
Journal of Parallel and Distributed Computing 179 (2023) 104708

Contents lists available at ScienceDirect

Journal of Parallel and Distributed Computing

journal homepage: www.elsevier.com/locate/jpdc

Supporting efficient overlapping of host-device operations for

heterogeneous programming with CtrlEvents

Yuri Torres, Francisco J. Andújar, Arturo Gonzalez-Escribano, Diego R. Llanos ∗

Departamento de Informática, Universidad de Valladolid, Spain

a r t i c l e i n f o a b s t r a c t

Article history:
Received 23 February 2022
Received in revised form 20 December 2022
Accepted 24 April 2023
Available online 5 May 2023

Keywords:
Parallel programming
Heterogeneous programming
Asynchronous operations
Events
GPUs

Heterogeneous systems with several kinds of devices, such as multi-core CPUs, GPUs, FPGAs, among
others, are now commonplace. Exploiting all these devices with device-oriented programming models,
such as CUDA or OpenCL, requires expertise and knowledge about the underlying hardware to tailor
the application to each specific device, thus degrading performance portability. Higher-level proposals
simplify the programming of these devices, but their current implementations do not have an
efficient support to solve problems that include frequent bursts of computation and communication,
or input/output operations. In this work we present CtrlEvents, a new heterogeneous runtime solution
which automatically overlaps computation and communication whenever possible, simplifying and
improving the efficiency of data-dependency analysis and the coordination of both device computations
and host tasks that include generic I/O operations. Our solution outperforms other state-of-the-art
implementations for most situations, presenting a good balance between portability, programmability
and efficiency.

© 2023 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons .org /licenses /by /4 .0/).
1. Introduction

Recent trends towards the end of Dennard scaling and Moore’s
law indicate that future computer systems will become more spe-
cialized and will comprise more complex architectures in terms
of processors, accelerators, memory hierarchies, interconnect on-
chip networks, storage, etc. This trend has been labeled as extreme
heterogeneity [46]. Extreme heterogeneous systems contain more
than one kind of device, such as multi-core CPUs, different types
of GPUs, field programmable gate arrays (FPGAs) and/or digital sig-
nal processors. They have already been seen as the new standard
platforms in the research communities of high-performance com-
puting (HPC), integrated computing, and machine learning [37,23].

Heterogeneous computing enables programmers from different
application domains to accelerate their applications by mapping
calculations to specific devices. Exploiting all these devices with
programming models, such as CUDA [29] or OpenCL [38], requires
expertise in programming the underlying hardware, thus forcing
the programmers to tailor their applications to specific devices, de-
grading performance portability [31].

* Corresponding author.
E-mail addresses: yuri.torres@infor.uva.es (Y. Torres), fandujarm@infor.uva.es

(F.J. Andújar), arturo@infor.uva.es (A. Gonzalez-Escribano), diego@infor.uva.es
(D.R. Llanos).
https://doi.org/10.1016/j.jpdc.2023.04.009
0743-7315/© 2023 The Author(s). Published by Elsevier Inc. This is an open access artic
As we will see in Sect. 2, different high-level heterogeneous
programming frameworks that aim to hide details related to the
management of several devices have been developed in recent
years. However, these frameworks present some limitations. First,
they do not always take into account the needs of some application
types, such as streaming applications [13], where repetitive opera-
tions, both in host and device, should be overlapped efficiently and
transparently with communications and synchronizations. Second,
some of these programming frameworks either require the use of
explicit synchronizations and communications primitives, or the
use of specific mechanisms or programming languages and tools
for different devices, thus increasing the complexity of applications
development. Third, most of them do not include abstractions that
allow a proper asynchronous coordination of device computations
with generic, time-consuming host tasks, such as input/output op-
erations to an external storage device. These limitations lead to
unnecessary synchronizations and overheads.

In this work, we propose a new heterogeneous runtime so-
lution, called CtrlEvents, which handles asynchronous communi-
cations between device computations and host tasks, as well as
supporting different devices in a consistent and homogeneous way.
We also provide a fully-functional prototype, called Controllers
v2, that integrates CtrlEvents in the Controller heterogeneous pro-
gramming framework [27,42].
le under the CC BY license (http://creativecommons .org /licenses /by /4 .0/).

https://doi.org/10.1016/j.jpdc.2023.04.009
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jpdc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jpdc.2023.04.009&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:yuri.torres@infor.uva.es
mailto:fandujarm@infor.uva.es
mailto:arturo@infor.uva.es
mailto:diego@infor.uva.es
https://doi.org/10.1016/j.jpdc.2023.04.009
http://creativecommons.org/licenses/by/4.0/

Y. Torres, F.J. Andújar, A. Gonzalez-Escribano et al. Journal of Parallel and Distributed Computing 179 (2023) 104708
Therefore, the main contributions of this work are the follow-
ing:

• A runtime solution for heterogeneous programming frame-
works, called CtrlEvents, which simplifies and improves the
efficiency of data-dependency analysis, and the coordination of
both device computations and host tasks that include generic
operations, such as input/output.

• A fully-functional implementation of CtrlEvents to efficiently
synchronize device computations, host-task operations, and
data transfers in different kind of scenarios, from highly-
loaded computations and data transfers, to very fast synchro-
nization of low-loaded streaming operations. This implemen-
tation has been integrated into the Controller heterogeneous
programming framework [27].

• An experimental study comparing the performance of Ctr-
lEvents with other state-of-the-art heterogeneous program-
ming frameworks, such as two different SYCL [21] imple-
mentations (hipSYCL [1] and Intel-LLVM for CUDA [9]), using
NVIDIA and AMD GPU platforms. We use six case studies
based on three applications inspired in well-known bench-
marks: Rodinia Host-Spot [8], Polybench MM3 matrix multipli-
cation sequence [33], and an implementation of a Sobel filter
for image processing, applied to video sequences [18,10].

This work shows that the abstraction and techniques proposed
in CtrlEvents lead to highly efficient heterogeneous programs, out-
performing other state-of-the-art solutions in different workload
scenarios. We also present a comparative of several development
effort metrics for different versions of the programs mentioned
above, using the programming frameworks considered in the ex-
perimental study. The joint use of the Controller heterogeneous
programming framework and the CtrlEvents runtime presents a
good balance between ease of programming and efficiency. The
development effort measures are much lower than manually opti-
mized programs with asynchronous communications, programmed
in CUDA and OpenCL, with a reduction of between 20% and 75%
in the number of programming-language tokens. Comparing with
the same programs written in another main-trend solution (SYCL),
the Controller codes sometimes present worse development effort
measures (e.g. 5% to 17% more programming language tokens).
However, in the case of a streaming application that applies an
image filter to a video stream, the Controller program is much sim-
pler (60% fewer programming tokens).

The rest of the paper is organized as follows: Section 2 dis-
cusses the related work. Section 3 presents the Controller het-
erogeneous programming framework used as the starting point to
develop our solution. Section 4 introduces the CtrlEvents proposal
and describes how to implement it in the chosen programming
framework. Section 5 shows the implementation of several study
cases used as benchmarks, and describes the experimental study.
Finally, Sect. 6 presents our conclusions and discusses future work.

2. Related work

Different approaches for heterogeneous parallel programming
have been proposed in recent years. Many of them introduce ab-
stractions that aim to overlap host-device communications and
computation using synchronization mechanisms. In this section we
review the different proposals so far, classifying them in terms of
how they manage the data transfers and synchronization.

2.1. Proposals with explicit data transfers and synchronization

Low-level, hardware-oriented approaches The most intuitive ap-
proach to take advantage of the functionalities available in het-
2

erogeneous system is to manually design and program a tailored
solution of our application, using either vendor-provided or native
parallel programming models, such as CUDA [29], or OpenCL [38].
With this approach, it is possible to efficiently manage the hard-
ware resources and configuration, but the programmer needs an
in-depth knowledge of the target architectures and to manually
manage the synchronization mechanisms. Besides this, the result-
ing application is unlikely to be easily portable to other hardware
configurations.

Abstractions with low-level explicit data transfers Another approach
is to introduce programming abstractions except for the manage-
ment of data transfers, where low-level calls are still necessary. For
example, OmpSs-2 [6] is a programming model composed of a set
of directives and library routines that can be used in conjunction
with a high-level programming language in order to develop con-
current applications. The control flow across tasks is implicitly de-
rived from data-dependency analysis, as in OpenMP. Nevertheless,
the data transfers with GPUs should be explicitly managed with
CUDA or a similar low-level library. As we will show in Sect. 5, the
use of generic task management mechanisms introduces overheads
that can be noticeable when coordinating light-weighted host/de-
vice tasks with data transfers.

Higher level models with explicit data transfers and synchronizations
There exist heterogeneous programming models with higher ab-
straction levels which provide portable mechanisms for commu-
nication and synchronization between host and devices. Some of
them require the explicit invocation of these mechanisms by the
programmer, including the management of asynchronous opera-
tions, streams, or similar concepts. For example, Kokkos [12,36] is
a C++ programming model for writing performance-portable appli-
cations targeting all major HPC platforms. It is designed to target
complex node architectures with N-level memory hierarchies and
multiple types of execution resources. However, the compilation
process requires one type of target device that cannot be changed
at runtime to be selected. Regarding data transfers, by design, the
system never determines where or when a data transfer should be
done in order to keep memory coherence across different devices.
The programmer is the responsible of doing so, by explicitly invok-
ing a specific function (deep-copy) to perform the data transfer. In
Kokkos, only the use of mechanisms such as CUDA unified memory
could avoid the explicit deep-copy calls, but it is a non-portable so-
lution and introduces a performance penalty [39]. Moreover, when
the deep-copy function is used to carry out a data transfer across
different memory hierarchies, it always implies full fence opera-
tions. This means that the runtime system introduces a synchro-
nization of the command queues before and after the data-transfer
to keep memory consistency. [40]. Thus, the data transfer oper-
ations in Kokkos are always synchronous, and the programming
model does not support overlapping data-transfers with computa-
tions in the same device.

HPX [20,11] is a parallel runtime system which extends the
C++11 standard to facilitate distributed operations, to enable fine-
grained, constraint-based parallelism, and to support runtime
adaptive resource management. The data management in GPU
devices should be done explicitly by the programmer using a
lower-level programming model, such as CUDA. It includes explicit
synchronization mechanisms, including a queue abstraction for
data transfers. Other examples in this category include dCUDA [16],
Groute [5], BlasX [48], G-Charm [44] or Executors [7].

2.2. Proposals with implicit data transfers and synchronization

Automatic scheduling of pattern loop iterations and other task-based
approaches Some tools and libraries propose abstract approaches

Y. Torres, F.J. Andújar, A. Gonzalez-Escribano et al. Journal of Parallel and Distributed Computing 179 (2023) 104708
that are oriented towards the automatic, parallel execution of loops
in heterogeneous devices. For example, Raja [4,22] is a C++ ab-
straction layer, developed at LLNL, that aims to enable perfor-
mance portability. It targets loop-level parallelism for C++ appli-
cations, relying solely on standard C++11 language features for its
external interface. Raja has internal extensions that use OpenMP,
CUDA, and AMD HIP to manage heterogeneous devices. Other ex-
amples include LogFitc [47], or Maat [32]. There are also strate-
gies for specific problems, such as the hybrid CPU/GPU approach
described in [45] for iterative stencil computations, that intro-
duce asynchronous communications and load-balancing across de-
vices. There are also more generic task-oriented approaches with
support for GPU accelerators that automatically derive dependen-
cies to build a task-graph at runtime, using sophisticated graph-
analysis techniques to schedule both the tasks and the data trans-
fers needed [41]. The models in this category do no support the
coordination of generic task graphs and data dependencies, such
as those generated across different nested-loop sections.

Generic, high-level, heterogeneous programming approaches Several
models use more generic programming abstractions, trying to
achieve both code and performance portability in heterogeneous
programming. Some of them are based on modern C++ features.
For example, SYCL [21] is a standard model for cross-platform
programming. Kernels are organized by a task graph that is im-
plicitly constructed by the SYCL runtime. The control flow and the
data communications can also be implicit. The SYCL ecosystem
currently contains four major SYCL implementations: Codeplay’s
ComputeCpp [28], Intel’s oneAPI [19], triSYCL [43], and hipSYCL [1]
compilers. In general, the current implementations rely on differ-
ent and non-compatible compiler back-ends for different types of
devices. TriSYCL only supports CPUs and Xilinx FPGAs. HipSYCL
supports CPUs and GPUs from different vendors, but not FPGAs.
ComputeCpp supports CPUs and NVIDIA GPUs. Regarding oneAPI, it
only supports the combination of CPU kernels with Intel GPUs and
Intel FPGAs. There is a project to support NVIDIA devices, but us-
ing an alternative CUDA backend that takes advantage of the LLVM
infrastructure [9]. Thus, all these implementations have limitations
to operate with certain combinations of devices.

Another model in this category is dOCAL [34]. It presents a
high-level abstraction API in C++ to simplify the implementation
of distributed OpenCL/CUDA programs. It automatically manages
and minimizes data transfers. dOCAL is compatible with existing
OpenCL and CUDA libraries; can be connected with auto-tuning
systems and can profile runtime behavior of OpenCL and CUDA
programs; and it can leverage the usage of Unified Memory and
pinned memory that can accelerate, hide or even avoid data trans-
fers between devices’ memories and the main memory.

All these models advocate the use of a single-code-for-multiple-
devices approach. This includes the encapsulation of CPU tasks in
kernels, in order to take advantage of parallel execution capabil-
ities. Therefore, these kernels should not include code restricted
to CPUs, such as I/O management, or calls to third-party libraries
specific to a particular device, such as the ones used in video
streaming applications. These are examples of scenarios where this
kind of operations are hard to synchronize with other kernels and
data transfers using an implicit data-dependency analysis.

As we will show in Sect. 5, solutions using implicit data-
dependency analysis, in practice, forces the programmer to include
additional explicit synchronizations to ensure correctness, thus
leading to extra overheads. We will also show that, in some cur-
rent implementations of these models, the overheads generated by
the sophisticated mechanisms to manage the tasks or commands
derived from the data-dependencies analysis are not negligible for
repetitive low-loaded computations.
3

3. The Controller heterogeneous programming framework

The Controller heterogeneous programming framework [27,26,
35] is used in this work as a starting point to design and im-
plement our proposal. Controller is a heterogeneous programming
model that enables performance portability across CPUs (using
OpenMP), GPUs (using CUDA or OpenCL), FPGAs (using OpenCL)
and Xeon Phi accelerators (using the Intel COI library). It is imple-
mented as a library written in C99. Thus, it is compatible with any
C99/C++ compiler and it is easily interoperable with other libraries
and parallel programming models. It advocates a model which al-
lows multiple explicit implementations per kernel, with specialized
versions for each type of device if needed. Kernel implementa-
tions are compiled with their own vendor or native compiler. The
programs are compiled with support for all the backends, linking
everything together. Thus, the compiled programs can choose dif-
ferent target devices at runtime.

A preliminary support for host task and implicit asynchronous
operations in the OpenCL backend for FPGA devices was presented
in [35]. The results were promising in comparison with programs
coded directly with OpenCL or with a SYCL implementation. Gen-
eralizing this support for any other backend in a portable and
efficient manner requires the introduction of a new abstraction
and the internal structure of the Controller backbone has to be re-
designed. This issue will be addressed in Sect. 4. In this section, we
summarize the features of the original Controller model, its pro-
gramming abstractions, interfaces and features, together with an
example of its capabilities from the programmer’s point of view.

3.1. Controller’s software architecture

The original Controller framework [27] proposes an abstract
object, called Controller, to coordinate the activities of kernel exe-
cution and memory management on an accelerator or a set of CPU
cores. Fig. 1 shows the elements of the original Controller model.
A Controller object is associated to a particular instance of a device
during its construction. Each object transparently manages the co-
ordination and communication of the host code with that device.

The model provides a data type to encapsulate variables and
data structures, such as multi-dimensional arrays. They can be al-
located to one side (named internal variables), or in both host and
device sides (tied variables). The programmer can push requests to
the Controller object queue (see step (1) in Fig. 6). These requests
can issue the execution of device kernels, or data movements for
tied variables from host to device or device to host.

The execution policy module is in charge of processing the re-
quests located in the queue. To do so, it first retrieves the following
task, and determines which operations are needed to complete it,
such as execution of computation, data movements, and/or syn-
chronizations. After that, the execution policy module transfers the
operations to the corresponding Controller backend using a generic
API. Each backend executes the requested operations, taking advan-
tage of the lower-level programming model of the corresponding
device (step (2) in Fig. 6).

The parameters of each kernel request should be either data
structures already tied to this Controller object, or input values
of scalar types of the programming language used to implement
the model. The kernel launching function also receives a param-
eter indicating the sizes of a multi-dimensional grid of fine-grain
logical threads that the kernel will execute. The Controller creates
the proper granularity, grouping them in blocks or in coarse-grain
tasks, to adapt them to the specific device.

3.2. The tiling library used: Hitmap

Hitmap [15] is the portable library used in the Controller model
to provide an abstract common interface for the data management

Y. Torres, F.J. Andújar, A. Gonzalez-Escribano et al. Journal of Parallel and Distributed Computing 179 (2023) 104708

Fig. 1. The original Controller framework architecture [27].
in both the host code and the kernels executed in different types
of devices. Data structures on the host are managed with HitTile
objects, which are fat-pointers that store several meta-data, such
as data sizes, and the data pointer. The Controller model extends
the HitTile structure to store new meta-data related to the use of
the tile in a device, including information to find the data in the
device. The Hitmap’s data access function, hit(), is used in the
host or kernel codes to access the elements of a tile. It provides
a portable view, with row-major order, on any device. More de-
tails on the use of Hitmap in Controllers can be found in [35]. An
example of the joint use of Hitmap and Controller is described be-
low. The reader already familiar with both frameworks may skip
the following section and proceed to Sect. 4.

3.3. Programmer’s view: using the Controller framework

To show the features of the Controller framework, we present a
simple example that calculates a sequence of images representing
a zoom of a chosen window of the fractal Mandelbrot set [24]. The
code iteratively launches a kernel that calculates the following im-
age, allowing an overlap of this calculation with the management
of the preceding image in the CPU. In our example, this manage-
ment consists of calculating how many points are under a given
constant, in order to create a signature of the computation carried
out, and calling a function that stores the figures, for example to
later create an animation.

We now discuss the use of the Controller framework to imple-
ment this example. An important design decision of the Controller
framework is to use macro functions in order to rewrite the code,
allowing the use of C99-compatible compilers. In the Controller
model, each kernel is declared using two macro function calls. The
first is CTRL_KERNEL_PROTO(), which declares a common pro-
totype for all the different implementations of a given kernel. The
syntax of this function is the following:

CTRL_KERNEL_PROTO (kernelName, implementationsList , parameterList)

We now describe these parameters, using the code of Fig. 2 as
an example of use. The first parameter is the name of a kernel,
that can have several implementations for different backends or
devices. In our example, line 1 shows the beginning of the kernel
prototype for the kernel named Mandelbrot.

The second part of the invocation is a list of implementations
for this kernel. This list starts with the number of different imple-
4

mentations available in this code, followed by two keywords for
each implementation.

• The first keyword declares for which backend this implemen-
tation is designed, and which kind of lower-level code it con-
tains. The Controller v2 library provides keywords that support
these backends: CUDA, OpenCL-GPU, OpenCL-FPGA, and
CPU for multi-threaded CPU tasks. There is also a GENERIC
keyword, indicating that the implementation we provide is
suitable for any backend.

• The second keyword allows a finer degree of control, allow-
ing the declaration of a particular family of devices for a given
backend. This information is used by the Controller to locate
the best available implementation of a kernel at runtime for
the chosen device (for example, “CUDA, VOLTA”). We also
provide a DEFAULT keyword, to indicate that the code inside
the kernel can be executed by any device of this backend.

In our example, line 2 declares that our code will only have one
GENERIC, DEFAULT implementation. It is interesting to note
that the different implementations of the same kernel can be a
part of the same or different source code files, or can be pre-
compiled in a different object file or library to be linked later.

Finally, the parameterList is the description of the kernel param-
eters, including their input/output roles, types and names. It starts
with the declaration of the number of parameters, using three key-
words. The first is its input/output role: IN, OUT, or IO (in/out)
indicate the role of a HitTile object that is being referenced, while
INVAL indicates a scalar value parameter. The second keyword is
the type, and the third its name. In our example, lines 3-8 declare
six parameters. The first is an output matrix whose values will be
computed by the kernel, while the other five parameters are input
values of native C types.

The CTRL_HOST_TASK_PROTO() is similar to the CTRL_
KERNEL_PROTO() described above, but in this case describes
sequential tasks intended to be executed by the CPU. There-
fore, there is no need for keywords that indicate backend and/or
devices. In our example, we declare a single host task called
Count_and_Store (lines 11-14 in Fig. 2).

As stated above, the CTRL_KERNEL_PROTO() function allows
the declaration of all the kernel implementations of the same ker-
nel for different backends and/or device families that will appear
later in the code. Each kernel implementation is declared by using

Y. Torres, F.J. Andújar, A. Gonzalez-Escribano et al. Journal of Parallel and Distributed Computing 179 (2023) 104708

1 CTRL_KERNEL_PROTO(Mandelbrot,
2 1, GENERIC, DEFAULT,
3 6, OUT, HitTile_int, mat,
4 INVAL, int, threshold,
5 INVAL, float, x1,
6 INVAL, float, x2,
7 INVAL, float, y1,
8 INVAL, float, y2
9);

10
11 CTRL_HOST_TASK_PROTO(Count_And_Store,
12 2, IN, HitTile_int, mat,
13 INVAL, int *, result
14);
15
16 CTRL_KERNEL(Mandelbrot, GENERIC, DEFAULT, KHitTile_int mat
17 , int threshold, float x1, float x2, float y1, float y2,
18 {
19 float x0 = x1 + (x2-x1) / hit_tileDimCard(mat,0) * thread_id_x;
20 float y0 = y1 + (y2-y1) / hit_tileDimCard(mat,1) * thread_id_y;
21
22 float x = 0.0;
23 float y = 0.0;
24 int iteration = 0;
25 while (x*x + y*y <= 2*2 && iteration < threshold) {
26 int xtemp = x*x - y*y + x0;
27 y = 2*x*y + y0;
28 x = xtemp;
29 iteration++;
30 }
31 hit(mat, thread_id_x, thread_id_y) = iteration;
32 });
33
34 CTRL_HOST_TASK(Count_And_Store, HitTile_int mat, int *result) {
35 int count = 0;
36 for (int j = 0; j < hit_tileDimCard(mat, 0); j++)
37 for (int k = 0; k < hit_tileDimCard(mat, 1); k++)
38 if (hit(mat, j, k) < 10) count++;
39 *result = count;
40 store(mat);
41 }

Fig. 2. Example of kernel and host-task prototype and their implementation for the Mandelbrot example using the Controller library.
a CTRL_KERNEL() macro function call. The syntax of this func-
tion is the following:

CTRL_KERNEL (kernelName, backend, family, [paramType, paramName]. . . ,
code)

The first three parameters are the kernel name and the tuple
that describes one of the particular implementations declared in
the corresponding CTRL_KERNEL_PROTO() function for this ker-
nel name. These parameters are followed by the list of types and
names of the kernel parameters enumerated in the CTRL_KER-
NEL_PROTO() function. Finally, the last parameter comprises the
kernel code as a structured block (or as a string in the case of
the OpenCL backends). In our example, the CTRL_KERNEL() in-
vocation in lines 16-32 of Fig. 2 includes the code that computes
the value of a single pixel of the Mandelbrot image. To deter-
mine the particular pixel to be computed, thread_id_x and
thread_id_y are variables offered by the Controller framework
that take different values for each logical thread in a grid defined
by the user. This solution is a portable alternative to the threa-
dIdx.x and threadIdx.y offered by CUDA, but maintaining
the row-major layout across all devices supported by the Controller
framework. Threads outside the user’s grid, added in devices such
as GPUs due to their block system, are internally skipped before
the execution of the user code.

Regarding hit_tileDimCard() (lines 19-20), it is a Hitmap
function that returns the cardinality of a given dimension for an
input tile. The use of this function avoids the need to provide the
dimensions of the tile as extra parameters.

The CTRL_HOST_TASK() macro function (lines 34-41) is sim-
ilar to CTRL_KERNEL(), except that, in this case, the code to be
5

executed is a structured block located just after the macro. In our
example, the code traverses the image, counting the number of
pixels below an arbitrary value (as a way to perform a signature of
the resulting image), and calls a function that stores the image.

We now discuss the main host code (Fig. 3). It iteratively calcu-
lates snapshots of the Mandelbrot set, zooming into the image. As
program arguments, the user provides the image size (lines 3-4),
the coordinates of the initial window (lines 5-8), the zoom-in ra-
tio (line 9), the number of images to be created (line 10), and the
threshold as defined by the Mandelbrot set algorithm (line 12). The
number of images is used to declare an integer array to store a sig-
nature of each generated image, just for testing purposes (line 11).
The remaining program arguments are related to the Controller
framework. Line 14 stores the ID of the device to be used in this
execution.

The Controller framework allows us to choose between syn-
chronous or asynchronous execution policies (line 15). This selects,
at runtime, whether the Controller object executes kernel and
data movements with or without computation and communication
overlapping.

Lines 16-17 of Fig. 3 allow the programmer to choose in which
NUMA node of the host platform the Controller object will be ex-
ecuted. This aims to reduce latencies with device communications.
Although this could be done automatically, this mechanism allows
us to experiment with different hardware configurations. For ex-
ample, if the device is attached to a NUMA node while the disks
used for the output are attached to a different NUMA node, the
best choice is not straightforward.

Lines 19-20 define and initialize a structure that sets the logical
threads space, in order to assign each pixel of the image that will
be calculated to a different thread.

Y. Torres, F.J. Andújar, A. Gonzalez-Escribano et al. Journal of Parallel and Distributed Computing 179 (2023) 104708

1 int main(int argc, char *argv[]) {
2
3 int size_x = atoi(argv[1]); // Image width (px)
4 int size_y = atoi(argv[2]); // Image height (px)
5 float x1 = atof(argv[3]); // initial X coord of starting window
6 float x2 = atof(argv[4]); // last X coord of starting window
7 float y1 = atof(argv[5]); // initial Y coord of starting window
8 float y2 = atof(argv[6]); // last Y coord of starting window
9 float zoom = atof(argv[7]); // Zoom ratio

10 int num_images = atoi(argv[8]); // Number of images generated
11 int *p_results = (int *)malloc(num_images * sizeof(int));
12 int threshold = atoi(argv[9]); // Mandelbrot threshold.
13
14 int device = atoi(argv[10]); // Device id
15 Ctrl_Policy policy = (Ctrl_Policy) atoi(argv[11]); // Sync or async
16 int host_aff = atoi(argv[12]); // NUMA node where affinity is set
17 Ctrl_SetHostAffinity(host_aff);
18
19 Ctrl_Thread threads;
20 Ctrl_ThreadInit(threads, size_x, size_y);
21
22 CTRL_BLOCK (1)
23 {
24 PCtrl ctrl = Ctrl_Create(CTRL_TYPE_CUDA, policy, device);
25
26 HitTile_int mat
27 = Ctrl_DomainAlloc(ctrl, int, hitShapeSize(size_x, size_y));
28 HitTile_int mat2
29 = Ctrl_DomainAlloc(ctrl, int, hitShapeSize(size_x, size_y));
30 HitTile_int tmp;
31
32 for (int i = 0; i < num_images; i++) {
33 // COMPUTE NEW IMAGE
34 Ctrl_Launch(ctrl, Mandelbrot, threads, CTRL_THREAD_NULL, mat
35 , threshold, x1, x2, y1, y2);
36
37 // SWAP RESULT-COMPUTE MATRICES
38 tmp = mat2;
39 mat2 = mat;
40 mat = tmp;
41
42 // PROCESS RESULT IMAGE
43 int *result = &p_results[i];
44 Ctrl_HostTask(ctrl, Count_And_Store, mat2, result);
45 x1 += zoom * (x2 - x1);
46 x2 -= zoom * (x2 - x1);
47 y1 += zoom * (y2 - y1);
48 y2 -= zoom * (y2 - y1);
49 }
50
51 /* PRINT RESULTS */
52 printf("%d ", p_results[num_images-1]);
53
54 Ctrl_Free(ctrl, mat, mat2);
55 Ctrl_Destroy(ctrl);
56 }
57
58 free(p_results);
59 return 0;
60 }

Fig. 3. Main code implementation for the calculation of the Mandelbrot example using the Controller library.
The core of the program is a structured block preceded by the
CTRL_BLOCK macro (line 22). This macro declares the number
of Controller objects to be used inside the structured block that
follows. Among other tasks, this macro creates OpenMP threads to
manage the different controllers.

The structured block (lines 22-56) contains the program it-
self. It first creates the Controller object, selects the backend, the
policy, and the device chosen above (line 24). Lines 26-29 de-
clare and allocate two data tiles with the image size, using the
Ctrl_DomainAlloc() function. Each invocation of this function
allocates two buffers, one in the host and one in the device, that
represent the data of the same tile. The Controller model trans-
parently coordinates the execution of code and the data transfers
between them in order to keep consistency, thus ensuring that the
code executing in the GPU device or the host works with cor-
rect and updated data. Line 30 declares an auxiliary variable to
6

perform swaps between these tiles, and lines 32-33 define the
window ranges, which will be updated at the end of each itera-
tion.

The main iteration of the program (lines 32-49) first launches
the kernel to compute the image (lines 34-35). The Ctrl_
Launch() function inserts the request of a new computing task
into the Controller queue. This function receives the Controller ob-
ject; the kernel name; the variable that contains the logical thread
space; a parameter that allows, if needed, the group size automat-
ically chosen by the framework (not used in this example) to be
modified; and the actual parameters to be received by the chosen
kernel.

The rest of the code allows the processing of the image just cal-
culated with the launch of the calculation of the following image
to be overlapped. To do so, the code exchanges the images using
a double buffer technique (lines 38-40), and processes the newly

Y. Torres, F.J. Andújar, A. Gonzalez-Escribano et al. Journal of Parallel and Distributed Computing 179 (2023) 104708
calculated image using a host task (line 44). Lines 45-48 update
the window size and position for the following iteration.

The call to the host task in line 44 inserts the request of a new
host task into the Controller queue. In the default behavior, that we
call “implicit mode”, each time a new task is prepared for execu-
tion by the Controller scheduler, the scheduler first checks whether
the input structures needed have already been retrieved from the
corresponding device. If such is not the case, a previous request
is inserted into the corresponding device queue to retrieve these
values. The Controller programming model also offers a pair of
Ctrl_MoveTo() and Ctrl_MoveFrom() functions that allows
an experienced programmer to manually insert these requests into
the Controller queue (“explicit mode”). In applications that launch
different kernels and host tasks, these advanced functions allow
some data movements to be prioritized, leading to a better per-
formance. Explicit data-transfers are compatible with the implicit
mode to force data transfers at specific places.

After the main loop, line 52 prints a signature of the last image;
line 54 frees the memory previously allocated for the tiles in both
host and device; and line 55 destroys the Controller object. Finally,
after the structured block, other structures used by the host are
freed, and the program finishes (lines 58-60).

After showing the main characteristics of the Controller frame-
work programming, the following section introduces the CtrlEvents
proposal, which simplifies and improves the efficiency of data-
dependency analysis, and the coordination of both device compu-
tations and host tasks that include time-consuming, generic oper-
ations, such as input/output.

4. Managing devices synchronization: the CtrlEvents proposal

In this section, we present a proposal for a new abstraction
and implementation of the system to execute asynchronous opera-
tions in the Controller model in a portable and efficient form. We
first formally define the operations involved in the asynchronous
programming model. Then, we discuss how to design a synchro-
nization model that supports these operations. After that, we focus
our analysis on how implicit communications can be automatically
derived. Finally, the fourth subsection introduces CtrlEvents, a pro-
posal that offers a portable and efficient way to use all the features
described, across different backends.

4.1. Asynchronous model operations

In this section, we first formalize the asynchronous program-
ming model operations, in order to simplify the discussion of the
proposal and its implementation. The transactions between the
host and the device can be described as a Sequence of Operation
Requests (R = {r0, ..., rn}) issued by the coordination code executed
in the host. An operation request ri should be one of the follow-
ing1:

• Allocate: Alloc(x, l). A request to allocate a data structure in
the host and/or device memory. The parameter x represents a
data structure and l represents the location where memory is
allocated (Host, Device, or Both).

• Deallocate: Free(x). A request to deallocate the memory im-
age/s of a data structure x.

• Host-to-Device: HTD(x). A request to transfer the values of the
data structure x from the host memory space to the device
memory space. Memory in both sides should have been allo-
cated first.

1 Unless otherwise indicated, these are non-blocking execution requests.
7

• Device-to-Host: DTH(x). A request to transfer the data values
of x from the device memory space to the host memory space.

• Kernel launching: KL(f, In, Out). A request to execute a kernel
in the device, as soon as its parameters are available. It re-
ceives a function name f and two sets of data structures as
parameters. The set In indicates the references to data struc-
tures that are inputs. The set Out indicates the references to
data structures that are outputs. The same data structure may
appear in both the input and output sets of references, indi-
cating that the content is both read and written during the
kernel execution.

• Host-task launching: HL(g, In, Out). A request to execute a
function g in the host, as soon as its parameters are avail-
able. It has the same format as the kernel-launching requests,
including the input and output sets.
Kernels and host-tasks can also have a set V of parameters
received as values: We omit this in their formal definitions
because these parameters are not related to dependencies or
to the problem of data transfers.

• Wait: Wait(x). Blocks the execution of the host coordination
code until all requests involving the data structure x have fin-
ished. In many programming models, such as CUDA, this op-
eration is implicit by default after DTH(x) blocking requests,
although it can be relaxed by the programmer using explicit
asynchronous transfers. In our asynchronous model, this oper-
ation is used only when the coordination code needs to use
values retrieved from the device. For example, this operation
would be necessary in a loop with a convergence condition
that is calculated with a reduction operation in the device.

4.2. Designing a synchronization model

The original Controller execution policy module was syn-
chronous, thus executing each operation only after the previous
requests have finished. In order to choose a synchronous or asyn-
chronous policy at runtime, not only when creating the Controller
but even during the execution, we design a new execution pol-
icy module for asynchronous operations and we adapt the original
synchronous module to use the same internal mechanisms. Both
modules are fully compatible and the policy can be changed at
any time. Each operation request is processed synchronously or
asynchronously with respect to previous requests, depending on
the active policy when the request was launched.

In our proposal, the order of the kernel’s execution is strictly
preserved. The decision of which kernels should be or not exe-
cuted concurrently, in order to improve the overall performance
of the application, is a problem that is orthogonal to the overlap-
ping of data transfers with kernel or host-task execution, and it
is beyond the scope of this work. Host-tasks execution requests
are also executed in order. In the asynchronous model, host tasks
and kernels can be overlapped if dependencies allow it (preserv-
ing their partial orders), and data transfers can be overlapped with
both kernels and host-tasks execution.

The internal rules that decide when a request can be safely
overlapped with others are designed by studying the dependen-
cies between the different types of requests, and taking into ac-
count the input/output role of their parameters. Each data struc-
ture can have at most two memory images, one in the host
and one in the device. The kernel, host task, and data trans-
fer requests between them are analyzed, considering them as a
multiple-reader/multiple-writer problem. The dependencies gener-
ated by this scheme are depicted in Fig. 4. The rules for asyn-
chronous execution associated to each operation follow:

1. Alloc(x,l): All subsequent requests involving the use of the data
structure x should wait until the allocation of x has finished.

Y. Torres, F.J. Andújar, A. Gonzalez-Escribano et al. Journal of Parallel and Distributed Computing 179 (2023) 104708
Fig. 4. Dependencies between request types. Rounded boxes identify request types,
using the x data structure as parameter. We distinguish between KL or HL requests
that use x with an input or output role. For clarity, the Wait and Alloc/Free op-
erations are skipped in the figure. Inside each box, we represent in small boxes
whether the request reads or writes in the host or device memory image of x.
Arrows express dependencies between request types implied by the use (read or
write) of the memory images of x. Requests that are not linked with arrows can
be executed concurrently. Remember that this model does not consider the case of
several concurrent kernels or several concurrent host tasks.

2. Free(x): A request for deallocating x should wait until all the
previous requests involving x have finished.

3. HTD(x): Before executing this request, wait for pending oper-
ations on x if: (a) x is a parameter of a non-finished DTH op-
eration; (b) x appears as a parameter (input or output) of any
previous non-finished kernel (KL operation); or (c) x appears
as an output parameter of a non-finished host-task execution
(HL operation).

4. DTH(x): Before executing this request, wait for pending op-
erations on x if: (a) x is a parameter of a non-finished HTD
operation; (b) x appears as an output parameter of any previ-
ous non-finished kernel (KL operation); or (c) x appears as an
Fig. 5. Execution of a set of operations in synchronous (

8

input or output parameter of a non-finished host-task execu-
tion (HL operation).

5. KL(f,I,O): x ∈ I, y ∈ O : Before executing this request, wait for
pending operations on x if x is a parameter of a non-finished
HTD operation; before executing this request, wait for pend-
ing operations on y if y is a parameter of a non-finished HTD
or DTH operation. Wait also for any previous non-finished KL
operation.

6. HL(g,I,O): x ∈ I, y ∈ O : Before executing this request, wait for
pending operations on x if x is a parameter of a non-finished
DTH operation; before executing this request, wait for pend-
ing operations on y if y is a parameter of a non-finished HTD
or DTH operation. Wait also for any previous non-finished HL
operation.

7. Wait(x): Wait until all previous operations with x as parameter
are finished.

4.3. Differences between synchronization models: an example

To better show the differences between synchronous and asyn-
chronous execution models, suppose that a and b are tiles that
have been just initialized in the host. After that, the host coordi-
nation code launches the following sequence of operations:

1. K 1 = K L(I = {a}, O = {a})
2. H1 = H L(I = {a}, O = {a})
3. K 2 = K L(I = {b}, O = {b})
4. H2 = H L(I = {b}, O = {b})
5. W 1 = Wait(a)

6. W 2 = Wait(b)

Fig. 5 represents the sequence of operations that are carried out in
synchronous and asynchronous mode. In the figure, H T is the Host
Task execution thread, D H T is the Device-to-Host stream/queue,
H T D is the Host-to-Device stream/queue, and K is the Kernel ex-
ecution stream/queue. Solid arrows represent the synchronizations
that are implemented with events in both policies. The dashed ar-
top) and asynchronous (bottom) execution models.

Y. Torres, F.J. Andújar, A. Gonzalez-Escribano et al. Journal of Parallel and Distributed Computing 179 (2023) 104708
Table 1
Rules to automatically insert data transfer operations. The rule triggered depends
on the request type (KL or HL); the input/output role of the parameter tile x; and
the previous status of the tile. A warning is issued when a computation that uses x
as input is invoked before the data has been previously initialized.

Operation sh(x) sd(x) Actions

K L : x ∈ I 0 0 Warning
0 1 -
1 0 sd(x) = 1; issue H T D(x)
1 1 -

K L : x ∈ O 0 0 sd(x) = 1
0 1 -
1 0 sh(x) = 0; sd(x) = 1; issue H T D(x)
1 1 sh(x) = 0

H L : x ∈ I 0 0 Warning
0 1 sh(x) = 1; issue DT H(x)
1 0 -
1 1 -

H L : x ∈ O 0 0 sh(x) = 1
0 1 sh(x) = 1, sd(x) = 0 ; issue DT H(x)
1 0 -
1 1 sd(x) = 0

row represents the extra synchronization that only appears in the
synchronous model.

4.4. Deriving implicit communications

An important design decision for maximum efficiency is the
choice of the dependency-checking and memory-consistency pre-
serving mechanisms. We introduce in the original HitTile struc-
tures (described in Sect. 3.2) new meta-data to record the status
of events and the memory consistency information. Thus, the sta-
tus of a HitTile can be directly checked and modified by the library
functions at runtime.

The need to issue HTD or DTH operations to keep the memory
consistency between host and device images can be detected when
the operations in the queue are evaluated. While a kernel or host
task is evaluated for dependencies, the meta-data in the tiles are
updated. These updates express the future state of the parameters
regarding memory consistency and synchronization events when
the operation will be finally executed, after all the waiting condi-
tions are met. Thus, the next time a tile is used, during a request
evaluation, whether a data transfer is needed to ensure memory
consistency can be derived.

This process is carried out as follows. Let x be a HitTile struc-
ture. Let sh(x) → {0, 1} and sd(x) → {0, 1} indicate the state of the
host and device memory images of x respectively, where 0 rep-
resents a non-updated state, and 1 represents an updated state.
When allocating images, the initial allocation operation Alloc(x, l)
sets both bits to 0. In practice, it indicates that none of the images
are valid. During the evaluation phase of the request, if the request
uses the tile as output parameter, it means that either the host or
the device will write its image. In this case, the corresponding bit
is set to 1. If the counterpart bit was also 1, it is cleared (indicating
that the copy of the counterpart will not be updated), and a data
transfer operation is inserted into the device queues to guarantee
consistency in order to avoid false sharing issues. If the request
being evaluated states that the tile will be used as input by one
side, and its bit indicates that the copy will not be updated at that
time, a data transfer operation is inserted into the device queues
before the operation being evaluated, and its bit is set. Finally, if
the tile is used as input/output, the rules for input and for output
are applied in this order.

Table 1 summarizes the rules to detect and request a data
transfer operation, and to update the state indicators in the Hit-
Tile, when a kernel or host task is evaluated. When these rules are
9

applied, explicit DTH or HTD requests are no longer needed in the
coordination host code.

Since operations are non-blocking, the queue evaluation pro-
cess can easily advance faster than the computations. Thus, in
practice, the data transfer operations are submitted to the device
queues earlier than the beginning of the execution of the kernel or
host-task execution that requires them. In any case, correctness is
ensured.

Explicit data transfers can also be included in the code if the
programmer finds opportunities to prefetch data on the device or
host before the coordination code inserts the corresponding tasks
into the queue. These explicit operations update the state indica-
tors directly, maintaining consistency with implicitly-derived trans-
fers.

4.5. The CtrlEvents proposal

Having formally defined the operations involved in the asyn-
chronous programming model; discussed how a synchronization
model that supports these operations can be designed; and hav-
ing described how implicit communications can be automatically
derived, we now introduce CtrlEvents, a proposal that offers a
portable way to use all the features described across different
backends in an efficient way.

In [35] we introduce a Controller backend specifically designed
for FPGA devices using OpenCL. In this work, we generalize that
previous proposal to make it portable and interoperable for dif-
ferent backends with different technologies. This work presents re-
sults for the CUDA and OpenCL backends for NVIDIA and AMD GPU
devices. The current Controller version also includes an OpenMP
backend for multi-core CPUs, an OpenCL backend for Intel FPGAs,
and a Xilinx Vitis backend for Xilinx FPGAs, using the same ab-
stractions.

CtrlEvents and events adapter CtrlEvents is an abstraction to repre-
sent event objects used for synchronization in different technolo-
gies, such as CUDA, OpenCL, OpenMP, etc. It is conceptually an
abstract class, with a different implementation for each technology.
In C language, we implement its fields with a union structure, with
specialized fields to create synchronization points and triggers for
different operations using the features offered by the target tech-
nology.

Fig. 6 shows the process in detail. A Controller instance is asso-
ciated at construction time with a specific device and with a tech-
nology to manage it. When an operation is requested (1), the task
is inserted into the queue. Then, the new execution policy module
calls the API of the Events Adapter (2) to interact with the events
information stored in the HitTiles used as parameters, and to trans-
form the requests to the proper technology associated with the
Controller instance. Once the operations are enqueued/launched
into the device queues, the corresponding drivers are responsible
for coordinating the execution of the kernels and data transfers (3),
following the schedule implicit on the event triggers programmed
by the execution policy and the events adapter.

The Events Adapter currently supports OpenCL for GPUs and
FPGAs, CUDA for NVIDIA GPUs, and sets of cores with OpenMP
for parallel computing with CPUs. In the case of OpenCL, it en-
queues operations and event triggers in the OpenCL driver queues.
In the case of CUDA, operations are launched in CUDA streams, us-
ing CUDA events to synchronize them. In the case of OpenMP, the
kernel executions are implemented as OpenMP tasks, allowing the
programmer to choose the particular cores to be used, thanks to
an affinity control system provided by our library. Using OpenMP
locks, we have both implemented synchronizations for the event
abstraction, and a queue that is similar to OpenCL queues or CUDA

Y. Torres, F.J. Andújar, A. Gonzalez-Escribano et al. Journal of Parallel and Distributed Computing 179 (2023) 104708

Fig. 6. The Controller model with CtrlEvents support: White boxes indicate the elements of the original model. Light gray elements are re-designed or introduced to support
the CtrlEvents proposal. Dark gray shaded boxes indicate the operations and activities requested to the drivers of lower-level programming models associated with different
Controller backends.
streams. As a result, all device types are interoperable using the
same abstractions.

Host-task synchronization Execution and synchronization with dif-
ferent technologies is more complex for the host task than for
kernels. In all cases, we use a different queue or stream (depending
on the lower-level technology) to enqueue host-task operations.
We have found that the most efficient and versatile mechanism
to implement the synchronization with the host task is different
for each low-level technology. To offer different, compatible imple-
mentations for our host tasks, the host-task declaration creates a
wrapper that calls the function containing the actual user code.
The wrapper is launched as an OpenMP task each time the host
task is invoked, and implements a different synchronization mech-
anism that can be chosen by the events adapter, depending on the
particular backend used. In OpenCL, the wrapper is synchronized
with operations in other queues using the event-wait functionality
and user-defined events. In CUDA, the wrapper function is syn-
chronized with other stream operations using the CUDA interface
to call host functions. Finally, in OpenMP, the host task is simply
synchronized with the native OpenMP task synchronization mech-
anism. Thus, the events adapter and the host-task wrapper enclose
all the technology dependent details.

Elimination of the Controller internal queue With the proposed so-
lution, the execution policy takes the decisions, and the events
adapter introduces all the synchronization control needed in the
lower-level technology. The execution control is now carried out
by the lower-level drivers in the most efficient way. Thus, there is
no need of internal queues in the Controller backends. In particu-
lar, the main queue to store and process operation requests is no
longer needed and can be eliminated. Instead, the requests can be
directly processed by the execution policy and the Events Adapter,
returning the control to the host code as soon as the events and
operations are enqueued in the lower-level technology driver (see
the discarded queue in Fig. 6). This leads to an additional slight
10
improvement in the efficiency of processing the operation requests,
avoiding the small overheads associated with the synchronizations
with the queue control, originally executed by a different thread
that is no longer needed.

5. Experimentation

In this section, we describe an experimental study to evaluate
the potential advantages and constraints of the asynchronous ex-
ecution model implemented with CtrlEvents in the Controllers v2
library, comparing with other state-of-the-art programming mod-
els. We show how the proposed implementation of CtrlEvents per-
forms efficiently in different scenarios of computation load, and
balance between data transfers and host/device computations. Both
synchronous and asynchronous versions of programs are studied
to show the overheads introduced and the level of asynchronicity
exploitation achieved by the different programming models con-
sidered.

The section includes: (1) A description of the case study ap-
plications considered; (2) a description of the experimental envi-
ronment and setup; (3) a performance study of our proposal; and
(4) a development effort comparison between using the Controller
model with CtrlEvents and using CUDA, OpenCL, SYCL or dOCAL
directly.

The Controllers v2 library with CtrlEvents, all codes used in the
study, and the whole set of experimental data are freely available
at the Controllers repository [42].

5.1. Case studies

To test our approach and implementation, we select three dif-
ferent applications, one with four variants, to obtain a total of
six case studies. They are representative of the different situations
that may arise, including scenarios with memory, compute, com-
munication, and input-output bound situations. There exist other,
well-known set of applications that could be used for these pur-
pose, such as the NAS Parallel Benchmark (NPB) [3]. There are

Y. Torres, F.J. Andújar, A. Gonzalez-Escribano et al. Journal of Parallel and Distributed Computing 179 (2023) 104708
indeed several NPB implementations for GPU devices, e.g. [2]. All
of them implement the original algorithm specifications, execut-
ing the computation in a single GPU device. All the NPB programs,
both kernels and pseudo-applications, have an initialization stage,
a computation stage (a single kernel or a sequence of kernel ex-
ecutions), and a last stage to move the results to the host in or-
der to check the correctness. Thus, there are no kernel execution
and data transfer interleaving, and no possibilities to exploit asyn-
chronous data transfers for overlapping them with computation.
Instead, the applications chosen for this paper are based on real
GPU benchmarks or applications, presenting potential overlapping
of data-transfer and computation using asynchronous operations.
This feature is common in streaming applications.

The first one is an iterative stencil program, a well-know exam-
ple of memory-bound kernel. On each iteration, the result matrix
is transferred to the host to be stored there, in order to generate
an animation of the simulation evolution. The computational load
of the device kernel is smaller than the data transfers between
device and host. Thus, it can become an example of data-transfer
bound application. Nevertheless, the higher cost of the memory-
copy operations to save the results in a host-task makes the whole
application a memory-bound case. This application is appropriate
to test the effects of overlapping host-task and costly data-transfers
with small computational loads in the device.

The second one is based on iterative matrix multiplications on
the device, with a non-trivial post-processing of the results in a
host task. In this case, the computational cost grows with the in-
put size faster than the cost of the data transfers. For very small
sizes (less than 512 ×512 elements) it is a data-transfer-bound ap-
plication. Nevertheless, the execution times are so small for those
input sizes that it is faster to execute the whole application in the
CPU. Thus, for real useful input sizes it becomes a compute-bound
application in the device. This application is appropriate to test the
effects of overlapping high device-computational loads with data-
transfers and host-task that becomes relatively lower and lower
with the input size.

The last application applies a image filter on the frames of a
video stream. We consider variants combining both files and mem-
ory as input/output channels, to represent the behavior of the filter
at different stages of an image processing pipeline. The different
versions explore from input/output bound to memory-bound sce-
narios. These programs feature very fast kernels with lower load
than the communications, bidirectional data transfers, and host
tasks with different execution costs, presenting a demanding sce-
nario to exploit asynchronicity for concurrency exploitation.

We now describe the details of each application considered.

Hotspot Rodinia’s Hotspot stencil computation. The base program
for this case study is included in the Rodinia benchmarks suite [8].
It computes the stability point of Poisson’s Partial Differential
Equation (PDE) for heat diffusion. It uses a Jacobi iterative method
on a 2-dimensional discrete space. It is a 4-point stencil program
that executes a fixed number of time iterations. The kernel ex-
ploits the shared-memory for both spatial and temporal locality.
We test the program with 300 iterations, and a height parame-
ter of 4, meaning that each launched kernel executes 4 matrix
update iterations using halos of width 4. In order to integrate it
in a production stencil framework that creates an animation of
the computation evolution, and to check partial results, we add a
transfer of the result matrix to the host after each kernel launching
operation, saving it in a different host buffer with a host task. This
leads to opportunities for communication and computation over-
lapping.

Matrix Pow This program is an evolution of the 2mm and 3mm
programs in the PolyBench Benchmarks [33], to generate a chain
11
of matrix multiplications of arbitrary length. It computes the nor-
malization of the matrices Ci = Ai : i ∈ [1 : n]. In the device, it
iteratively computes the multiplication of the original matrix by
the partial result of the previous step: Ck = Ck−1 × A : k ∈ [1 : n]
where C0 = A. The kernel to multiply matrices is obtained from
the CUDA Toolkit samples [30], and it has also been ported to
OpenCL. This optimized kernel uses shared memory to take ad-
vantage of the GPU resources. Each partial result C i is transferred
to the host. A host task computes the normalization of the matrix
and saves it in another buffer. The matrix normalization consists
of the following phases: (a) Determining the minimum and maxi-
mum values in the matrix; (b) subtracting the minimum from each
element of the matrix, and dividing each element by the maxi-
mum; (c) computing the elements norm as the square root of the
sum of each element to the power of two; and (d) dividing each
matrix element by the elements norm.

Sobel The Sobel Operator [14] processes gray-scale images to de-
tect edges. It applies two stencil operators to the input image, to
obtain the derivatives in the X and Y directions. The gradient mag-
nitude is computed on each cell as the Euclidean distance of the
corresponding cells on the matrices obtained as the output of the
filters. For our experimental study, we choose an implementation
that iteratively processes frames from a video in YUV format [10].
It reads an input video stream from a file, frame by frame. Each
frame has three components that are sent to the device. The kernel
of this application contains all the operations of the Sober filter,
and the kernel is applied to each component separately. The result-
ing image is transferred back to the host to store it in an output
video file. Each component of a frame is read, written, computed,
or transferred separately. To simulate different scenarios of the ap-
plication of the Sobel filter, alone or as part of a parallel image
processing pipeline, we consider four scenarios: (a) The input/out-
put images are read from and written to files (this is the original
program, that we name “File to File”), an I/O-bounded situation;
(b) the input images are read from a file, but the output images
are stored in memory, to simulate the starting stage of a pipeline
(that we name “File to Memory”); (c) the input images are read
from a memory buffer, but the output images are written to a file,
to simulate the last stage of a pipeline (that we name “Memory
to File”); and (d) the input/output images are retrieved and stored
in memory buffers, to simulate a stage in the middle of a pipeline
(that we name “Memory to Memory”), a memory-bounded situa-
tion. The computation of the Sobel filter is a very fast operation on
a GPU. Thus, this case study program is very demanding in terms
of concurrency exploitation and asynchronous data-transfer exe-
cutions. Each case presents different memory vs. computation or
host tasks vs. kernels load balance, and introduces a different cost
variability in the host tasks. The File to File case represents the ex-
treme situation of higher load in the host-tasks (I/O bounded) and
the Memory to Memory case represents the extreme situation of
lower load in the host-task (memory-bounded). Thus, they are the
two most interesting cases.

5.2. Experimental environment and setup

The experiments have been conducted in a server provided
with GPU accelerators of different vendors. It features two Intel(R)
Xeon(R) Platinum 8160 CPU @ 2.10GHz, an NVIDIA Tesla V100 PCIe
32GB GPU, and an AMD Vega 10 XT Radeon PRO WX 9100 GPU.
The server runs a CentOS 7 operating system and the jobs are
launched from a frontend using Slurm.

The compiling and execution tools and libraries include GCC
10.3, LLVM 12.0.0, hipSYCL 0.9.1, LLVM-INTEL 12.0.0 (the Intel back-
end for SYCL on top of CUDA), CUDA 11.2, and ROCm 4.1.0 for
the hipSYCL support of AMD GPUs. The OpenCL libraries included

Y. Torres, F.J. Andújar, A. Gonzalez-Escribano et al. Journal of Parallel and Distributed Computing 179 (2023) 104708

Fig. 7. Experimental results for the Hotspot case study, using CUDA (“NVIDIA” plots) and OpenCL (“AMD” plots).
in the corresponding CUDA and ROCm releases are used for the
OpenCL experiments.

Programs for each case study are developed in CUDA, OpenCL,
SYCL, dOCAL and Controller. We develop two versions of the ref-
erence CUDA programs, and two versions of the reference OpenCL
programs: A simple synchronous one (Ref. Sync), and a manually
optimized version with the best possible combination of asyn-
chronous operations (Ref. Async). The Sync version is in fact equiv-
alent to the original Controller model (Sect. 3), but with the Con-
troller internal queue removed as described at the end of Sect. 4.5.
Therefore, the performance figures shown by this Sync version are
slightly better than those that can be obtained with the original
Controller proposal [27].

The SYCL codes are compiled first with hipSYCL, using the CUDA
backend for NVIDIA’s GPUs, and a different compilation using the
ROCm backend for AMD GPUs. The SYCL codes are also compiled
for NVIDIA with the Intel LLVM-CUDA backend. Synchronous ver-
sions of the SYCL programs are also developed, introducing ex-
plicit synchronization code to also test the internal implementation
mechanisms for this kind of operations. Regarding dOCAL, we have
run the experiments with the use of pinned buffers for better per-
formance. We have used OpenCL to create an additional kernel to
allow task synchronization.

We describe now the issues encountered. Regarding SYCL codes,
file operations inside kernels to be executed by a CPU generate
compile-time or runtime errors. We solve this issue by placing file
operations in the coordination host code. This, in turn, forces us to
add additional synchronization operations, because the automatic
12
system does not take into account dependencies between kernels
and operations in the host coordination code. Regarding the Intel-
LLVM compiler, trying to launch CPU kernels and GPU kernels in
the same program leads to a runtime error, since it only supports
one type of device at a time. This forces us to remove CPU kernels
when using this compiler, moving the tasks assigned to them to
the host coordination code, thus needing additional synchroniza-
tion operations. This affects the Matrix-Pow code, which needs to
execute matrix normalization in a host task.

The Controller programs are compiled with OpenCL or CUDA
specialized kernels. The executable names are hipSYCL Sync, hipSYCL
Async, Intel-LLVM Sync and Intel-LLVM Async. The Controller code can
select the synchronous or asynchronous execution policy at run-
time. Thus, the code is the same in both cases. In the following
discussion, we use the names Ctrl Sync and Ctrl Async to refer to
the executions using the synchronous or asynchronous policies, re-
spectively.

For Hotspot and Matrix-Pow, we conduct two types of experi-
ments: Iterations, and Sizes. In Iterations, for a fixed input size, we
modify the number of iterations, to test the effect of accumulated
overheads and the queue management when the host code sub-
mits many tasks. In Sizes, for a fixed number of iterations, we mod-
ify the input sizes, to test the effect of different workloads and the
balance between computation and data-movement times. For the
Hotspot program, we measure 300 iterations of the program using
matrices with input sizes from 1 000 × 1 000 to 15 000 × 15 000,
and also a fixed input size of 2 500 × 2 500, with iterations from
100 to 600. For Matrix-Pow, we test the program using iterations

Y. Torres, F.J. Andújar, A. Gonzalez-Escribano et al. Journal of Parallel and Distributed Computing 179 (2023) 104708

Fig. 8. Experimental results for the Matrix Pow case study, using CUDA (“NVIDIA” plots) and OpenCL (“AMD” plots).
from 20 to 120, with fixed input size of 2 048 × 2 048, and also
with input sizes from 1 024 × 1 024 to 8 192 × 8 192 and a fixed
number of 40 iterations. In the Sobel programs, the input size is
fixed due to the specific size of the video frames. Thus, only the
effect of the number of iterations/frames can be explored. The pro-
gram is tested with 20 to 100 frames of a high-definition video
(Full HD images of 1 920 × 1 080 pixels).

The design of this experimental study minimizes the internal
validity threats. The experiments are conducted with the machines
in the same conditions, with controlled temperature and exclusive
use to avoid interference from other processes during the exper-
iments. Several measures are done at different times, and data
is statistically analyzed. A full range of valid values of the input
parameters is considered. Thus, history, maturation, instrumenta-
tion and testing threats are minimal. The same combinations of
study cases and parameter values are tested for every program-
ming model considered, eliminating selection bias and attrition
threats. Regarding external validity, the selection of the study cases
and input parameters ensure that we are checking situations with
bottlenecks in either the host-task or the kernels, with memory
bounded, computation bounded, and I/O bounded scenarios, using
a full range of parameter values that select the different situations
and tune the amount of potential overlapping. Nevertheless, the
study is limited to simple iterative applications with regular loads.
More complex real applications should be tested to further gener-
alize the results.
13
5.3. Performance study

Figs. 7, 8, and 9 show the performance results obtained for the
different versions of the Hotspot, Matrix Pow, and Sobel case stud-
ies, respectively. Results using the NVIDIA Tesla V100 and the AMD
WX 9100 are shown in separated plots. Due to the high differences
of scale, logarithmic scale is used in both, the x- and y-axis.

From the analysis of the performance results, we can draw the
following observations.

First, a profiler analysis of the execution of the Controller pro-
grams reveals that for each study case and combination of input
parameters, the bottleneck is in one of the computational units;
the CPU or the GPU device. On each case, the asynchronous mode
of CtrlEvents achieves a usage of more than 99% of the bottle-
neck computational unit. The corresponding sequence of either the
host-tasks or the kernels is executed without any significant delay
between them, and both the data-transfers and the computations
in the other computational unit are completely overlapped.

Second, regarding the versions that use CUDA, in almost all
the cases, the Controller code with synchronous execution policy
presents the same performance as the synchronous native imple-
mentation in CUDA. The same situation can be observed between
the Controller code with asynchronous execution policy and the
asynchronous native CUDA implementation. Remarkable situations
appear, for example, for the very fast kernels surrounded by data-
transfer operations of the Sobel filter. The results indicate that
the bottleneck for these programs is always in the host tasks. In
Fig. 10, we can see a graphical representation provided by the

Y. Torres, F.J. Andújar, A. Gonzalez-Escribano et al. Journal of Parallel and Distributed Computing 179 (2023) 104708

Fig. 9. Experimental results for two Sobel case studies: FTF (File To File) and MTM (Memory to Memory). They represent the scenarios where the host tasks are the slowest
and fastest respectively. The other cases FTM and MTF present results between them. The results were calculated using CUDA (“NVIDIA” plots) and OpenCL (“AMD” plots).
CUDA visual profiler of the execution on both synchronous and
asynchronous modes of the Sobel memory-to-memory program.
As can be seen, the synchronous version sequentially executes all
operations (kernel executions, communications, and host tasks),
while the asynchronous version overlaps these operations when-
ever possible. Besides this, the way that the CtrlEvents implements
the synchronizations with CUDA and OpenCL events makes our
versions faster than the manual reference implementations, even
the synchronous one, which simply consist of a sequence of block-
ing operations. Regarding overall performance, the Controller asyn-
chronous programs process up to 500 frames per second for “File
to File”, or near 1 000 frames per second for “Memory to Memo-
ry”. A similar advantage can be noticed in the Hotspot programs,
but only for the AMD platform with OpenCL. Therefore, with Ctr-
lEvents the overlapping is in general complete, as in the case of
Matrix and Hotspot. The exceptions occur when the size of the
data to be transferred is too small, or if there are limitations due
to synchronization activities, which is precisely the case of Sobel,
since the write operations to a file forces a synchronization.

Third, the current implementation of hipSYCL has a problem
with the queue management, that appears when many requests
saturate the queue. In the synchronous versions of the programs,
the problem does not appear because the host code is synchro-
nized with the operations, and the queue has very few requests at
the same time. In the asynchronous versions, when enough itera-
tions are launched, the queue is saturated, and the execution times
increase even much higher than the synchronous versions with ar-
14
tificially forced synchronizations. In the “File to File” Sobel filter,
the execution times are low, and the good balance between the
communications and computations avoids the problem. For small
input sizes, the Hotspot case study also shows a very bad perfor-
mance in both synchronous and asynchronous versions. In general,
the hipSYCL programs perform badly in scenarios with small input
sizes or low-loaded computations and communications. For sce-
narios with higher loads, such as medium to big input sizes in
matrix-pow, the hipSYCL asynchronous versions perform as well
as the Controller and reference programs manually developed and
optimized in CUDA or OpenCL.

Fourth, as we discussed in Sect. 5.2 the asynchronous SYCL pro-
grams compiled with Intel LLVM-CUDA need an extra synchroniza-
tion to produce correct results. This modification converts them
into almost-synchronous versions. Thus, the performance is almost
the same in both asynchronous and synchronous versions. In gen-
eral, these codes perform worse than the synchronous reference
versions. The only remarkable case of very good performance ap-
pears for the biggest size tested in the Hotspot program, where the
execution time converges to the one observed for both the asyn-
chronous reference and the Controller codes.

Finally, regarding dOCAL performance, the results for NVIDIA
of the Sync and Async versions of Matrix Pow and Hotspot are
clearly worse than those obtained for Controllers and SYCL. With
respect to AMD, in the case of Matrix Pow and Hotspot, dOCAL
also performs worse than Controllers and SYCL, although, for the
biggest problem sizes, dOCAL Async shows similar performance

Y. Torres, F.J. Andújar, A. Gonzalez-Escribano et al. Journal of Parallel and Distributed Computing 179 (2023) 104708

Fig. 10. Screen captures of the CUDA 11.2 Visual Profiler showing a range of approximately 1.4 ms of execution in the Manticore machine of the Controller program
implementing the Sobel filter, version MTM, with input images and results stored in host memory: Synchronous mode (top), and asynchronous mode (bottom).
figures than those obtained with the Controller Sync version and
the reference implementation. With respect to Sobel F2F, dOCAL
has the same problem that we discussed above regarding SYCL: An
explicit synchronization is needed after each file read/write opera-
tion. Due to its peculiarities, dOCAL does not need a host task, but
even without it, the execution time is one order of magnitude big-
ger than SYCL and Controllers. Finally, with respect to Sobel M2M,
the Sync version of dOCAL for NVIDIA works better than HypSCYL,
and the Async dOCAL version shows the same performance than
Intel-LLVM Async. However, in AMD, the execution time of both
the Sync and Async version of dOCAL is one order of magnitude
bigger than the alternatives studied.

5.4. Development effort measures

This section analyzes the differences in development effort be-
tween all the versions of the developed codes. We consider four
classical development effort metrics: The number of lines of code,
Number of tokens, McCabe’s cyclomatic complexity [25], and Hal-
stead’s development effort [17]. The first two measure the volume
of code that the programmer should develop. The third measures
the rational effort needed to program it in terms of code diver-
gences and potential issues that should be considered to develop,
test, and debug the program. The last metric uses both code com-
plexity and volume indicators to obtain a comprehensive measure
of the development effort. The measured codes include the kernel
definitions and characterization, the coordination host code, and
the data structures management. For a fair comparison, they have
been formatted following the same criteria, with no line breaks in
expressions or calls to functions, closing curly brackets always on
their own line, etc. Regarding dOCAL, the complexity measurement
method counted kernels just as single strings, thus preventing a
proper measurement. Therefore, just for this comparison, we trans-
formed kernels into separate functions, in order to measure its
complexity more accurately.

Table 2 shows the results. They indicate that programming us-
ing the Controller library generates a lower volume of code, a
reduced cyclomatic complexity, and reduced Halstead measures
than both synchronous and asynchronous versions using CUDA or
OpenCL (e.g., from 20% to 70% less Halstead’s effort). The high-
est reductions are found when comparing with the asynchronous
baseline versions, whose native versions in CUDA or OpenCL man-
ually introduce more complex mechanisms for kernel and data
15
Table 2
Measurements of development effort metrics for the reference and Controller codes.
It includes a comparison between the number of code lines (LOC), number of code
tokens (TOK), McCabe’s cyclomatic complexity (CCN) and Halstead’s development
effort metric (Halstead).

Case study Version LOC TOK CCN Halstead

Hotspot Ctrl (CUDA kernels) 150 1 493 32 475 799
Ctrl (OpenCL kernels) 152 1 520 32 447 411
dOCAL Sync 153 1 646 33 493 637
dOCAL Async 151 1 626 33 484 398
SYCL Sync 165 1 835 32 646 559
SYCL Async 163 1 823 32 641 711
CUDA Sync 162 1 769 33 710 780
CUDA Async 203 2 310 37 1 194 609
OpenCL Sync 242 2 734 37 1 193 405
OpenCL Async 314 3 345 37 1 712 732

Matrix Pow Ctrl (CUDA kernels) 101 929 18 250 311
Ctrl (OpenCL kernels) 106 958 18 229 714
dOCAL Sync 104 1 028 17 233 938
dOCAL Async 102 1 008 17 226 546
SYCL Sync 127 1 353 20 465 916
SYCL Async 125 1 341 20 461 310
CUDA Sync 144 1 297 25 444 197
CUDA Async 205 1 735 25 862 150
OpenCL Sync 203 1 934 25 668 596
OpenCL Async 278 2 383 28 936 740

Sobel filter Ctrl (CUDA kernels) 101 1 338 17 431 889
(File-to-File) Ctrl (OpenCL kernels) 109 1 351 17 433 397

dOCAL Sync 110 1 391 24 479 865
dOCAL Async 109 1 381 24 479 803
SYCL Sync 131 1 726 22 779 085
SYCL Async 130 1 720 22 773 085
CUDA Sync 100 1 324 23 546 646
CUDA Async 167 1 929 30 878 473
OpenCL Sync 151 1 948 18 823 562
OpenCL Async 227 2 505 26 1 249 711

transfer synchronizations. These mechanisms are transparent and
portable in the Controller programs. A closer look at the codes in-
dicates that, as expected, the higher reduction is found in the parts
of the host codes related to coordination. The small differences
between a Controller program using CUDA or OpenCL kernels are
inside the kernels, or in one extra program argument added to the
main function in OpenCL version to select the GPU platform, that
is not needed in the CUDA only version. The coordination code and
host tasks are completely portable.

Y. Torres, F.J. Andújar, A. Gonzalez-Escribano et al. Journal of Parallel and Distributed Computing 179 (2023) 104708
SYCL and dOCAL are based on modern C++ abstractions. The
same SYCL code is used with both compilers: hipSYCL and Intel-
LLVM. dOCAL abstractions are more powerful than SYCL, presenting
lower measures except for the notable cases of the slightly higher
cyclomatic complexity on the Hotspot and Sobel cases. There is
less volume of code but with more logical branches. The Controller
programs report clearly better measures than SYCL programs in
all cases (e.g. 25% to 45% reduction in Halstead’s effort). They
also show similar measures than dOCAL in most situations, with a
slight reduction of 5% to 8% in tokens, reductions of less than 10%
in Halstead’s effort for Hotspot and Sobel, and an increment of 10%
in Halstead’s effort for Matrix Pow. The Controller codes present
slightly lower cyclomatic complexity than dOCAL in Hotspot (re-
duction of 3%), slightly higher in Matrix Pow (increment of 5%,
and a significant reduction of 29% in Sobel. The best case for the
Controller programs is Sobel, a streaming application that applies
an image filter to a video stream with potential to overlap kernels,
host tasks and communications in both directions. In this case the
Controller program presents the best measures for all the metrics
comparing with any other model. These results indicate that the
Controller model abstractions are competitive with other state-of-
the-art high-level abstractions.

6. Conclusion

In this work, we present a proposal to simplify and improve
the efficiency of the runtime data-dependencies analysis and the
coordination of both device computations and host tasks that in-
clude generic operations, such as input/output. We discuss the
design and implementation of CtrlEvents, a functional prototype
that implements this abstraction. CtrlEvents extends our previ-
ous Controller heterogeneous programming framework, adding the
possibility of executing asynchronous operations in a portable and
efficient form, and removing some inefficiencies of the original
proposal, such as the use of internal queues. We also present
an experimental study using several iterative programs with dif-
ferent scenarios for asynchronous operations between host and
device, and several demanding workload scenarios, including typi-
cal streaming operations. Implementations using our proposal and
two different state-of-the-art SYCL implementations (hipSYCL with
CUDA and ROCm backends, and Intel LLVM for CUDA) are com-
pared on both NVIDIA and AMD GPUs. The results indicate that
our solution outperforms the SYCL implementations for most situ-
ations, presenting a good balance between portability, programma-
bility and efficiency. Future work includes a more extensive study
of the portability and cooperation between different and new types
of devices, and the behavior with other types of applications.

The benefits of CtrlEvents are related to the asynchronous ex-
ecution and the potential overlapping of computations and com-
munications. Thus, they are limited to iterative or task-based pro-
grams that interleave device and host computations that requires
memory transfers between them due to dependences. The experi-
mental study presented in this work is limited to simple iterative
applications with regular loads. More complex real applications
should be tested in future work to further generalize the results.

CRediT authorship contribution statement

Yuri Torres: Investigation, Software, Original draft preparation,
Validation, Writing – Reviewing and Editing.

Francisco Andújar: Investigation, Software, Original draft prepa-
ration, Validation, Writing – Reviewing and Editing.

Arturo Gonzalez-Escribano: Conceptualization, Methodology,
Software, Writing – Original draft preparation, Writing – Reviewing
and Editing, supervision.
16
Diego R. Llanos: Investigation, Writing – Original draft prepara-
tion, Writing – Reviewing and Editing, supervision.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

Data will be made available on request.

Acknowledgments

The authors would like to thank the Editor and the anony-
mous reviewers for their valuable suggestions. This work was
supported in part by the Spanish Ministerio de Ciencia e Inno-
vación and by the European Regional Development Fund (ERDF)
program of the European Union, under Grant TIN2017-88614-R
(PCAS Project); in part by the Junta de Castilla y León - FEDER
Grants, under Grant VA226P20 (PROPHET-2 Project), by Junta de
Castilla y León, Spain. This work was also supported in part
by grant TED2021–130367B–I00, funded by MCIN/AEI/10.13039/
501100011033 and by “European Union NextGenerationEU/PRTR”.

References

[1] A. Alpay, V. Heuveline, SYCL beyond OpenCL: the architecture, current state and
future direction of HipSYCL, in: Proceedings of the International Workshop on
OpenCL, Association for Computing Machinery, New York, NY, USA, 2020.

[2] G. Araujo, D. Griebler, D.A. Rockenbach, M. Danelutto, L.G. Fernandes, Nas par-
allel benchmarks with cuda and beyond, Softw. Pract. Exp. (2021).

[3] D.H. Bailey, E. Barszcz, J.T. Barton, D.S. Browning, R.L. Carter, L. Dagum, R.A.
Fatoohi, P.O. Frederickson, T.A. Lasinski, R.S. Schreiber, et al., The nas parallel
benchmarks summary and preliminary results, in: Supercomputing’91: Pro-
ceedings of the 1991 ACM/IEEE Conference on Supercomputing, IEEE, 1991,
pp. 158–165.

[4] D.A. Beckingsale, J. Burmark, R. Hornung, H. Jones, W. Killian, A.J. Kunen, O.
Pearce, P. Robinson, B.S. Ryujin, T.R. Scogland, Raja: portable performance for
large-scale scientific applications, in: 2019 IEEE/ACM International Workshop
on Performance, Portability and Productivity in HPC (P3HPC), 2019, pp. 71–81.

[5] T. Ben-Nun, M. Sutton, S. Pai, K. Pingali, Groute: an asynchronous multi-GPU
programming model for irregular computations, in: Proc. PPoPP ’17, ACM,
Austin, Texas, USA, 2017, pp. 235–248.

[6] BSC (Barcelona Supercomputing Center), mpSs2 Programming model, https://
pm .bsc .es /ompss -2, 2020. (Accessed 1 February 2022).

[7] C++ Standards Committee Papers, A unified executors proposal for C++, http://
www.open -std .org /jtc1 /sc22 /wg21 /docs /papers /2020 /p0443r14 .html, 2020.
(Accessed 1 February 2022).

[8] S. Che, et al., Rodinia: a benchmark suite for heterogeneous computing, in:
Proc. IISWC’09, IEEE, 2009, pp. 44–54.

[9] I. Corporation, intel/llvm: home for intel llvm-based projects, https://github .
com /intel /llvm, 2021. (Accessed 1 May 2021).

[10] Cuda Programing Blog, Implementation Sobel operator in CUDA C on YUV video
File, Web, http://cuda -programming .blogspot .com /2013 /01 /implementation -
sobel -operator-in -cuda -c .html, 2013. (Accessed 1 February 2022).

[11] P. Diehl, M. Seshadri, T. Heller, H. Kaiser, Integration of CUDA processing within
the C++ library for parallelism and concurrency (HPX), arXiv:1810 .11482, 2018.

[12] H.C. Edwards, C.R. Trott, Kokkos: enabling performance portability across
manycore architectures, in: 2013 Extreme Scaling Workshop (xsw 2013), 2013,
pp. 18–24.

[13] M. Fragkoulis, P. Carbone, V. Kalavri, A. Katsifodimos, A survey on the evolution
of stream processing systems, arXiv:1810 .11482, 2020.

[14] R. Gonzalez, R. Woods, Digital Image Processing, 3rd edition, Prentice Hall,
2007.

[15] A. Gonzalez-Escribano, Y. Torres, J. Fresno, D. Llanos, An extensible system for
multilevel automatic data partition and mapping, IEEE Trans. Parallel Distrib.
Syst. 25 (2014) 1145–1154, https://doi .org /10 .1109 /TPDS .2013 .83.

[16] T. Gysi, J. Bär, T. Hoefler, dCUDA: hardware supported overlap of computation
and communication, in: Proc. SC16, IEEE, Salt Lake City, Utah, EE. UU., 2016,
pp. 609–620.

[17] M. Halstead, Elements of Software Science, Operating and Programming Sys-
tems Series, Elsevier Science Inc., 1977.

http://refhub.elsevier.com/S0743-7315(23)00072-2/bib41B553A923307F9051BF38EE560DAA59s1
http://refhub.elsevier.com/S0743-7315(23)00072-2/bib41B553A923307F9051BF38EE560DAA59s1
http://refhub.elsevier.com/S0743-7315(23)00072-2/bib41B553A923307F9051BF38EE560DAA59s1
http://refhub.elsevier.com/S0743-7315(23)00072-2/bibF6CD054A0085D0A7620245F542CC2101s1
http://refhub.elsevier.com/S0743-7315(23)00072-2/bibF6CD054A0085D0A7620245F542CC2101s1
http://refhub.elsevier.com/S0743-7315(23)00072-2/bibE03C5572F628ED0A5318E777AB6350A3s1
http://refhub.elsevier.com/S0743-7315(23)00072-2/bibE03C5572F628ED0A5318E777AB6350A3s1
http://refhub.elsevier.com/S0743-7315(23)00072-2/bibE03C5572F628ED0A5318E777AB6350A3s1
http://refhub.elsevier.com/S0743-7315(23)00072-2/bibE03C5572F628ED0A5318E777AB6350A3s1
http://refhub.elsevier.com/S0743-7315(23)00072-2/bibE03C5572F628ED0A5318E777AB6350A3s1
http://refhub.elsevier.com/S0743-7315(23)00072-2/bib7DA7A55DA55CCE4E6F0A26E0063CBB23s1
http://refhub.elsevier.com/S0743-7315(23)00072-2/bib7DA7A55DA55CCE4E6F0A26E0063CBB23s1
http://refhub.elsevier.com/S0743-7315(23)00072-2/bib7DA7A55DA55CCE4E6F0A26E0063CBB23s1
http://refhub.elsevier.com/S0743-7315(23)00072-2/bib7DA7A55DA55CCE4E6F0A26E0063CBB23s1
http://refhub.elsevier.com/S0743-7315(23)00072-2/bib87F13CFBD9630F792EA75FD0214204D6s1
http://refhub.elsevier.com/S0743-7315(23)00072-2/bib87F13CFBD9630F792EA75FD0214204D6s1
http://refhub.elsevier.com/S0743-7315(23)00072-2/bib87F13CFBD9630F792EA75FD0214204D6s1
https://pm.bsc.es/ompss-2
https://pm.bsc.es/ompss-2
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2020/p0443r14.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2020/p0443r14.html
http://refhub.elsevier.com/S0743-7315(23)00072-2/bib9DA70FBFA6D61560F42FF07048DB5D5As1
http://refhub.elsevier.com/S0743-7315(23)00072-2/bib9DA70FBFA6D61560F42FF07048DB5D5As1
https://github.com/intel/llvm
https://github.com/intel/llvm
http://cuda-programming.blogspot.com/2013/01/implementation-sobel-operator-in-cuda-c.html
http://cuda-programming.blogspot.com/2013/01/implementation-sobel-operator-in-cuda-c.html
http://refhub.elsevier.com/S0743-7315(23)00072-2/bib4627F58BF703389C6DAF858F1BE391F4s1
http://refhub.elsevier.com/S0743-7315(23)00072-2/bib4627F58BF703389C6DAF858F1BE391F4s1
http://refhub.elsevier.com/S0743-7315(23)00072-2/bibB00C50ACE15C37FECB45C378B923FD0Ds1
http://refhub.elsevier.com/S0743-7315(23)00072-2/bibB00C50ACE15C37FECB45C378B923FD0Ds1
http://refhub.elsevier.com/S0743-7315(23)00072-2/bibB00C50ACE15C37FECB45C378B923FD0Ds1
http://refhub.elsevier.com/S0743-7315(23)00072-2/bibC0AD6DD8CA6E1B65CD5CC29A3C0222B2s1
http://refhub.elsevier.com/S0743-7315(23)00072-2/bibC0AD6DD8CA6E1B65CD5CC29A3C0222B2s1
http://refhub.elsevier.com/S0743-7315(23)00072-2/bib60F0F723151253030DD1FD41FAD68784s1
http://refhub.elsevier.com/S0743-7315(23)00072-2/bib60F0F723151253030DD1FD41FAD68784s1
https://doi.org/10.1109/TPDS.2013.83
http://refhub.elsevier.com/S0743-7315(23)00072-2/bib98F0918EAB7FF805B05B7047D015A882s1
http://refhub.elsevier.com/S0743-7315(23)00072-2/bib98F0918EAB7FF805B05B7047D015A882s1
http://refhub.elsevier.com/S0743-7315(23)00072-2/bib98F0918EAB7FF805B05B7047D015A882s1
http://refhub.elsevier.com/S0743-7315(23)00072-2/bibB914FC0D96BF47B2C29CEEBBA0D2F05Ds1
http://refhub.elsevier.com/S0743-7315(23)00072-2/bibB914FC0D96BF47B2C29CEEBBA0D2F05Ds1

Y. Torres, F.J. Andújar, A. Gonzalez-Escribano et al. Journal of Parallel and Distributed Computing 179 (2023) 104708
[18] Intel, Sobel Filter Design Example, https://www.intel .com /content /www /us /en /
programmable /support /support -resources /design -examples /design -software /
opencl /sobel -filter.html, 2018. (Accessed 1 August 2020).

[19] Intel Corporation, Intel oneAPI webpage, https://www.intel .com /content /www /
us /en /developer /tools /oneapi /overview.html, 2022. (Accessed 1 February 2022).

[20] H. Kaiser, T. Heller, B. Adelstein-Lelbach, A. Serio, D. Fey, HPX: a task based
programming model in a global address space, in: Proceedings of the 8th Inter-
national Conference on Partitioned Global Address Space Programming Models,
PGAS ’14, Association for Computing Machinery, New York, NY, USA, 2014.

[21] Khronos OpenCL working group, SYCL 1.2.1 specification standard, https://
www.khronos .org /registry /SYCL /specs /sycl -1.2 .1.pdf, 2020. (Accessed 1 February
2022).

[22] Lawrence Livermore National Laboratory, RAJA Performance Portability Layer
(C++), https://github .com /LLNL /RAJA, 2020. (Accessed 1 February 2022).

[23] Y. LeCun, 1.1 deep learning hardware: past, present, and future, in: 2019 IEEE
International Solid- State Circuits Conference - (ISSCC), 2019, pp. 12–19.

[24] B.B. Mandelbrot, Fractal aspects of the iteration of z → λz (1-z) for complex λ
and z, Ann. N.Y. Acad. Sci. 357 (1980) 249–259.

[25] T. McCabe, A complexity measure, IEEE Trans. Softw. Eng. 4 (1976) 308–320,
https://doi .org /10 .1109 /TSE .1976 .233837.

[26] A. Moreton-Fernandez, E. Rodriguez-Gutiez, A. Gonzalez-Escribano, D. Llanos,
Supporting the Xeon Phi coprocessor in a heterogeneous programming model,
in: Proc. Euro-Par 2017, Springer, Santiago de Compostela, Spain, 2017,
pp. 457–469.

[27] A. Moreton-Fernandez, H. Ortega-Arranz, A. Gonzalez-Escribano, Controllers: an
abstraction to ease the use of hardware accelerators, Int. J. High Perform. Com-
put. Appl. 32 (2018) 838–853, https://doi .org /10 .1177 /1094342017702962.

[28] A. Murray, E. Crawford, Compute aorta: a toolkit for implementing heteroge-
neous programming models, in: Proceedings of the International Workshop on
OpenCL, IWOCL ’20, Association for Computing Machinery, New York, NY, USA,
2020.

[29] NVIDIA, CUDA Toolkit Documentation v11.6.0, http://docs .nvidia .com /cuda/,
2022. (Accessed 1 February 2022).

[30] NVIDIA, matrixMul - matrix multiplication (CUDA Runtime API version),
https://docs .nvidia .com /cuda /cuda -samples /index .html #matrix -multiplication -
-cuda -runtime -api -version-, 2022. (Accessed 9 February 2022).

[31] S. Pennycook, J. Sewall, V. Lee, Implications of a metric for performance porta-
bility, Future Gener. Comput. Syst. 92 (2019) 947–958, https://doi .org /10 .1016 /
j .future .2017.08 .007.

[32] B. Pérez, J. Bosque, R. Beivide, Simplifying programming and load balancing of
data parallel applications on heterogeneous systems, in: Proc. GPGPU ’16, ACM,
Barcelona, Spain, 2016, pp. 42–51.

[33] L-N. Pouchet, et al., PolyBench/C, the Polyhedral Benchmark suite, GPU 1.0,
http://web .cs .ucla .edu /~pouchet /software /polybench, 2012. (Accessed 1 Febru-
ary 2022).

[34] A. Rasch, J. Bigge, M. Wrodarczyk, R. Schulze, S. Gorlatch, dOCAL: high-level
distributed programming with OpenCL and CUDA, J. Supercomput. 76 (2020)
5117–5138, https://doi .org /10 .1007 /s11227 -019 -02829 -2.

[35] G. Rodriguez-Canal, Y. Torres, F.J. Andújar, A. Gonzalez-Escribano, Efficient het-
erogeneous programming with fpgas using the controller model, J. Supercom-
put. (2021), https://doi .org /10 .1007 /s11227 -021 -03792 -7.

[36] Sandia National Laboratory, Kokkos C++ Performance Portability Programming
EcoSystem: The Programming Model – Parallel Execution and Memory, https://
github .com /Kokkos /kokkos, 2020. (Accessed 1 February 2022).

[37] M.J. Schulte, M. Ignatowski, G.H. Loh, B.M. Beckmann, W.C. Brantley, S. Gu-
rumurthi, N. Jayasena, I. Paul, S.K. Reinhardt, G. Rodgers, Achieving exascale
capabilities through heterogeneous computing, IEEE MICRO 35 (2015) 26–36,
https://doi .org /10 .1109 /MM .2015 .71.

[38] The Khronos Group Inc, Open Computing Language (OpenCL), http://www.
khronos .org /opencl/, 2022. (Accessed 1 February 2022).

[39] The Kokkos Team, The Kokkos Lectures, Module 2: Views and Spaces, https://
github .com /kokkos /kokkos -tutorials /blob /main /LectureSeries /KokkosTutorial _
02 _ViewsAndSpaces .pdf, 2020. (Accessed 26 July 2022).

[40] The Kokkos Team, The Kokkos Lectures, Module 5: Stream, Tasking
and SIMD, https://github .com /kokkos /kokkos -tutorials /blob /main /LectureSeries /
KokkosTutorial _05 _SIMDStreamsTasking .pdf, 2020. (Accessed 26 July 2022).

[41] P. Thoman, et al., A taxonomy of task-based parallel programming technolo-
gies for high-performance computing, J. Supercomput. 74 (2018) 1422–1434,
https://doi .org /10 .1007 /s11227 -018 -2238 -4.

[42] Trasgo Group, Controllers v2 heterogeneous programming framework, https://
gitlab .com /trasgo -group -valladolid /controllers /-/tags /Controllers _v2, 2021. (Ac-
cessed 1 February 2022).

[43] triSYCL, The triSYCL Project, https://github .com /triSYCL /triSYCL, 2021. (Ac-
cessed 15 November 2021).

[44] R. Vasudevan, S. Vadhiyar, L. Kalé, G-Charm: an adaptive runtime system for
message-driven parallel applications on hybrid systems, in: Proc. ICS 2013,
ACM, Eugene, Oregon, United States, 2013, pp. 349–358.

[45] S. Venkatasubramanian, R. Vuduc, Tuned and wildly asynchronous stencil ker-
nels for hybrid CPU/GPU systems, in: Proc. ICS’09, ACM, Yorktown Heights, NY,
USA, 2009, pp. 244–255.

[46] J.S. Vetter, R. Brightwell, M. Gokhale, P. McCormick, R. Ross, J. Shalf, K. Anty-
pas, D. Donofrio, T. Humble, C. Schuman, B. Van Essen, S. Yoo, A. Aiken, D.
Bernholdt, S. Byna, K. Cameron, F. Cappello, B. Chapman, A. Chien, M. Hall, R.
Hartman-Baker, Z. Lan, M. Lang, J. Leidel, S. Li, R. Lucas, J. Mellor-Crummey,
P. Peltz Jr., T. Peterka, M. Strout, J. Wilke, Extreme Heterogeneity 2018 - Pro-
ductive Computational Science in the Era of Extreme Heterogeneity, Report for
DOE ASCR Workshop on Extreme Heterogeneity, Technical Report, U.S. Depart-
ment of Energy Office of Scientific and Technical Information, 2018, https://
doi .org /10 .2172 /1473756.

[47] A. Vilches, A. Navarro, F. Corbera, A. Rodriguez, R. Asenjo, Heterogeneous par-
allel for template based on TBBs, in: Proc. HLPP’17, Springer, Valladolid, Spain,
2017.

[48] L. Wang, W. Wu, Z. Xu, J. Xiao, Y. Yang, BLASX: a high performance level-3
BLAS library for heterogeneous multi-GPU computing, in: Proc. ICS ’16, ACM,
Istanbul, Turkey, 2016, pp. 20:1–20:11.

Yuri Torres de la Sierra received the B.S. degree
in Computer Science and Engineering from Univer-
sity of Valladolid, Spain, in 2009. He received the
M.S. degree in Information Communications in 2010,
and the Ph.D. degree in Computer Science in 2014,
both from the University of Valladolid, Spain. From
2014 to 2017, he was Associate Professor at Isabel
I University, Burgos, Spain. He is currently Assistant
Professor of computer science at the Universidad of

Valladolid. His research interests include parallel and distributed com-
puting, parallel programming models, and embedded computing. More
information about his current research activities can be found at http://
www.infor.uva .es /~yuri .torres.

Francisco J. Andújar received the M.Sc. degree in
Computer Science from the University of Castilla-La
Mancha, Spain, in 2010, and the Ph.D. degree from the
University of Castilla-La Mancha in 2015. He worked
at the Universitat Politécnica de Valencia under a
post-doctoral contract Juan de la Cierva, and he cur-
rently works at the University of Valladolid as Assis-
tant Professor. His research interests include multi-
computer systems, cluster computing, HPC intercon-

nection networks, switch architecture and simulation tools.

Arturo Gonzalez-Escribano received his MS and
PhD degrees in Computer Science from the Univer-
sity of Valladolid, Spain, in 1996 and 2003, respec-
tively. Dr. Gonzalez-Escribano is Associate Professor
of Computer Science at the Universidad de Valladolid
since 2008. His research interests include parallel and
distributed computing, parallel programming models,
portability in heterogeneous systems, and embedded
computing. More information about his current re-

search activities can be found at http://www.infor.uva .es /~arturo.

Diego R. Llanos received his MS and PhD degrees
in Computer Science from the University of Valladolid,
Spain, in 1996 and 2000, respectively. He is a re-
cipient of the Spanish government’s national award
for academic excellence. Prof. Llanos is Full Profes-
sor of Computer Architecture at the Universidad de
Valladolid, and his research interests include parallel
and distributed computing, automatic parallelization
of sequential code, and embedded computing. He is

a Senior Member of the IEEE and Senior Member of the ACM, and has
co-founded RDNest, a company that transfers to market research results
in the field of Internet of Things and high-performance computing. More
information about his current research activities can be found at http://
www.infor.uva .es /~diego.
17

https://www.intel.com/content/www/us/en/programmable/support/support-resources/design-examples/design-software/opencl/sobel-filter.html
https://www.intel.com/content/www/us/en/programmable/support/support-resources/design-examples/design-software/opencl/sobel-filter.html
https://www.intel.com/content/www/us/en/programmable/support/support-resources/design-examples/design-software/opencl/sobel-filter.html
https://www.intel.com/content/www/us/en/developer/tools/oneapi/overview.html
https://www.intel.com/content/www/us/en/developer/tools/oneapi/overview.html
http://refhub.elsevier.com/S0743-7315(23)00072-2/bib7D9C79CF430C45CD08AF2E100B9E0DEFs1
http://refhub.elsevier.com/S0743-7315(23)00072-2/bib7D9C79CF430C45CD08AF2E100B9E0DEFs1
http://refhub.elsevier.com/S0743-7315(23)00072-2/bib7D9C79CF430C45CD08AF2E100B9E0DEFs1
http://refhub.elsevier.com/S0743-7315(23)00072-2/bib7D9C79CF430C45CD08AF2E100B9E0DEFs1
https://www.khronos.org/registry/SYCL/specs/sycl-1.2.1.pdf
https://www.khronos.org/registry/SYCL/specs/sycl-1.2.1.pdf
https://github.com/LLNL/RAJA
http://refhub.elsevier.com/S0743-7315(23)00072-2/bib24C697691814AFDD5634C501DE400C4Ds1
http://refhub.elsevier.com/S0743-7315(23)00072-2/bib24C697691814AFDD5634C501DE400C4Ds1
http://refhub.elsevier.com/S0743-7315(23)00072-2/bib072AAA266C56E6E0971A6113CD7A8EE0s1
http://refhub.elsevier.com/S0743-7315(23)00072-2/bib072AAA266C56E6E0971A6113CD7A8EE0s1
https://doi.org/10.1109/TSE.1976.233837
http://refhub.elsevier.com/S0743-7315(23)00072-2/bibAA478030E559F9B545436AF4A7AEF333s1
http://refhub.elsevier.com/S0743-7315(23)00072-2/bibAA478030E559F9B545436AF4A7AEF333s1
http://refhub.elsevier.com/S0743-7315(23)00072-2/bibAA478030E559F9B545436AF4A7AEF333s1
http://refhub.elsevier.com/S0743-7315(23)00072-2/bibAA478030E559F9B545436AF4A7AEF333s1
https://doi.org/10.1177/1094342017702962
http://refhub.elsevier.com/S0743-7315(23)00072-2/bibF985240D813B5955959367DC195D2188s1
http://refhub.elsevier.com/S0743-7315(23)00072-2/bibF985240D813B5955959367DC195D2188s1
http://refhub.elsevier.com/S0743-7315(23)00072-2/bibF985240D813B5955959367DC195D2188s1
http://refhub.elsevier.com/S0743-7315(23)00072-2/bibF985240D813B5955959367DC195D2188s1
http://docs.nvidia.com/cuda/
https://docs.nvidia.com/cuda/cuda-samples/index.html#matrix-multiplication--cuda-runtime-api-version-
https://docs.nvidia.com/cuda/cuda-samples/index.html#matrix-multiplication--cuda-runtime-api-version-
https://doi.org/10.1016/j.future.2017.08.007
https://doi.org/10.1016/j.future.2017.08.007
http://refhub.elsevier.com/S0743-7315(23)00072-2/bibFA59798ACF4A70E3F545046F6E0ABAA6s1
http://refhub.elsevier.com/S0743-7315(23)00072-2/bibFA59798ACF4A70E3F545046F6E0ABAA6s1
http://refhub.elsevier.com/S0743-7315(23)00072-2/bibFA59798ACF4A70E3F545046F6E0ABAA6s1
http://web.cs.ucla.edu/~pouchet/software/polybench
https://doi.org/10.1007/s11227-019-02829-2
https://doi.org/10.1007/s11227-021-03792-7
https://github.com/Kokkos/kokkos
https://github.com/Kokkos/kokkos
https://doi.org/10.1109/MM.2015.71
http://www.khronos.org/opencl/
http://www.khronos.org/opencl/
https://github.com/kokkos/kokkos-tutorials/blob/main/LectureSeries/KokkosTutorial_02_ViewsAndSpaces.pdf
https://github.com/kokkos/kokkos-tutorials/blob/main/LectureSeries/KokkosTutorial_02_ViewsAndSpaces.pdf
https://github.com/kokkos/kokkos-tutorials/blob/main/LectureSeries/KokkosTutorial_02_ViewsAndSpaces.pdf
https://github.com/kokkos/kokkos-tutorials/blob/main/LectureSeries/KokkosTutorial_05_SIMDStreamsTasking.pdf
https://github.com/kokkos/kokkos-tutorials/blob/main/LectureSeries/KokkosTutorial_05_SIMDStreamsTasking.pdf
https://doi.org/10.1007/s11227-018-2238-4
https://gitlab.com/trasgo-group-valladolid/controllers/-/tags/Controllers_v2
https://gitlab.com/trasgo-group-valladolid/controllers/-/tags/Controllers_v2
https://github.com/triSYCL/triSYCL
http://refhub.elsevier.com/S0743-7315(23)00072-2/bibC69FF90FCEC58567F28A1BBA195328B8s1
http://refhub.elsevier.com/S0743-7315(23)00072-2/bibC69FF90FCEC58567F28A1BBA195328B8s1
http://refhub.elsevier.com/S0743-7315(23)00072-2/bibC69FF90FCEC58567F28A1BBA195328B8s1
http://refhub.elsevier.com/S0743-7315(23)00072-2/bib50E3FBB40F4E3D45265F5CF12CB0B67Bs1
http://refhub.elsevier.com/S0743-7315(23)00072-2/bib50E3FBB40F4E3D45265F5CF12CB0B67Bs1
http://refhub.elsevier.com/S0743-7315(23)00072-2/bib50E3FBB40F4E3D45265F5CF12CB0B67Bs1
https://doi.org/10.2172/1473756
https://doi.org/10.2172/1473756
http://refhub.elsevier.com/S0743-7315(23)00072-2/bib3F5A1BEC4BE587220747BB15B03AC11Bs1
http://refhub.elsevier.com/S0743-7315(23)00072-2/bib3F5A1BEC4BE587220747BB15B03AC11Bs1
http://refhub.elsevier.com/S0743-7315(23)00072-2/bib3F5A1BEC4BE587220747BB15B03AC11Bs1
http://refhub.elsevier.com/S0743-7315(23)00072-2/bibE80145AD69944EFDBC374AFB4C744FB2s1
http://refhub.elsevier.com/S0743-7315(23)00072-2/bibE80145AD69944EFDBC374AFB4C744FB2s1
http://refhub.elsevier.com/S0743-7315(23)00072-2/bibE80145AD69944EFDBC374AFB4C744FB2s1
http://www.infor.uva.es/~yuri.torres
http://www.infor.uva.es/~yuri.torres
http://www.infor.uva.es/~arturo
http://www.infor.uva.es/~diego
http://www.infor.uva.es/~diego

	Supporting efficient overlapping of host-device operations for heterogeneous programming with CtrlEvents
	1 Introduction
	2 Related work
	2.1 Proposals with explicit data transfers and synchronization
	2.2 Proposals with implicit data transfers and synchronization

	3 The Controller heterogeneous programming framework
	3.1 Controller’s software architecture
	3.2 The tiling library used: Hitmap
	3.3 Programmer’s view: using the Controller framework

	4 Managing devices synchronization: the CtrlEvents proposal
	4.1 Asynchronous model operations
	4.2 Designing a synchronization model
	4.3 Differences between synchronization models: an example
	4.4 Deriving implicit communications
	4.5 The CtrlEvents proposal

	5 Experimentation
	5.1 Case studies
	5.2 Experimental environment and setup
	5.3 Performance study
	5.4 Development effort measures

	6 Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgments
	References

