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Abstract

A new method for performing robust clustering is proposed. The

method is designed with the aim of fitting clusters with different scat-

ters and weights. A proportion α of contaminating data points is also

allowed. Restrictions on the ratio between the maximum and the min-

imum eigenvalues of the groups scatter matrices are introduced. These

restrictions make the problem to be well-defined guaranteeing the ex-

istence and the consistency of the sample estimators to the population

parameters.
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The method covers a wide range of clustering approaches, which

arise depending on the strength of the chosen restrictions. Our pro-

posal includes an algorithm for approximately solving the sample

problem which takes advantage of the Dykstra’s algorithm.

Key words: Robustness; Cluster Analysis; trimming; asymptotics;

trimmed k-means; EM-algorithm; fast-MCD algorithm; Dykstra’s al-

gorithm.

Abbreviated title: Robust clustering based on trimming.

1 Introduction

Many statistical practitioners view the Cluster Analysis as a collection of

mostly heuristic techniques for partitioning multivariate data. This view re-

lies on the fact that most of the cluster techniques are not explicitly based on

a probabilistic model. This could “...lead the naive investigator into believ-

ing that he or she did not make any assumption at all, and that the results

therefore are ‘objective’...” (Flury 1997, page 123). However, that objective-

ness is far from the reality as long as most of the times the cluster’s results

are strongly affected by the chosen method and its performance is somehow

very dependent on the assumed underlying probabilistic model for which the

method is implicitly aimed to. For instance, when using k-means, we must

keep in mind that this method is designed for clustering spherical groups of

roughly equal sizes and, thus, the method is not reliable when the groups

we are searching for depart strongly from this assumption. So in order to
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understand clustering methods and decide which method should be applied

in a particular case it is interesting to determine appropriate models and

develop methods specially tailored for these models.

That determination of appropriate models for clustering is even more

important in the presence of noisy data or outliers. Without specifying a

model, it is not clear what we understand by an observation following an

“anomalous” behavior. For instance, it is not clear when a set of very scat-

tered observations may be seen indeed as an extra proper group or merely

as a background noise to be deleted (see Figure 1). Additionally, it is not
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Figure 1: (a) Two groups with 10% of the observation discarded (trimmed points

are the small circles). (b) Three groups partition with no observations discarded.

obvious wether a small group of tightly joined outliers should be considered

as a proper group instead of a contamination phenomenon. Finally, notice

that the precise detection of the outliers is very important due to the serious

troubles they introduce in standard clustering procedures (see, e.g., Garćıa-
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Escudero and Gordaliza 1999 and Hennig 2004) and also due to the appealing

interest they could have by themselves after explaining why they depart from

the general behavior.

Bock (2002) mentions in a recent Cluster Analysis review paper two

model-based approaches which provide a “theoretical well-based clustering

criterion” in presence of outliers:

(i) Mixture modelling: This first approach is based on considering mixture

fittings. Some examples are the MCLUST and the EMMIX software.

MCLUST (Fraley and Raftery 1998) allows the addition of a mixture

component accounting for the “noise” (usually modelled by a uniform

distribution in a convex set containing all the observations). McLachlan

and Peel (2000)’s EMMIX tries to fit the noise resorting to mixtures of

t distributions.

(ii) Trimming approach: The second approach assumes a known fraction α

of outliers to be trimmed off and, later, the non-trimmed observations

or “regular” data are split into k groups. Examples of this approach are

the trimmed k-means (Cuesta-Albertos et al. 1997) and some recent

proposals by Gallegos (2001, 2002) and Gallegos and Ritter (2005).

Notice that a “crisp” 0-1 approach is usually adopted in the second ap-

proach while the mixture approach generally returns some groups’ ownership

probabilities. However, the main difference between these two approaches in-

tended for clustering in presence of outliers relies on the fact that mixture

modelling approach tries to fit the outlying observations in the model while
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the outliers are completely discarded (being trimmed-off) in the trimming

approach. The methodology presented in this paper is included within the

second, “trimming”, approach and all the comparisons will be made within

this category of methods. The so-called “spurious-outlier” model commented

below will serve as a common model for this approach.

The ability of trimming the least reliable observations has played histor-

ically a very important role as a way of providing robustness to many statis-

tical procedures. Nevertheless, trimming in Cluster Analysis is not straight-

forward because no privileged directions there exist for searching outlying

values and, most of the times, we even need to remove observations which

fall between the groups (“bridge” data points). The first attempts of trim-

ming in clustering appeared in Cuesta-Albertos et al. (1997). There, a

modification of the k-means method (the most widely used non-hierarchical

clustering method) is presented. The way to perform the trimming is called

“impartial” as it is the sample itself which tells us the observations to be

discarded. Moreover, Garćıa-Escudero and Gordaliza (1999) showed that

the impartial trimming provides better results in terms of robustness than

the consideration of different penalty functions in the k-means method (e.g.,

k-medoids).

The use of trimmed k-means involves a considerable drawback in how it

implicitly assumes the same spherical covariance matrix for the groups (as

classical k-means does). This justifies the recent extension for that method in

Gallegos and Ritter (2005) through the trimmed determinant criterion. This

approach retains the assumption on the equality of the covariance matrices,
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but it allows for a general expression of the common covariance matrix non

necessarily spherical. There, it also appears a statistical clustering model

with outliers called the spurious-outlier model extending the usual statistical

clustering setup (Mardia et al. 1979) to consider the presence of a proportion

α of noise. The likelihood function for the data set {x1, ..., xn} is

[ k∏
j=1

∏
i∈Rj

f(xi; µj, Σ)

][ ∏

i/∈R

gψi
(xi)

]
(1.1)

with R = ∪k
j=1Rj and #R = [n(1 − α)]. The parameter k denotes the to-

tal number of groups, Rj contains the indexes of the “regular” observations

assigned to group j and f(·; µ, Σ) stands for the p.d.f. of the p-variate nor-

mal distribution with mean µ and covariance matrix Σ while gψi
’s are some

p.d.f.’s in Rp. If Σ = σ2 · I is chosen in (1.1) then we would be perform-

ing the trimmed k-means method. Gallegos and Ritter (2005) showed that

the maximization of (1.1) reduces to the consideration of the regular part of

the observations under just some reasonable assumptions for the gψi
’s when-

ever the “non-regular” observations may be seen as merely “noise”. In spite

of that, the maximization of this classification likelihood is a computation-

ally hard problem because of its combinatorial nature. Therefore, they also

propose an algorithm in the spirit (both algorithms coincide when k = 1)

of the fast-MCD in Rousseeuw and van Driessen (1999) for approximately

maximizing (1.1).

The assumption for the equality of the groups’ covariance matrices could

be very restrictive in many contexts. Therefore, the next natural extension

is to allow for different covariance matrices Σj’s instead of a single Σ in ex-
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pression (1.1). Unfortunately, this heterogeneous robust clustering problem

is notably harder. It is easy to see the unboundedness of the proposed ob-

jective function, as each data point gives rise to a singularity on the edge

of the parametric space. Moreover, a straight adaptation of the fast-MCD

algorithm is not longer adequate. The inadequacy of a näıve adaptation

follows from the disturbing presence of different groups’ “scales” (we define

the “scale” parameter for a covariance matrix Σj as |Σj|1/p) which makes

complex the global ordering of the observations around their closest centers

through Mahalanobis distances (see, Garćıa-Escudero and Gordaliza 2006)

when performing the so-called “concentration” steps. This is the reason why

unrestricted algorithms frequently find clusters containing a few data points

either very close together or almost lying in a lower dimensional space (Fig-

ure 2,a) and the application of some kind of restriction would allow us to

obtain (perhaps) more interesting or informative partitions (Figure 2,b).

As a way of posing constraints to the heterogeneous robust clustering

problem, Gallegos (2001, 2002) proposes normalizing the covariances to have

unit determinant when computing the Mahalanobis distances in the “concen-

tration” steps. This serves to avoid the harmful effect of the different scales

and even so benefiting from the rationale behind the fast-MCD algorithm.

Gallegos’s procedure works nicely when the groups have similar scales, but

it does not work so well when very different groups’ scales are involved. Nor-

malizing the covariances to have unit determinant can be very restrictive

and, surely, such strong restrictions are not always needed. Moreover, it

seems also adequate to incorporate the restrictions directly in the problem
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Figure 2: An unrestricted solution for the same data set in Figure 1 appears in

(a) when k = 3 and α = .1. Compare with a restricted partition, also when

k = 3 and α = .1, in (b). A description of the applied clustering methods will

be given in Section 3.

statement instead of (artificially) appearing in the algorithm.

Having these things in mind, constraints for the heterogeneous robust

clustering problem will be incorporated in this paper through an eigenvalues-

ratio restriction. A constant c will control the strength of the posed restric-

tion entailing a wide range of clustering problem depending on its value.

Finally, it can be shown that the heterogeneous robust clustering prob-

lem is even notably harder under the presence of different weights for the

underlying groups. Hence, the introduction of some weight terms πj’s in

(1.1) will also be considered for handling different groups’ weights. In fact, it

can be easily shown that do not include the weights in the objective function

is equivalent to the constraint of equally weighted groups.
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Since we assume that every point in the sample space Rp will be assigned

to some group (or it is part of the sample space to be discarded), we will be

able to define a population counterpart serving as a probabilistic benchmark.

Existence results for both, the sample and the population problems, will be

given in this Section 2. Moreover, consistency of the sample maximizers to

the population ones under mild assumptions is proven. The proofs of these

results make clearer the importance of the eigenvalues restrictions in order

to guarantee these existence and consistency results.

In Section 3, we propose a feasible algorithm (TCLUST) for approxi-

mately solving the sample version of the problem. The algorithm may be

seen as a Classification EM-algorithm (Celeux and Govaert 1992) where a

kind of “concentration” step is also applied. The eigenvalues-ratio restric-

tions will be imposed by solving a constrained least squares problem. Dykstra

(1983)’s algorithm may be applied for addressing that problem.

Finally, Section 4 shows a simulation study showing the gain provided by

the proposed method with respect to other “trimming” proposals.

2 Robust Clustering with Eigenvalues-Ratio

Restrictions

Suppose that {x1, ..., xn} denotes the available data in some p-dimensional

Euclidean space. Let f(x; µ, Σ) be the p.d.f. of a p-variate normal distri-

bution f(x; µ, Σ) = (2π)−p/2|Σ|−1/2 exp(−(x − µ)′Σ−1(x − µ)/2) where | · |
stands for the determinant. We denote a probability measure P acting over
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a function f by Pf(·) =
∫

f(x)dP (x).

2.1 Mathematical formulation

We start by modifying the “spurious-outlier” model considered in Gallegos

and Ritter (2005). First, as mentioned before, we consider different scatter

matrices Σi’s as in Gallegos (2001, 2002). Moreover, we assume the presence

of some underlying weights πj’s with
∑k

j=1 πj = 1 associated to the distri-

butions generating the set of “regular” observations. This leads us to the

maximization of
[ k∏

j=1

∏
i∈Rj

πjf(xi; µj, Σj)

][ ∏

i/∈R

gψi
(xi)

]
, (2.1)

with R = ∪k
j=1Rj and #R = n − [nα]. Additionally, the restrictions on the

eigenvalues of the Σj’s matrices will be later introduced in order to avoid sin-

gularities. As in Gallegos and Ritter (2005), if the gψ’s satisfy the condition

arg max
R

max
µj ,Σj

k∏
j=1

∏
i∈Rj

πjf(xi; µj, Σj) ⊆ arg max
R

∏

i/∈∪k
j=1Rj

max
ψi

gψi
(xi)

where R stands for the set of all partitions of the indexes {1, ..., n} onto k

groups of regular observations, R, and a group containing the non-regular

ones, with #R = n − [nα], then we can avoid the non-regular contribution

to the previous maximization problem. This condition easily holds under

just some reasonable assumptions for the gψi
’s whenever the “non-regular”

observations are seen as merely “noise”. For instance, the examples for gψi
’s

shown in the Gallegos and Gallegos and Ritter’ papers can be trivially also

considered here. We refer the interested reader to these papers for more

details.
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Additionally, for an easier statement of our problem, we will use some

assignment functions zj’s telling us which class every point x in Rp is assigned

to (not only the sample observations xi’s are classified). We follow a 0-1

“crisp” approach where x is

assigned to the class j if zj(x) = 1,

or

it is being trimmed off if z0(x) = 1.

With these functions, assuming that the gψi
’s may be omitted, we can raise

again the problem in (2.1) to the maximization of

n∏
i=1

[ k∏
j=1

π
zj(xi)
j f(xi; µj, Σj)

zj(xi)

]
,

with zj being 0-1 functions defined in the whole sample space verifying

∑k
j=0 zj(xi) = 1 and

∑n
i=1 z0(xi) = [nα]. This statement of the problem,

taking logarithms, leads us to the following general one:

Robust Clustering problem: Given a probability measure P ,

we search for the maximization of:

P

[
k∑

j=1

zj(·)
(
log πj + log f(·; µj, Σj)

)
]

, (2.2)

made in terms of the assignment functions:

zj : Rp 7→ {0, 1}, such that
k∑

j=0

zj = 1 and Pz0(·) = α,

and the parameters θ = (π1, ..., πk, µ1, ..., µk, Σ1, ..., Σk) corre-

sponding to weights πj ∈ [0, 1] with
∑k

j=1 πj = 1, mean vectors
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µj ∈ Rp and symmetric positively definite p × p-matrices Σj,

j = 1, ..., k.

If Pn stands for the empirical measure, Pn = 1/n
∑n

i=1 δxi
, we just need

to replace P by Pn in the previous problem in order to recover the origi-

nal sample problem (notice that, perhaps, Pnz0(·) = α can not be exactly

achieved but this familiar fact will not be very important in our reasonings).

Let us finally introduce our restrictions on the eigenvalues of the covari-

ance matrices. This type of restriction may be seen as an extension of those

introduced by Hathaway (1985) for one-dimensional data. It allows to avoid

the singularities introduced by the possibility of very different Σj’s by con-

trolling the ratio between the maximum and the minimum eigenvalue of these

matrices:

(ER) Eigenvalues-Ratio restrictions: We fix a constant c ≥ 1

such that

Mn/mn ≤ c

for

Mn = max
j=1,...,k

max
l=1,...,p

λl(Σj) and mn = min
j=1,...,k

min
l=1,...,p

λl(Σj)

where λl(Σj) are the eigenvalues of the matrices Σj, j = 1, ..., k

and l = 1, ..., p.

We denote by Θc the set constituted by the θ’s which obey condition ER for

a given c.
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Notice that, the strongest possible restriction follows from setting c = 1.

In this particular case, the proposed method may be viewed as a trimmed k-

means method with weights. However, the main advantage of this approach

relies on the fact that parameter c allows us to achieve certain (controlled)

freedom in how we want to handle the different scatter of the groups. Figure

1 and 2 in Section 1 show the results of the application of the proposed

methodology (by using the TCLUST algorithm described in Section 3) to a

data set made up of three gaussian 2-dimensional clusters where the most

scattered one accounts for 10% of the data. The result when k = 2, α = .1

and c = 5 appears in Figure 1,(a). The result there is not very dependent on

c as long as the two (main) groups are not too different in their eigenvalues

once the most scattered group has been trimmed off. The values k = 3 and

α = 0 were considered in Figure 1,(b), with a large value for c (c = 50) which

allows for the presence of the more scattered group. The values k = 3 and

α = .1 were applied in Figure 2. A rather large c (unrestricted) was chosen in

Figure 2,(a) while a small c = 1 (restricted) was considered in Figure 2,(b).

Once our problem was stated, we must exclude in the subsequent analy-

sis those probability distributions obviously unappropriate for this approach.

This leads us to assume on the underlying distribution P the following mild

condition which trivially holds if it is a continuous distribution or if it is the

empirical measure Pn corresponding to a sample from an absolutely contin-

uous distribution (for n large enough):

The distribution P is not concentrated on k points after removing a prob-

ability mass equal to α. (2.3)
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To conclude this section, we will notably simplify our problem through an

adequate reformulation. This will lead to express the assignment functions

zj’s only in terms of θ. This new statement will be of capital importance for

deriving later an algorithm to solve the sample counterpart of the problem.

In order to state this result, some additional notation will be needed:

Given θ ∈ Θc, we consider some discriminant functions defined as

Dj(x; θ) = πjf(x; µj, Σj)

and

D(x; θ) = max{D1(x; θ), ..., Dk(x; θ)}

(notice that these functions appear when applying Bayes’ rules in Discrimi-

nant Analysis). These functions will serve to determine which are the most

“outlying” observations. For a fixed choice of θ, the smaller D(x; θ) for a

given x is, the more outlying x will be supposed.

Using the previous definitions, for a given θ and a probability measure

P , we define

G(·; θ, P ) : u ∈ R 7→ P

[
I[0,u](D(·; θ))

]
(2.4)

and

R(θ, P ) := G−1(α; θ, P ) = inf
u
{G(u; θ, P ) ≥ α}

(notice that if X is a random variable with distribution given by P then

R(θ, P ) is the α-quantile of the random variable D(X; θ)).

With this notation, we have the following characterization for the zj’s

functions:
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Lemma 1 For a probability measure P , using the discriminant functions

Dj(x; θ), the Robust Clustering problem can be simplified to the maximization

only on terms of θ of

θ 7→ L(θ, P ) := P

[
k∑

j=1

zj(·; θ) log Dj(·, θ)
]

, (2.5)

where the assignment functions are obtained from θ as

zj(x; θ) = I{x : {D(x; θ) = Dj(x; θ)} ∩ {Dj(x; θ) ≥ R(θ, P )}}

and

z0(x; θ) = 1−
k∑

j=1

zj(x; θ).

In other words, we assign x to the class j with the largest discriminant

function value Dj(x; θ) or x is trimmed off when all the Dj(x; θ)’s (and con-

sequently D(x; θ)) are smaller than R(θ, P ). To be more precise, a rule

for breaking ties in the discriminant function values is also needed. For in-

stance, the lexicographical ordering could be applied. The proof of Lemma

1 is straightforward and it will be omitted.

2.2 Existence

Our analysis begins by proving the existence of solutions for the proposed

problem:

Consider a sequence {θn}∞n=1 = {(πn
1 , ..., πn

k , µn
1 , ..., µ

n
k , Σ

n
1 , ..., Σ

n
k)}∞n=1 such

that

lim
n→∞

L(θn, P ) = sup
θ∈Θc

L(θ, P ) = M > −∞ (2.6)
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(the boundedness from below for (2.6) can be easily obtained just considering

π1 = 1, µ1 = 0, Σ1 = I, and setting the other weights as 0 with arbitrary

choices of means and variances).

Since [0, 1]k is a compact set, we can extract a subsequence from {θn}∞n
(that will be denoted like the original one) such that

πn
j → πj ∈ [0, 1] for 1 ≤ j ≤ k, (2.7)

and also satisfying for some g ∈ {0, 1, ..., k} (a relabelling could be needed)

that

µn
j → µj ∈ Rp for 0 ≤ j ≤ g and min

j>g
‖µn

j ‖ → ∞. (2.8)

With respect to the scatter matrices, if the restriction ER is assumed, we

can also consider a further subsequence verifying one (and only one) of these

possibilities:

Σn
j → Σj for 1 ≤ j ≤ k, (2.9)

Mn = max
j=1,...,k

max
l=1,...,p

λl(Σj) →∞, (2.10)

or

mn = min
j=1,...,k

min
l=1,...,p

λl(Σj) → 0. (2.11)

The next lemma will show the convergence of the covariance matrices by

showing that only the convergence (2.9) is possible:

Lemma 2 If ER holds and if P satisfies (2.3), then the convergences (2.10)

or (2.11) for the covariance matrices are not possible. Therefore, we can find

subsequences of Σn
j converging toward some matrices Σj, j = 1, ..., k.
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Proof: We will see that (2.10) or (2.11) would imply limn→∞ L(θn, P ) = −∞.

Let λn
l,j := λl(Σ

n
j ) be the eigenvalues , j = 1, ..., k and l = 1, ..., p, of the

group covariance matrices and vn
l,j their associated eigenvectors with ‖vn

l,j‖ =

1. We see that

L(θn, P ) = P

[
k∑

j=1

zj(·; θn)
(
log πn

j −
p

2
log 2π − 1

2

p∑

l=1

log λn
l,j

−1

2

p∑

l=1

(λn
l,j)

−1(· − µn
j )′vn

l,j(v
n
l,j)

′(· − µn
j )

)
]

≤ P

[
k∑

j=1

zj(·; θn)
(
log πn

j −
p

2
log 2π − p

2
log mn − 1

2
M−1

n ‖ · −µn
j ‖2

)
]

(2.12)

If we assume that (2.10) holds, i.e. Mn → ∞, then mn → ∞ by ER. Thus,

we would have that L(θn, P ) → −∞ and this leads us to a contradiction with

(2.6).

Now assume that (2.11) holds. We will need a technical result which

guarantees that if P satisfies (2.3), then there exists a constant h such that

P

[
k∑

j=1

zj(·; θn)‖ · −µn
j ‖2

]
≥ h > 0. (2.13)

The proof of this result is based on an existence result for trimmed k-means

(Cuesta-Albertos et al. 1997) and it is left to the Appendix.

Since log πn
j ≤ 0, the fact that P [z1(·) + ... + zk(·)] = 1− α implies

L(θn, P ) ≤ (1−α)
(− p

2
log 2π− p

2
log mn

)− 1

2
M−1

n P

[
k∑

j=1

zj(·; θn)‖ · −µn
j ‖2

]
.

Therefore, ER and (2.13) give

L(θn, P ) ≤ (1− α)
(− p

2
log 2π − p

2
log mn

)− 1

2
(cmn)−1h. (2.14)
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But this upper-bound in (2.14) tends to −∞ as mn → 0. ¤

By applying the previous lemma, let us consider a subsequence verifying

(2.7), (2.8) and (2.9). We will see that whenever the classes in the opti-

mal partition have strictly positive probability masses we can guarantee the

convergence of the centers µn
j . These result will be of key importance to

understand the role played by the weights πj’s in this approach.

Lemma 3 When ER and (2.3) hold, if every πj in (2.7) verifies πj > 0,

j = 1, ..., k, then g = k in (2.8) (i.e., the centers µn
j are not allowed to

arbitrarily increase in norm).

Proof: If g = 0, we can take a ball with center 0 and radius big enough

B(0, R) such that P [B(0, R)] > α. We can thus easily see that

P

[
k∑

j=1

zj(·; θn)‖ · −µn
j ‖2

]
→∞,

so that L(θn, P ) → −∞ from (2.12). Notice that condition ER has also been

applied.

When g > 0, we prove first that

P

[
k∑

j=g+1

zj(·; θn)

]
→ 0. (2.15)

This arises from the dominated convergence theorem taking into account that

the sequence is obviously bounded by 1− α, and the fact that

{x : zj(x; θn) = 1} ⊆ {x : max
j=g+1,...,k

Dj(x; θn) ≥ D1(x; θn)} (2.16)

for j = g + 1, ..., k, where the right-hand side converges toward the empty

set, when n tends to ∞, due to (2.8) and (2.9).
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We can now use (2.15) in order to get:

lim
n→∞

sup L(θn, P )

≤ lim
n→∞

P

[
g∑

j=1

zj(·; θn)
(
log πn

j −
p

2
log 2π − 1

2
log |Σn

j | −
1

2
(· − µn

j )′(Σn
j )−1(· − µn

j )
)
]

= P

[
g∑

j=1

zj(·; θ̃)
(
log πj − p

2
log 2π − 1

2
log |Σj| − 1

2
(· − µj)

′Σ−1
j (· − µj)

)
]

,

where x 7→ zj(x; θ̃) are the assignment functions which would be derived

when working with g (instead of k) populations and θ̃ being equal to a limit

of the subsequence {θ̃n}∞n=1 = {(πn
1 , ..., πn

g , µn
1 , ..., µ

n
g , Σ

n
1 , ..., Σ

n
g )}∞n=1.

As
∑g

j=1 πj < 1, the proof ends up by showing that we can change the

weights π1, ..., πk by

π∗j =
πj∑g
j=1 πj

for 1 ≤ i ≤ g and π∗g+1 = ... = π∗k = 0, (2.17)

(and properly modifying the assignment functions zj’s). This change pro-

duces a strict decrease in the objective function, leading to a contradiction

with the optimality stated in (2.6). Thus, we conclude g = k. ¤

Proposition 1 (Existence) If (2.3) holds for the probability measure P ,

then there exists some θ ∈ Θc such that the maximum of (2.6) under the

restriction ER is achieved.

Proof: The existence of such as θ follows easily from Lemmas 2 and 3:

(i) If πn
j → πj > 0 for 1 ≤ j ≤ k, then the choice of θ is obvious.

(ii) Now assume that πn
j → πj > 0 with πj > 0 for j ≤ g and πj = 0 for

g < j ≤ k. We define the weights πj as

πj = lim
n→∞

πn
j for j = 1, ..., g and πg+1 = ... = πk = 0.
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Analogously, take µj = limn→∞ µn
j and Σj = limn→∞ Σn

j for j ≤ g. The

other µj’s and Σj’s may be arbitrarily chosen (but with the eigenvalues

of the Σj’s verifying the restriction possed by ER). ¤

Although we admit weights πj = 0, this is not a drawback when taking

log πj because in this case zj(·; θ) ≡ 0 and then set {x : zj(x; θ) = 1} is empty.

Notice that the presence of groups with zero weight does actually happen in

practice. For instance, when k = 2, c = 1, α = 0 and P is the N(0, 1)

distribution in the real line, we can see that θ = (π1, π2, µ1, µ2, σ
2
1, σ

2
1) =

(1, 0, 0, µ2, 1, 1) is the optimal solution for every µ2 ∈ R.

Recall that the objective function for the trimmed k-means method al-

ways improves when increasing k (see, Lemma 9 in the Appendix). The

analysis of the optimal values for these objective functions leads to an useful

criterion for deriving appropriate choices of the parameters k and α (Garćıa-

Escudero et al. 2003). Here, the possible existence of groups with πj = 0

would imply that the value of the objective function does not necessarily

improve when increasing k. However, this property could be even more in-

teresting in order to develop better techniques for choosing k and α.

2.3 Consistency

Given {xn}∞n=1 an i.i.d. random sample from an underlying (unknown) prob-

ability distribution P , let {θn}∞n=1 = {(πn
1 , ..., πn

k , µn
1 , ..., µ

n
k , Σ

n
1 , ..., Σ

n
k)}∞n=1 ⊂

Θc denote the sequence of sample estimators obtained by solving the prob-

lem (2.2) for the empirical measures {Pn}∞n=1 with the eigenvalue restrictions

possed by ER for a fixed constant c ≤ 1.
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Section 2.2 shows that such sequence does always exist, for large enough n,

whenever P is an absolutely continuous distribution verifying (2.3). Notice

that although similar notation to that applied in previous section will be

used, here the index n will indicate the dependence on a random sample of

size n from P .

2.3.1 Boundedness of the sample estimators

We will see first that there exists a compact set K ⊂ Θc such that θn ∈ K

for n sufficiently large with probability 1.

Lemma 4 If P is an absolutely continuous distribution (thus verifying con-

dition (2.3)) then the elements of the matrices Σn
j are uniformly bounded with

probability 1.

Proof: We see first that there exists a constant M ′ such that

L(θn, Pn) ≥ M ′ > −∞ P -a.e. for n ≥ n0. (2.18)

Due to the tightness of Pn, we can find a sequence of radii {rn} uniformly

bounded by a constant r such that Pn(B(0, rn)) ≥ 1 − α. Thus we trivially

have

L(θn, Pn) ≥
∫

B(0,rn)

(
− p

2
log 2π − 1

2
‖x‖2

)
dPn(x)

with {I{B(0, s)}(·)(−p
2
log 2π − 1

2
‖ · ‖2) : s ≤ r} being a Glivenko-Cantelli

class and so (2.18) follows.

In order to see the boundedness of the elements of the covariance matrices,

we need to prove that the maximum eigenvalue Mn does not tend to ∞ and
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the minimum eigenvalue mn does not tend to 0. We start again from (2.12)

with P = Pn, but the analogous of (2.13) follows from another trimmed k-

means result shown in Appendix entailing the existence of a constant h′ such

that

Pn

[
k∑

j=1

zj(·; θn)‖ · −µn
j ‖2

]
≥ h′ > 0 (2.19)

whenever P satisfies (2.3). The proof follows similar steps to that of Lemma

2. If Mn →∞ or mn → 0 then we would have that L(θn, Pn) → −∞, P -a.e.,

and (2.18) does not hold. ¤

Lemma 5 If P is an absolutely continuous distribution, then we can choose

empirical centers µn
j , j = 1, ..., k, such that their norms are uniformly bounded

with probability 1.

Proof: Assume on the contrary that for every sequence of optimal centers we

can find a further subsequence (denoted as the original one) and satisfying

(2.8) for some g < k. We will see that this is not possible by considering two

possible alternatives:

(i) Let us assume, first, that there exist strictly positive limit points corre-

sponding to the associated sequences of empirical weights {πn
j }∞n=1 for

every j = 1, ..., k. I.e., there exist a subsequence such that

πn
j → π0

j > 0 for j = 1, ..., k.

We can assume that g ≥ 1 by a similar reasoning to that leading

us to the obtention of the bound (2.18). Notice that the inclusion
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(2.16), together with the P -a.e. boundedness of the sample covariance

matrices, easily implies that

Pn

[
k∑

j=g+1

zj(·; θn)

]
→ 0.

As we did in the proof of Lemma 3, we can define a new sequence {θ̃n}
obtained from {θn} such that the weights π̃n

j for j = 1, ..., g are obtained

after distributing the initial weights of the groups whose probability

mass tend to 0 as in (2.17) and setting π̃n
j = 0 for j = g + 1, ..., k.

Let us also consider µ̃n
j = µn

j for j = 1, ..., g and some arbitrary but

uniformly bounded centers µ̃n
j for j = g + 1, ..., k. We would see that

lim
n→∞

L(θ̃n, Pn) < lim
n→∞

L(θn, Pn),

eventually contradicting the optimal character of the {θn} sequence.

(ii) Let now assume that there exits a j such that the only limit points of

the sequence {πn
j }∞n=1 are zeroes value (i.e., πn

j → 0 for j = g + 1, ..., k

for g < k), then it is easy to see again, due to the P -a.e. boundedness

of the covariance matrices, that we could replace the original centers for

some uniformly bounded ones without decreasing L(·, Pn) for n large

enough with probability 1. ¤

2.3.2 Consistency result

Let us start by stating the Glivenko-Cantelli property for two classes of func-

tions:
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Lemma 6 Given a compact set K, the classes of functions:

H1 :=
{
I[u,∞)

(
D(·; θ)) : θ ∈ K, u ≥ 0

}
(2.20)

and

H2 :=
{
I[u,∞)

(
D(·; θ))

k∑
j=1

z∗j (·; θ) log Dj(·; θ) : θ ∈ K,u ≥ 0
}

(2.21)

are Glivenko-Cantelli classes, where z∗j (x; θ) = I{x : D(x; θ) = Dj(x; θ)} (all

the observations in Rp are assigned to some class without trimming by ussing

the z∗j ’s).

Proof: The sets {x : D(x; θ) ≥ r} are the union of k ellipsoids in Rp. The

functions log Dj(x; θ) = log πj + log f(x; µj, Σj) are polynomials of degree 2

and the sets {x : z∗j (x; θ) = 1} can be obtained through the intersection of

subgraphs of polynomials of degree 2.

The Glivenko-Cantelli class properties are so easily obtained by using the

methodology in section 2.6 of van der Vaar and Wellner (1996). ¤

A technical result on R(θ; P ) = G−1(α; θ, P ) with G(·; θ, P ) defined in

(2.4) is also needed:

Lemma 7 Let P be an absolutely continuous distribution with an strictly

positive density function. Then, for every compact subset K, we have that

sup
θ∈K

|R(θ; Pn)−R(θ; P )| → 0, P -a.e. . (2.22)

Proof: For every δ > 0, we can find an ε > 0 such that

G(R(θ, P ) + δ, P, θ)−G(R(θ, P )− δ, P, θ) > δ uniformly in θ ∈ K. (2.23)
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Otherwise, for a given δ, we could find a sequence {θn}∞n=1 ⊂ K satisfying

G(R(θn, P ) + δ, P, θn)−G(R(θn, P )− δ, P, θn) < 1/n.

Thus, as the θn are included in the compact set K and R(θn, P ) ≤ M , we

could choose a further convergent subsequence (denoted as the original one)

such that θn → θ0 ∈ K and R(θn, P ) → r0 for a value r0 ≥ 0 (we apply that

R(θ, P ) are uniformly bounded for θ ∈ K).

Notice that the conditions assumed on P imply that u 7→ G(u, P, θ) is a

continuous and strictly increasing function. Therefore, we would have that

G(r0 + δ, P, θ0) = G(r0 − δ, P, θ0), and this would contradict the strictly

increasing character of G(·, P, θ).

Now, if (2.22) did not hold, we could choose another sequence {θn}∞n=1 in

K such that

|R(θn, Pn)−R(θn, P )| > δ

for some δ > 0. Therefore, by applying (2.23), we would see that G(R(θn, Pn), P, θn)

is smaller than α− ε/2 or greater than α + ε/2 infinitely often.

On the other hand, the Glivenko-Cantelli class property for H1 in (2.20)

entails

sup
θ∈K,u≥0

|G(u, Pn, θ)−G(u, P, θ)| → 0, P -a.e.,

and we obtain

|G(R(θn, Pn), P, θn)−G(R(θn, Pn), Pn, θn)| → 0, P -a.e..

But, G(R(θn, Pn), Pn, θn) = α thus it is not possible that G(R(θn, Pn), P, θn)

leaves the interval [α− ε/2, α + ε/2] infinitely often. ¤
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We can state now the main result in this section which it is the consistency

result:

Proposition 2 (Consistency) Assume that P has an strictly positive den-

sity function and that θ0 is the unique maximum of (2.2) under the restriction

ER. If θn ∈ Θc denotes a sample version estimator based on the empirical

measure Pn, then θn → θ0 almost surely.

Proof: We have proved the existence of a compact set K such that θn ∈ K

for n ≥ n0 with probability 1.

Notice that our objective function in the empirical case can be rewritten

as:

L(θ, Pn) =

∫

{x:D(x,θ)≥R(θ;Pn)}

[ k∑
j=1

z∗j (x; θ) log Dj(x; θ)

]
dPn(x).

Define new objective functions as

L̃(θ, Pn) =

∫

{x:D(x,θ)≥R(θ;P )}

[ k∑
j=1

z∗j (x; θ) log Dj(x; θ)

]
dPn(x),

(where R(θ, P ) is fixed only depending on P and not depending on Pn).

We can see that

sup
θ∈K

|L(θ; Pn)− L̃(θ; Pn)| = oP (1),

by using Lemma 7 and the fact that the integrand can be bounded from

above and below from some constants uniformly for θ in the compact set K.

Finally, we can resort to the Glivenko-Cantelli property for the class of

functions H2 in (2.21), and apply Theorem 3.2.3 in van der Vaar and Wellner

(1996) to achieve the desired consistency. ¤
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Remark 1 Notice that a uniqueness condition is needed in order to estab-

lish the consistency result. Unfortunately, this property does not always

hold. For instance, think of a symmetric mixture P in the real line with

two well-separated modes, a high trimming level and k = 1. The uniqueness

property was already needed for establishing the same consistency result for

the trimmed k-means and, even in this simpler case, the statement of gen-

eral uniqueness results was difficult (see Remark 4.1 in Garćıa-Escudero et

al. 1999). However, as in the trimmed k-means problem, we believe that it

is quite rare to find a distribution where the uniqueness fails, when dealing

with “reasonable” data for clustering and when parameters k and α have

been properly chosen.

3 The TCLUST algorithm

The empirical problem presented in Section 2.1 has obviously a very high

computational complexity. An exact algorithm seems to be not feasible even

for moderate sample sizes. Thus the existence of an adequate algorithm

for approximately solving the sample problem can be as important as the

procedure itself. With this in mind, we propose the TCLUST algorithm, an

EM-principle based algorithm, intended to search for approximate solutions.

The EM algorithm is the usual method of obtaining a solution to the mixture

likelihood problem (Dempster et al. 1977). Here, as we follow a “crisp”

approach where each point is uniquely assigned to one cluster, a classification

EM approach (Celeux and Govaert 1992) is preferable. Moreover, as trimmed
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observations are allowed, the rationale behind the fast-MCD (Rousseeuw

and van Driessen 1999) and behind the trimmed k-means algorithm (Garćıa-

Escudero et al 2003) will also underly. The restriction on the eigenvalues will

be incorporated through Dykstra (1983)’s algorithm.

The TCLUST algorithm may be described as follows:

1. Randomly select starting values for the centers m0
j ’s, the covariance

matrices S0
j ’s and the weights of the groups p0

j ’s for j = 1, ..., k.

2. From the θl = (pl
1, ..., p

l
k,m

l
1, ..., m

l
k, S

l
1, ..., S

l
k) returned by the previous

iteration:

2.1. Obtain di = D(xi, θ
l) for the observations {x1, ..., xn} and keep

the set H having the [n(1− α)] observations with largest di’s.

2.2. Split H into H = {H1, ..., Hk} with Hj = {xi ∈ H : Dj(xi, θ
l) =

D(xi, θ
l)}.

2.3. Obtain the number of data points nj in Hj and their sample mean

and sample covariance matrix, mj and Sj, j = 1, ..., k.

2.4. Consider the singular-value decomposition of Sj = U ′
jDjUj where

Uj is an orthogonal matrix and Dj = diag(Λj) is a diagonal matrix

(with diagonal elements given by the vector Λj). If the full vector

of eigenvalues Λ = (Λ1, ..., Λk) does not satisfy the eigenvalues-

ratio restriction, obtain through Dykstra’s algorithm a new vector

Λ̃ = (Λ̃1, ..., Λ̃k) obeying the ER restriction and with ‖Λ̃− Λ−1‖2

being as smallest as possible. Λ−1 denotes the vector made up by
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the inverse of the elements of the vector Λ. Notice that the ER

restriction for Λ correspond exactly to the same ER restriction

applied to Λ−1.

2.5. Update θl+1 using:

• pl+1
j ←↩ nj/[n(1− α)]

• ml+1
j ←↩ mj

• Sl+1
j ←↩ U ′

jD̃jUj and D̃j = diag(Λ̃j)
−1

3. Perform F iterations of the process described in step 2 (moderate val-

ues for F are usually enough) and compute the evaluation function

L(θF ; Pn).

4. Draw random starting values (i.e., start from step 1) several times, keep

the solutions leading to minimal values of L(θF , Pn) and fully iterate

them to choose the best one.

The computed (E-step) ‘a posteriori’ probabilities, Dj(xi, θ
l) = pjf(xi; mj, Sj),

are converted to a discrete classification where we leave unassigned the pro-

portion α of observations which are the hardest to classify. It is easy to see

that this lead us to an optimal assignment.

We later obtain a new θl+1 by maximizing (M-step) the conditional ex-

pectation once all untrimmed observation have been assigned to the groups.

Proposition 3 guarantees that the presented algorithm can be applied for

performing this maximization. Notice that the obtention of the optimal

scatter matrices is decomposed into the search of the corresponding optimal
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eigenvalues and eigenvectors. For every choice of eigenvalues, the best eigen-

vectors choice simply follows from the unitary eigenvectors of the sample

covariance matrix of the observations assigned to each group. This decom-

position is somehow similar to that considered in Gallegos’ proposal, where

the “shapes” and the “scales” are separately handled.

If we see D(xi, θ
l) as an inverse outlyingness measure for the observation

xi with respect to a choice of θl, then step 2 may be seen as some kind

of “concentration” steps. Garćıa-Escudero and Gordaliza (2006) analyzes

some other attempts for extending the “concentration” step principle to the

heterogeneous robust clustering setup.

Recall that the random initialization scheme (step 1) and the final refine-

ment (step 4) were very important in the fast-MCD algorithm. For initializ-

ing the procedure in the step 1, we have seen that simply randomly choosing

k sample data points for the centers, k identity matrices for the covariances

and the same weights for the groups (equal to 1/k) provide reasonably start-

ing values in most of the cases.

With respect to the eigenvalues-ratio restriction, we would need Λ =

(Λ1, ..., Λk) with Λj = (λ1,j, ..., λp,j) belonging to the cone C, where

C = {(Λ1, ..., Λk) ∈ Rp×k : λu,v − c · λr,s ≤ 0 for all (u, v) 6= (r, s)}. (3.1)

If Λ /∈ C, we need to replace Λ−1 by Λ̃ ∈ C with minimal ‖Λ̃− Λ−1‖2. Dyk-

stra’s algorithm serves to approximately solve that constrained least squares

problem when C is the intersection of the several closed convex cones by re-

sorting to iterative projections onto the individual cones. Notice that C may
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be seen as the intersection of the cones

Ch = {(Λ1, ..., Λk) ∈ Rp×k : λu,v − c · λr,s ≤ 0}, h = (u, v, r, s),

and the projections onto the cones Ch are very fast to obtain. Thus a fixed

number of individual projections may be done retaining the best attained

solution after these iterations and satisfying the restrictions. Alternatively,

quadratic programming based solutions (see, e.g., Goldfarb and Idnani 1983)

to that constrained minimization may be explored.

Next result serves to formalize the appropriateness of the TCLUST algo-

rithm:

Proposition 3 If the sets Hj = {xi : zj(xi) = 1}, j = 1, ..., k, are kept fixed,

the maximum of (2.2) for P = Pn can be obtained through the following steps:

(i) Fixed µj and Σj, the best choice of πj is πj = nj/[n(1 − α)] where

nj = #Hj.

(ii) Fixed Σj and the optimal values for πj given in (i), the best choice for

µj is the sample mean mj of the observations in Hj.

(iii) Fixed the eigenvalues for the matrix Σj and the optimum values given

in (i) and (ii) for πj and µj, the best choice for the set of unitary eigen-

vectors are the unitary eigenvectors of the sample covariance matrix Sj

of the observations in Hj.

(iv) With the optimal selections made in (i), (ii) and (iii), the best choice for

the eigenvalues corresponds to the projection of the vector containing

the inverse of the eigenvalues onto the cone C in (3.1).
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Proof: Once the zj(xi) for i = 1, ..., n and j = 0, ..., k are known values, the

expression (2.2) can be written as

k∑
j=1

[
nj log πj +

∑
xi∈Hj

log f(xi; µj, Σj)

]
, (3.2)

and the assertions (i) and (ii) trivially hold.

Considering these optimal values for πj and µj, together with the cyclic

property of the trace, the maximization of (3.2) simplifies to the minimization

of
k∑

j=1

[
log |Σj|+ trace(Σ−1

j Sj)

]
.

The matrices Sj and Σj can be decomposed into Sj = U ′
jDjUj and Σj =

V ′
j EjVj, where Dj = diag(Λj) and Ej = diag(Ξj) are diagonal matrices

Λj = (λ1,j, ..., λp,j) and Ξj = (ξ1,j, ..., ξp,j), and Uj and Vj are orthogonal

matrices. So, as log |Σj| = log |Ej| and the eigenvalues Ej were fixed, the

previous minimization problem can be further simplified to that of

k∑
j=1

trace(Σ−1
j Sj) =

k∑
j=1

trace(E−1
j (UjV

′
j )
′Dj(UjV

′
j )).

(the cyclic property of the trace is again applied). Denote Tj = UjV
′
j , and,

rewrite

trace(E−1
j T ′

jDjTj) =
∑

u

∑
v

λu,j

ξv,j

· t2u v,j , (3.3)

where tu v,j denotes the element (u, v) of the matrix Tj. As long as Tj is an

orthogonal matrix, we have that
∑

u t2u v,j = 1 and
∑

v t2u v,j = 1. Therefore,

the minimization of (3.3) may be seen as a linear programming problem like

min
∑
u,v

cu,v · xu,v subject to
∑

u

xu,v = 1,
∑

v

xu,v = 1 and xu,v ≥ 1,
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with known coefficients cu,v (notice that λu,j/ξu,j are fixed coefficients because

λu,j depends on the data set at hand and the ξu,j are supposed known values in

(iii)). Although fractional solutions are possible, these solutions will never be

basic feasible ones due to the particular statement of the linear programming

problem (see, e.g., Papadimitriou and Steiglitz 1982, pg. 249). Consequently,

the optimal solution corresponds to a “real matching” where the optimal t2u,v

are 0 or 1. Thus, Tj is a permutation matrix product of the orthogonal

matrices Uj and V ′
j . It is quite easy to see that the columns of the matrices

Uj and Vj must provide the same set of unitary eigenvectors and, thus, the

assertion (iii) is proven.

By applying (i),(ii) and (iii), we finally need to search for a vector Ξ =

(Ξ1, ..., Ξk) minimizing

k∑
j=1

p∑
i=1

(
log ξi,j +

λi,j

ξi,j

)
=

k∑
j=1

p∑
i=1

(− log λ̃i,j + λi,j · λ̃i,j

)
, with λ̃i,j = 1/ξi,j.

(3.4)

As (3.4) is a convex function on the λ̃i,j and its unrestricted minimum is

attained when λ̃i,j = λ−1
i,j , the minimization of (3.4) under the eigenvalues-

ratio restriction possed by (3.1) leads us to the optimal choice of Λ̃ with

minimal ‖Λ̃− Λ−1‖2 and Λ̃ ∈ C. ¤

Remark 2 Alternatively, other methods can be defined by imposing restric-

tions on the ratio between the determinant of the groups’ covariances instead

of controlling the eigenvalues. Gallegos (2001, 2002)’s proposal scales the co-

variance matrices to have determinant ratio equal to 1 in the algorithm.

Maronna and Jacovski (1974), in the untrimmed case α = 0, consider that
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normalization as the only reliable “distance” for clustering multivariate data.

The algorithm proposed here can be easily adapted for handling restrictions

of this type. In this case, the cone would be

C ′ = {(σ1, ..., σk) ∈ Rk : σu − c · σv ≤ 0 for all u 6= v},

and the factorization in step 2.4 of the algorithm is Sj = σj ·Uj with |Uj| = 1

and σj = |Sj|1/p. If c = 1 in C ′, we would have an analogous of Gallegos’s

proposal with groups’ weights.

Moreover, other procedures which have been used for avoiding patholog-

ical solutions in the heterogeneous robust clustering problem are based on

adding different types of parameterizations for the covariance matrices (see,

e.g., Scott and Symons 1971 or Banfield and Raftery 1993). Although that

possibility has not been considered here, we believe that similar ideas (based

on relaxing those parameterizations) could be interesting.

4 A simulation study

A simulation study has been carried out to compare the performance of

the proposed robust clustering method with respect to other trimming ap-

proaches in the literature. Several data sets of size n = 2000 have been

generated. Each data set consists of two simulated p-dimensional normally

distributed clusters with centers µ1 = (8, 0, 0, ..., 0)′ and µ2 = (0, 8, ..., 0)′ and

covariance matrices

Σ1 = diag(1, a, 1, ..., 1) and Σ2 = diag(b, c, 1, ..., 1).
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The constants a, b and c serve to control the true differences between the

eigenvalues of the groups’ covariance matrices leading us to the following

cases:

(M1) (a, b, c) = (1, 1, 1): Spherical equally scattered groups.

(M2) (a, b, c) = (5, 1, 5): Not spherical but the same covariance matri-

ces for the groups.

(M3) (a, b, c) = (5, 5, 1): Different covariance matrices but the same

scale (equal determinant).

(M4) (a, b, c) = (1, 20, 5): Groups with different scales.

(M5) (a, b, c) = (1, 45, 30): Groups with different scales and a severe

overlap.

We consider 1800 “regular” data points and, in order to take into account

the groups’ weights, a proportion ρ of them are generated from the first

normal distribution and a proportion (1 − ρ) from the second. We also

generate uniformly distributed data points in a parallelogram defined by

the coordinatewise ranges of the regular data points. Using an acceptance-

rejection algorithm, only points having squared Mahalanobis distances from

µ1 and µ2 (using Σ1 and Σ2) greater than χ2
p,.975 are finally considered until

reaching an amount of 200 clear outliers.

The following approaches searching for k = 2 groups and with a trimming

proportion α = .1 are tried:

(TkM) Trimmed k-means (specially aimed to the case M1).
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(GR) Gallegos and Ritter’s method (specially aimed to the case M2).

(G) Gallegos’s proposal (specially aimed to the case M3).

(TCLUST) The presented algorithm with an eigenvalues-ratio restric-

tion c = 50.

The same number of random initializations and “concentration” steps are

considered for all methods.

Table 1 shows the average proportion of misclassified observations for

B = 1000 independent random samples of size 2000 when p = 2 and 6 and

the groups’ weights are ρ = 1/2 and 1/3.

Notice that all the methods work nicely under the underlying model they

are specially aimed to. However, the proposed eigenvalues-ratio restriction

method is the only method which is able to cope with the mixtures with very

different scales (mixtures M4 and M5) and it seems to be less affected in the

unequal groups’ size case. Figure 3 shows the result of these four analyzed

procedures applied to the same data set generated by the simulation scheme

M5 when p = 2 and ρ = 1/3. The proposed method seems to be the only

one able to distinguish between the least and the most scattered group even

in this rather overlapped case.

APPENDIX

The following lemma was applied in the proofs of Lemmas 3 and 4. Its

proof is based on some results in Cuesta-Albertos et al. (1997).
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Figure 3: Clustering results when k = 2 and α = .1 for a simulated data following

the M5 scheme in the text with p = 2 and ρ = 1/3: Trimmed k-means (TkM);

Gallegos and Ritter (GR); Gallegos (G) and the presented algorithm (TCLUST)

with c = 50.
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Lemma 8 (i) If P satisfies condition (2.3) then there exists a constant h > 0

such that inequality (2.13) holds.

(ii) If P is an absolutely continuous distribution satisfying condition (2.3),

then there exists a constant h′ > 0 such that (2.19) holds with probability 1

for n large enough.

Proof: (i) For a given probability measure P , the trimmed k-means problem is

stated by the search of g points µ1, ..., µg in Rp and a Borel set B minimizing:

min
B:P (B)≥1−α

min
µ1,...,µk

1

P (B)

∫

B

inf
1≤j≤k

‖x− µj‖dP (x). (4.1)

This paper contains an existence result which guarantees that problem

(4.1) always has a solution, so it attains a minimum value that it can be

denoted here by Vα,k. Now, for every choice of θ, we can see that:

P

[
k∑

j=1

zj(·; θ)‖ · −µj‖2

]
≥ P

[
k∑

j=1

zj(·; θ) inf
1≤j≤k

‖ · −µj‖2

]
≥ (1− α)Vα,k,

because ∪k
j=1{x : zj(x; θ) = 1} is a Borel set having probability greater or

equal than 1 − α. Finally, we trivially see that h := Vα,k > 0 whenever

condition (2.3) holds for P .

(ii) The associated sample problem follows from (4.1) when considering

P = Pn. Let us denote by V n
α,k the minimum value attained by the objective

function of this sample problem. Theorem 3.6 in Cuesta-Albertos et al.

(1997) entails the consistency V n
α,k → Vα,k, P -a.e., and Vα,k > 0 if P satisfies

the condition (2.3). ¤

Lemma 9 If Vα,k denotes the minimum value attained by (4.1) when k cen-

ters are allowed, then Vα,k ≤ Vα,k+1.
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Proof: The proof of this result corresponds to Lemma 2.2. in Cuesta-Albertos

et al. (1997). ¤
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Weights Dimensions Mixtures TkM GR G TCLUST

ρ = 1/2 p = 2 M1 .0150 .0146 .0150 .0152

M2 .0450 .0198 .0203 .0200

M3 .0430 .0429 .0200 .0205

M4 .0879 .0679 .0645 .0199

M5 .1484 .1461 .1466 .0346

p = 6 M1 .0099 .0101 .0102 .0106

M2 .0432 .0137 .0134 .0132

M3 .0390 .0204 .0134 .0133

M4 .1019 .0397 .0240 .0174

M5 .1799 .1386 .0487 .0276

ρ = 1/3 p = 2 M1 .0137 .0137 .0138 .0135

M2 .0480 .0184 .0186 .0183

M3 .0425 .0437 .0200 .0202

M4 .1054 .0664 .0694 .0212

M5 .1993 .2002 .1957 .0400

p = 6 M1 .0108 .0105 .0107 .0105

M2 .0395 .0149 .0150 .0146

M3 .0406 .0225 .0140 .0136

M4 .1192 .0424 .0254 .0167

M5 .2359 .1930 .1028 .0327

Table 1: Each entry represents the proportion of simulated observations that

were misclassified by trimmed k-means (TkM), Gallegos-Ritter (GR), Galle-

gos (G), and the presented algorithm (TCLUST). Samples of size 2000 from

five different 10%-contaminated mixtures of two p-variate normal distribu-

tions (M1, M2, M3, M4 and M5) were considered.

43


