by a solvent evaporation process. Thus, 500 mg of HPA was
dissolved in 5 mL of NMP (10%) and filtered through a 3.1-µm fiberglass filter (Symta,
Madrid, Spain) to remove dust particles. Concomitantly, an amount of PPN particles was
dispersed in 0.5 mL of N-methyl-2-pyrrolidone (NMP) (10% w/w suspension of PPN).
The suspension particles were stirred for 2 h and then sonicated for 20 min (40 cycles
of 20 s of sonication followed by 10 s without ultrasound, using 30% amplitude) using
a 130-W ultrasonic probe Branson 450 Digital Sonifier (Marshall Scientific, Hampton,
NH, USA) to promote the breaking of the PPN-agglomerated particles and to obtain a
homogeneous dispersion of the particles. To achieve high polymer–particle compatibility
and thus promote higher affinity in order to improve the transport properties of MMMs, the
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priming technique was employed [40], which involves adding a small amount of polymer
to the filler suspension before incorporating the particles into the polymer solution. Thus,
the PPN particles were primed by adding approximately 10% of the total volume of the
polymer solution and then sonicated at 30% amplitude for 5 min [39]. Finally, the polymer
matrix solution and PPN dispersion were combined and stirred again for 1 h to obtain a
homogeneous distribution of the PPN particles within the polymer matrix solution.

The polymer solutions were cast onto well-leveled glass plates and were kept at 60 ◦C
overnight on the plate at atmospheric pressure, followed by the next thermal treatment
steps under vacuum: 2 h at 80 ◦C, 1 h at 100 ◦C, 2 h at 120 ◦C, and 12 h at 180 ◦C. Finally,
the membrane samples were slowly cooled down to room temperature in the vacuum
oven.

To obtain β-TR-PBO mixed matrix membranes (TR-MMMs), the HPA-PPN MMM
membranes were thermally treated through a solid-state rearrangement reaction [35,38] by
initially heating up to 250 ◦C at a rate of 5 ◦C/min, maintaining this temperature for 15 min,
and further heating to 375 ◦C at a rate of 5 ◦C/min, maintaining this temperature for 15 min.
This method was previously optimized to obtain complete thermal rearrangement [31]
of the polymeric matrix and similarly at higher temperatures to obtain α-TR-PBO from
ortho-hydroxypolyimides [41]; it was shown that PPN does not degrade by extensive
TGA analyses. The procedure was carried out under a N2 atmosphere in a Carbolite CTF
12/65/700 single-zone pyrolizer furnace (Carbolite-Gero, Hope, UK) equipped with a
quartz tube and using ultra-high-purity nitrogen flow rate at 900 mL/min. The 6FCl-APAF
(HPA-PPN) MMMs and its corresponding TR-MMMs are depicted in Figure 1.Polymers 2021, 13, 4343 5 of 20 

 

 

 

Figure 1. HPA-MMMs and their corresponding thermally rearranged TR-MMMs. 

  

Figure 1. HPA-MMMs and their corresponding thermally rearranged TR-MMMs.
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3. Membrane Morphology
3.1. Methodology

Scanning electron microscopy (SEM) images were taken with a QUANTA 200 FEG
ESEM (Thermo Fisher Scientific, Waltham, MA, USA) on Au-metallized samples operating
at an acceleration voltage of 1.5 kV in high vacuum and using the detection of secondary
electrons method. The samples were cryogenically fractured using liquid N2 to obtain
images of the cross-section.

Atomic Force Microscopy (AFM) surface scans were obtained using a Nanoscope
Multimode IIIa® from Digital Instruments (Veeco Metrology Inc., Santa Barbara, CA, USA)
in tapping mode. Roughness and Power Spectral Density (PSD) [42] were analyzed using
NanoScope Software Version 5.30 (Veeco Metrology Inc., Santa Barbara, CA, USA). The
so-called E scanner (horizontal and vertical ranges of 10 and 2.5 µm, respectively) was used
here. The scanned areas went from 500 × 500 nm to 10 × 10 µm.

Before AFM imaging, the samples were previously cleaned by using low-power
radiofrequency plasma. An expender Plasma Cleaner with a Plasma Flow Gas Mixer and a
Digital Thermocouple Gauge Control Unit (HARRICK PLASMA, Ithaca, NY, USA) were
used for this purpose. Samples were placed on a quartz plate in an Ar atmosphere under a
flow of 0.5 L/min at 550 mTorr at a power of 10.2 W during 10 min.

3.2. Results

A good compatibility between the continuous phase and the dispersed phase is seen
in Figure 2, which shows some examples of SEM pictures for the studied membranes. They
seem to have a good enough polymer–filler compatibility without significant agglomera-
tion [43]. The cracks appearing in all images of MMMs are due to the cryogenic fracturing
of the membrane cross-sections [39].
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HPA and thermally rearranged HPA and TR-HPA were compared with the corre-
sponding MMMs to show the influence of the load on morphology. In fact, these very
slight differences could be due to changes in the packing of the polymeric matrix induced
by the thermal process of the filler that could modify the matrix–filler interfaces. Some
effect of the presence of the filler on the evaporation of possible residual solvents cannot be
discarded [36].

Agglomeration and detaching of the filler were observed at 40% filler, which led
to a clear decrease of permeability (not observed at 30% PPN load, as will be shown
below). This fact could be attributed to a stiffening of the linear macromolecular chains,
leading to an increase in tension around the particles [35] and reducing the filler-to-matrix
compatibility overruled by filler-to-filler affinity.

MMMs form a three-phase system: (i) the filler phase, (ii) the polymer phase, and
(iii) the rigidified (or less rigid) formed interface due to the nature of the polymer–filler
interaction and the stress generated during membrane fabrication [44]. In this context, as
mentioned, solvent evaporation is an important factor to be considered. In effect, according
to Mahajan et al. [45], membrane size shrinks during the solvent evaporation process. This
shrinkage could generate high stress in the material and cause the filler to detach. This
could result in the increase of membrane defects, leading to the formation of heterogenous
voids at the interfaces. However, in some cases, the polymer chains can conform to the
filler surface and relieve the stress, thus obtaining a defect-free interface [46]. In the case of
TR-MMMs, in addition to combining the properties of the disperse and continuous phases,
the membranes present the properties conferred by the thermal treatment, which form
microcavities [28] that mainly favor the diffusion of light gases when compared with HPAs.
Moreover, when a good enough contact between the continuous and dispersed phases is
achieved, a still fair selectivity would be obtained for the corresponding TR-MMMs. This
could happen when there are low residual stress forces that relax when the membranes are
exposed to temperatures above the Tg of the polymer matrix [36].

To obtain SEM micrographs of the PPN particles used as filler, the following procedure
was carried out: PPN particles (30 mg) were added to 1 mL of ethanol and stirred for 2 h
followed by sonication for 20 min (40 cycles of 20 s of sonication followed by 10 s without
ultrasounds, using 30% amplitude). The suspension was then stirred for 48 h and again
sonicated for 20 min using the same conditions commented above. Finally, suspensions
were prepared by diluting (dilution factor of 10) twice. Images such as those seen in
Figure 3 were obtained. It can be seen that the most probable size of the mostly globular
PPN particles is 75 nm but some particles are as large as 500 nm in diameter.
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Examples of 3D AFM images are shown in Figure 4 for samples previously cleaned
by using low-power radiofrequency plasma as mentioned before. The corresponding
fractal dimensions and roughness [42] are shown in Table 1. Fractal dimension is always
very close to 2, which would indicate a fairly planar surface; although, slightly better
planarity (fractal dimension closer to 2) can be noted when PPN content increases and
when thermal rearrangement is performed. Concerning roughness, it decreases before
thermal rearrangement when increasing the PPN content and increases after thermal
rearrangement when PPN content increases. This different behavior could be due to an
increasing rigidity of the polymeric matrix chains after thermal rearrangement that hinders
the appropriate adaptation of the matrix to accommodate PPN [35].
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Table 1. Fractal dimensions, dfr, and roughness, Rq, for the MMMs studied both before and after
thermal rearrangement and with different PPN loads.

Membranes

PPN Content (%) Before TR After TR

dfr

0 1.76 1.78
20 1.62 1.93
30 1.92 2.03

Rq (nm)
0 14.90 4.32

20 4.77 5.06
30 3.45 12.70

4. Gas Transport Properties
4.1. Methodology

Single gas (except H2) permeability coefficient measurements for HPA, MMMs, and
TR-MMMs were determined using a constant volume apparatus at 35 ◦C and an upstream



Polymers 2021, 13, 4343 8 of 17

pressure of 3 bar, as described elsewhere [35]. H2 permeability was measured at The
University of Texas at Austin facilities using also a constant volume apparatus described by
Lin and Freeman at the same pressure and temperature [47]. CO2 was also measured by this
way with completely coincident results, within the error ranges, thus, assuring coherence
between both methods of measurement. The constant volume method has been described
and studied in the literature, for example, quite comprehensively by Flaconnèche et al. [48].

To rule out the presence of pinholes in the membrane, helium permeability was
measured at three different pressures (1, 2, and 3 bar) before placing the membrane in
the permeation cell in the constant-volume devices. Membranes without pinholes were
kept overnight under vacuum before the determination of their permeability for He, H2,
N2, O2, CH4, and CO2. The permeability coefficient, P, in Barrer, was obtained using the
following expression:

P =
273
76

V`

ATp0

(
dp
dt

)
(1)

1 Barrer =10−10
[
cm3(STP) · cm/cm2 · s · cm Hg

]
= 3.35 × 10−16

[
mol · m/m2 · s · Pa

]
where V is the downstream volume in cm3, ` is the thickness of the membrane in cm,

A the effective area of the cell in cm2, T is the temperature in K, po is the upstream pressure
in cmHg, and dp(t)/dt is the variation in the downstream pressure with time. The thickness
of the membrane was measured before measurement of the permeability coefficient into
the cell. The ideal selectivity for a gas pair was calculated from the ratio of their pure gas
permeabilities, PA and PB, as follows:

αA/B =
PA
PB

(2)

where PA and PB are the permeability coefficients of the pure gases, A and B, respectively.
In accordance with time-lag theory [49–51], the diffusion coefficient is inversely pro-

portional to time lag as

D =
`2

6t`
(3)

Here, t` is time lag (time for zero pressure extrapolated from the linear pressure versus
time plot). As P = DS, this allows the evaluation of solubility, S, as well.

4.2. Results

Permeability values (P) of H2, N2, CH4, and CO2 at 3 bar and 35 ◦C were measured for
the polymeric matrix alone, precursor MMMs, and their corresponding β-TR-PBO MMMs
(TR-MMMs) along with their ideal selectivity (α) for some selected gas pairs.

As already mentioned in Section 2, for PPN contents over 30%, permeability decreases
with a constant trend to decrease selectivity slightly and, simultaneously, bigger aggregates
of the filler appear. These outcomes, as an example, are shown in Figure 5 for the He/CH4
pair of gases. This behavior discourages the use of such relatively high PPN contents.

The Robeson plots [52,53] (double log plot of ideal selectivity versus permeability of
the most permeable gas in a given pair) for the H2/CH4, H2/N2, and H2/CO2 are shown
in Figures 6–8. Note that the Robeson permeability–selectivity trade-off lines, i.e., the
upper bounds, are shown as straights lines (dashed lines for the 1991 upper bound [52]
and continuous lines for the 2008 upper bound [53]). Data for other several thermally
rearranged (TR) polymers as collected by Kim and Lee [54] (not including copolymers nor
MMMs) are also shown in these plots for the sake of comparison.

The first conclusions that can be extracted from these plots is that high-PPN content
leads to very high permeability with a slight decrease in selectivity. However, it should be
noted that a good compromise between these two parameters, especially for the H2/CH4
separation, is seen. Good permeability and selectivity properties for the H2/N2 pair are
also evident. The corresponding points in the Robeson’s plot exceed the 2008 Robeson
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upper bound for high-PPN loads and the pair H2/CH4. For the H2/N2 pair, the 2008 Robe-
son’s bound is approached. The thermal rearrangement of the mixed matrix membranes
increased permeability, but simultaneously decreased their selectivity substantially. In all
cases, the permeability versus selectivity compromise is fairly good for the membranes
before their thermal rearrangement as well. It is important to note that for all the gas pairs
shown in Figures 6–8, our β-TR polymers stand out from those more conventional ones
shown by Kim and Lee [54]. Actually, they show permeabilities and selectivities similar to
those typically given by α-TR polymers. In fact, the representative clouds of both kinds of
thermally rearranged polymers partially intermingle.

For the H2/CO2 gas pair, the decrease in selectivity induced by thermal rearrangement
led to almost vanishing selectivity (close to 1); although, before thermal rearrangement,
the permeability versus selectivity compromise was objectively better. In Figure 9, the
Robeson’s plot for the H2/CO2 pair is shown along with some examples of existing
polymeric membranes, as shown by Huang et al. [55].
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Very few extensive analyses of TR membranes for H2 or H2 mixtures can be found
in the literature other than in the works of Dong and Lee [30] and Kim and Lee [54].
Nevertheless, a recent, quite exhaustive review was published by Bandehali et al., which
included Polymers of Intrinsic Microporosity (PIM) and thermally rearranged (TR) poly-
mers (including MMMs made by using them as polymeric matrices with different fillers
and copolymers) [30] with information on hydrogen separation when mixed with nitrogen
only. In order to place our membranes in this more general context, we include their
data in Figure 10 where some commercial membranes [56] and the so-called 2015 upper
bound [57] are also shown. It should be pointed out that different copolymers and MMMs
and different ageing times and treated PIMs and TRs are shown by Bandehali et al. [30]
and they do not distinguish between α-TR and β-TR. It is generally accepted that PIMs
and TR polymers have outstanding gas transport properties, as to delineate the state-of-
the-art in polymeric membranes. PIMs tend to have the highest permeability while TR
polymers show higher selectivities for differently sized gases, which is the case for H2/N2.
Although, it is worth noting that most of the TR membranes are well below the 2008 upper
bound. Our membranes go from relatively high selectivity and low permeability before
thermal rearrangement to the zone of relatively lower selectivity and high permeability
after thermal rearrangement. Within both these zones, permeability improves when the
filler content increases with only slightly decreasing selectivity.

The increase in permeability of H2, as a function of PPN loading and/or after thermal
rearrangement is evident, as seen in Figure 11, where H2 diffusivity and solubility are
shown. It appears clear that permeability (PA = DASA) increases mainly due to the
contribution of diffusivity, while the gas solubility is slightly more relevant after thermal
rearrangement. For comparison purposes, the corresponding CO2 diffusivity and solubility
are shown in Figure 12.
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Comparing the diffusivity and solubility trends of CO2 and H2, it was observed that
the diffusivity values of H2 and CO2 increased both by increasing PPN content and by the
thermal rearrangement process. In turn, increasing PPN loadings led to a constant value, or
slightly higher solubility for H2, while the solubility of CO2 decreased slightly. Since these
trends lead to differences in CO2 and H2 permeability and, thus, to changes in selectivity,
it can be concluded that diffusivity, rather than solubility, should control the separation
process. This can be interpreted in terms of the formation of more transport pathways
when more PPN is added, probably through the interfaces surrounding the PPN domains.

The increase in permeability of H2 along with the small decline of selectivity (see
Figures 6–8) could indicate an increase in the non-transport-restrictive, fractional-free vol-
ume of the materials. In a previous work [35], it was shown that PPN addition decreased
intersegmental distances and increased rigidity. These increments were mainly due to
increasing the internal volume of the voids, and the opening and widening of the void-to-
void gap channels. Moreover, the tendencies observed in the Robeson’s plots (Figures 6–8),
according to the classification made by Moore and Koros [58], could correspond to the
presence of voids within certain loose shells established in the polymer–filler interfaces sur-
rounding the filler. In this respect, the 40% PPN case shown in Figure 5 should correspond
to the inaccessibility of most of this additional free volume due to the formation of bigger
aggregates. Therefore, the changes in permeability can be attributed mostly to changes in
the polymer–filler interactions.
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5. Conclusions

Mixed matrix membranes (MMMs) were obtained by combining different amounts
of a microporous polymer network (PPN) with an o-hydroxypolyamide (HPA) matrix of
6FCl-APAF. The effect of the thermal treatment on HPA and the HPA-MMMs, with different
PPN loadings, was studied. It was seen that the resulting MMMs suffered complete thermal
rearrangement at 375 ◦C to give the corresponding polybenzoxazole MMMs (TR-MMMs)
observing no degradation of the PPN load.

PPN contents up to 30% increased permeability with only a limited level of aggre-
gation, as confirmed by SEM and AFM imaging that confirmed the presence of smooth
surfaces with limited roughness.

The MMMs showed very high H2 permeabilities with excellent H2 selectivities for the
H2/CH4 and H2/N2 gas pairs. The values for the H2/CO2 mixture without any thermal
treatment were worse than for the other gas pairs, but superior to those seen for other
common polymer membranes. After the thermal rearrangement, selectivity was almost
totally lost for the H2/CO2 pair.

In all cases, thermal rearrangement augments permeability and decreases selectivity.
An increase in PPN loading showed similar effects, as it increased permeability and slightly
decreased selectivity. These effects appear to originate from the formation of diffusive
paths across the matrix–filler interfaces.

It is worth noting that for the gas pair analyzed here, the non-thermally-rearranged
matrices, HPA-MMMs, provide a good selectivity versus permeability compromise in the
zones of high selectivity and close to, or even over, the Robeson’s bounds. Thus, when
dealing with a specific application, we can use the non-thermally-treated membranes to
limit the number of steps needed for a given recovery, or we can choose to apply the thermal
rearrangement process to limit the membrane area required for a given productivity.
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