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Heterogeneous systems with several kinds of devices, such as multi-core CPUs, GPUs, FPGAs, among 
others, are now commonplace. Exploiting all these devices with device-oriented programming models, 
such as CUDA or OpenCL, requires expertise and knowledge about the underlying hardware to tailor 
the application to each specific device, thus degrading performance portability. Higher-level proposals 
simplify the programming of these devices, but their current implementations do not have an 
efficient support to solve problems that include frequent bursts of computation and communication, 
or input/output operations. In this work we present CtrlEvents, a new heterogeneous runtime solution 
which automatically overlaps computation and communication whenever possible, simplifying and 
improving the efficiency of data-dependency analysis and the coordination of both device computations 
and host tasks that include generic I/O operations. Our solution outperforms other state-of-the-art 
implementations for most situations, presenting a good balance between portability, programmability 
and efficiency.

© 2023 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license 
(http://creativecommons .org /licenses /by /4 .0/).
1. Introduction

Recent trends towards the end of Dennard scaling and Moore’s 
law indicate that future computer systems will become more spe-
cialized and will comprise more complex architectures in terms 
of processors, accelerators, memory hierarchies, interconnect on-
chip networks, storage, etc. This trend has been labeled as extreme 
heterogeneity [46]. Extreme heterogeneous systems contain more 
than one kind of device, such as multi-core CPUs, different types 
of GPUs, field programmable gate arrays (FPGAs) and/or digital sig-
nal processors. They have already been seen as the new standard 
platforms in the research communities of high-performance com-
puting (HPC), integrated computing, and machine learning [37,23].

Heterogeneous computing enables programmers from different 
application domains to accelerate their applications by mapping 
calculations to specific devices. Exploiting all these devices with 
programming models, such as CUDA [29] or OpenCL [38], requires 
expertise in programming the underlying hardware, thus forcing 
the programmers to tailor their applications to specific devices, de-
grading performance portability [31].
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As we will see in Sect. 2, different high-level heterogeneous 
programming frameworks that aim to hide details related to the 
management of several devices have been developed in recent 
years. However, these frameworks present some limitations. First, 
they do not always take into account the needs of some application 
types, such as streaming applications [13], where repetitive opera-
tions, both in host and device, should be overlapped efficiently and 
transparently with communications and synchronizations. Second, 
some of these programming frameworks either require the use of 
explicit synchronizations and communications primitives, or the 
use of specific mechanisms or programming languages and tools 
for different devices, thus increasing the complexity of applications 
development. Third, most of them do not include abstractions that 
allow a proper asynchronous coordination of device computations 
with generic, time-consuming host tasks, such as input/output op-
erations to an external storage device. These limitations lead to 
unnecessary synchronizations and overheads.

In this work, we propose a new heterogeneous runtime so-
lution, called CtrlEvents, which handles asynchronous communi-
cations between device computations and host tasks, as well as 
supporting different devices in a consistent and homogeneous way. 
We also provide a fully-functional prototype, called Controllers 
v2, that integrates CtrlEvents in the Controller heterogeneous pro-
gramming framework [27,42].
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Therefore, the main contributions of this work are the follow-
ing:

• A runtime solution for heterogeneous programming frame-
works, called CtrlEvents, which simplifies and improves the 
efficiency of data-dependency analysis, and the coordination of 
both device computations and host tasks that include generic 
operations, such as input/output.

• A fully-functional implementation of CtrlEvents to efficiently 
synchronize device computations, host-task operations, and 
data transfers in different kind of scenarios, from highly-
loaded computations and data transfers, to very fast synchro-
nization of low-loaded streaming operations. This implemen-
tation has been integrated into the Controller heterogeneous 
programming framework [27].

• An experimental study comparing the performance of Ctr-
lEvents with other state-of-the-art heterogeneous program-
ming frameworks, such as two different SYCL [21] imple-
mentations (hipSYCL [1] and Intel-LLVM for CUDA [9]), using 
NVIDIA and AMD GPU platforms. We use six case studies 
based on three applications inspired in well-known bench-
marks: Rodinia Host-Spot [8], Polybench MM3 matrix multipli-
cation sequence [33], and an implementation of a Sobel filter 
for image processing, applied to video sequences [18,10].

This work shows that the abstraction and techniques proposed 
in CtrlEvents lead to highly efficient heterogeneous programs, out-
performing other state-of-the-art solutions in different workload 
scenarios. We also present a comparative of several development 
effort metrics for different versions of the programs mentioned 
above, using the programming frameworks considered in the ex-
perimental study. The joint use of the Controller heterogeneous 
programming framework and the CtrlEvents runtime presents a 
good balance between ease of programming and efficiency. The 
development effort measures are much lower than manually opti-
mized programs with asynchronous communications, programmed 
in CUDA and OpenCL, with a reduction of between 20% and 75% 
in the number of programming-language tokens. Comparing with 
the same programs written in another main-trend solution (SYCL), 
the Controller codes sometimes present worse development effort 
measures (e.g. 5% to 17% more programming language tokens). 
However, in the case of a streaming application that applies an 
image filter to a video stream, the Controller program is much sim-
pler (60% fewer programming tokens).

The rest of the paper is organized as follows: Section 2 dis-
cusses the related work. Section 3 presents the Controller het-
erogeneous programming framework used as the starting point to 
develop our solution. Section 4 introduces the CtrlEvents proposal 
and describes how to implement it in the chosen programming 
framework. Section 5 shows the implementation of several study 
cases used as benchmarks, and describes the experimental study. 
Finally, Sect. 6 presents our conclusions and discusses future work.

2. Related work

Different approaches for heterogeneous parallel programming 
have been proposed in recent years. Many of them introduce ab-
stractions that aim to overlap host-device communications and 
computation using synchronization mechanisms. In this section we 
review the different proposals so far, classifying them in terms of 
how they manage the data transfers and synchronization.

2.1. Proposals with explicit data transfers and synchronization

Low-level, hardware-oriented approaches The most intuitive ap-
proach to take advantage of the functionalities available in het-
2

erogeneous system is to manually design and program a tailored 
solution of our application, using either vendor-provided or native 
parallel programming models, such as CUDA [29], or OpenCL [38]. 
With this approach, it is possible to efficiently manage the hard-
ware resources and configuration, but the programmer needs an 
in-depth knowledge of the target architectures and to manually 
manage the synchronization mechanisms. Besides this, the result-
ing application is unlikely to be easily portable to other hardware 
configurations.

Abstractions with low-level explicit data transfers Another approach 
is to introduce programming abstractions except for the manage-
ment of data transfers, where low-level calls are still necessary. For 
example, OmpSs-2 [6] is a programming model composed of a set 
of directives and library routines that can be used in conjunction 
with a high-level programming language in order to develop con-
current applications. The control flow across tasks is implicitly de-
rived from data-dependency analysis, as in OpenMP. Nevertheless, 
the data transfers with GPUs should be explicitly managed with 
CUDA or a similar low-level library. As we will show in Sect. 5, the 
use of generic task management mechanisms introduces overheads 
that can be noticeable when coordinating light-weighted host/de-
vice tasks with data transfers.

Higher level models with explicit data transfers and synchronizations
There exist heterogeneous programming models with higher ab-
straction levels which provide portable mechanisms for commu-
nication and synchronization between host and devices. Some of 
them require the explicit invocation of these mechanisms by the 
programmer, including the management of asynchronous opera-
tions, streams, or similar concepts. For example, Kokkos [12,36] is 
a C++ programming model for writing performance-portable appli-
cations targeting all major HPC platforms. It is designed to target 
complex node architectures with N-level memory hierarchies and 
multiple types of execution resources. However, the compilation 
process requires one type of target device that cannot be changed 
at runtime to be selected. Regarding data transfers, by design, the 
system never determines where or when a data transfer should be 
done in order to keep memory coherence across different devices. 
The programmer is the responsible of doing so, by explicitly invok-
ing a specific function (deep-copy) to perform the data transfer. In 
Kokkos, only the use of mechanisms such as CUDA unified memory 
could avoid the explicit deep-copy calls, but it is a non-portable so-
lution and introduces a performance penalty [39]. Moreover, when 
the deep-copy function is used to carry out a data transfer across 
different memory hierarchies, it always implies full fence opera-
tions. This means that the runtime system introduces a synchro-
nization of the command queues before and after the data-transfer 
to keep memory consistency. [40]. Thus, the data transfer oper-
ations in Kokkos are always synchronous, and the programming 
model does not support overlapping data-transfers with computa-
tions in the same device.

HPX [20,11] is a parallel runtime system which extends the 
C++11 standard to facilitate distributed operations, to enable fine-
grained, constraint-based parallelism, and to support runtime 
adaptive resource management. The data management in GPU 
devices should be done explicitly by the programmer using a 
lower-level programming model, such as CUDA. It includes explicit 
synchronization mechanisms, including a queue abstraction for 
data transfers. Other examples in this category include dCUDA [16], 
Groute [5], BlasX [48], G-Charm [44] or Executors [7].

2.2. Proposals with implicit data transfers and synchronization

Automatic scheduling of pattern loop iterations and other task-based 
approaches Some tools and libraries propose abstract approaches 
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that are oriented towards the automatic, parallel execution of loops 
in heterogeneous devices. For example, Raja [4,22] is a C++ ab-
straction layer, developed at LLNL, that aims to enable perfor-
mance portability. It targets loop-level parallelism for C++ appli-
cations, relying solely on standard C++11 language features for its 
external interface. Raja has internal extensions that use OpenMP, 
CUDA, and AMD HIP to manage heterogeneous devices. Other ex-
amples include LogFitc [47], or Maat [32]. There are also strate-
gies for specific problems, such as the hybrid CPU/GPU approach 
described in [45] for iterative stencil computations, that intro-
duce asynchronous communications and load-balancing across de-
vices. There are also more generic task-oriented approaches with 
support for GPU accelerators that automatically derive dependen-
cies to build a task-graph at runtime, using sophisticated graph-
analysis techniques to schedule both the tasks and the data trans-
fers needed [41]. The models in this category do no support the 
coordination of generic task graphs and data dependencies, such 
as those generated across different nested-loop sections.

Generic, high-level, heterogeneous programming approaches Several 
models use more generic programming abstractions, trying to 
achieve both code and performance portability in heterogeneous 
programming. Some of them are based on modern C++ features. 
For example, SYCL [21] is a standard model for cross-platform 
programming. Kernels are organized by a task graph that is im-
plicitly constructed by the SYCL runtime. The control flow and the 
data communications can also be implicit. The SYCL ecosystem 
currently contains four major SYCL implementations: Codeplay’s 
ComputeCpp [28], Intel’s oneAPI [19], triSYCL [43], and hipSYCL [1]
compilers. In general, the current implementations rely on differ-
ent and non-compatible compiler back-ends for different types of 
devices. TriSYCL only supports CPUs and Xilinx FPGAs. HipSYCL 
supports CPUs and GPUs from different vendors, but not FPGAs. 
ComputeCpp supports CPUs and NVIDIA GPUs. Regarding oneAPI, it 
only supports the combination of CPU kernels with Intel GPUs and 
Intel FPGAs. There is a project to support NVIDIA devices, but us-
ing an alternative CUDA backend that takes advantage of the LLVM 
infrastructure [9]. Thus, all these implementations have limitations 
to operate with certain combinations of devices.

Another model in this category is dOCAL [34]. It presents a 
high-level abstraction API in C++ to simplify the implementation 
of distributed OpenCL/CUDA programs. It automatically manages 
and minimizes data transfers. dOCAL is compatible with existing 
OpenCL and CUDA libraries; can be connected with auto-tuning 
systems and can profile runtime behavior of OpenCL and CUDA 
programs; and it can leverage the usage of Unified Memory and 
pinned memory that can accelerate, hide or even avoid data trans-
fers between devices’ memories and the main memory.

All these models advocate the use of a single-code-for-multiple-
devices approach. This includes the encapsulation of CPU tasks in 
kernels, in order to take advantage of parallel execution capabil-
ities. Therefore, these kernels should not include code restricted 
to CPUs, such as I/O management, or calls to third-party libraries 
specific to a particular device, such as the ones used in video 
streaming applications. These are examples of scenarios where this 
kind of operations are hard to synchronize with other kernels and 
data transfers using an implicit data-dependency analysis.

As we will show in Sect. 5, solutions using implicit data-
dependency analysis, in practice, forces the programmer to include 
additional explicit synchronizations to ensure correctness, thus 
leading to extra overheads. We will also show that, in some cur-
rent implementations of these models, the overheads generated by 
the sophisticated mechanisms to manage the tasks or commands 
derived from the data-dependencies analysis are not negligible for 
repetitive low-loaded computations.
3

3. The Controller heterogeneous programming framework

The Controller heterogeneous programming framework [27,26,
35] is used in this work as a starting point to design and im-
plement our proposal. Controller is a heterogeneous programming 
model that enables performance portability across CPUs (using 
OpenMP), GPUs (using CUDA or OpenCL), FPGAs (using OpenCL) 
and Xeon Phi accelerators (using the Intel COI library). It is imple-
mented as a library written in C99. Thus, it is compatible with any 
C99/C++ compiler and it is easily interoperable with other libraries 
and parallel programming models. It advocates a model which al-
lows multiple explicit implementations per kernel, with specialized 
versions for each type of device if needed. Kernel implementa-
tions are compiled with their own vendor or native compiler. The 
programs are compiled with support for all the backends, linking 
everything together. Thus, the compiled programs can choose dif-
ferent target devices at runtime.

A preliminary support for host task and implicit asynchronous 
operations in the OpenCL backend for FPGA devices was presented 
in [35]. The results were promising in comparison with programs 
coded directly with OpenCL or with a SYCL implementation. Gen-
eralizing this support for any other backend in a portable and 
efficient manner requires the introduction of a new abstraction 
and the internal structure of the Controller backbone has to be re-
designed. This issue will be addressed in Sect. 4. In this section, we 
summarize the features of the original Controller model, its pro-
gramming abstractions, interfaces and features, together with an 
example of its capabilities from the programmer’s point of view.

3.1. Controller’s software architecture

The original Controller framework [27] proposes an abstract 
object, called Controller, to coordinate the activities of kernel exe-
cution and memory management on an accelerator or a set of CPU 
cores. Fig. 1 shows the elements of the original Controller model. 
A Controller object is associated to a particular instance of a device 
during its construction. Each object transparently manages the co-
ordination and communication of the host code with that device.

The model provides a data type to encapsulate variables and 
data structures, such as multi-dimensional arrays. They can be al-
located to one side (named internal variables), or in both host and 
device sides (tied variables). The programmer can push requests to 
the Controller object queue (see step (1) in Fig. 6). These requests 
can issue the execution of device kernels, or data movements for 
tied variables from host to device or device to host.

The execution policy module is in charge of processing the re-
quests located in the queue. To do so, it first retrieves the following 
task, and determines which operations are needed to complete it, 
such as execution of computation, data movements, and/or syn-
chronizations. After that, the execution policy module transfers the 
operations to the corresponding Controller backend using a generic 
API. Each backend executes the requested operations, taking advan-
tage of the lower-level programming model of the corresponding 
device (step (2) in Fig. 6).

The parameters of each kernel request should be either data 
structures already tied to this Controller object, or input values 
of scalar types of the programming language used to implement 
the model. The kernel launching function also receives a param-
eter indicating the sizes of a multi-dimensional grid of fine-grain 
logical threads that the kernel will execute. The Controller creates 
the proper granularity, grouping them in blocks or in coarse-grain 
tasks, to adapt them to the specific device.

3.2. The tiling library used: Hitmap

Hitmap [15] is the portable library used in the Controller model 
to provide an abstract common interface for the data management 
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Fig. 1. The original Controller framework architecture [27].
in both the host code and the kernels executed in different types 
of devices. Data structures on the host are managed with HitTile 
objects, which are fat-pointers that store several meta-data, such 
as data sizes, and the data pointer. The Controller model extends 
the HitTile structure to store new meta-data related to the use of 
the tile in a device, including information to find the data in the 
device. The Hitmap’s data access function, hit(), is used in the 
host or kernel codes to access the elements of a tile. It provides 
a portable view, with row-major order, on any device. More de-
tails on the use of Hitmap in Controllers can be found in [35]. An 
example of the joint use of Hitmap and Controller is described be-
low. The reader already familiar with both frameworks may skip 
the following section and proceed to Sect. 4.

3.3. Programmer’s view: using the Controller framework

To show the features of the Controller framework, we present a 
simple example that calculates a sequence of images representing 
a zoom of a chosen window of the fractal Mandelbrot set [24]. The 
code iteratively launches a kernel that calculates the following im-
age, allowing an overlap of this calculation with the management 
of the preceding image in the CPU. In our example, this manage-
ment consists of calculating how many points are under a given 
constant, in order to create a signature of the computation carried 
out, and calling a function that stores the figures, for example to 
later create an animation.

We now discuss the use of the Controller framework to imple-
ment this example. An important design decision of the Controller 
framework is to use macro functions in order to rewrite the code, 
allowing the use of C99-compatible compilers. In the Controller 
model, each kernel is declared using two macro function calls. The 
first is CTRL_KERNEL_PROTO(), which declares a common pro-
totype for all the different implementations of a given kernel. The 
syntax of this function is the following:

CTRL_KERNEL_PROTO ( kernelName, implementationsList , parameterList )

We now describe these parameters, using the code of Fig. 2 as 
an example of use. The first parameter is the name of a kernel, 
that can have several implementations for different backends or 
devices. In our example, line 1 shows the beginning of the kernel 
prototype for the kernel named Mandelbrot.

The second part of the invocation is a list of implementations 
for this kernel. This list starts with the number of different imple-
4

mentations available in this code, followed by two keywords for 
each implementation.

• The first keyword declares for which backend this implemen-
tation is designed, and which kind of lower-level code it con-
tains. The Controller v2 library provides keywords that support 
these backends: CUDA, OpenCL-GPU, OpenCL-FPGA, and
CPU for multi-threaded CPU tasks. There is also a GENERIC
keyword, indicating that the implementation we provide is 
suitable for any backend.

• The second keyword allows a finer degree of control, allow-
ing the declaration of a particular family of devices for a given 
backend. This information is used by the Controller to locate 
the best available implementation of a kernel at runtime for 
the chosen device (for example, “CUDA, VOLTA”). We also 
provide a DEFAULT keyword, to indicate that the code inside 
the kernel can be executed by any device of this backend.

In our example, line 2 declares that our code will only have one
GENERIC, DEFAULT implementation. It is interesting to note 
that the different implementations of the same kernel can be a 
part of the same or different source code files, or can be pre-
compiled in a different object file or library to be linked later.

Finally, the parameterList is the description of the kernel param-
eters, including their input/output roles, types and names. It starts 
with the declaration of the number of parameters, using three key-
words. The first is its input/output role: IN, OUT, or IO (in/out) 
indicate the role of a HitTile object that is being referenced, while
INVAL indicates a scalar value parameter. The second keyword is 
the type, and the third its name. In our example, lines 3-8 declare 
six parameters. The first is an output matrix whose values will be 
computed by the kernel, while the other five parameters are input 
values of native C types.

The CTRL_HOST_TASK_PROTO() is similar to the CTRL_
KERNEL_PROTO() described above, but in this case describes 
sequential tasks intended to be executed by the CPU. There-
fore, there is no need for keywords that indicate backend and/or 
devices. In our example, we declare a single host task called
Count_and_Store (lines 11-14 in Fig. 2).

As stated above, the CTRL_KERNEL_PROTO() function allows 
the declaration of all the kernel implementations of the same ker-
nel for different backends and/or device families that will appear 
later in the code. Each kernel implementation is declared by using 
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1 CTRL_KERNEL_PROTO( Mandelbrot,
2 1, GENERIC, DEFAULT,
3 6, OUT, HitTile_int, mat,
4 INVAL, int, threshold,
5 INVAL, float, x1,
6 INVAL, float, x2,
7 INVAL, float, y1,
8 INVAL, float, y2
9 );

10
11 CTRL_HOST_TASK_PROTO( Count_And_Store,
12 2, IN, HitTile_int, mat,
13 INVAL, int *, result
14 );
15
16 CTRL_KERNEL(Mandelbrot, GENERIC, DEFAULT, KHitTile_int mat
17 , int threshold, float x1, float x2, float y1, float y2,
18 {
19 float x0 = x1 + (x2-x1) / hit_tileDimCard(mat,0) * thread_id_x;
20 float y0 = y1 + (y2-y1) / hit_tileDimCard(mat,1) * thread_id_y;
21
22 float x = 0.0;
23 float y = 0.0;
24 int iteration = 0;
25 while ( x*x + y*y <= 2*2 && iteration < threshold ) {
26 int xtemp = x*x - y*y + x0;
27 y = 2*x*y + y0;
28 x = xtemp;
29 iteration++;
30 }
31 hit( mat, thread_id_x, thread_id_y ) = iteration;
32 });
33
34 CTRL_HOST_TASK(Count_And_Store, HitTile_int mat, int *result ) {
35 int count = 0;
36 for (int j = 0; j < hit_tileDimCard( mat, 0 ); j++)
37 for (int k = 0; k < hit_tileDimCard( mat, 1 ); k++)
38 if ( hit(mat, j, k) < 10 ) count++;
39 *result = count;
40 store( mat );
41 }

Fig. 2. Example of kernel and host-task prototype and their implementation for the Mandelbrot example using the Controller library.
a CTRL_KERNEL() macro function call. The syntax of this func-
tion is the following:

CTRL_KERNEL ( kernelName, backend, family, [paramType, paramName]. . . , 
code)

The first three parameters are the kernel name and the tuple 
that describes one of the particular implementations declared in 
the corresponding CTRL_KERNEL_PROTO() function for this ker-
nel name. These parameters are followed by the list of types and 
names of the kernel parameters enumerated in the CTRL_KER-
NEL_PROTO() function. Finally, the last parameter comprises the 
kernel code as a structured block (or as a string in the case of 
the OpenCL backends). In our example, the CTRL_KERNEL() in-
vocation in lines 16-32 of Fig. 2 includes the code that computes 
the value of a single pixel of the Mandelbrot image. To deter-
mine the particular pixel to be computed, thread_id_x and
thread_id_y are variables offered by the Controller framework 
that take different values for each logical thread in a grid defined 
by the user. This solution is a portable alternative to the threa-
dIdx.x and threadIdx.y offered by CUDA, but maintaining 
the row-major layout across all devices supported by the Controller 
framework. Threads outside the user’s grid, added in devices such 
as GPUs due to their block system, are internally skipped before 
the execution of the user code.

Regarding hit_tileDimCard() (lines 19-20), it is a Hitmap 
function that returns the cardinality of a given dimension for an 
input tile. The use of this function avoids the need to provide the 
dimensions of the tile as extra parameters.

The CTRL_HOST_TASK() macro function (lines 34-41) is sim-
ilar to CTRL_KERNEL(), except that, in this case, the code to be 
5

executed is a structured block located just after the macro. In our 
example, the code traverses the image, counting the number of 
pixels below an arbitrary value (as a way to perform a signature of 
the resulting image), and calls a function that stores the image.

We now discuss the main host code (Fig. 3). It iteratively calcu-
lates snapshots of the Mandelbrot set, zooming into the image. As 
program arguments, the user provides the image size (lines 3-4), 
the coordinates of the initial window (lines 5-8), the zoom-in ra-
tio (line 9), the number of images to be created (line 10), and the 
threshold as defined by the Mandelbrot set algorithm (line 12). The 
number of images is used to declare an integer array to store a sig-
nature of each generated image, just for testing purposes (line 11). 
The remaining program arguments are related to the Controller 
framework. Line 14 stores the ID of the device to be used in this 
execution.

The Controller framework allows us to choose between syn-
chronous or asynchronous execution policies (line 15). This selects, 
at runtime, whether the Controller object executes kernel and 
data movements with or without computation and communication 
overlapping.

Lines 16-17 of Fig. 3 allow the programmer to choose in which 
NUMA node of the host platform the Controller object will be ex-
ecuted. This aims to reduce latencies with device communications. 
Although this could be done automatically, this mechanism allows 
us to experiment with different hardware configurations. For ex-
ample, if the device is attached to a NUMA node while the disks 
used for the output are attached to a different NUMA node, the 
best choice is not straightforward.

Lines 19-20 define and initialize a structure that sets the logical 
threads space, in order to assign each pixel of the image that will 
be calculated to a different thread.
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1 int main(int argc, char *argv[]) {
2
3 int size_x = atoi(argv[1]); // Image width (px)
4 int size_y = atoi(argv[2]); // Image height (px)
5 float x1 = atof(argv[3]); // initial X coord of starting window
6 float x2 = atof(argv[4]); // last X coord of starting window
7 float y1 = atof(argv[5]); // initial Y coord of starting window
8 float y2 = atof(argv[6]); // last Y coord of starting window
9 float zoom = atof(argv[7]); // Zoom ratio

10 int num_images = atoi(argv[8]); // Number of images generated
11 int *p_results = (int *)malloc(num_images * sizeof(int));
12 int threshold = atoi(argv[9]); // Mandelbrot threshold.
13
14 int device = atoi(argv[10]); // Device id
15 Ctrl_Policy policy = (Ctrl_Policy) atoi(argv[11]); // Sync or async
16 int host_aff = atoi(argv[12]); // NUMA node where affinity is set
17 Ctrl_SetHostAffinity(host_aff);
18
19 Ctrl_Thread threads;
20 Ctrl_ThreadInit(threads, size_x, size_y);
21
22 CTRL_BLOCK (1)
23 {
24 PCtrl ctrl = Ctrl_Create(CTRL_TYPE_CUDA, policy, device);
25
26 HitTile_int mat
27 = Ctrl_DomainAlloc(ctrl, int, hitShapeSize(size_x, size_y));
28 HitTile_int mat2
29 = Ctrl_DomainAlloc(ctrl, int, hitShapeSize(size_x, size_y));
30 HitTile_int tmp;
31
32 for (int i = 0; i < num_images; i++) {
33 // COMPUTE NEW IMAGE
34 Ctrl_Launch( ctrl, Mandelbrot, threads, CTRL_THREAD_NULL, mat
35 , threshold, x1, x2, y1, y2 );
36
37 // SWAP RESULT-COMPUTE MATRICES
38 tmp = mat2;
39 mat2 = mat;
40 mat = tmp;
41
42 // PROCESS RESULT IMAGE
43 int *result = &p_results[i];
44 Ctrl_HostTask( ctrl, Count_And_Store, mat2, result );
45 x1 += zoom * (x2 - x1);
46 x2 -= zoom * (x2 - x1);
47 y1 += zoom * (y2 - y1);
48 y2 -= zoom * (y2 - y1);
49 }
50
51 /* PRINT RESULTS */
52 printf("%d ", p_results[num_images-1]);
53
54 Ctrl_Free(ctrl, mat, mat2);
55 Ctrl_Destroy(ctrl);
56 }
57
58 free(p_results);
59 return 0;
60 }

Fig. 3. Main code implementation for the calculation of the Mandelbrot example using the Controller library.
The core of the program is a structured block preceded by the
CTRL_BLOCK macro (line 22). This macro declares the number 
of Controller objects to be used inside the structured block that 
follows. Among other tasks, this macro creates OpenMP threads to 
manage the different controllers.

The structured block (lines 22-56) contains the program it-
self. It first creates the Controller object, selects the backend, the 
policy, and the device chosen above (line 24). Lines 26-29 de-
clare and allocate two data tiles with the image size, using the
Ctrl_DomainAlloc() function. Each invocation of this function 
allocates two buffers, one in the host and one in the device, that 
represent the data of the same tile. The Controller model trans-
parently coordinates the execution of code and the data transfers 
between them in order to keep consistency, thus ensuring that the 
code executing in the GPU device or the host works with cor-
rect and updated data. Line 30 declares an auxiliary variable to 
6

perform swaps between these tiles, and lines 32-33 define the 
window ranges, which will be updated at the end of each itera-
tion.

The main iteration of the program (lines 32-49) first launches 
the kernel to compute the image (lines 34-35). The Ctrl_
Launch() function inserts the request of a new computing task 
into the Controller queue. This function receives the Controller ob-
ject; the kernel name; the variable that contains the logical thread 
space; a parameter that allows, if needed, the group size automat-
ically chosen by the framework (not used in this example) to be 
modified; and the actual parameters to be received by the chosen 
kernel.

The rest of the code allows the processing of the image just cal-
culated with the launch of the calculation of the following image 
to be overlapped. To do so, the code exchanges the images using 
a double buffer technique (lines 38-40), and processes the newly 
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calculated image using a host task (line 44). Lines 45-48 update 
the window size and position for the following iteration.

The call to the host task in line 44 inserts the request of a new 
host task into the Controller queue. In the default behavior, that we 
call “implicit mode”, each time a new task is prepared for execu-
tion by the Controller scheduler, the scheduler first checks whether 
the input structures needed have already been retrieved from the 
corresponding device. If such is not the case, a previous request 
is inserted into the corresponding device queue to retrieve these 
values. The Controller programming model also offers a pair of
Ctrl_MoveTo() and Ctrl_MoveFrom() functions that allows 
an experienced programmer to manually insert these requests into 
the Controller queue (“explicit mode”). In applications that launch 
different kernels and host tasks, these advanced functions allow 
some data movements to be prioritized, leading to a better per-
formance. Explicit data-transfers are compatible with the implicit 
mode to force data transfers at specific places.

After the main loop, line 52 prints a signature of the last image; 
line 54 frees the memory previously allocated for the tiles in both 
host and device; and line 55 destroys the Controller object. Finally, 
after the structured block, other structures used by the host are 
freed, and the program finishes (lines 58-60).

After showing the main characteristics of the Controller frame-
work programming, the following section introduces the CtrlEvents 
proposal, which simplifies and improves the efficiency of data-
dependency analysis, and the coordination of both device compu-
tations and host tasks that include time-consuming, generic oper-
ations, such as input/output.

4. Managing devices synchronization: the CtrlEvents proposal

In this section, we present a proposal for a new abstraction 
and implementation of the system to execute asynchronous opera-
tions in the Controller model in a portable and efficient form. We 
first formally define the operations involved in the asynchronous 
programming model. Then, we discuss how to design a synchro-
nization model that supports these operations. After that, we focus 
our analysis on how implicit communications can be automatically 
derived. Finally, the fourth subsection introduces CtrlEvents, a pro-
posal that offers a portable and efficient way to use all the features 
described, across different backends.

4.1. Asynchronous model operations

In this section, we first formalize the asynchronous program-
ming model operations, in order to simplify the discussion of the 
proposal and its implementation. The transactions between the 
host and the device can be described as a Sequence of Operation 
Requests (R = {r0, ..., rn}) issued by the coordination code executed 
in the host. An operation request ri should be one of the follow-
ing1:

• Allocate: Alloc(x, l). A request to allocate a data structure in 
the host and/or device memory. The parameter x represents a 
data structure and l represents the location where memory is 
allocated (Host, Device, or Both).

• Deallocate: Free(x). A request to deallocate the memory im-
age/s of a data structure x.

• Host-to-Device: HTD(x). A request to transfer the values of the 
data structure x from the host memory space to the device 
memory space. Memory in both sides should have been allo-
cated first.

1 Unless otherwise indicated, these are non-blocking execution requests.
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• Device-to-Host: DTH(x). A request to transfer the data values 
of x from the device memory space to the host memory space.

• Kernel launching: KL(f, In, Out). A request to execute a kernel 
in the device, as soon as its parameters are available. It re-
ceives a function name f and two sets of data structures as 
parameters. The set In indicates the references to data struc-
tures that are inputs. The set Out indicates the references to 
data structures that are outputs. The same data structure may 
appear in both the input and output sets of references, indi-
cating that the content is both read and written during the 
kernel execution.

• Host-task launching: HL(g, In, Out). A request to execute a 
function g in the host, as soon as its parameters are avail-
able. It has the same format as the kernel-launching requests, 
including the input and output sets.
Kernels and host-tasks can also have a set V of parameters 
received as values: We omit this in their formal definitions 
because these parameters are not related to dependencies or 
to the problem of data transfers.

• Wait: Wait(x). Blocks the execution of the host coordination 
code until all requests involving the data structure x have fin-
ished. In many programming models, such as CUDA, this op-
eration is implicit by default after DTH(x) blocking requests, 
although it can be relaxed by the programmer using explicit 
asynchronous transfers. In our asynchronous model, this oper-
ation is used only when the coordination code needs to use 
values retrieved from the device. For example, this operation 
would be necessary in a loop with a convergence condition 
that is calculated with a reduction operation in the device.

4.2. Designing a synchronization model

The original Controller execution policy module was syn-
chronous, thus executing each operation only after the previous 
requests have finished. In order to choose a synchronous or asyn-
chronous policy at runtime, not only when creating the Controller 
but even during the execution, we design a new execution pol-
icy module for asynchronous operations and we adapt the original 
synchronous module to use the same internal mechanisms. Both 
modules are fully compatible and the policy can be changed at 
any time. Each operation request is processed synchronously or 
asynchronously with respect to previous requests, depending on 
the active policy when the request was launched.

In our proposal, the order of the kernel’s execution is strictly 
preserved. The decision of which kernels should be or not exe-
cuted concurrently, in order to improve the overall performance 
of the application, is a problem that is orthogonal to the overlap-
ping of data transfers with kernel or host-task execution, and it 
is beyond the scope of this work. Host-tasks execution requests 
are also executed in order. In the asynchronous model, host tasks 
and kernels can be overlapped if dependencies allow it (preserv-
ing their partial orders), and data transfers can be overlapped with 
both kernels and host-tasks execution.

The internal rules that decide when a request can be safely 
overlapped with others are designed by studying the dependen-
cies between the different types of requests, and taking into ac-
count the input/output role of their parameters. Each data struc-
ture can have at most two memory images, one in the host 
and one in the device. The kernel, host task, and data trans-
fer requests between them are analyzed, considering them as a 
multiple-reader/multiple-writer problem. The dependencies gener-
ated by this scheme are depicted in Fig. 4. The rules for asyn-
chronous execution associated to each operation follow:

1. Alloc(x,l): All subsequent requests involving the use of the data 
structure x should wait until the allocation of x has finished.
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Fig. 4. Dependencies between request types. Rounded boxes identify request types, 
using the x data structure as parameter. We distinguish between KL or HL requests 
that use x with an input or output role. For clarity, the Wait and Alloc/Free op-
erations are skipped in the figure. Inside each box, we represent in small boxes 
whether the request reads or writes in the host or device memory image of x. 
Arrows express dependencies between request types implied by the use (read or 
write) of the memory images of x. Requests that are not linked with arrows can 
be executed concurrently. Remember that this model does not consider the case of 
several concurrent kernels or several concurrent host tasks.

2. Free(x): A request for deallocating x should wait until all the 
previous requests involving x have finished.

3. HTD(x): Before executing this request, wait for pending oper-
ations on x if: (a) x is a parameter of a non-finished DTH op-
eration; (b) x appears as a parameter (input or output) of any 
previous non-finished kernel (KL operation); or (c) x appears 
as an output parameter of a non-finished host-task execution 
(HL operation).

4. DTH(x): Before executing this request, wait for pending op-
erations on x if: (a) x is a parameter of a non-finished HTD
operation; (b) x appears as an output parameter of any previ-
ous non-finished kernel (KL operation); or (c) x appears as an 
Fig. 5. Execution of a set of operations in synchronous (
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input or output parameter of a non-finished host-task execu-
tion (HL operation).

5. KL(f,I,O): x ∈ I, y ∈ O : Before executing this request, wait for 
pending operations on x if x is a parameter of a non-finished 
HTD operation; before executing this request, wait for pend-
ing operations on y if y is a parameter of a non-finished HTD
or DTH operation. Wait also for any previous non-finished KL
operation.

6. HL(g,I,O): x ∈ I, y ∈ O : Before executing this request, wait for 
pending operations on x if x is a parameter of a non-finished 
DTH operation; before executing this request, wait for pend-
ing operations on y if y is a parameter of a non-finished HTD
or DTH operation. Wait also for any previous non-finished HL
operation.

7. Wait(x): Wait until all previous operations with x as parameter 
are finished.

4.3. Differences between synchronization models: an example

To better show the differences between synchronous and asyn-
chronous execution models, suppose that a and b are tiles that 
have been just initialized in the host. After that, the host coordi-
nation code launches the following sequence of operations:

1. K 1 = K L(I = {a}, O  = {a})
2. H1 = H L(I = {a}, O  = {a})
3. K 2 = K L(I = {b}, O  = {b})
4. H2 = H L(I = {b}, O  = {b})
5. W 1 = Wait(a)

6. W 2 = Wait(b)

Fig. 5 represents the sequence of operations that are carried out in 
synchronous and asynchronous mode. In the figure, H T is the Host 
Task execution thread, D H T is the Device-to-Host stream/queue, 
H T D is the Host-to-Device stream/queue, and K is the Kernel ex-
ecution stream/queue. Solid arrows represent the synchronizations 
that are implemented with events in both policies. The dashed ar-
top) and asynchronous (bottom) execution models.
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Table 1
Rules to automatically insert data transfer operations. The rule triggered depends 
on the request type (KL or HL); the input/output role of the parameter tile x; and 
the previous status of the tile. A warning is issued when a computation that uses x
as input is invoked before the data has been previously initialized.

Operation sh(x) sd(x) Actions

K L : x ∈ I 0 0 Warning
0 1 -
1 0 sd(x) = 1; issue H T D(x)
1 1 -

K L : x ∈ O 0 0 sd(x) = 1
0 1 -
1 0 sh(x) = 0; sd(x) = 1; issue H T D(x)
1 1 sh(x) = 0

H L : x ∈ I 0 0 Warning
0 1 sh(x) = 1; issue DT H(x)
1 0 -
1 1 -

H L : x ∈ O 0 0 sh(x) = 1
0 1 sh(x) = 1, sd(x) = 0 ; issue DT H(x)
1 0 -
1 1 sd(x) = 0

row represents the extra synchronization that only appears in the 
synchronous model.

4.4. Deriving implicit communications

An important design decision for maximum efficiency is the 
choice of the dependency-checking and memory-consistency pre-
serving mechanisms. We introduce in the original HitTile struc-
tures (described in Sect. 3.2) new meta-data to record the status 
of events and the memory consistency information. Thus, the sta-
tus of a HitTile can be directly checked and modified by the library 
functions at runtime.

The need to issue HTD or DTH operations to keep the memory 
consistency between host and device images can be detected when 
the operations in the queue are evaluated. While a kernel or host 
task is evaluated for dependencies, the meta-data in the tiles are 
updated. These updates express the future state of the parameters 
regarding memory consistency and synchronization events when 
the operation will be finally executed, after all the waiting condi-
tions are met. Thus, the next time a tile is used, during a request 
evaluation, whether a data transfer is needed to ensure memory 
consistency can be derived.

This process is carried out as follows. Let x be a HitTile struc-
ture. Let sh(x) → {0, 1} and sd(x) → {0, 1} indicate the state of the 
host and device memory images of x respectively, where 0 rep-
resents a non-updated state, and 1 represents an updated state. 
When allocating images, the initial allocation operation Alloc(x, l)
sets both bits to 0. In practice, it indicates that none of the images 
are valid. During the evaluation phase of the request, if the request 
uses the tile as output parameter, it means that either the host or 
the device will write its image. In this case, the corresponding bit 
is set to 1. If the counterpart bit was also 1, it is cleared (indicating 
that the copy of the counterpart will not be updated), and a data 
transfer operation is inserted into the device queues to guarantee 
consistency in order to avoid false sharing issues. If the request 
being evaluated states that the tile will be used as input by one 
side, and its bit indicates that the copy will not be updated at that 
time, a data transfer operation is inserted into the device queues 
before the operation being evaluated, and its bit is set. Finally, if 
the tile is used as input/output, the rules for input and for output 
are applied in this order.

Table 1 summarizes the rules to detect and request a data 
transfer operation, and to update the state indicators in the Hit-
Tile, when a kernel or host task is evaluated. When these rules are 
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applied, explicit DTH or HTD requests are no longer needed in the 
coordination host code.

Since operations are non-blocking, the queue evaluation pro-
cess can easily advance faster than the computations. Thus, in 
practice, the data transfer operations are submitted to the device 
queues earlier than the beginning of the execution of the kernel or 
host-task execution that requires them. In any case, correctness is 
ensured.

Explicit data transfers can also be included in the code if the 
programmer finds opportunities to prefetch data on the device or 
host before the coordination code inserts the corresponding tasks 
into the queue. These explicit operations update the state indica-
tors directly, maintaining consistency with implicitly-derived trans-
fers.

4.5. The CtrlEvents proposal

Having formally defined the operations involved in the asyn-
chronous programming model; discussed how a synchronization 
model that supports these operations can be designed; and hav-
ing described how implicit communications can be automatically 
derived, we now introduce CtrlEvents, a proposal that offers a 
portable way to use all the features described across different 
backends in an efficient way.

In [35] we introduce a Controller backend specifically designed 
for FPGA devices using OpenCL. In this work, we generalize that 
previous proposal to make it portable and interoperable for dif-
ferent backends with different technologies. This work presents re-
sults for the CUDA and OpenCL backends for NVIDIA and AMD GPU 
devices. The current Controller version also includes an OpenMP 
backend for multi-core CPUs, an OpenCL backend for Intel FPGAs, 
and a Xilinx Vitis backend for Xilinx FPGAs, using the same ab-
stractions.

CtrlEvents and events adapter CtrlEvents is an abstraction to repre-
sent event objects used for synchronization in different technolo-
gies, such as CUDA, OpenCL, OpenMP, etc. It is conceptually an 
abstract class, with a different implementation for each technology. 
In C language, we implement its fields with a union structure, with 
specialized fields to create synchronization points and triggers for 
different operations using the features offered by the target tech-
nology.

Fig. 6 shows the process in detail. A Controller instance is asso-
ciated at construction time with a specific device and with a tech-
nology to manage it. When an operation is requested (1), the task 
is inserted into the queue. Then, the new execution policy module 
calls the API of the Events Adapter (2) to interact with the events 
information stored in the HitTiles used as parameters, and to trans-
form the requests to the proper technology associated with the 
Controller instance. Once the operations are enqueued/launched 
into the device queues, the corresponding drivers are responsible 
for coordinating the execution of the kernels and data transfers (3), 
following the schedule implicit on the event triggers programmed 
by the execution policy and the events adapter.

The Events Adapter currently supports OpenCL for GPUs and 
FPGAs, CUDA for NVIDIA GPUs, and sets of cores with OpenMP 
for parallel computing with CPUs. In the case of OpenCL, it en-
queues operations and event triggers in the OpenCL driver queues. 
In the case of CUDA, operations are launched in CUDA streams, us-
ing CUDA events to synchronize them. In the case of OpenMP, the 
kernel executions are implemented as OpenMP tasks, allowing the 
programmer to choose the particular cores to be used, thanks to 
an affinity control system provided by our library. Using OpenMP 
locks, we have both implemented synchronizations for the event 
abstraction, and a queue that is similar to OpenCL queues or CUDA 
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Fig. 6. The Controller model with CtrlEvents support: White boxes indicate the elements of the original model. Light gray elements are re-designed or introduced to support 
the CtrlEvents proposal. Dark gray shaded boxes indicate the operations and activities requested to the drivers of lower-level programming models associated with different 
Controller backends.
streams. As a result, all device types are interoperable using the 
same abstractions.

Host-task synchronization Execution and synchronization with dif-
ferent technologies is more complex for the host task than for 
kernels. In all cases, we use a different queue or stream (depending 
on the lower-level technology) to enqueue host-task operations. 
We have found that the most efficient and versatile mechanism 
to implement the synchronization with the host task is different 
for each low-level technology. To offer different, compatible imple-
mentations for our host tasks, the host-task declaration creates a 
wrapper that calls the function containing the actual user code. 
The wrapper is launched as an OpenMP task each time the host 
task is invoked, and implements a different synchronization mech-
anism that can be chosen by the events adapter, depending on the 
particular backend used. In OpenCL, the wrapper is synchronized 
with operations in other queues using the event-wait functionality 
and user-defined events. In CUDA, the wrapper function is syn-
chronized with other stream operations using the CUDA interface 
to call host functions. Finally, in OpenMP, the host task is simply 
synchronized with the native OpenMP task synchronization mech-
anism. Thus, the events adapter and the host-task wrapper enclose 
all the technology dependent details.

Elimination of the Controller internal queue With the proposed so-
lution, the execution policy takes the decisions, and the events 
adapter introduces all the synchronization control needed in the 
lower-level technology. The execution control is now carried out 
by the lower-level drivers in the most efficient way. Thus, there is 
no need of internal queues in the Controller backends. In particu-
lar, the main queue to store and process operation requests is no 
longer needed and can be eliminated. Instead, the requests can be 
directly processed by the execution policy and the Events Adapter, 
returning the control to the host code as soon as the events and 
operations are enqueued in the lower-level technology driver (see 
the discarded queue in Fig. 6). This leads to an additional slight 
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improvement in the efficiency of processing the operation requests, 
avoiding the small overheads associated with the synchronizations 
with the queue control, originally executed by a different thread 
that is no longer needed.

5. Experimentation

In this section, we describe an experimental study to evaluate 
the potential advantages and constraints of the asynchronous ex-
ecution model implemented with CtrlEvents in the Controllers v2 
library, comparing with other state-of-the-art programming mod-
els. We show how the proposed implementation of CtrlEvents per-
forms efficiently in different scenarios of computation load, and 
balance between data transfers and host/device computations. Both 
synchronous and asynchronous versions of programs are studied 
to show the overheads introduced and the level of asynchronicity 
exploitation achieved by the different programming models con-
sidered.

The section includes: (1) A description of the case study ap-
plications considered; (2) a description of the experimental envi-
ronment and setup; (3) a performance study of our proposal; and 
(4) a development effort comparison between using the Controller 
model with CtrlEvents and using CUDA, OpenCL, SYCL or dOCAL 
directly.

The Controllers v2 library with CtrlEvents, all codes used in the 
study, and the whole set of experimental data are freely available 
at the Controllers repository [42].

5.1. Case studies

To test our approach and implementation, we select three dif-
ferent applications, one with four variants, to obtain a total of 
six case studies. They are representative of the different situations 
that may arise, including scenarios with memory, compute, com-
munication, and input-output bound situations. There exist other, 
well-known set of applications that could be used for these pur-
pose, such as the NAS Parallel Benchmark (NPB) [3]. There are 
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indeed several NPB implementations for GPU devices, e.g. [2]. All 
of them implement the original algorithm specifications, execut-
ing the computation in a single GPU device. All the NPB programs, 
both kernels and pseudo-applications, have an initialization stage, 
a computation stage (a single kernel or a sequence of kernel ex-
ecutions), and a last stage to move the results to the host in or-
der to check the correctness. Thus, there are no kernel execution 
and data transfer interleaving, and no possibilities to exploit asyn-
chronous data transfers for overlapping them with computation. 
Instead, the applications chosen for this paper are based on real 
GPU benchmarks or applications, presenting potential overlapping 
of data-transfer and computation using asynchronous operations. 
This feature is common in streaming applications.

The first one is an iterative stencil program, a well-know exam-
ple of memory-bound kernel. On each iteration, the result matrix 
is transferred to the host to be stored there, in order to generate 
an animation of the simulation evolution. The computational load 
of the device kernel is smaller than the data transfers between 
device and host. Thus, it can become an example of data-transfer 
bound application. Nevertheless, the higher cost of the memory-
copy operations to save the results in a host-task makes the whole 
application a memory-bound case. This application is appropriate 
to test the effects of overlapping host-task and costly data-transfers 
with small computational loads in the device.

The second one is based on iterative matrix multiplications on 
the device, with a non-trivial post-processing of the results in a 
host task. In this case, the computational cost grows with the in-
put size faster than the cost of the data transfers. For very small 
sizes (less than 512 ×512 elements) it is a data-transfer-bound ap-
plication. Nevertheless, the execution times are so small for those 
input sizes that it is faster to execute the whole application in the 
CPU. Thus, for real useful input sizes it becomes a compute-bound 
application in the device. This application is appropriate to test the 
effects of overlapping high device-computational loads with data-
transfers and host-task that becomes relatively lower and lower 
with the input size.

The last application applies a image filter on the frames of a 
video stream. We consider variants combining both files and mem-
ory as input/output channels, to represent the behavior of the filter 
at different stages of an image processing pipeline. The different 
versions explore from input/output bound to memory-bound sce-
narios. These programs feature very fast kernels with lower load 
than the communications, bidirectional data transfers, and host 
tasks with different execution costs, presenting a demanding sce-
nario to exploit asynchronicity for concurrency exploitation.

We now describe the details of each application considered.

Hotspot Rodinia’s Hotspot stencil computation. The base program 
for this case study is included in the Rodinia benchmarks suite [8]. 
It computes the stability point of Poisson’s Partial Differential 
Equation (PDE) for heat diffusion. It uses a Jacobi iterative method 
on a 2-dimensional discrete space. It is a 4-point stencil program 
that executes a fixed number of time iterations. The kernel ex-
ploits the shared-memory for both spatial and temporal locality. 
We test the program with 300 iterations, and a height parame-
ter of 4, meaning that each launched kernel executes 4 matrix 
update iterations using halos of width 4. In order to integrate it 
in a production stencil framework that creates an animation of 
the computation evolution, and to check partial results, we add a 
transfer of the result matrix to the host after each kernel launching 
operation, saving it in a different host buffer with a host task. This 
leads to opportunities for communication and computation over-
lapping.

Matrix Pow This program is an evolution of the 2mm and 3mm
programs in the PolyBench Benchmarks [33], to generate a chain 
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of matrix multiplications of arbitrary length. It computes the nor-
malization of the matrices Ci = Ai : i ∈ [1 : n]. In the device, it 
iteratively computes the multiplication of the original matrix by 
the partial result of the previous step: Ck = Ck−1 × A : k ∈ [1 : n]
where C0 = A. The kernel to multiply matrices is obtained from 
the CUDA Toolkit samples [30], and it has also been ported to 
OpenCL. This optimized kernel uses shared memory to take ad-
vantage of the GPU resources. Each partial result C i is transferred 
to the host. A host task computes the normalization of the matrix 
and saves it in another buffer. The matrix normalization consists 
of the following phases: (a) Determining the minimum and maxi-
mum values in the matrix; (b) subtracting the minimum from each 
element of the matrix, and dividing each element by the maxi-
mum; (c) computing the elements norm as the square root of the 
sum of each element to the power of two; and (d) dividing each 
matrix element by the elements norm.

Sobel The Sobel Operator [14] processes gray-scale images to de-
tect edges. It applies two stencil operators to the input image, to 
obtain the derivatives in the X and Y directions. The gradient mag-
nitude is computed on each cell as the Euclidean distance of the 
corresponding cells on the matrices obtained as the output of the 
filters. For our experimental study, we choose an implementation 
that iteratively processes frames from a video in YUV format [10]. 
It reads an input video stream from a file, frame by frame. Each 
frame has three components that are sent to the device. The kernel 
of this application contains all the operations of the Sober filter, 
and the kernel is applied to each component separately. The result-
ing image is transferred back to the host to store it in an output 
video file. Each component of a frame is read, written, computed, 
or transferred separately. To simulate different scenarios of the ap-
plication of the Sobel filter, alone or as part of a parallel image 
processing pipeline, we consider four scenarios: (a) The input/out-
put images are read from and written to files (this is the original 
program, that we name “File to File”), an I/O-bounded situation; 
(b) the input images are read from a file, but the output images 
are stored in memory, to simulate the starting stage of a pipeline 
(that we name “File to Memory”); (c) the input images are read 
from a memory buffer, but the output images are written to a file, 
to simulate the last stage of a pipeline (that we name “Memory 
to File”); and (d) the input/output images are retrieved and stored 
in memory buffers, to simulate a stage in the middle of a pipeline 
(that we name “Memory to Memory”), a memory-bounded situa-
tion. The computation of the Sobel filter is a very fast operation on 
a GPU. Thus, this case study program is very demanding in terms 
of concurrency exploitation and asynchronous data-transfer exe-
cutions. Each case presents different memory vs. computation or 
host tasks vs. kernels load balance, and introduces a different cost 
variability in the host tasks. The File to File case represents the ex-
treme situation of higher load in the host-tasks (I/O bounded) and 
the Memory to Memory case represents the extreme situation of 
lower load in the host-task (memory-bounded). Thus, they are the 
two most interesting cases.

5.2. Experimental environment and setup

The experiments have been conducted in a server provided 
with GPU accelerators of different vendors. It features two Intel(R) 
Xeon(R) Platinum 8160 CPU @ 2.10GHz, an NVIDIA Tesla V100 PCIe 
32GB GPU, and an AMD Vega 10 XT Radeon PRO WX 9100 GPU. 
The server runs a CentOS 7 operating system and the jobs are 
launched from a frontend using Slurm.

The compiling and execution tools and libraries include GCC 
10.3, LLVM 12.0.0, hipSYCL 0.9.1, LLVM-INTEL 12.0.0 (the Intel back-
end for SYCL on top of CUDA), CUDA 11.2, and ROCm 4.1.0 for 
the hipSYCL support of AMD GPUs. The OpenCL libraries included 



Y. Torres, F.J. Andújar, A. Gonzalez-Escribano et al. Journal of Parallel and Distributed Computing 179 (2023) 104708

Fig. 7. Experimental results for the Hotspot case study, using CUDA (“NVIDIA” plots) and OpenCL (“AMD” plots).
in the corresponding CUDA and ROCm releases are used for the 
OpenCL experiments.

Programs for each case study are developed in CUDA, OpenCL, 
SYCL, dOCAL and Controller. We develop two versions of the ref-
erence CUDA programs, and two versions of the reference OpenCL 
programs: A simple synchronous one (Ref. Sync), and a manually 
optimized version with the best possible combination of asyn-
chronous operations (Ref. Async). The Sync version is in fact equiv-
alent to the original Controller model (Sect. 3), but with the Con-
troller internal queue removed as described at the end of Sect. 4.5. 
Therefore, the performance figures shown by this Sync version are 
slightly better than those that can be obtained with the original 
Controller proposal [27].

The SYCL codes are compiled first with hipSYCL, using the CUDA 
backend for NVIDIA’s GPUs, and a different compilation using the 
ROCm backend for AMD GPUs. The SYCL codes are also compiled 
for NVIDIA with the Intel LLVM-CUDA backend. Synchronous ver-
sions of the SYCL programs are also developed, introducing ex-
plicit synchronization code to also test the internal implementation 
mechanisms for this kind of operations. Regarding dOCAL, we have 
run the experiments with the use of pinned buffers for better per-
formance. We have used OpenCL to create an additional kernel to 
allow task synchronization.

We describe now the issues encountered. Regarding SYCL codes, 
file operations inside kernels to be executed by a CPU generate 
compile-time or runtime errors. We solve this issue by placing file 
operations in the coordination host code. This, in turn, forces us to 
add additional synchronization operations, because the automatic 
12
system does not take into account dependencies between kernels 
and operations in the host coordination code. Regarding the Intel-
LLVM compiler, trying to launch CPU kernels and GPU kernels in 
the same program leads to a runtime error, since it only supports 
one type of device at a time. This forces us to remove CPU kernels 
when using this compiler, moving the tasks assigned to them to 
the host coordination code, thus needing additional synchroniza-
tion operations. This affects the Matrix-Pow code, which needs to 
execute matrix normalization in a host task.

The Controller programs are compiled with OpenCL or CUDA 
specialized kernels. The executable names are hipSYCL Sync, hipSYCL 
Async, Intel-LLVM Sync and Intel-LLVM Async. The Controller code can 
select the synchronous or asynchronous execution policy at run-
time. Thus, the code is the same in both cases. In the following 
discussion, we use the names Ctrl Sync and Ctrl Async to refer to 
the executions using the synchronous or asynchronous policies, re-
spectively.

For Hotspot and Matrix-Pow, we conduct two types of experi-
ments: Iterations, and Sizes. In Iterations, for a fixed input size, we 
modify the number of iterations, to test the effect of accumulated 
overheads and the queue management when the host code sub-
mits many tasks. In Sizes, for a fixed number of iterations, we mod-
ify the input sizes, to test the effect of different workloads and the 
balance between computation and data-movement times. For the 
Hotspot program, we measure 300 iterations of the program using 
matrices with input sizes from 1 000 × 1 000 to 15 000 × 15 000, 
and also a fixed input size of 2 500 × 2 500, with iterations from 
100 to 600. For Matrix-Pow, we test the program using iterations 
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Fig. 8. Experimental results for the Matrix Pow case study, using CUDA (“NVIDIA” plots) and OpenCL (“AMD” plots).
from 20 to 120, with fixed input size of 2 048 × 2 048, and also 
with input sizes from 1 024 × 1 024 to 8 192 × 8 192 and a fixed 
number of 40 iterations. In the Sobel programs, the input size is 
fixed due to the specific size of the video frames. Thus, only the 
effect of the number of iterations/frames can be explored. The pro-
gram is tested with 20 to 100 frames of a high-definition video 
(Full HD images of 1 920 × 1 080 pixels).

The design of this experimental study minimizes the internal 
validity threats. The experiments are conducted with the machines 
in the same conditions, with controlled temperature and exclusive 
use to avoid interference from other processes during the exper-
iments. Several measures are done at different times, and data 
is statistically analyzed. A full range of valid values of the input 
parameters is considered. Thus, history, maturation, instrumenta-
tion and testing threats are minimal. The same combinations of 
study cases and parameter values are tested for every program-
ming model considered, eliminating selection bias and attrition 
threats. Regarding external validity, the selection of the study cases 
and input parameters ensure that we are checking situations with 
bottlenecks in either the host-task or the kernels, with memory 
bounded, computation bounded, and I/O bounded scenarios, using 
a full range of parameter values that select the different situations 
and tune the amount of potential overlapping. Nevertheless, the 
study is limited to simple iterative applications with regular loads. 
More complex real applications should be tested to further gener-
alize the results.
13
5.3. Performance study

Figs. 7, 8, and 9 show the performance results obtained for the 
different versions of the Hotspot, Matrix Pow, and Sobel case stud-
ies, respectively. Results using the NVIDIA Tesla V100 and the AMD 
WX 9100 are shown in separated plots. Due to the high differences 
of scale, logarithmic scale is used in both, the x- and y-axis.

From the analysis of the performance results, we can draw the 
following observations.

First, a profiler analysis of the execution of the Controller pro-
grams reveals that for each study case and combination of input 
parameters, the bottleneck is in one of the computational units; 
the CPU or the GPU device. On each case, the asynchronous mode 
of CtrlEvents achieves a usage of more than 99% of the bottle-
neck computational unit. The corresponding sequence of either the 
host-tasks or the kernels is executed without any significant delay 
between them, and both the data-transfers and the computations 
in the other computational unit are completely overlapped.

Second, regarding the versions that use CUDA, in almost all 
the cases, the Controller code with synchronous execution policy 
presents the same performance as the synchronous native imple-
mentation in CUDA. The same situation can be observed between 
the Controller code with asynchronous execution policy and the 
asynchronous native CUDA implementation. Remarkable situations 
appear, for example, for the very fast kernels surrounded by data-
transfer operations of the Sobel filter. The results indicate that 
the bottleneck for these programs is always in the host tasks. In 
Fig. 10, we can see a graphical representation provided by the 
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Fig. 9. Experimental results for two Sobel case studies: FTF (File To File) and MTM (Memory to Memory). They represent the scenarios where the host tasks are the slowest 
and fastest respectively. The other cases FTM and MTF present results between them. The results were calculated using CUDA (“NVIDIA” plots) and OpenCL (“AMD” plots).
CUDA visual profiler of the execution on both synchronous and 
asynchronous modes of the Sobel memory-to-memory program. 
As can be seen, the synchronous version sequentially executes all 
operations (kernel executions, communications, and host tasks), 
while the asynchronous version overlaps these operations when-
ever possible. Besides this, the way that the CtrlEvents implements 
the synchronizations with CUDA and OpenCL events makes our 
versions faster than the manual reference implementations, even 
the synchronous one, which simply consist of a sequence of block-
ing operations. Regarding overall performance, the Controller asyn-
chronous programs process up to 500 frames per second for “File 
to File”, or near 1 000 frames per second for “Memory to Memo-
ry”. A similar advantage can be noticed in the Hotspot programs, 
but only for the AMD platform with OpenCL. Therefore, with Ctr-
lEvents the overlapping is in general complete, as in the case of 
Matrix and Hotspot. The exceptions occur when the size of the 
data to be transferred is too small, or if there are limitations due 
to synchronization activities, which is precisely the case of Sobel, 
since the write operations to a file forces a synchronization.

Third, the current implementation of hipSYCL has a problem 
with the queue management, that appears when many requests 
saturate the queue. In the synchronous versions of the programs, 
the problem does not appear because the host code is synchro-
nized with the operations, and the queue has very few requests at 
the same time. In the asynchronous versions, when enough itera-
tions are launched, the queue is saturated, and the execution times 
increase even much higher than the synchronous versions with ar-
14
tificially forced synchronizations. In the “File to File” Sobel filter, 
the execution times are low, and the good balance between the 
communications and computations avoids the problem. For small 
input sizes, the Hotspot case study also shows a very bad perfor-
mance in both synchronous and asynchronous versions. In general, 
the hipSYCL programs perform badly in scenarios with small input 
sizes or low-loaded computations and communications. For sce-
narios with higher loads, such as medium to big input sizes in 
matrix-pow, the hipSYCL asynchronous versions perform as well 
as the Controller and reference programs manually developed and 
optimized in CUDA or OpenCL.

Fourth, as we discussed in Sect. 5.2 the asynchronous SYCL pro-
grams compiled with Intel LLVM-CUDA need an extra synchroniza-
tion to produce correct results. This modification converts them 
into almost-synchronous versions. Thus, the performance is almost 
the same in both asynchronous and synchronous versions. In gen-
eral, these codes perform worse than the synchronous reference 
versions. The only remarkable case of very good performance ap-
pears for the biggest size tested in the Hotspot program, where the 
execution time converges to the one observed for both the asyn-
chronous reference and the Controller codes.

Finally, regarding dOCAL performance, the results for NVIDIA 
of the Sync and Async versions of Matrix Pow and Hotspot are 
clearly worse than those obtained for Controllers and SYCL. With 
respect to AMD, in the case of Matrix Pow and Hotspot, dOCAL 
also performs worse than Controllers and SYCL, although, for the 
biggest problem sizes, dOCAL Async shows similar performance 
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Fig. 10. Screen captures of the CUDA 11.2 Visual Profiler showing a range of approximately 1.4 ms of execution in the Manticore machine of the Controller program 
implementing the Sobel filter, version MTM, with input images and results stored in host memory: Synchronous mode (top), and asynchronous mode (bottom).
figures than those obtained with the Controller Sync version and 
the reference implementation. With respect to Sobel F2F, dOCAL 
has the same problem that we discussed above regarding SYCL: An 
explicit synchronization is needed after each file read/write opera-
tion. Due to its peculiarities, dOCAL does not need a host task, but 
even without it, the execution time is one order of magnitude big-
ger than SYCL and Controllers. Finally, with respect to Sobel M2M, 
the Sync version of dOCAL for NVIDIA works better than HypSCYL, 
and the Async dOCAL version shows the same performance than 
Intel-LLVM Async. However, in AMD, the execution time of both 
the Sync and Async version of dOCAL is one order of magnitude 
bigger than the alternatives studied.

5.4. Development effort measures

This section analyzes the differences in development effort be-
tween all the versions of the developed codes. We consider four 
classical development effort metrics: The number of lines of code, 
Number of tokens, McCabe’s cyclomatic complexity [25], and Hal-
stead’s development effort [17]. The first two measure the volume 
of code that the programmer should develop. The third measures 
the rational effort needed to program it in terms of code diver-
gences and potential issues that should be considered to develop, 
test, and debug the program. The last metric uses both code com-
plexity and volume indicators to obtain a comprehensive measure 
of the development effort. The measured codes include the kernel 
definitions and characterization, the coordination host code, and 
the data structures management. For a fair comparison, they have 
been formatted following the same criteria, with no line breaks in 
expressions or calls to functions, closing curly brackets always on 
their own line, etc. Regarding dOCAL, the complexity measurement 
method counted kernels just as single strings, thus preventing a 
proper measurement. Therefore, just for this comparison, we trans-
formed kernels into separate functions, in order to measure its 
complexity more accurately.

Table 2 shows the results. They indicate that programming us-
ing the Controller library generates a lower volume of code, a 
reduced cyclomatic complexity, and reduced Halstead measures 
than both synchronous and asynchronous versions using CUDA or 
OpenCL (e.g., from 20% to 70% less Halstead’s effort). The high-
est reductions are found when comparing with the asynchronous 
baseline versions, whose native versions in CUDA or OpenCL man-
ually introduce more complex mechanisms for kernel and data 
15
Table 2
Measurements of development effort metrics for the reference and Controller codes. 
It includes a comparison between the number of code lines (LOC), number of code 
tokens (TOK), McCabe’s cyclomatic complexity (CCN) and Halstead’s development 
effort metric (Halstead).

Case study Version LOC TOK CCN Halstead

Hotspot Ctrl (CUDA kernels) 150 1 493 32 475 799
Ctrl (OpenCL kernels) 152 1 520 32 447 411
dOCAL Sync 153 1 646 33 493 637
dOCAL Async 151 1 626 33 484 398
SYCL Sync 165 1 835 32 646 559
SYCL Async 163 1 823 32 641 711
CUDA Sync 162 1 769 33 710 780
CUDA Async 203 2 310 37 1 194 609
OpenCL Sync 242 2 734 37 1 193 405
OpenCL Async 314 3 345 37 1 712 732

Matrix Pow Ctrl (CUDA kernels) 101 929 18 250 311
Ctrl (OpenCL kernels) 106 958 18 229 714
dOCAL Sync 104 1 028 17 233 938
dOCAL Async 102 1 008 17 226 546
SYCL Sync 127 1 353 20 465 916
SYCL Async 125 1 341 20 461 310
CUDA Sync 144 1 297 25 444 197
CUDA Async 205 1 735 25 862 150
OpenCL Sync 203 1 934 25 668 596
OpenCL Async 278 2 383 28 936 740

Sobel filter Ctrl (CUDA kernels) 101 1 338 17 431 889
(File-to-File) Ctrl (OpenCL kernels) 109 1 351 17 433 397

dOCAL Sync 110 1 391 24 479 865
dOCAL Async 109 1 381 24 479 803
SYCL Sync 131 1 726 22 779 085
SYCL Async 130 1 720 22 773 085
CUDA Sync 100 1 324 23 546 646
CUDA Async 167 1 929 30 878 473
OpenCL Sync 151 1 948 18 823 562
OpenCL Async 227 2 505 26 1 249 711

transfer synchronizations. These mechanisms are transparent and 
portable in the Controller programs. A closer look at the codes in-
dicates that, as expected, the higher reduction is found in the parts 
of the host codes related to coordination. The small differences 
between a Controller program using CUDA or OpenCL kernels are 
inside the kernels, or in one extra program argument added to the 
main function in OpenCL version to select the GPU platform, that 
is not needed in the CUDA only version. The coordination code and 
host tasks are completely portable.
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SYCL and dOCAL are based on modern C++ abstractions. The 
same SYCL code is used with both compilers: hipSYCL and Intel-
LLVM. dOCAL abstractions are more powerful than SYCL, presenting 
lower measures except for the notable cases of the slightly higher 
cyclomatic complexity on the Hotspot and Sobel cases. There is 
less volume of code but with more logical branches. The Controller 
programs report clearly better measures than SYCL programs in 
all cases (e.g. 25% to 45% reduction in Halstead’s effort). They 
also show similar measures than dOCAL in most situations, with a 
slight reduction of 5% to 8% in tokens, reductions of less than 10% 
in Halstead’s effort for Hotspot and Sobel, and an increment of 10% 
in Halstead’s effort for Matrix Pow. The Controller codes present 
slightly lower cyclomatic complexity than dOCAL in Hotspot (re-
duction of 3%), slightly higher in Matrix Pow (increment of 5%, 
and a significant reduction of 29% in Sobel. The best case for the 
Controller programs is Sobel, a streaming application that applies 
an image filter to a video stream with potential to overlap kernels, 
host tasks and communications in both directions. In this case the 
Controller program presents the best measures for all the metrics 
comparing with any other model. These results indicate that the 
Controller model abstractions are competitive with other state-of-
the-art high-level abstractions.

6. Conclusion

In this work, we present a proposal to simplify and improve 
the efficiency of the runtime data-dependencies analysis and the 
coordination of both device computations and host tasks that in-
clude generic operations, such as input/output. We discuss the 
design and implementation of CtrlEvents, a functional prototype 
that implements this abstraction. CtrlEvents extends our previ-
ous Controller heterogeneous programming framework, adding the 
possibility of executing asynchronous operations in a portable and 
efficient form, and removing some inefficiencies of the original 
proposal, such as the use of internal queues. We also present 
an experimental study using several iterative programs with dif-
ferent scenarios for asynchronous operations between host and 
device, and several demanding workload scenarios, including typi-
cal streaming operations. Implementations using our proposal and 
two different state-of-the-art SYCL implementations (hipSYCL with 
CUDA and ROCm backends, and Intel LLVM for CUDA) are com-
pared on both NVIDIA and AMD GPUs. The results indicate that 
our solution outperforms the SYCL implementations for most situ-
ations, presenting a good balance between portability, programma-
bility and efficiency. Future work includes a more extensive study 
of the portability and cooperation between different and new types 
of devices, and the behavior with other types of applications.

The benefits of CtrlEvents are related to the asynchronous ex-
ecution and the potential overlapping of computations and com-
munications. Thus, they are limited to iterative or task-based pro-
grams that interleave device and host computations that requires 
memory transfers between them due to dependences. The experi-
mental study presented in this work is limited to simple iterative 
applications with regular loads. More complex real applications 
should be tested in future work to further generalize the results.
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