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Abstract

It is well-known that outliers and noisy data can be very harmful when ap-
plying clustering methods. Several fuzzy clustering methods which are able
to handle the presence of noise have been proposed. In this work, we pro-
pose a robust clustering approach called F-TCLUST based on an “impartial”
(i.e., self-determined by data) trimming. The proposed approach considers
an eigenvalue ratio constraint that makes it a mathematically well-defined
problem and serves to control the allowed differences among cluster scatters.
A computationally feasible algorithm is proposed for its practical implemen-
tation. Some guidelines about how to choose the parameters controlling the
performance of the fuzzy clustering procedure are also given.

Keywords: Clustering, fuzzy clustering, noise, outliers, constraints,
trimming.

1. Introduction

Hard clustering procedures are aimed at searching for a partition of data
into k disjoint clusters, with similar subjects grouped in the same cluster
and dissimilar subjects in different ones. On the other hand, fuzzy clustering
methods provide nonnegative membership values of observations to clusters,
and this generates overlapping clusters where every subject is shared among
all clusters [see, e.g., 33, 10, 2, 20].

It is also widely recognized that clustering methods need to be robust if
they are to be useful in practice. Notice that, otherwise, clustering ability
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may deteriorate drastically due to the presence of even a small fraction of
outlying data. In fact, historically, the fuzzy clustering community was the
first one to face the robustness challenge in Clustering. This is mainly due
to the fact that outliers tend to be approximately “equally remote” from all
clusters and, thus, they may have similar (but not necessarily small) mem-
bership values. For instance, membership values for outlying observations
could be close to 1/k for all the clusters, with k being the number of groups
whenever membership values are assumed to sum up to 1. [7] provide a gen-
eral review of robust fuzzy clustering methods (see also [15] for a review of
robust hard clustering procedures).

One of the methods which is more widely considered in robust fuzzy
clustering is the fuzzy C-means method with “noise component” [5] and a
plethora of modifications. Unfortunately, this approach inherits its preference
for spherical clusters from fuzzy C-means. So, this method is often unable to
properly detect clusters with very different shapes. Several procedures have
been proposed to address this problem [see, e.g., 18, 17, 34, 31].

In this work, we adapt a hard robust clustering approach called TCLUST
[14] to the fuzzy clustering framework. The proposed approach also extends
the “Least Trimmed Squares” approach to fuzzy clustering introduced by
[21] toward a more general methodology. The proposed methodology is thus
based on trimming a fixed fraction α of the “most outlying” observations.
We may denote this trimming as “impartial” since the data set itself tells us
which are the observations to be trimmed off without the intervention of the
user declaring privileged directions or zones for trimming. The fixed trim-
ming level controls the number of observations to be discarded in a different
way from other methods that are based on fixing a “noise distance” [see, e.g.,
6, 8, 29]. These methods are also cited as “noise clustering” in the literature.
Discarding a fixed fraction of data has also been considered in [22].

There exist other interesting fuzzy clustering proposals where robustness
is incorporated through the replacement of the Euclidean distance as a mea-
sure of the discrepancies between observations and cluster centers [35, 25, 37].
However, they are mainly aimed at searching spherical equally scattered
groups as fuzzy C-means methods do.

An important feature of the proposed approach is that it allows for non
spherically-shaped clusters, but it also forces the obtained clusters to be
“comparable” in terms of cluster scatters. In this way, clusters with arbi-
trarily very different scatters are not allowed. This is done by imposing an
eigenvalue ratio constraint on the cluster scatter matrices. Some type of con-
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straint on the scatter matrices is compulsory because, otherwise, the fuzzy
clustering problem would become a mathematically ill-posed problem.

The proposed methodology, called F-TCLUST, is presented in Section
2. A feasible algorithm for its practical application is given in Section 3.
The algorithm is theoretically justified in Section 4. Section 5 provides some
guidance about how to choose the several parameters that F-TCLUST takes
into account. Section 6 presents an application to a well-known real data set.
Finally, the paper concludes with some closing remarks and future research
lines.

2. The F-TCLUST method

Suppose that we have n observations {x1, ..., xn} in Rp and we want to
group them into k clusters in a fuzzy way. Therefore, our aim is to obtain a
collection of nonnegative membership values uij ∈ [0, 1] for all i = 1, ..., n and
j = 1, ..., k. A membership value 1 indicates that object i fully belongs to
cluster j while a 0 membership value means that it does not belong at all to
this cluster. However, intermediate degrees of membership are allowed when
uij ∈ (0, 1). We consider that an observation is fully trimmed if uij = 0 for
all j = 1, ..., k and, thus, this observation has no membership contribution
to any cluster.

Let φ(·;µ,Σ) stand for the probability density function of a p-variate
normal distribution Np(µ,Σ) defined as

φ(x;µ,Σ) = (2π)−p/2|Σ|−1 exp (− (x− µ)′Σ−1(x− µ)/2).

Given a fixed trimming proportion α ∈ [0, 1), a fixed constant c ≥ 1 and a
fixed value of the fuzzifier parameter value m > 1; a robust constrained fuzzy
clustering problem can be defined through the maximization of the objective
function:

n∑
i=1

k∑
j=1

um
ij logφ(xi;mj, Sj), (1)

where the membership values uij ≥ 0 are assumed to satisfy

k∑
j=1

uij = 1 if i ∈ I and
k∑

j=1

uij = 0 if i /∈ I,
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for a subset
I ⊂ {1, 2, ..., n} with #I = [n(1− α)],

where m1, ...,mk are vectors in Rp, and, S1, ..., Sk are positive semidefinite
p× p matrices obeying the following eigenvalue ratio constraint

maxk
j=1 maxp

l=1 λl(Sj)

mink
j=1 minp

l=1 λl(Sj)
≤ c, (2)

where {λl(S)}pl=1 denote the p eigenvalues of the matrix S.
Notice that ui1 = ... = uik = 0 for all i /∈ I, so these observations do not

contribute to the summation in the target function (1).
Using a maximum likelihood criterium like that in (1) implies fixing a

specific underlying statistical model, which indeed allows us to better under-
stand what the fuzzy clustering method is really aimed at. This maximum
likelihood approach has already been considered, among others, in [17], [34],
[36], [4] and [31].

One of the main features of the proposed methodology is the application
of the eigenvalue ratio constraint in (2). It is important to see that some type
of constraint in this maximum likelihood approach is compulsory because,
otherwise, the objective function (1) would become unbounded, just by tak-
ing one of the mj equal to one of the observations xi, setting uij = 1, and
taking a sequence of scatter matrices Sj such that |Sj| → 0. This problem is
recurrent in Cluster Analysis whenever general scatter matrices are allowed.
For instance, this trouble was already noticed in fuzzy clustering by [18],
where they also proposed constraining the relative volumes |Sj| to be equal
to some constants fixed in advance. Other different types of constraint can
be found in [34] and [31].

In our approach, the unboundedness problem is addressed by constraining
the ratio between the largest and smallest eigenvalues of the scatter matrices.
In other words, we are assuming that the square root of the ratio between the
lengths of the axes of the tolerance ellipsoids defined through the Sj scatter
matrices are smaller than a constant c. This approach can be seen as an
extension of [19]. The smaller the constant c, the more similarly scattered
the groups are. For instance, the clusters should fall within spheres of the
same radius when c = 1 and the associated clustering results are close to
those obtained when applying fuzzy C-means. Larger values of c lead to an
almost unconstrained fuzzy clustering approach. This type of constraints on
the eigenvalues was also considered in [3] when updating the scatter matrix
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with the aim of controlling the cluster shapes. In this work, this constraint
on the eigenvalues is explicitly posed in the maximization of the objective
function.

The use of an objective function like that in (1) lends the method a bias
toward clusters with similar sizes (more precisely toward clusters with similar
values of

∑n
i=1 u

m
ij ). If this effect is not desired then it is better to replace

the objective function (1) by

n∑
i=1

k∑
j=1

um
ij log (pjφ(xi;mj, Sk)), (3)

where pj ∈ [0, 1] and
∑k

j=1 pj = 1 are some weights that the objective
function also needs to be maximized on. Notice that, once the member-
ship values are known, these weights are optimally determined as pj =∑n

i=1 u
m
ij/
∑n

i=1

∑k
j=1 u

m
ij . Thus, this approach implies adding the term

k∑
j=1

( n∑
i=1

um
ij

)
log
( n∑

i=1

um
ij

/ n∑
i=1

k∑
j=1

um
ij

)
to the target function (1). This type of regularization is related to the “en-
tropy regularizations” [27] which have already appeared in the literature. We
will explain, through a simulated data set in Section 5, the impact that the
consideration of the weights pj has on the type of clusters we are looking for.

By replacing the target function (1) by (3) in the previously introduced
robust constrained fuzzy clustering problem, we obtain the F-TCLUST ap-
proach to fuzzy clustering. It is easy to see that it exactly reduces to the
TCLUST hard robust clustering method introduced in [14] when the value
of the fuzzifier parameter is set at m = 1.

3. A feasible algorithm

The maximization of the objective functions (1) and (3) with all these
constraints is not an easy task. In this section, we propose a computationally
feasible algorithm aimed at solving this complex problem. The proposed
algorithm is based on two alternating steps. First, given the values of the
parameters in a given iteration, the best possible membership values are
obtained. Conversely, given some membership values, the parameters are
updated by maximizing expression (3) on these parameters.
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Therefore, the algorithm is an “Expectation-Maximization (EM)” type
of algorithm [9] as are those often applied when fitting mixtures to data sets
[see, e.g., 26]. In any case, we can see that the updating formulas for the
membership values and for the parameters are similar to those applied in
other fuzzy clustering algorithms when different cluster scatter matrices are
allowed (see, e.g., [18] or the algorithms given in [31]).

The algorithm pays special attention to how the constraint on the eigen-
value ratios are imposed when updating the Sj matrices in Step 2.3. More-
over, in Step 2.2., the algorithm incorporates a type of “concentration step”
analogous to that applied in many high-breakdown point robust algorithms
[32]. Note also that the algorithm may be seen as an extension to fuzzy
clustering of the TCLUST algorithm in [14] and [12].

Although its proper justification will be deferred to Section 4, the pro-
posed algorithm may be described as follows:

1. Initialization: The procedure is initialized several times by randomly
selecting parameters p1, ..., pk, m1, ...,mk, and, S1, ..., Sk. For this pur-
pose, we propose to randomly select k× (p+ 1) observations and to ac-
cordingly compute k cluster centers mj and scatter matrices Sj based on
these chosen data points. If needed, the Sj matrices must be modified
properly so that they satisfy the required eigenvalue ratio constraints
by following the approach described in Step 2.3. Weights p1, ..., pk in
the interval (0, 1) and summing up to 1 are also randomly chosen.

2. Iterative steps: The following steps are executed until convergence or
a maximum number of iterations is reached.

2.1. Membership values: Based on the current parameters, if

max
q=1,...,k

pqφ(xi;mq, Sq) ≥ 1,

then

uij = I{pjφ(xi;mj, Sj) = max
q=1,...,k

pqφ(xi;mq, Sq)} (hard assignment),

with I{·} being a 0-1 indicator function which takes the value 1
if the expression within the brackets holds. If

max
q=1,...,k

pqφ(xi;mq, Sq) < 1,
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then

uij =
( k∑

q=1

( log(pjφ(xi;mj, Sj))

log(pqφ(xi;mq, Sq))

) 1
m−1
)−1

(fuzzy assignment).

2.2. Trimmed observations: Let

ri =
k∑

j=1

um
ij log(pjφ(xi;mj, Sj)) (4)

and r(1) ≤ r(2) ≤ ... ≤ r(n) be these values sorted. The observa-
tions to be trimmed are those with indexes {i : ri < r([nα])}. The
membership values for those observations are redefined as

uij = 0, for every j, if ri < r([nα]).

2.3. Update parameters: Given the membership values obtained in the
previous steps, the parameters are updated as

pj =

∑n
i=1 u

m
ij∑n

i=1

∑k
j=1 u

m
ij

, (5)

and,

mj =

∑n
i=1 u

m
ijxi∑n

i=1 u
m
ij

. (6)

Updating the scatter matrices Sj is more complex, since the ma-
trices that are often used for updating them, defined as

Tj =

∑n
i=1 u

m
ij (xi −mj)(xi −mj)

′∑n
i=1 u

m
ij

, (7)

may not satisfy the required eigenvalue ratio constraint. In that
case, the singular-value decomposition of Tj = U ′

jDjUj is consid-
ered, with Uj being an orthogonal matrix and Dj = diag(dj1, dj2, ...,
djp) a diagonal matrix. Let us define the truncated eigenvalues as

[djl]t =


djl if djl ∈ [t, ct]
t if djl < t
ct if djl > ct

, (8)
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with t being a threshold value. The scatter matrices are then
updated as

Sj = U ′
jD

opt
j Uj,

with Dopt
j = diag

(
[dj1]topt , [dj2]topt , ..., [djp]topt

)
where topt mini-

mizes the real-valued function:

t 7→
k∑

j=1

pj

p∑
l=1

(
log ([djl]t) +

djl
[djl]t

)
, (9)

with pj as defined in (5).
In fact, there is a closed form to obtain topt by evaluating the
function (9) 2pk+ 1 times. In order to do that, let us consider the
values e1 ≤ e2 ≤ ... ≤ e2kp obtained after ordering the 2kp values:

d11, d12, ..., djl, ..., dkp, d11/c, d12/c, ..., djl/c, ..., dkp/c.

Consider any 2pk + 1 values f1, ..., f2kp+1 satisfying:

f1 < e1 ≤ f2 ≤ e2 ≤ ... ≤ f2kp ≤ e2kp < f2kp+1,

and, compute

ti =

∑k
j=1 pj(

∑p
l=1 djlI{djl < fi}+ 1

c

∑p
l=1 djlI{djl > cfi})∑k

j=1 pj(
∑p

l=1(I{djl < fi}+ I{djl > cfi}))
,

(10)
for i = 1, ..., 2kp + 1. Finally, choose topt as the value of ti which
yields the minimum value of (9).

3. Evaluate objective function: Finally, after this iterative process, the
value of the associated target function (3) is computed. The set of
parameters and membership values yielding the highest value of this
objective function are returned as the algorithm’s output.

The algorithm presented here is focused on maximizing the objective
function (3) but it can be easily adapted to perform the maximization of (1)
just by assuming fixed equal weights pj = 1/k throughout all the iterations.

The number of random initializations and the maximum number of iter-
ations play a key role in the performance of the algorithm. The larger these
two numbers are, the higher the probability that the algorithm ends up find-
ing the global constrained maximum. Of course, these higher numbers also
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imply a higher computational cost (as happens with other closely related
algorithms). Experience tells us that not many random initializations and
iterations are required when the dimension p is not huge and parameters
m, c, α and k are chosen in a sensible way. Note that the minimization of
function (9) does not notably increase the computational complexity of the
algorithm.

4. Justification of the proposed algorithm

As previously commented, the proposed algorithm is based on two alter-
nating steps. In one of them, we search for the membership values maximiz-
ing the target function given the current parameters (Steps 2.1 and 2.2), and,
in the other, we search for the parameters maximizing the target function
under the constraint on the eigenvalues (Steps 2.3) given the current mem-
bership values. The algorithm thus increases the value of the target function
through this iterative process, which allows to find a local maximum of the
target function (3). The iterative process is randomly initialized several times
trying to find the global maximum.

Membership values: Let us assume as known the values of the parameters
pj, mj and Sj. Then, we search for the membership values that make (3) as
large as possible. The maximization of (3) is equivalent to the minimization
of

n∑
i=1

k∑
j=1

um
ijDij, (11)

with Dij = − log (pjφ(xi;mj, Sk)) = log (p−1
j det(Sj)

1/2 exp((xi−mj)
′S−1

j (xi−
mj))).

If we assume that pjφ(xi;mj, Sj) < 1 for all xi, then Dij(> 0) can be seen
as a measure of the distances of the observation xi to the center mj (in fact,
exp(Dij) is the “exponential distance measure” introduced in [17]. In this
way, the minimization of (11) on the membership values has a similar state-
ment as that considered in fuzzy C-means clustering. Standard Lagrange
multiplier arguments lead to optimal membership values as

uij =

(
k∑

q=1

(
Dij

Diq

) 1
m−1

)−1

,
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which indeed coincide with the “fuzzy assignments” proposed in Step 2.1.
On the other hand, let us now assume that there exists any j such that

pjφ(xi;mj, Sj) ≥ 1 (that is: log(pjφ(xi;mj, Sj)) ≥ 0). We can assume
w.l.o.g. that log(p1φ(xi;m1, S1)) = maxj=1,..k pj log(φ(xi;mj, Sj)) ≥ 0 and,
then, we have

k∑
j=1

um
ij log (pjφ(xi;mj, Sk)) ≤ log (p1φ(xi;m1, S1))

k∑
j=1

um
ij

≤ log (p1φ(xi;m1, S1))
k∑

j=1

uij = log (p1φ(xi;m1, S1)).

Thus, we just need ui1 = 1 and uij = 0 for j ̸= 1 to maximize (3) and the
“hard assignments” proposed in Step 2.1 are justified.

Trimmed observations: When a proportion α of observations is allowed to
be discarded, it is quite easy to see that the discarded observations are those
yielding the smallest values of ri with ri as defined in (4) to maximize (3)
(recall that (3) is equal to

∑n
i=1 ri). This type of argument is the basis of the

“concentration steps” that some Robust Statistics algorithms apply [32]. The
“concentration steps” have been previously used in hard clustering problems
[14, 28, 13]. Consequently, the algorithm fixes uij = 0 for all the indexes i
such that ri < r([nα]). This idea also underlies the “Least Trimmed Squares”
approach to fuzzy clustering in [21].

Update parameters: We now assume that the membership values are known
and we want to maximize the objective function (3) on the parameters pj,
mj and Sj.

As happens with other maximum likelihood approaches to fuzzy cluster-
ing, it is not difficult to see that the best choices for pj and mj are those
given in expressions (5) and (6) [see, e.g., 18, 36]. Plugging these values into
(3) and applying the cyclic property of the trace operator, the maximization
of (3) can be reduced to the minimization on Sj of

k∑
j=1

( n∑
i=1

um
ij

)(
log(det(Sj)) + trace(S−1

j Tj)
)
, (12)

with Tj as given in (7).
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Let us consider the spectral decomposition of the matrices Tj = U ′
jDjUj

and Sj = V ′
jEjVj, with diagonal matrices Dj = diag(dj1, ..., djp) and Ej =

diag(ej1, ..., ejp), and, orthogonal matrices Uj and Vj. Mimicking the reason-
ing in [14], it can be shown that the Vj matrix must exactly coincide with
Uj. This tells us that the “shapes” of the optimal matrices Sj are uniquely
determined by the Tj matrices. Therefore, it is only necessary to choose the
optimal eigenvalues eij properly.

By using Uj = Vj and the fact that these matrices are orthogonal, we can
easily see that the minimization of (12) simplifies to the minimization of

k∑
j=1

( n∑
i=1

um
ij

) p∑
l=1

(
log ejl +

djl
ejl

)
, (13)

with ejl taking some values that satisfy the constraint ejl/euv ≤ c for every
j, l, u and v. This can be done [see details in 12] by truncating the eigenvalues
djl from below by a constant t and from above by c · t (i.e., considering the
truncated [djl]t given in (8)) and searching for the optimal t which minimizes
the real-valued function (9). This function is continuously differentiable and,
thus, it attains the minimum value at one of its critical points (with expres-
sions like those in (10)).

5. Choice of parameters

Since the proposed methodology aims to be very general, several parame-
ters are involved in it. In this section, we will explain the different roles that
the parameters in the F-TCLUST play through a simulated data set. Thus
we consider a very simple example made up of 450 random observations in
R2 from the N2(0, I) distribution and another 450 observations from the

N2

((
5
10

)
,

(
4 −2
−2 4

))
distribution. We also add 100 uniformly distributed observations in the rect-
angle [−10, 15] × [−10, 15], but not considering those observations whose
Mahalanobis distances (using the parameters of these two bivariate normal
distributions) are smaller than χ2

2;0.975 (where χ2
2;0.975 is the 0.975 quantile of

the Chi-squared distribution with 2 degrees of freedom). We thus mitigate
the overlapping of the generated noise with the two normal components. In

11



−10 −5 0 5 10 15

−1
0

−5
0

5
10

15

Data set

x1

x2

Figure 1: Simulated data set with a 10% noise proportion.

this way, these 100 added observations can actually be considered as a 10%
background noise. Figure 1 shows a scatterplot of that simulated data set.

Fuzzifier parameter: We first study the effect of the fuzzifier parameter m in
the clustering results when applying the F-TCLUST procedure with k = 2,
c = 5 and α = 0.1. Figure 2 shows the obtained cluster membership values
by plotting observations with point sizes proportional to these membership
values. Trimmed observations are shown in a separate plot.

As previously commented, the m = 1 case coincides with the TCLUST
method yielding “hard” or “crisp” membership values, where each obser-
vation is fully trimmed or fully assigned to a cluster as shown in Figure
2,(b). On the contrary, all non-trimmed observations are “shared” with al-
most equal membership values in Figure 2,(c) when a large value of m, like
m = 2, is chosen. Intermediate values of m, like m = 1.3, surely yield more
interesting membership values, as shown in Figure 2,(a).

The proposed approach is equivariant with respect to location shifts and
rotations but it is non-affine equivariant due to the lack of equivariance of
the eigenvalue ratio constraint. However, a large value of c yields an almost
affine equivariant procedure, but it also increases the risk of finding spurious
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(a) m=1.3 (Fuzzy clustering)
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(b) m=1 (Hard clustering)
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(c) m=2 (Too much fuzziness)
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Figure 2: Effect of the value of the fuzzifier parameter m on the cluster membership values
(proportional to the point sizes).
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clusters.
It is also important to pay special attention to an inherent problem of

fuzzy clustering approaches based on the maximum likelihood principle. To
see this, let us assume that the variables in our example are scaled by a
constant factor S. That is, we change the variables as follows: X1 ← X1/S
and X2 ← X2/S . Figure 3,(a) shows that m = 5 yields a very high degree
of fuzzification (in fact, m = 2 already did so). However, a logical degree
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(a) S = 1

x1
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(d) S = 1
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Figure 3: Clustering solutions when applying F-TCLUST with k = 2, α = 0.1, c = 5 and
m = 5 in (a), (b) and (c) and m = 1 in (d), (e) and (f). Different scaling factors S are
considered (observe the x1-axes in these figures).
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of fuzzification is obtained in Figure 3,(b) with m = 5 when the variables
are scaled with an S = 10 factor. Finally, we obtain a hard clustering
partition of the data set with the same value m = 5 when S = 100 in
Figure 3,(c). In these figures, we use a mixture of “red” and “green” colors
with intensities proportional to the membership values to summarize the
fuzzy clustering results, while trimmed points are always represented by “◦”
symbols. This dependence on the scale factor S no longer appears when using
a hard clustering approach (i.e. when m = 1), as can be seen in Figures 3,(d),
(e) and (f).

The clustering results shown in Figure 3,(b) (augmented in Figure 4) are
particularly interesting. We can see that “hard” assignment decisions are
made in the “core” of the clusters, with observations that are undoubtedly
assigned. “Fuzzy” assignments are made for the observations that are more
difficult to be classified in the tails of the two normal components. These two
different types of assignment decisions follow from the application of Step 2.1
in the proposed algorithm. This naturally leads to a fuzzy clustering method
with “high contrast” [30]; that is, it may be seen as a compromise between
“hard” and “fuzzy” clustering methods. If “high contrast” partitions are
specially interesting for the user, then this provides an appropriate way to

−1.0 −0.5 0.0 0.5 1.0 1.5

−1
.0

−0
.5

0.
0

0.
5

1.
0

1.
5

x1

x2

Figure 4: Clustering results in Figure 3,(b) augmented.
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scale the data by determining S in such a way that a fixed proportion of
“hard” assignments are done.

Weights and number of clusters: The addition of weights pj in expression
(3) (instead of considering (1)) is very important. We are “ideally” assuming
that the clusters have similar sizes when weights pj do not appear in the
target function to be maximized. This does not necessarily imply that the
resulting clusters satisfy

∑n
i=1 u

m
i1 = ... =

∑n
i=1 u

m
ik, but we are “ideally”

searching for this type of clustering solutions, and not very interested in
clustering solutions too far from that case.

We can see in Figure 5,(a) the clustering results for k = 3, c = 5, α = 0.1
and m = 1.3 when maximizing (1) (that is: “equal weights”) and when
maximizing (3) in Figure 5,(b) (that is: “unequal weights”). The clustering
solution in Figure 5,(b) is essentially made up of just two clusters, while
the third cluster has small membership values for all observations. In this
example, k = 2 is clearly a good choice for the number of clusters (once
10% of the outlying data points are trimmed). Thus, the fact of allowing for
weights pj in the target function could provide interesting information about
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Figure 5: Fuzzy clustering results for k = 3, m = 1.3, c = 5 and α = 0.1 depending on
whether “equal weights”, i.e. maximizing (1), are assumed in (a) or “unequal weights”,
i.e. maximizing (3), in (b).
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how to make sensible choices for k. This possibility was already considered
in hard clustering problems in [16].

Note also that Figure 5,(a) shows many intermediate membership values
due to the clear overlap between the two clusters that share one of the two
normal components. This “soft” transition between clusters is only feasible
when applying fuzzy clustering techniques.

Eigenvalue ratio restriction constant: One of the most distinctive features
of the proposed F-TCLUST approach is the consideration of constraints on
the cluster scatters following from the control of relative sizes of the scatter
matrix eigenvalues through constant c. For instance, we allow for clusters
with very different scatters in Figure 6,(a) when fixing a large c value (like
c = 50). This has allowed for the detection of a very scattered group (shown
in “blue” color). On the other hand, the clusters are forced to have very
similar scatters when c = 1, as shown in Figure 6,(b). In this second case,
the more scattered cluster is no longer possible. Moreover, when c is close to
1, the clusters are forced to be almost spherical (and with the same scatter
among them) and, thus, F-TCLUST may be seen as an extension of the fuzzy
C-means method.
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Figure 6: Fuzzy clustering results for k = 3 and α = 0.1 depending on whether a large
value for the restriction factor c = 50 is chosen in (a) or a smaller one c = 1 in (b).
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With respect to the choice of parameter c in a specific clustering problem,
the researcher sometimes has an initial idea of the differences between group
scatters that he/she is willing to accept, depending on the application in mind
for the clustering results. When such information is not available, we propose
to monitor the sequence of clustering solutions obtained when moving c. In
our experience, not too many essentially different clustering solutions need
to be evaluated. The interpretation of c in terms of the lengths of the axes
of the ellipsoids defined by the Sj matrices will be very important in this
process. It is also informative to check whether the resulting Sj matrices
satisfy λl(Sj) = λv(Su) for some (l, j) ̸= (v, u) or not, to see if the algorithm
is “artificially” forcing the fulfillment of the required constraints for a given
value of constant c.

Trimming level: Another parameter that plays a key role in the F-TCLUST
methodology is the trimming level α. Recall that observations are fully
declared as noise when they are trimmed and no “intermediate” noise as-
signments are allowed (as, for instance, the methods based on the “noise
clustering” approach do).

Sometimes, the researcher has an approximate initial idea of the under-
lying “contamination level” in the data set, but at other times this con-
tamination level is completely unknown. In the case where this underlying
contamination level is unknown, we can see that monitoring the ri values
introduced in (4) provides valuable information to see whether the choice
made for α was sensible or not. Recall that these values are used to deter-
mine the trimmed observations as long as outlying observations take small
ri values. Thus, for a tentative trimming level α, we propose plotting the
points {(i/n, r(i))}i=1,2,3,... obtained with F-TCLUST for this value of α. Re-
call that r(1) ≤ ... ≤ r(n) are the sorted ri values. The choice made for α
is considered as being appropriate if it is close to a value α0, such that the
values r(i) increase quickly when i/n < α0 and the increase becomes slower
when i/n > α0.

For instance, in Figure 7,(b), (d) and (f), we have plotted these r(i) values
for α = 0.02, 0.2 and 0.1. The value α = 0.02 is clearly not a good choice
because the r(i) values are still increasing quickly at this value of α, as can be
seen in Figure 7,(b). A value α = 0.2 is not a good choice either, because the
shaded region in Figure 7,(d) includes a values where the increase is quite
slow. However, we can see in Figure 7,(f) that α = 0.1 is close to be a sensible
choice for α. In fact, recall that 10% was the true contamination level for
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Figure 7: Different clustering solutions depending on the chosen trimming level (α =
0.02, 0, 2 and 0.1) and the plots of the sorted ri values for each different choice of α.

this simulated data set.
It is not compulsory to be extremely precise with an “exact” choice of α

because the parameters pj, mj and Sj do not change notably, for instance,
when α is slightly overestimated. Starting with a slightly overestimated α,
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it is not difficult to make a better choice for the trimming level by carefully
analyzing the trimmed observations which are close to the non-trimmed ones.
From our point of view, in general, it is recommended to be initially conser-
vative when choosing α.

We are currently investigating the possibility of unsupervised methods
for choosing the trimming level α. However, it is important to note that the
problem of choosing α is closely related to the choice of parameters k and c
[see 16]. Addressing all these determinations in a unified manner still requires
an active role to be played by the researcher, as a final decision may be very
subjective, and, thus, it is not clear that a fully unsupervised strategy can
be found.

To clarify previous claims, let us consider again the data set in Figure
1. If we allow for a large value of c (i.e., huge differences among cluster
scatters), then k = 3 and α = 0 is a sensible choice. But, on the other hand,
it is surely better to choose k = 2 and α = 0.1 when c is small. The fuzzy
adaptation of the “classification trimmed-likelihood curves” introduced in
[16] might be considered as an exploratory tool to help the researcher make
sensible simultaneous choices for k, α and c (see Section 7).

Another possibility that may be explored follows from monitoring some
cluster validity index [e.g., the density criterion in 17] against the trimming
level α, as proposed in [21].

6. A real data example

The “Swiss Bank Notes” data set in [11] includes p = 6 variables measur-
ing certain features in the printed image of 100 genuine and 100 counterfeit
old Swiss 1000-franc bank notes.

Figure 8,(a) shows a scatterplot of the fourth (“Distance of the inner
frame to lower border”) against the sixth variable (“Length of the diago-
nal”) and Figure 8,(b) shows a scatterplot of the first (“Length”) against the
fourth. In these two plots, the classification of bills in [11] is shown by using
symbols “G” for the genuine bills and “F” for the forged ones. They also
commented that the group of forged bills was not a homogeneous group and
they pointed out [11, pg. 265] a list with 15 “anomalous” forged bills that
surely follow from a different forgery pattern. These 15 bills are shown in
Figure 8,(a) surrounded by circle symbols. Other authors have reported this
inhomogeneity in the group of forged bills [see, e.g., 5]. Figures 8,(a) and (b)
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also show an observation surrounded by a “�” symbol that corresponds to a
“genuine” bill that would fit better in the group of “forged” bills [see 11].
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Figure 8: A scatterplot of the fourth and sixth variables of the “Swiss Bank Notes” data set
(a) and the first against the fourth (b) with “G” standing for genuine bills and “F” for the
forged ones. 15 “anomalous” forged bills are surrounded by circles in (a). The F-TCLUST
clustering results are summarized in (c) where trimmed observations are surrounded by
circles. The result of the “noise clustering” appears in (d) where observations assigned to
the “noise cluster” are surrounded by circles.
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Figure 8,(c) shows the F-TCLUST clustering results with parameters k =
2, α = 0.08, m = 1.3 and c = 10. Membership values are summarized by
using a mixture of “red” and “green” colors and the trimmed observations
are shown as “black points” surrounded by circles. Taking into account the
prior knowledge of the existence of 15 + 1 “anomalous” bills, we have chosen
α = 0.08 (which yields 200 · 0.08 = 16 trimmed observations). We can see
that the genuine bills are clustered into the “red” cluster and the forged ones
into the “green” cluster. Apart from one wrongly trimmed genuine bill, the
F-TCLUST trims those 15 forged bills listed as “anomalous” in [11].

Although we have used the six variables when applying the F-TCLUST,
only two variables are represented in Figure 8,(c).

The two observations with the most “fuzzy” assignments are surrounded
by “⋄” and “�” symbols in Figure 8,(a), (b) and (c). The observation cor-
responding to a forged bill surrounded by the “⋄” symbol has a membership
value of 0.703 to the cluster including the forged bills, and 0.297 to the clus-
ter with the genuine bills. We can see in Figure 8,(b) that its assignment
decision is not straightforward because, although it is a forged bill, it has
values in the variable “Distance of inner frame to the lower border” more
compatible with those corresponding to the genuine bills. The observation
surrounded by a “�” symbol is the previously commented non-typical gen-
uine bill that had already been reported in [11]. This bill has a membership
value of 0.871 to the cluster made up of genuine bills, while the rest of the
genuine bills have membership values close to 1.

Figure 8,(d) shows the fuzzy clustering results obtained when applying
the “noise clustering” approach [6] with k = 2 groups and m = 1.3. A mix-
ture of 3 colors (red, green and blue) is used to represent the membership
values of the 2 clusters and the “noise cluster”. The “blue” color depends
on the membership values corresponding to the “noise cluster”. The value of
the noise distance parameter δ has been chosen in such a way that exactly
16 observations are considered noisy ones. If ui3 is the membership value
of observation xi with respect to the “noise cluster”, we consider that xi

is a noisy observation whenever ui3 > ui1 and ui3 > ui2. The 16 observa-
tion declared as noisy ones are shown surrounded by circles in Figure 8,(d).
Although the “noise clustering” approach provides very sensible clustering
results (discovering the two main groups of forged and genuine bills and most
of these 15 “anomalous” forged bills), it does not exactly recover the list of
15 “anomalous” forged bills that were listed in [11].

Although we have considered a pre-fixed trimming level α = 0.08, we
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Figure 9: Plot of the ri values when choosing α = 0.08 for the “Swiss Bank Notes” data
set.

can also see that a choice of α close to this value could be justified through
the examination of Figure 9. Since we are quite close to a “high contrast”
clustering output, no particular change of scale seems to be needed for this
data set. A large value of c = 10 is chosen for the eigenvalue ratio constraint
because there are no reasons for being exclusively interested in only detecting
spherical clusters.

7. Conclusions and future research lines

In this paper, we have presented the so-called F-TCLUST robust fuzzy
clustering approach which is based on a “maximum-likelihood” principle.
The possibility of trimming a fixed proportion α of observations (self-determi-
ned by data) is also considered. An eigenvalue ratio constraint on the eigen-
values of the scatter matrices controls the relative shape and size of the
clusters and serves to avoid the detection of spurious clusters. A computa-
tionally feasible algorithm is proposed which does not notably increase the
computing time with respect to other similar algorithms in the literature.

The proposed methodology has a high flexibility by allowing very different
choices of the tuning parameters involved in its statement. Although some
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future research is clearly needed to make these selections easier for the user,
the role played by each of these parameters has been explained and some
general guidelines for their choices have been given.

Possibilistic fuzzy clustering methods [23] are also well-suited for address-
ing the problem of noisy data in fuzzy clustering. These methods are based
on relaxing the constraint

∑k
j=1 uij = 1 in such a way that outlying observa-

tions could have arbitrarily low membership values for all the clusters. It is
well-known that these approaches tend to produce coincident clusters when
k > 1 and, therefore, it is better to see them more as “mode-seeking” pro-
cedures than as “partitioning” ones [1, 24]. The F-TCLUST method may
undoubtedly be viewed as a “partitioning” procedure when equal weights
are assumed (by using (1)) but it also has a certain “mode-seeking” behavior
when allowing different weights (by using (3)). Note that, instead of finding
coincident groups as possibilistic clustering methods do, the F-TCLUST can
find clusters with weights pj close to 0 when the chosen value of k is larger
than needed (Figure 6,(b)).

As was also commented, a preventive (higher than needed) trimming
level has no disastrous effect in the clustering results (Figure 8,(b)). [22] also
noticed this fact for another fuzzy clustering method with a fixed trimming
proportion, and he also showed the dangerous effect that a slightly decreased
noise distance δ could have in “noise clustering” methods.

As a future promising research line, it could be interesting to evaluate the
performance of the “classification trimmed-likelihood curves” [16] in the fuzzy
clustering set up. This approach is based on the graphic representation of the
maximum values attained by the target function (3) when moving parameters
α and k. For instance, Figure 10 shows the classification trimmed-likelihood
curves obtained when k = 1, 2, 3 and 4 and α ∈ [0, 0.3] when m = 1.3
and c = 50. Although a detailed explanation of how these curves may be
interpreted is not given here, by following the interpretation of these curves
as in [16], we could see that k = 3 is a good choice for the number of groups
when α = 0. We can also see that k = 2 is a good choice when the trimming
level α = 0.1 allows 10% of noise to be discarded. In any case, by examining
these curves, there is no point in increasing k from 3 to 4.

As commented in Section 5, all parameters α, k and c can be seen as re-
lated (e.g., a fixed k would imply some specific α and the other way around).
The use of the classification trimmed-likelihood curves may be a useful tool
for helping users to make sensible simultaneous choices for all these param-
eters.
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Figure 10: Classification trimmed likelihood curves for the data set in Figure 1 when
k = 1, 2, 3 and 4 and α ∈ [0, 0.3].
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[12] Fritz, H., Garćıa-Escudero, L.A. and Mayo-Iscar, A. (2012), “A fast
algorithm for robust constrained clustering”. Preprint available at
http://www.eio.uva.es/infor/personas/algorithm web.pdf.

[13] Gallegos, M. and Ritter, G. (2009), “Trimming algorithms for clustering
contaminated grouped data and their robustness.”, Advances in Data
Analysis and Classification, 10, 135167.
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