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Apolipoprotein D (ApoD) has many actions critical to maintaining mammalian CNS function. It is therefore
significant that levels of ApoD have been shown to be altered in the CNS of subjects with schizophrenia,
suggesting a role for ApoD in the pathophysiology of the disorder. There is also a large body of evidence that
cortical and hippocampal glutamatergic, serotonergic and cholinergic systems are affected by the pathophysiol-
ogy of schizophrenia. Thus,we decided to use in vitro radioligandbinding and autoradiography tomeasure levels
of ionotropic glutamate, somemuscarinic and serotonin 2Areceptors in theCNSofApoD-/- and isogenicwild-type
mice. These studies revealed a 20%decrease (mean±SEM:104±10.2 vs. 130±10.4 fmol/mg ETE) in the density
of kainate receptors in the CA 2–3 of the ApoD-/- mice. In addition there was a global decrease in AMPA receptors
(F1,214=4.67, pb0.05) and a global increase in muscarinic M2/M4 receptors (F1,208=22.77, pb0.0001) in the
ApoD-/- mice that did not reach significance in any single cytoarchitectural region. We conclude that
glutamatergic pathways seem to be particularly affected in ApoD-/- mice and this may contribute to the changes
in learning andmemory, motor tasks and orientation-based tasks observed in these animals, all of which involve
glutamatergic neurotransmission.

© 2009 Elsevier Inc. All rights reserved.

1. Introduction

The discovery that levels of apolipoprotein D (ApoD) were
increased in the CNS from subjects with schizophrenia (Thomas

et al., 2001b, 2003a), bipolar disorder (Thomas et al., 2001b, 2003a),
Parkinson's disease (Ordonez et al., 2006) and Alzheimer's disease
(Terrisse et al., 1998; Thomas et al., 2003d) suggested a role in the
pathophysiology of disorders of the human CNS. ApoD belongs to the
lipocalin family of proteins, is synthesized and secreted by oligoden-
drocytes and astrocytes (Rassart et al., 2000), and is thought to have
many functions. These functions include transportation of hydro-
phobic ligands (Rassart et al., 2000), the binding of arachidonic acid
(Vogt and Skerra, 2001), signaling through arachidonic acid path-
ways (Thomas et al., 2003c), neuro-protection (Ganfornina et al.,
2008; He et al., 2009) as well as acting as a neurotrophic factor and to
increase synaptic density (Kosacka et al., 2009). Clearly increased
levels of ApoD could affect any or all of these important functions,
having either beneficial or detrimental effects in the CNS of subjects
with any of these disorders.

Given the notion that ApoD could have either beneficial or
detrimental effects in the human CNS, it is significant that the
antipsychotic drug clozapine increases ApoD levels in the rodent CNS
(Thomas et al., 2001a). Subsequently, it has been shown that
increasing levels of ApoD may be a common effect of atypical
antipsychotic drugs (Khan et al., 2003). It is not yet clear whether
typical antipsychotic drugs, as a class, act to increase (Thomas et al.,
2003b) or decrease (Khan et al., 2003) levels of ApoD in the CNS.
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However, it is possible that some of the therapeutic benefits achieved
with atypical antipsychotic drugs (Bilder et al., 2002) may be via
central effects on ApoD.

The potential to understand the role of ApoD in the mammalian
CNS has been advanced by the generation of an ApoD-/- mouse
(Ganfornina et al., 2008). Early findings from the study of these mice
show that they have increased sensitivity to oxidative stress,
increased levels of brain lipid peroxidation, impaired locomotor
abilities and deficits in learning (Ganfornina et al., 2008). In addition,
compared to isogenic wild-type mice (W/T), ApoD-/- mice have been
shown to have changes in arachidonic acid pathways after receiving
clozapine (Thomas and Yao, 2007). This supports the suggestion that
ApoD may be involved in the mechanisms by which clozapine
reduces the symptoms of schizophrenia. As clozapine is likely to
achieve its therapeutic benefits by targeting pathways affected by the
pathophysiology of schizophrenia, these data also suggest that
schizophrenia-related pathways may be affected in the CNS of
ApoD-/- mice. If this proves to be the case then altered levels of ApoD
in the CNS of subjects with schizophrenia could drive at least part of
the pathophysiology of the disorder.

We postulated that if ApoD targets systems affected by the
pathophysiology of schizophrenia, markers of those systems could be
altered in the CNS of ApoD-/- mice. There is now a large body of
evidence suggesting that cortical and hippocampal glutamatergic (Paz
et al., 2008), serotonergic (Dean, 2003) and cholinergic (Raedler et al.,
2007) systems are affected by the pathophysiology of schizophrenia.
We have, therefore, measured levels of ionotropic glutamate, some
muscarinic receptors (Chrm) and the serotonin 2A receptor (Htr2a),
all of which are key components of cortical and hippocampal
glutamatergic, serotonergic and cholinergic systems that have been
shown to be altered in the CNS of subjects with schizophrenia (Dean,
2003; Raedler et al., 2007; Scarr et al., 2005), in the CNS from ApoD-/-

and isogenic wild-type mice (W/T).

2. Methods

2.1. Materials

[3H]pirenzepine, [2,3-Dipropylamino-3H]-5,11-dihydro-11-
[2-[2-[(N,N-dipropylaminomethyl)piperidin-1-yl]ethylamino]-
carbonyl]-6H-pyrido[2,3-b][1,4]benzodiazepin-6-o ([3H]AF-DX
384), [3H]4-diphenylacetoxy-N-methylpiperidine ([3H]4-DAMP),
[3H]kainic acid, [3H]dizocilpine ([3H]MK-801), [3H]amino-3-hydroxy-5-
methylisoxazole-4-proprionic acid ([3H]AMPA), and [3H]ketanserin were
sourced from Perkin Elmer. [3H]micro-scales were obtained from
Amersham. All other laboratory grade chemicals were sourced from
Sigma.

2.2. Tissue preparation

The CNS were collected from 2 month old ApoD-/- female mice
(n=10), with a targeted deletion at exon 6 (Ganfornina et al., 2008),
and ten isogenic W/T mice and frozen at −70 °C until required.
Subsequently, 35 sequential frozen sections (20 μm thick; 3 total
binding, 2 non-specific binding for each radioligand) were cut
beginning at approximately 1.5 mm posterior to Bregma.

Mice were F1 progeny from homozygous crosses of the
corresponding genotype to avoid maternal effects. The parental
cohort consisted of littermates from crosses between heterozygous
ApoD+/- from an isogenic line with homogeneous genetic background
(backcrossed for 11 generations into C57BL/6 strain).

2.3. Radioligand binding with in situ autoradiography

Radioligand binding for this study was carried out using single-
point saturation analyses; because the radioligand was present at
concentrations at least three times that of the Kd for each radioligand
this approach gives a good estimate of total receptor density (Scarr
et al., 2003).

The binding of [3H]kainic acid, [3H]MK-801[3H]AMPA (Scarr et al.,
2005), [3H]pirenzepine (Dean et al., 1996), [3H]AF-DX 384 (Crook
et al., 1999), [3H]4-DAMP (Dean et al., 2008) and [3H]ketanserin
(Dean and Hayes, 1996) were all measured as described previously
(conditions summarized in Table 1). Following completion of the
radioligand binding protocols washed, dried and partially fixed
sections were opposed to BAS-TR2025 phospho-imaging plates with
[3H]micro-scales until a quantifiable image was obtained and then
scanned using a BAS5000 high resolution phosphoimager (Fuji Photo
Film Co.) (Pavey et al., 2002). Images were analysed using AIS image
analysis software (Imaging Research Inc.). Measurements from [3H]
high micro-scales were recorded and a standard curve was generated
from the values. Total binding and non-specific binding values were
estimated from the standard curve, density values were read at dpm/
mg ETE (Estimated Tissue Equivalent) and converted to fmol/mg ETE,
using the specific activities of the individual radioligands. Specific
binding measurements were calculated by subtracting non-specific
binding from total values.

2.4. Cresyl violet staining

The binding of each radioligand to each section was compared to
the same section stained with cresyl violet to allow the intensity of
binding in cytoarchitectural distinct regions to be measured. Cresyl
violet staining was performed as described previously following
imaging of radioligand bound sections (Dean et al., 2008). Specifically,

Table 1
The conditions used to determine receptor binding in ApoD-/- mice and wild-type littermates.

Receptor Radioligand Competing compound Buffer Conditions

Muscarinic M1/M4 15 nM [3H]pirenzepine 1 μM QNX (3-quinuclidinyl
xanthene-9-carboxylate hemioxalate salt)

10 mM KH2PO4,
10 mMNa2HPO4, pH 7.4

Pre-incubation: Nil
Incubation: 30 min, RT

Muscarinic M2/M4 7 nM [3H]AF-DX 384 1 μM tropacamide 10 mM KH2PO4,
10 mMNa2HPO4, pH 7.4

Pre-incubation: 30 min, RT
Incubation: 60 min, RT

Muscarinic M3 3 nM [3H]4-DAMP 10 μM 4-DAMP mustard 50 mM Tris–HCl, pH 7.4 Pre-incubation: 15 min, RT
Incubation: 60 min, RT

Kainate 40 nM [3H]kainic acid 1 mM L-glutamate 50 mM Tris-Acetate (pH 7.4) Pre-incubation: 30 min, 4 °C
Incubation: 60 min, 4 °C

NMDA 20 nM [3H]MK-801 100 μM MK-801 50 mM Tris-Acetate (pH 7.4),
100 μM glutamate, 50 μM glycine,
50 μM spermidine

Pre-incubation: 30 min, 4 °C
Incubation: 60 min, RT

AMPA 100 nM [3H]AMPA 100 μM Quisqualic acid 50 mM Tris–HCl (pH 7.4),
2.5 mMCaCl2, 0.1 M potassium thiocyanate

Pre-incubation: 30 min, 4 °C
Incubation: 45 min, 4 °C

Serotonin2A 10 nM [3H]ketanserin 10 μM Spiperone 170 mm Tris–HCl, pH 7.7 Pre-incubation: Nil
Incubation: 60 min, RT

NMDA = N-methyl-D-aspartate, AMPA = Alpha-amino-3-hydroxy-5-methyl-4-isoxazoleproprionate.
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sections were fixed in 10% formalin in phosphate buffered saline for
1 h at RT. Sections were immersed in 0.1% cresyl violet in 1% acetic
acid for 15 min at 37 °C and then rinsed in dH2O. Slides were
immersed for 1 min twice in ethanol and then twice in xylene
substitute for 1 min at RT. Sections were mounted in DPX and imaged
using a light microscope with a digital camera attached.

2.5. Analysis

All experimental data were first interrogated with a Grubb's test to
identify any statistically significant outliers and then the distribution
of each data set was assessed using D'Agostino and Pearson omnibus
normality. Two-way ANOVAs, with genotype and CNS regions as
variables were used to identify any variance in radioligand binding.

Bonferroni post-hoc tests were then used to identify the source of the
variance.

3. Results

All radioligands showed different binding patterns in the cortex
and hippocampus (Fig. 1) but exhibited homogenous binding across
the striatum (data not shown). Hence, an integrated measure of
radioligand binding across the striatum was made. Radioligand
binding in the cortex showed variation with [3H]AMPA (Fig. 1C)
showing homogeneous across the cortex, [3H]kainic acid binding and
[3H]pirenzepine binding being present in two discrete layers (Fig. 1B
and D) and [3H]MK801 (Fig. 1A), [3H]AF-DX 384, [3H]4-DAMP and
[3H]ketanserin binding (Fig. 1D–G) forming three discrete layers. For

Fig. 1. Typical autoradiographs showing the binding of [3H]MK-801 (A), [3H]kainic acid (B), [3H]AMPA (C), [3H]pirenzepine (D), [3H]AF-DX 384 (E), [3H]4-DAMP (F) and [3H]
ketanserin (G) to a section of isogenic wild-type mice CNS. The non-specific binding for each radioligand is shown as an insert.
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[3H]kainic acid, the outermost layer of binding encompassed cortical
laminae I–III and the innermost layer corresponding to laminae IV–VI.
In the case of [3H]pirenzepine, the outer layer contained laminae I–II
whilst the innermost layer contained laminae III–VI. [3H]MK801,
[3H]AMPA, [3H]AF-DX 384, [3H]4-DAMP and [3H]ketanserin binding
could be separated into three layers; for [3H]MK801 the outer layer
contained laminae I–II, the middle layer contained lamina III whilst
the innermost layer incorporated laminae IV–VI. For the remaining
radioligands, the outer radioligand binding layer contained laminae
I–II, the middle radioligand binding layer contained laminae III–IV
whilst innermost radioligand binding layer contained laminae V–VI.

Due to the different binding patterns within the cortex we
decided to standardize our approach across radioligands by measur-
ing binding within each cortical laminae. To allow levels of
radioligand binding to be measured within each laminae, we stained
each sectionwith cresyl violet so we could define each laminae in the
cortex. We then compared the stained section to the autoradiograph
generated from that section to define each laminae on the
autoradiograph along cytoarchitectural grounds. The different radi-
oligands seem to bind to similar regions of the hippocampal
formation. Thus, all radioligands showed specific binding in the
Cornu Ammonis (CA) 1and dentate gyrus (DG) but only [3H]kainate
and [3H]AMPA binding could be detected in CA 2–3. Within CA1
differing levels of binding of some radioligand could be detected in
Stratum oriens (OR), Stratum pyramidale (PY), Stratum radiatum
(RA) and Stratum lacunosum (LA) whilst in the DG differential levels
of binding could be detected in the Stratum granulosum (GR) and the
Stratum molecular (MO). For consistency, the binding of each
radioligand was measured in each of these anatomically defined
regions of the hippocampal formation.

3.1. Glutamate receptors

Analysis showed outlying [3H]kainic acid binding data (Table 2:
results in italics) from one mouse in the three regions of the
hippocampus and in the striatum. Outlying [3H]AMPA binding data
was also detected in the LA. Notably, the analyses of the complete data
set showed a non-parametric distribution but the analysed without the
outlying data showed a parametric distribution. More importantly,

analyses of variance using two-way ANOVA gave the same outcome
whether or not the outlying data was included. Thus, for completeness
and brevity, we have presented the analyses of the complete datasets.

3.1.1. [3H]MK-801 binding
[3H]MK-801 binding did not vary with genotype (F1,207=1.03,

p=0.31) but varied between across regions (F12,207=136.3,
pb0.0001) (Table 2); there was no interaction between variables
(F12,207=0.42, p=0.95). Under the conditions used in our study [3H]
MK801 would bind to the N-methyl-D-aspartic acid receptor
(NMDAR) (Reynolds and Miller, 1988) where the drug binding site
was available because its ion channel was open (Scarr et al., 2005).
Thus our binding data suggests there is no change in open NMDA
receptors in the CNS of ApoD-/- mice. The rank order of [3H]MK-801
binding was RANMONOR=LANcortical laminae I–IINcortical lamina
IIINcortical laminae IV–VINGR=striatum, pb0.0001.

3.1.2. [3H]kainic acid binding
There was significant variance in [3H]kainic acid binding with

genotype (F1,223=17.22, pb0.0001) and region (F13,223=116.4,
pb0.0001) (Table 2, Fig. 2); there was no interaction between these
variables (F13,223=1.18, p=0.30).

The variation in [3H]kainic acid binding with genotype was due to a
significant decrease (20%, pb0.001) in [3H]kainic acid binding in the CA
2–3 of ApoD-/- mice compared to W/T littermates (Fig. 2A). As [3H]
kainate would predominantly bind to the kainate receptor (KAR) these
data suggest there is a decrease in KAR in the CA 2–3 of ApoD-/- mice.
Therewas variation in [3H]kainic acid bindingwith region; the rank order
of binding was CA 2–3=cortical laminae IV–VINstriatum=MON

GR=LA=cortical laminae I–IIINOR=PY=RA (pb0.001).

3.1.3. [3H]AMPA binding
[3H]AMPA binding varied with genotype (F1,214=4.67, pb0.05)

and region (F13,214=34.6, pb0.0001) (Table 2, Fig. 2) but there was
no interaction between variables (F13,214=0.43, p=0.96).

Post-hoc tests failed to identify any within regional differences in
[3H]AMPA binding with genotype; a further examination of the data
showed that the omnibus difference in [3H]AMPA binding identified by
the two-wayANOVAwasdue to the cumulative effect of non-significant

Table 2
The binding (mean±SEM) of [3H]MK-801, [3H]AMPA, [3H]kainic acid, [3H]pirenzepine, [3H]AF-DX 384, [3H]4-DAMP and [3H]ketanserin to the sections of CNS fromAPOD-/- mice
and isogenic wild-type mice.

Radioligand [3H]MK-801 [3H]AMPA⁎ [3H] Kainate⁎⁎⁎ [3H]Pirenzepine [3H]AF-DX 384⁎⁎⁎ [3H]4-DAMP [3H]Ketanserin

Region ApoD-/- WT ApoD-/- WT ApoD-/- WT ApoD-/- WT ApoD-/- WT ApoD-/- WT ApoD-/- WT

Cortex
Lamina 1 311±8.9 307±11 219±18 225±17 38±2.7 44±3.0 232±16 238±5.7 159±6.2 145±6.4 190±12 180±8.2 25±1.9 30±2.6
Lamina 2 311±8.9 307±11 219±18 225±17 38±2.7 44±3.0 232±16 238±5.7 159±6.2 145±6.4 190±12 180±8.2 25±1.9 30±2.6
Lamina 3 285±5.9 286±6.7 193±17 194±15 38±2.7 44±3.0 160±15 177±8.8 113±4.8 106±4.3 139±10 137±7.7 66±5.0 64±4.0
Lamina 4 222±6.6 225±9.4 222±23 226±14 102±4.0 108±5.0 160±15 177±8.8 113±5.0 106±4.7 139±10 137±7.7 66±5.0 64±4.0
Lamina 5 222±6.6 225±9.4 222±23 226±14 102±4.0 108±5.0 162±11 178±6.3 125±5.0 118±4.7 145±9.6 144±8.7 46±2.6 45±2.2
Lamina 6 222±6.6 225±9.4 222±23 226±14 102±4.0 108±5.0 162±11 178±6.3 125±5.0 118±4.7 145±9.6 144±8.7 46±2.6 45±2.2

Hippocampus
CA1–OR 475±21 460±27 629±57 733±103 24±3.2 26±1.1 295±25 291±16 143±9.1 125±6.9 186±16 167±22 17±0.7 18±0.9
CA1–PY 276±18 274±30 629±57 733±103 24±3.2 26±1.1 295±25 291±16 143±9.1 125±6.9 222±17 200±23 17±0.7 18±0.9
CA1–RA 608±23 561±23 629±57 733±103 25±4.3 27±1.6 295±25 291±16 143±9.1 125±6.7 228±19 206±26 17±0.7 18±0.9
CA1–LA 453±24 442±30 539±64 637±82 41±5.2 44±3.0 261±28 281±18 113±7.2 104±5.1 219±14 211±15 17±0.7 18±0.9
CA 2–3 – – 374±42 451±38 104±10.2 130±9.4⁎⁎⁎ – – – – – – – –

DG–MO 530±13 511±18 539±61 552±57 50±5.5 59±3.1 297±15 290±10 134±6.0 119±4.8 213±18 196±16 17±0.7 18±0.9
DG–GR 184±4.0 195±7.5 392±45 423±37 42±5.4 42±2.1 217±24 248±18 98±3.6 87±5.4 174±9.4 167±9.2 17±0.7 18±0.9

Striatum 184±9.1 181±13 191±31 194±22 62±3.1 78±4.2 236±15 248±11 173±9.7 158±13 196±12 184±14 52±4.4 46±3.8

Abbreviations: CA = Cornu Ammonis, DG = dentate gyrus, GR = Stratum granulosum, LA = Stratum lacunosum, MO = Stratum molecular, OR = Stratum oriens, PY = Stratum
pyramidale, RA = Stratum radiatum, W/T = isogenic wild-type mice.
⁎ pb0.05.
⁎⁎⁎ pb0.0001.
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decreases in radioligand binding across all hippocampal regions (7–
17%) in the ApoD-/- mice (Fig. 2B). These datawould be consistent small
wide spread decreases in the α-amino-3-hydroxy-5-methyl-4-isoxa-

zolepropionic acid receptor (AMPAR) in the CNS of ApoD-/- mice. The
rank order of [3H]AMPA binding was OR=PY=RANLA=MONCA 2–
3=GRN laminae IV–VI=laminae I–IIN laminae III (pb0.001).

Fig. 2. The density (mean±SEM) of kainate, AMPA and muscarinic M2/M4 (AF-DX 384) receptors in the cortex and hippocampus of ApoD−/− mice and wild-type littermates.
Abbreviations: CA = Cornu Ammonis, DG = dentate gyrus, GR = Stratum granulosum, LA = Stratum lacunosum, MO = Stratum molecular, OR = Stratum oriens, PY = Stratum
pyramidale, RA = Stratum radiatum, W/T = isogenic wild-type mice. *** = pb0.001.
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3.2. Muscarinic receptors

3.2.1. [3H]pirenzepine binding
There was no variation in [3H]pirenzepine binding with genotype

(F1,208=2.19, p=0.14) but binding did vary between regions
(F12,208=20.27, pb0.0001) (Table 2), with no interaction between
these two variables (F12,208=0.26, p=0.99). Under the experimen-
tal conditions used over 80% of [3H]pirenzepine binding would be to
the muscarinic M1 receptor (Chrm1) (Scarr and Dean, 2008)
suggesting that there is no change in the density of that receptor in
the CNS of ApoD-/- mice. The rank order of [3H]pirenzepine binding
between regions was MO=OR=PY=RANLANStriatum=cortical
laminae I–IINGRNcortical laminae III–VI (pb0.001).

3.2.2. [3H]AF-DX 384 binding
[3H]AF-DX 384 binding varied with both genotype (F1,208=22.77,

pb0.0001) and region (F12,208=18.86, pb0.0001) (Table 2: Fig. 2) but
there was no interaction between these two variables (F12,208=0.25,
p=1.0).

There was no significant within-region difference in [3H]AF-DX 384
bindingwith genotype, however a closer examination of the data shows
consistent increases (6–13%) in [3H]AF-DX 384 binding across all brain
regions in ApoD-/- mice compared with W/T littermates (Fig. 2C); the
cumulative effect of these differences leading to the significant change
in global binding identified with the two-way ANOVA. As, under the
conditions used in these studies [3H]AF-DX 384 would mainly bind to
Chrm2 and Chrm4 (Miller et al., 1991), our data indicates there is an
generalized increase in Chrm2, Chrm4or the sumof Chrm2/4 in the CNS
of ApoD-/- mice. The rank order of [3H]AF-DX 384 binding with region
was striatum=cortical laminae I–II=OR=PY=RA=MONcortical
laminae V–VINLA=cortical laminae III–IVNGR (pb0.001).

3.2.3. [3H]4-DAMP binding
[3H]4-DAMP binding did not vary with genotype (F1,207=3.34,

p=0.07) but did vary between regions (F12,207=8.75, pb0.0001);
there was no interaction between variables (F12,207=0.15, p=1.0)
(Table 2). As [3H]4-DAMP binding would mainly be to Chrm3 (Araujo
et al., 1991), these data would suggest that Chrm3 are not altered in
the CNS of the ApoD-/- mouse. There was variation in radioligand
binding across region; the rank order of binding being LA=RA=-
PY=MONstriatum=cortical laminae I–II=OR=GRNcortical lami-
nae V–VI=cortical laminae III–VI (pb0.001).

3.3. Serotonin receptors

3.3.1. [3H]ketanserin binding
There was no significant variance in [3H]ketanserin binding with

genotype (F1,204=0.02, p=0.62) but binding did vary across regions
(F12,204=111.8, pb0.0001) (Table 2); there was no interaction
between variables (F12,204=0.61, p=0.83). As [3H]ketanserin
would predominantly bind to the serotonin 2A receptor (Htr2A)
these data suggest that receptor is not altered in the CNS of ApoD-/-

mice. The rank order of [3H]ketanserin binding across regions was
cortical laminae III–VINstriatum=cortical laminae IV-VNcortical
laminae cortical laminae I–II NOR=PY=RA=LA=MO=GR
(pb0.001).

4. Discussion

The major finding from this study was a significant decrease
(−20%) in the density of KAR in the CA 2–3 in ApoD-/- mice compared
with W/T mice. Another finding from our study is that ApoD-/- had
widespread decreases in AMPAR across the CNS that did not reach
significance in any single CNS region. Importantly, ApoD-/- mice did
not have deficits in all ionotropic glutamate receptors as levels of the
NMDA receptor was not altered in these mice. Ionotropic glutamate

receptors are formed from sub-units that define the pharmacological
and physiological characteristics of each receptor (Kew and Kemp,
2005). The KAR is formed from Grik1, 2, 3, 4 and 5 sub-units; our data
would suggest that there must be a decrease in the expression of one
of those subjects in ApoD-/- mice. As Grik4 or 5 is required to form KAR
high affinity binding sites it would also seem probable that changes in
the expression of one of those sub-units must be occurring in the CNS
of ApoD-/- mice. Similarly, our data on the AMPARwould suggest there
would be decreases in the expression of the Gria1, 2, 3 or 4 sub-units
that form this receptor. By contrast, our data would not suggest that
there is changed expression of the NMDAR sub-units Grin1, 2a, 2b, 2c,
2d, 3a or 3b that form the NMDAR. Given our radioligand binding data,
further experiments to determine the changes in sub-unit gene
expression leading to changes in binding to KAR and AMPARwould be
worthwhile. Another finding from our study is that ApoD-/- had
widespread non-significant increases in Chrm2/4. By contrast, levels
of Chrm1, Chrm3and Htr2A did not appear altered in individual CNS
regions of ApoD-/- mice. Thus, our data would seem to support the
hypotheses that ApoD may have a role in maintaining the glutama-
tergic function in the mammalian CNS. This hypothesis is consistent
with previous data showing that exogenous ApoD can help protect
against the neurotoxic effects of kainic acid (He et al., 2009), some of
which are mediated by KAR (Garthwaite and Wilkin, 1982) and
AMPAR (Tomita et al., 2007).

It has been previously shown that ApoD-/- mice have complex,
regionally-selective changes in somatostatin and somatostatin recep-
tors (Rajput et al., 2009). These findings are of relevance to our study
as it has been shown that somatostatin can regulate glutamate release
(Grilli et al., 2004). Moreover, it has long been known that glutamate
can regulate somatostatin secretion suggesting there are complex
reciprocal interactions between the two neurotransmitters systems
(Gardette et al., 1995). Thus, current studies in ApoD-/- are consistent
with the notion that ApoD can modulate the interaction between
somatostatin and glutamatergic pathways in the mammalian CNS.

This study also showed that there was a widespread increase in
Chrm2, Chrm4 or Chrm2/4 across the CNS of the ApoD-/- mice. By
contrast, our data suggests that central levels of Chrm1 and Chrm3 are
not altered in these animals. The data on [3H]AF-DX 384 binding are
intriguing as both levels of ApoD (Thomas et al., 2001b) and [3H]AF-
DX 384 binding (Gibbons et al., 2008) have been reported as altered in
the cortex of subjects with bipolar disorder. To our knowledge, there
is no data showing functional links between the expression of Chrm2
or Chrm4 receptors and ApoD but given our data from APOD-/- mice
determining if there are interactions between the two proteins in
mammalian CNSwould be valuable. Moreover, further experiments to
determine if Chrm2 or Chrm4 are selectively altered in the ApoD-/-

would be worthwhile as Chrm2 has been shown to be the cholinergic
autoreceptor in the rat CNS (Lapchak et al., 1989). Thus, a selective
decrease Chrm2 could indicate that there are widespread changes in
cholinergic innervation in the ApoD-/- mouse.

The rationale for undertaking this study was that some of the
changes in neurotransmitter receptors in the CNS of subjects with
schizophrenia may be mediated, at least in part, by the increased
levels of ApoD that have been reported in the CNS of subjects with the
disorder (Thomas et al., 2001b, 2003a). It is therefore significant that
there is a report of decreased levels of KAR in the hippocampus of
subjects with schizophrenia (Kerwin et al., 1990) whilst our data
shows increased levels of the receptor in the CA 1–2 of ApoD-/- mice.
However, this early findingmust be balanced against later studies that
do not show KAR or AMPAR to be altered in the hippocampus from
subjects with schizophrenia (Beneyto et al., 2007; Gao et al., 2000;
Scarr et al., 2003). In addition, changes in cortical NMDA receptors,
KAR, CHRM1 and HT2AR have been reported in subjects with
schizophrenia (Dean and Hayes, 1996; Dean et al., 2002; Scarr et al.,
2005) but the density of these receptors are unchanged in ApoD-/-

mice. Thus, on balance our study does not suggest that changes in levels
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of ApoD in the CNS of subjects with schizophrenia are likely to mediate
the changes in neurotransmitter receptors observed in subjectswith the
disorder. However clozapine binds to most of the neurotransmitter
receptors affected by the pathophysiology of schizophrenia (Ereshefsky
et al., 1989) and results in altered expression of ApoD (Thomas et al.,
2001a). Thesedatawouldbe consistentwith thenotion that the changes
in ApoD in the CNS of subjects with schizophrenia are secondary to
changes in neurotransmitter receptors.

Whilst our initial hypothesis that the absence of ApoD would affect
the expression of neurotransmitter receptors that are changed by the
pathophysiology of schizophreniawas not proven; our study has shown
a 20% decrease in KAR in the CA 2–3 of ApoD-/- mice. KAR in the
hippocampal formation have been shown to have roles in regulating
glutamate (Malva et al., 1998) and GABA (Rodriguez-Moreno and
Lerma, 1998) release, mediating slow postsynaptic currents (Castillo
et al., 1997) and LTP (Lauri et al., 2001), regulating nitric oxide
(Radenovic and Selakovic, 2005) and superoxide (Radenovic et al.,
2004) production as well as modulating excitatory neurotransmission
(Contractor et al., 2000) and neurogenesis (Bernabeu and Sharp, 2000).
Significantly, hippocampal KAR are predominately heteromeric recep-
tors and made up of GluR5 and Glur6 sub-units; however, pre-synaptic
KAR seem to predominantly contain GluR6 sub-units (Mulle et al.,
2000). This is significant because pre-synaptic KAR have been shown to
control GABA release (Cossart et al., 2001), therefore it would be of
interest to determine if the loss of KAR inApoD-/-mice is associatedwith
a loss of the GluR6 sub-unit which could indicate a dysregulation of
GABA release.

5. Conclusions

From existing data, we would postulate that the loss of KAR we
identified in the hippocampal formation would have physiological
consequences for the ApoD-/- mouse. This proposal gains further
credence from the observation that ApoD-/- mice have deficits in
learning and memory, motor tasks and orientation-based tasks
(Ganfornina et al., 2008) which are all functions that depend on
hippocampal glutamatergic pathways (Holscher and Schmidt, 1994;
Pisharodi and Nauta, 1985). Our current data could therefore indicate
that at least someof these changesmay result fromdecreasedKAR in the
CA 2–3 and generalized decreases in AMPAR throughout the hippo-
campus. This hypothesis sits well with a growing body of evidence
supporting a role for KAR and AMPAR in the CA 2–3 region in learning
and memory (Queiroz and Mello, 2007; Schiapparelli et al., 2006),
motor neurons (Carriedo et al., 1996) and orientation tasks (Sutherland
et al., 1983). Thus, further investigation of changes in glutamatergic
pathways in the hippocampus of ApoD-/- are warranted to better
understand the role of ApoD in maintaining hippocampal function.
Finally, it will be intriguing to discover if there are widespread changes
in cholinergic innervation in the CNS of these mice as the cholinergic
system is also important in learning and memory (Raedler et al., 2007).
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