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Abstract: In this paper, a technique that integrates methods of dynamic economic optimization and
real-time control by including economic model predictive control and closed-loop predictive control
has been developed, using a two-layer structure. The upper layer, which consists of an economic
nonlinear MPC (NMPC), makes use of the updated state information to optimize some economic
cost indices and calculates in real time the economically optimal trajectories for the process states.
The lower layer uses a closed-loop nonlinear GPC (NCLGPC) to calculate the control actions that
allow for the outputs of the process to follow the trajectories received from the upper layer. This paper
also includes the theoretical demonstration proving that the deviation between the state of the closed-
loop system and the economically time varying trajectory provided by the upper layer is bounded,
thus guaranteeing stability. The proposed approach is based on the use of nonlinear models to
describe all the relevant process dynamics and cover a wide operating range, providing accurate
predictions and guaranteeing the performance of the control systems. In particular, the methodology
is implemented in the N-Removal process of a WWTP and the results demonstrate that the method is
effective and can be used profitably in practical cases such as the chemical, refinery and petrochemical
process industries.

Keywords: economic process optimization; nonlinear control; wastewater treatment plant; process
control; economic model predictive control

1. Introduction

Nowadays, modern industrial processes have become highly integrated with respect
to material and energy flows, tightly constrained by high-quality product specifications,
and subjected to increasingly strict safety and environmental regulations. These more
rigorous operating circumstances have placed new constraints on the operating flexibil-
ity of industrial processes and made the performance requirements for process plants
increasingly difficult to satisfy. The increased emphasis placed on safe and efficient plant
operation dictates the need for continuous monitoring of the operation of a chemical plant
and effective external intervention (control) to guarantee satisfaction of the operational ob-
jectives. In this light, it is natural that the subject of process control has become increasingly
important in both the academic and industrial communities.

Maximizing profit has been and will always be the primary purpose of the optimal
control and operation of processes. There are various modern techniques that integrate
and seek to guarantee optimization and control simultaneously, and that allow industrial
processes to be highly competitive, profitable, operationally safe and beneficial to the
environment. Among the most representative techniques are Real-Time Optimization (RTO)
and Dynamic Real-Time Optimization (D-RTO). The benefits of RTO are demonstrated by
its successful implementation in a number of industrial applications leading to significant
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economic profits [1]. RTO is suggested when significant changes occur in the operating
conditions that closely affect the plant’s profit margin. In large plants, seasonal and day-
to-night variations may be sufficient to justify RTO [2]. Within process control, there have
been several calls for the integration of MPC and the economic optimization of processes
(e.g., refs. [3–5]).

In the literature, two-stage MPC structures (refs. [6–8]) have been investigated to
take into account different slow and fast dynamical of processes using multilayer archi-
tectures. There also been also attempts to integrate RTO and nonlinear MPC in a single
level [9]. In this approach, the economic optimization and control problems are solved
simultaneously in a single layer. In particular model-based predictive control techniques
can be formulated to perform both functions by adding economic objective terms to be the
standard MPC objective function [9,10]. The resulting problem involves solving a nonlinear
optimization problem subject to dynamic and steady-state constraints. The implementation
of the extended controller relies on extensive tuning of the weighting factors for stability
and performance. Extensive simulations are needed to select appropriate values for the
weighting factors [10], unlike in linear MPC where robust tuning techniques are available.
The one-layer approach could respond to changes in the plant’s optimal conditions faster
than the two-layer approach. However, for large-scale and highly nonlinear processes, this
technique may struggle due to computational limitations.

Nevertheless, there is an obvious need for model-based process operation strategies
that support the dynamic nonlinear behavior of production plants. More recent techniques,
such as dynamic trajectory optimization and nonlinear model predictive control (NMPC),
are still subject to research, and, often, the size of the applicable process model is still
a limiting factor. In ref. [11], two economically oriented nonlinear MPC formulations
were proposed for cyclic processes and the nominal stability of the closed-loop system
was established via Lyapunov techniques. In [12], the authors design a Lyapunov-based
economic MPC that is capable of optimizing closed-loop performance with respect to
general economic considerations for nonlinear systems. The design of this controller
is based on uniting receding horizon control with explicit Lyapunov-based nonlinear
controller design techniques and allows for an explicit characterization of the stability
region of the closed-loop system; such a characterization may be conservative in certain
applications and it may be possible for the controller to achieve closed-loop stability for
initial conditions outside of the estimated stability region. The MPC schemes in [12]
optimize a cost function which is related directly to certain economic considerations and is
not necessarily dependent on a steady stat unlike conventional MPC designs. The benefits
of two-layer optimization are demonstrated by its successful implementation in a number of
industrial applications, leading to significant economical profits. The RTO is recommended
when significant changes occur in the operating conditions, strongly affecting the plant
profitability. In large plants, seasonal and day-to-night variations may be sufficient to
justify RTO. Additionally, the temporal decomposition is a solution for complex multi-
scale processes to cope with the different dynamics of the state variables and disturbances.
The sampling time and optimization horizon are larger in the upper layers dedicated to
the slower process dynamics and disturbances. Thus, beyond the functional hierarchical
decomposition carrying out specific tasks at different rates, a temporal decomposition with
different time scales within one of the functional layers is recommended to achieve the
optimal operation. Although the methods mentioned in our literature review have had
varying degrees of success, satisfactory performance still remains an open problem to our
knowledge. Here, we propose a technique that integrates methods of dynamic economic
optimization and real-time control by including economic model predictive control and
closed-loop predictive control, using a two-layer structure. We then analyze the stability
of the closed-loop system by demonstrating that the deviation between the state of the
closed-loop system and the time-varying trajectory provided by the upper layer is bounded,
thus guaranteeing stability.
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In recent years, cost minimization has become increasingly important in the control
and operation of wastewater treatment plants (WWTP), which are non-productive pro-
cesses subjected to very high economic penalties for specification discharges and very
high operation costs, basically associated with the aeration system and pumping energy.
These plants exhibit complex and nonlinear dynamics, making the control and optimization
tasks difficult. In this type of processes, frequent and significant changes in the inputs
affect the process behavior. In order to run a plant efficiently from the economic point
of view, operational costs such as pumping energy, aeration energy and dosage of dif-
ferent chemicals should be minimized. At the same time, the discharges to the recipient
should be kept at certain levels specified by law. Conflicting objectives arise naturally in
one-layer model predictive control. Trade-offs performance and robustness or economic
performance and sustainability. Specific domains where reconciling objectives is critical
include chemical and energy systems [13,14]. This problem can be overcome by integrat-
ing dynamic economic optimization and a nonlinear closed-loop MPC approach for the
optimization of the operation of WWTP, considering two-layer structure. The first layer
allows for a pure economic index in the controller optimization problem, while the second
layer uses a combination of the penalization of control error and the penalization of control
efforts. In [13], advanced control strategies are applied to a hierarchical control structure
for dissolved oxygen control in a WWTP with a MIMO robust MPC and other advanced
methods in the optimizing layer. Ref. [14] presented a closed-loop model predictive control
using invariant sets to give a simple solution to this type of control, ensuring stability and
respecting non-symmetrical constraints. Ref. [15] used a hierarchical structure of two PI
layers for optimizing the operation of a nutrient removal WWTP. In [16], a PI controller in
the lower level follows an ammonia setpoint determined by GA optimization in the higher
level. The method in [17] proposes a unique approach that divides the control structure
into three layers: the supervisory control layer, the optimizing control layer and, and the
low-level control layer. The method utilizes MPC, extended Kalman filters, and greybox
parameter estimation.

The prime aim of this paper is the integration of dynamic economics and NLCGPC,
within a two-layer framework with guaranteed stability properties. The upper layer, con-
sists of an economic NMPC that receives state feedback and time dependent economic
information to economically compute optimal time-varying operating trajectories for the
process. It does this by optimizing a quadratic economic cost function over a finite predic-
tion horizon, using a first order approximation of a nonlinear economic function. The lower
layer, uses a NLCGPC to compute feedback control actions that force the outputs of the
process to track the trajectories received from the upper layer. Instead of the classical
dual-mode MPC schemes, where the terminal control is obtained offline; here, the terminal
control law is determined online by an unconstrained nonlinear generalized predictive
control. The lower feedback control layer may utilize conventional MPC schemes or even
classical control to compute feedback control actions that force the process state to track
the time-varying operating trajectories computed by the upper layer Economic NMPC. We
prove that the deviation between the state of the closed-loop system and the economically
time-varying trajectory is bounded.

A wastewater treatment plant is selected as a case study to validate this. Specifications
given in the Benchmark Simulation Protocol (BSM1) [18] have been used, as they are widely
accepted by the scientific community. Particularly, in this work, the model focuses on the
N-Removal process.

The organization of the paper is as follows: the formulation of the problem is detailed
in Section 3. In Section 4, the two-layer control framework is introduced. The proof of
stability is given in Section 5. The modeling of the process, together with the associated
operational costs, are developed in Section 6. The simulation results are also discussed and
interpreted in Section 6. Finally, in Section 7, the general conclusions are drawn.
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2. Notation

The operator |.| denotes the Euclidean norm of a vector and |.|Q denotes the weighted
Euclidean norm of a vector (i.e., |x|Q = xTQx). The symbol diag(v) denotes a square
diagonal matrix with diagonal elements v.

3. Problem Statement

Consider a continuous time nonlinear system represented in the state space by:

ẋ(t) = A(t)x(t) + ψ(x(t), u(t), w(t)) (1)

where x(t) ∈ <n is the state vector, u(t) ∈ U ⊂ <m is the manipulated input vector and
w(t) ∈ <p is the disturbance vector.

It is assumed that the inputs u(t) are restricted to a non-empty convex set defined as
U := {u ∈ <m||u(t)| 6 umax

i , i = 1, · · · , m}, that ψ is locally Lipschitz on <n ×<m ×<p,
and that the disturbance vector is bounded by θ ∈ <+:

|w(t)| 6 θ (2)

The objective of this paper is to solve a problem of economic optimization that provides
a profile of time-varying set points for a nonlinear plant. More precisely, a hierarchical
control in two layers is used, where the time-varying set points are generated in the
upper layer by a economic NMPC, satisfying some restrictions; whereas in the lower layer,
a NCLGPC is used, as described in [9], in order to follow the references provided by the
upper layer while also respecting constraints and rejecting the disturbances.

The trajectory vector is denoted as xr(t) ∈ Ω ⊂ <n, where Ω is a compact (closed and
bounded) set, with the rate of change of xr(t) bounded by γr ∈ <+:

|ẋr(t)| 6 γr (3)

The tracking error is defined as the deviation between the state trajectory x(t) and the
reference trajectory xr(t) as:

e(t) = x(t)− xr(t) (4)

The dynamics of the error are then:

ė(t) = ẋ(t)− ẋr(t)

= A(t)x(t) + ψ(x(t), u(t), w(t))− A(t)xr(t)− ψ(xr(t), ur(t), 0)

= A(t)e(t) + ψ(x(t), u(t), w(t))− ψ(xr(t), ur(t), 0)

(5)

In what follows, we introduce the proposed two-layer control framework and prove
the stability of the closed-loop system.

4. Controller Design

The control strategy proposed in this paper is described schematically in Figure 1.
In the upper layer, the control is achieved by using an economic NMPC, while the lower
layer uses a NCLGPC that combines an unconstrained nonlinear economic feedback control
law F(k) with the parameterization c(k) associated with the closed-loop paradigm that
allows the process constraints to be taken into account, thus improving the performance of
the controller.

4.1. Upper Layer Problem Formulation

This layer provides the references xr for the lower layer by solving the following
economic NMPC optimization:
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min
ur

∫ tk+Ne

tk

feco(x̃r(τ), ur(τ), τ)dτ

subject to :
˙̃xr(t) = A(t)x̃r(t) + ψ(x̃r(t), ur(t), 0),

x̃r(t) = x(t),

ur(t) ∈ U,

| ˙̃xr(t)| 6 γr, ∀t ∈ [tk, tk+Ne[,

x̃r(t) ∈ Ω

(6)

where Ne is the prediction horizon, feco(x̃r(τ), ur(τ), τ) is the time-dependent economic
cost function, x̃r(t) is the predicted trajectory of the system with the manipulated input
ur(t) computed by the economic NMPC, and x(t) is the state measurement obtained at
time tk.

Figure 1. A block diagram of the proposed two-layer framework.

In (6), the first constraint corresponds to the nominal model of the system, used to
predict the future evolution of the states. The second constraint defines the initial condition
of the optimization, which is the measurement of the state at instant tk. The third constraint
presents the control limitation of all manipulated inputs. The fourth constraint limits the
rate of change of the state trajectory. The fifth constraint ensures that the economically
optimal state trajectory is maintained in the domain Ω. The last two constraints of the
optimization problem of Equation (6) are used to guarantee closed-loop stability under
this integrated framework and to ensure that the lower layer can force the system to track
the state trajectory. This is a departure from other types of two-layer dynamic economic
optimization architectures such as dynamic real-time optimization. The constraint on
the rate of change of the economically optimal trajectory does pose a restriction on the
feasible set of the optimization problem of Equation (6) and, thus, can affect the closed-
loop economic performance of the control framework. However, a system that requires a
large rate of change on the trajectory to achieve closed-loop economic performance that
is better than steady-state may be undesirable for many applications based on practical
considerations such as excessive strain on control actuators as well as the difficulty of forcing
the system to track a rapidly changing operating trajectory in the presence of disturbances.
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The gradient of the economic objective function is included in the cost function of
the controller. Optimal conditions of the process at steady state are searched through the
use of a rigorous nonlinear process model. The main advantage of the proposed strategy
is that the resulting control/optimization problem can still be solved with a quadratic
programming routine at each sampling step. The approach proposed may be comparable to
the strategy that solves the full economic optimization problem inside the MPC controller
where the resulting control problem becomes a nonlinear programming problem with a
much higher computer load.

In general, the function feco(x̃r(τ), ur(τ), 0) is not a quadratic function of the deci-
sion variables of the stated optimization problem. Consequently, the problem becomes
a nonlinear programming problem, which may be difficult to solve. To overcome this
problem, the function feco is approximated by its gradient, as in [9], as follows. Suppose
that the stationary prediction of the controller output related to the current input ur is
ŷr. Furthermore, consider that the economic function associated with the operation of
the system is a concave function, whose maximum has to be searched and which can be
represented as a function of the predicted state [10] as follows:

F = feco(ur, ŷr) (7)

Then, assuming that the vector of the control action changes to ur + δur, the first-order
approximation of the gradient of the economic function is:

ξur+δur = D + Gδūr (8)

where the calculations of D and G are detailed in [10], and δūr = ur(tk+Ne−1)− ur(tk−1) is
the total move of the input vector, D is the gradient vector at the present time and G is the
Hessian of the economic function with respect to the inputs. The gradient vector ξur+δur

can be considered as a deviation vector in relation to the reference, which is equivalent to
considering that the gradient of the economic function is zero at the optimum. As a result of
these assumptions feco can be approximated by a quadratic function as feco = ξT

u+δuξur+δur ,
so the optimization problem Equation (6) becomes:

min
ur

∫ tk+Ne

tk

ξT
ur(τ)+δur(τ)

ξur(τ)+δur(τ)dτ

subject to :
˙̃xr(t) = A(t)x̃r(t) + ψ(x̃r(t), ur(t), 0),

x̃r(t) = x(t),

ur(t) ∈ U,

| ˙̃xr(t)| 6 γr, ∀t ∈ [tk, tk+Ne[,

x̃r(t) ∈ Ω

(9)

4.2. Lower Layer Problem Formulation

At the lower process control level, we use a nonlinear closed-loop GPC (NCLGPC)
to force the process state to track the trajectory x∗r (t) obtained by recursively solving
the nominal model of Equation (1) with the manipulated input u∗r (t) applied for t ∈
[tk, tk + t′ + N∆[, where tk is the beginning of the operating period, t′ is the operating
period, and N is the prediction horizon of the NCLGPC. We assume that the NCLGPC
synchronously recomputes the new manipulated inputs every ∆ and j = 0, 1, . . . , t′/∆. We
define the system of Equation (1) in terms of the deviation from the economically optimal
state trajectory e(t) = x(t)− x∗r (t),
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The NCLGPC at tj is then formulated as follows:

min
c

∫ tj+N

tj

(|ẽ(τ)|Q + |u(τ)− u∗r (τ)|R)dτ

subject to :
˙̃e(t) = A(t)ẽ(t) + ψ(x(t), u(t), w(t))− ψ(x∗r (t), u∗r (t), 0),

u(t) = K(t)x(t) + c(t),

u(t) ∈ U,

e(t) = x(t)− x∗r (t)

(10)

where N is the prediction horizon of NCLGPC, ẽ(t) is the predicted deviation between
the state trajectory predicted by the model Equation (1) with the manipulated input u(t),
and the economically optimal state trajectory x∗r (t). The optimal solution of the optimiza-
tion Equation (10) is denoted by u∗(t), defined for t ∈ [tj, tj+N [.

The controller in the lower layer is a NCLGPC based on an unconstrained nonlinear
GPC, as an efficient advanced control technique for improving the operation of nonlinear
plants. It is well known that closed-loop predictive control procedure is an effective strategy
and has been exploited to decrease computational demand for solving optimization control
problems. Traditionally, in this type of control, two modes of operation are considered
over an infinite prediction horizon at each sampling time, this being a reformulation of a
classical dual mode predictive control [9,18–21]. The predicted control moves are centered
around an unconstrained stabilizing control law, u(k) = K(x(k)) as computed in the
Appendix A, over the whole prediction horizon, but some additive degrees of freedom,
u(k) = K(x(k)) + c(k) are added over a finite horizon to handle constraints and guarantee
the feasibility of improving performance. Therefore there is an implicit switching between
one mode of operation and the other as the process converges to the desired state.

In the optimization problem of Equation (10), the first constraint is the nominal
deviation system of Equation (5). The second and third constraints define the structure of
the closed-loop controller, where K(t) is the terminal control law and the limitations of the
manipulated variables u(t), respectively. The last constraint presents the initial condition
of the optimization of Equation (10).

The terminal region is obtained offline; here, the terminal control law K(t) is calculated
(Appendix A) in each iteration as in [9].

The implementation strategy of the proposed two-layer dynamic optimization can be
summarized as follows:

1. At time tk the upper layer economic NMPC with a prediction horizon Ne receives the
system state x(tk) from the process.

2. The controller of Equation (6) computes the economically optimal state trajectory
x∗r (t).

3. The terminal control law K(t) is computed.
4. The solution of the optimization of Equation (9) denoted by u∗(t) = K(t)x(t) + c∗(t)

is calculated to track the economic state trajectory computed in step 2.
5. Go to step 1, tk = tk+t′

5. Stability
5.1. Definitions and Assumptions

We need to make certain definitions and assumptions about the system of Equation (5)
to guarantee that the time-varying trajectory xr(t) can be tracked. We assume that the
nominal system of Equation (1) is stabilizable at each fixed xr ∈ Ω.

The scalar comparison functions, K, K∞ and KL, used to characterize the stability
properties of a nonlinear systems are now recalled [22].

Definition 1. A function α : [0, a[→ [0, ∞[ is:
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• a K-function if it is continuous, strictly increasing and α(0) = 0.
• a K∞-function if it is a K-function and a = ∞ and α(r)→ ∞ as r→ ∞.

Definition 2. A function β : [0, a[×[0, ∞[→ [0, ∞[ is a KL-function if:

• for each fixed t > 0, the function β(r, t) is a K-function, and
• for each fixed r, the mapping β(r, t) is decreasing with respect to t and β(r, t)→ 0 as t→ ∞.

To be of practical interest, the stability conditions should not require Equation (1)
so be solved explicitly. The direct method of Lyapunov is used, as it allows the stability
properties of an equilibrium point from Equation (5) and its relationship with a positive-
definite function V(e) to be determined.

Definition 3. Let G ⊂ Rn be a nonempty open set. Let a function f : G→ R have, at each point
of the set G, all partial derivatives continuous (i.e., function x → ∂ f

∂xj
(x) are continuous on G for

each j ∈ {1, ..., n}). Then we say that f is of the class C1 on G. The set of all these functions is
denoted by C1(G).

Definition 4. Consider a function V ∈ C1 : <n → < that is positive-definite if V(0) = 0 and
V(e) > 0 for all e 6= 0. Moreover, if V(e) → ∞ as ||e|| → ∞, then V is said to be radially
unbounded.

Definition 5. A bounded input u : R+ → Rm is called regularly persistent if
∃T > 0; ∃T0 > 0; ∀t > t0, G(u, t, t + T) > 0 or equivalently, λmin(G(u, t, t + T)) > 0

(where λmin(G(u, t, t + T)) stands for the smallest eigenvalue of the Grammian G.

Assumption 1. (Weak Controllability): There exists a K∞ function γ(.) [23] such that, for every
x ∈ Ω, there exists u such that (x, u) ∈ Z and

N−1

∑
k=0
|uk − ur| 6 γ(|x− xr|). (11)

where Z is the set of admissible states. Assumption 1 is weaker than a controllability assumption,
but it bounds the cost of steering an initial state x to xr. It confines attention to those initial states
that can be steered to xr in N steps, while satisfying the control and state constraints.

5.2. Stability Analysis

In this section, we present the stability properties of the proposed two-layer control
framework presented in Equations (9) and (10). The following theorem provides sufficient
conditions such that the NLCGPC can track the economically time varying trajectory x∗r (t).

Theorem 1. The system of Equation (1) is exponentially stable under the optimizations of Equation
(9) and Equation (10) if there exist β1 > 0, β2 > 0, γ > 0, Lu > 0, Le > 0, Lw > 0 and matrices
P > 0 and Q > 0 such that

λmax(Q) > 2β2(Le + Luγ) (12)

Then,

||e(t)|| 6
√

β2√
β1

e
1
2 α1δt||e(0)|| (13)

where λmax stands for the biggest eigenvalue and α1 is:

α1 =
2β2(Le + Luγ)− λmax(Q)

β1

The proof of this theorem requires the following Lemmas.
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Lemma 1 ([24]). Let u be a regularly persistent input for the system (1). Then, ∀P(t) is a
symmetric positive definite matrix, and there exist β1 > 0 and β2 > 0 such that

∀t > 0, β1I 6 P(t) 6 β2I (14)

where P(0) is an arbitrary symmetric definite matrix and I is the identity matrix with dimensions
of P(0).

Lemma 2 ([25]). Let v(t) be a positive differentiable function satisfying the inequality

v̇(t) 6 f (t)v(t) + g(t)vp(t), t ∈ I = [a, b], (15)

where the functions f (t) and g(t) are continuous in I, and p > 0, p 6= 1, is a constant. Then

v(t) 6exp
(∫ t

a
f (s)ds

)
×
[

vq(a) + q
∫ t

a
g(s)exp

(
−q

∫ s

a
f (τ)dτ

)
ds
] 1

q
(16)

where q = 1− p.

Proof of Theorem 1. We define a Lyapunov function V(t) that verifies the conditions of
Definitions 3:

V(t) = eT(t)P(t)e(t) (17)

where the matrix P(t) is the solution of the following Riccati equation:

AT(t)P(t) + P(t)A(t) + Ṗ(t) = −Q(t) (18)

For t ∈ [tk, tk+1]

V̇(t) = 2eT(t)P(t)ė(t) + eT(t)Ṗe(t)

= 2eT(t)P(t)[A(t)e(t) + ψ(x(t), u∗(t), w(t))− ψ(x∗r (t), u∗r (t), 0)]

+ eT(t)Ṗ(t)e(t)

(19)

Using Equation (19) gives

V̇(t) = 2eT(t)P(t)ė(t) + eT(t)Ṗe(t)

= 2eT(t)P(t)[A(t)e(t) + ψ(x(t), u∗(t), w(t))− ψ(x∗r (t), u∗r (t), 0)]

+ eT(t)[−AT(t)P(t)− P(t)A(t)−Q(t)]e(t)

= −eT(t)Q(t)e(t) + 2eT(t)P(t)[ψ(x(t), u∗(t), w(t))− ψ(x∗r (t), u∗r (t), 0)]

+ eT(t)P(t)A(t)e(t)− eT(t)AT(t)P(t)e(t)

6 −λmax(Q(t))||e(t)||2 + λmin(P(t)A(t))||e(t)||2 − λmin(AT(t)P(t))||e(t)||2

+ 2||e(t)||.||P(t)|| × ||ψ(x(t), u∗(t), w(t))− ψ(x∗r (t), u∗r (t), 0)||

(20)

By the Lipschitz property assumed for the vector ψ and by Assumption 1, there exist
positive constants Lw, Lu and Le such that

||ψ(x(t), u∗(t), w(t))− ψ(x∗r (t), u∗r (t), 0)||
6 Le|x(t)− x∗r (t)|+ Lu|u∗(t)− u∗r (t)|+ Lw|w(t)|
6 Le|e(t)|+ Luγ|e(t)|+ Lwθ

(21)
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Substituting Equation (21) in Equation (20) and using Lemma 1, the derivative of the
Lyapunov function becomes

V̇(t) 6 [2β2(Le + Luγ)− λmax(Q(t))]||e(t)||2 + 2β2Lwθ||e(t)|| (22)

and by Lemma 1
β1||e(t)||2 6 eT(t)P(t)e(t) 6 β2||e(t)||2 (23)

||e(t)||2 6
V(t)

β1
6

β2

β1
||e(t)||2

||e(t)|| 6
√

V(t)√
β1

6

√
β2√
β1
||e(t)||

(24)

Equation (22) becomes

V̇(t) 6 α1V(t) + α2

√
V(t) (25)

where
α2 =

2β2Lwθ√
β1

By Lemma 2, with

f (t) = α1, g(t) = α2

p =
1
2

, I = [tk, tk+1]

Gives

V(t) 6 exp(
∫ t

tk

α1ds)[
√

V(tk)−
1
2

∫ t

tk

α2exp(−1
2

∫ s

tk

α1)ds]
1
q

Replacing q by its value:

V(t) 6 exp(
∫ t

tk

α1ds)[
√

V(tk)−
1
2

∫ t

tk

α2exp(−1
2

∫ s

tk

α1)ds]2

That gives:

V(t)
1
2 6 (exp(

∫ t

tk

α1ds))
1
2 [
√

V(tk)−
1
2

∫ t

tk

α2exp(−1
2

∫ s

tk

α1)ds]

That gives√
V(t) 6 exp(

1
2

α1(t− tk))[
√

V(tk)−
α2

α1
(1− exp(−1

2
α1(t− tk)))] (26)

and we have:
0 6 exp(−1

2
α1(t− tk))

1− exp(−1
2

α1(t− tk)) 6 1

α2

α1
(1− exp(−1

2
α1(t− tk))) 6

α2

α1

−α2

α1
6 −α2

α1
(1− exp(−1

2
α1(t− tk)))

√
V(tk)−

α2

α1
6
√

V(tk)−
α2

α1
(1− exp(−1

2
α1(t− tk))) 6

√
V(tk)
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Equation (26) becomes√
V(t) 6 exp(

1
2

α1(t− tk))
√

V(tk) (27)

Following the same reasoning in the Appendix B, we obtain√
V(t) 6 exp(

1
2

α1δt)
√

V(0) (28)

Using the second inequality of Equation (24), hence

||e(t)|| 6
√

β2√
β1

exp(
1
2

α1δt)||e(0)|| (29)

Consequently, the error between the actual system trajectory and the economically
optimal trajectory e(t) = x(t)− xr(t) is bounded by:

lim
t→∞
||e(t)|| = 0. (30)

6. Application to WWTP

WWTPs are large nonlinear systems characterized by the complexity of the biological
and biochemical phenomena involved. The nonlinear dynamics of the system, the large
range of time constants (from a few minutes to several days) observed in the different bio-
logical processes and the significant perturbations in the flow and load of the influent make
WWTPs a really challenging case study from the control point of view. WWTPs have to be
operated efficiently, minimizing the energy and consumption of resources, while meeting
strict environmental regulations. Therefore, the advanced control strategies proposed in
this paper are a promising alternative for improving their performance and economics.

6.1. Process Model

The WWTP process selected as a case study follows the specifications given in the
Benchmark Simulation Protocol (BSM1) [26] which are widely accepted by the scientific
community. However, the model focuses on the N-Removal process. The Benchmark
Simulation Model (BSM1) has been widely applied to test control strategies for the Activated
Sludge Process (ASP) in wastewater treatment plants. It consists of 5 bioreactors: 2 anoxic
and 3 aerobic. In the simplified model considered in this work, only the significant variables
of the BSM1 model on a medium time scale are taken into account. The processes with
slow variations in time (the growth of autotrophic and heterotrophic microorganisms and
hydrolyze processes) are neglected. The BSM1 representation is reduced to one anoxic
and one aerated reactor as shown in Figure 2. The volumes of the two tanks are 2000 m3

and 3999 m3, to make them equivalent to total volumes of the anoxic and the aerobic
compartments in the BSM1.

	
  
 

SNH2 
SNtot 
 

Qin 
SSin 

SNHin 

Qw 

Qa 

Qe  
Sno1 

R1 

So2 

Qras 
 

R2 

Kla 

Figure 2. Schematic representation of the plant.
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The following equations represent the dynamic behavior of the plant.

• Anoxic reactor:

ṠNH1 =
1

V1
[QinSNHin + QaSNH2 − (Qin + Qa)SNH1]− ixbρ11 − ixbρ21

− (ixb +
1

YA
)ρ31

ṠNO1 =
1

V1
[QaSNO2 − (Qin + Qa)SNO1]−

1−YH
2.86YH

ρ21 +
1

YA
ρ31

ṠS1 =
1

V1
[QinSSin + QaSS2 − (Qin + Qa)SS1]−

1
YH

ρ11 −
1

YH
ρ21

ṠO1 =
1

V1
[QaSO2 − (Qin + Qa)SO1]−

1−YH
YH

ρ11 − (
4.57
YA

+ 1)ρ31

(31)

• Aerobic reactor:

ṠNH2 =
1

V2
[(Qin + Qa)(SNH1 − SNH2)]− ixbρ12 − (ixb +

1
YA

)ρ32

ṠNO2 =
1

V2
[(Qin + Qa)(SNO1 − SNO2)]−

1−YH
2.86YA

ρ22 +
1

YA
ρ32

ṠS2 =
1

V2
[(Qin + Qa)(SS1 − SS2)]−

1
YH

ρ12 −
1

YH
ρ22

ṠO2 =
1

V2
[(Qin + Qa)(SO1 − SO2)]−

1−YH
YH

ρ12 −
4.57−YA

YA
ρ32

+ KLa(SO,Sat − SO2)

(32)

In the first reactor, the anoxic growth of heterotrophic biomass is the main biological
process, related to denitrification:

ρ21 = µH · (
SS1

KS + SS1
) · ( KO,H

KO,H + SO1
) · ( SNO1

KNO + SS1
)ηgXB,H (33)

In the second reactor, where there is a higher concentration of oxygen, the aerobic
growths of heterotrophic and autotrophic biomass are considered, related to nitrification:

ρ12 = µH · (
SS2

KS + SS2
) · ( SO2

KO,H + SO2
) · XB,H

ρ32 = µA · (
SNH2

KNH + SNH2
) · ( SO2

KO,A + SO2
) · XB,A

(34)

The rest of the processes ρ are assumed to be zero in Equations (32) and (33).
The definitions of the state variables are given in Table 1. The definitions of the kinetic

and physical parameters are presented in Tables 2 and 3, and their values are the same as
for BSM1 [24].

Table 1. List of state variables of the model.

Notation Definition Unit

SNH NH4 + NH3 concentration grN/m3

SNO Nitrate and nitrite concentration grN/m3

SS Readily biodegradable substrate concentration grCOD/m3

SO Dissolved oxygen concentration gr/m3
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Table 2. Process characteristics.

Notation Definition

Qin Influent flow rate
SS,in Influent organic matter concentration
SNH,in Influent ammonium compounds concentration
Qa Internal recycle flow
KLa Oxygen transfer coefficient
V1 Anoxic reactor volume
V2 Aerobic reactor volume

Table 3. Kinetic parameters and stoichiometric coefficient characteristics.

Notation Definition

SO,sat Oxygen saturation concentration
µH Heterotrophic max. specific growth rate
KS Half saturation coefficient for heterotrophs
KO,H Oxygen saturation coefficient for heterotrophs
KNH Ammonia saturation coefficient for heterotrophs
KO,A Oxygen saturation coefficient for autotrophs
YH Heterotrophic yield
YA Autotrophic yield
ixb Nitrogen fraction in biomass

6.2. Operating Conditions

The BSM1 defines the operational requirements of the plant as well as some perfor-
mance criteria to characterize the effluent quality and the energy consumption [26]:

• Influent load and disturbances: In order to test the performance of the control strategy
in different situations, the BSM1 provides standardized influent data considering
different weather situations. In this work, data for 336 h, corresponding to 2 weeks
starting at time 168 h, are considered, with a sampling period of 0.25 h (= 15 min).
Figures 3–5 present the profiles for stormy weather.
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1400
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Figure 3. Influent flow Qin for stormy weather.
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Figure 4. Concentration of organic matter in the influent Ssin for stormy weather.
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Figure 5. Concentration of ammonium compounds in the influent SNHin for stormy weather.

• Bounds: The limits on the effluent–ammonium (SNH) concentration, total nitrogen
(Ntot) concentration, suspended solid (SS,e) concentration, biological oxygen demand
over a 5-day period (BOD5) and (COD) are given in Table 4.

Table 4. Bounds of the effluent concentrations.

Effluent Qualities Upper Bound Unit

SNH 4 mg/L
SNO 10 mg/L
Ntot 18 mg/L
TSS 30 mg/L
COD 100 mg/L
KLa 200 d−1

Qa 3850 m3/d

6.3. Performance Indices

The measures used to characterize the effluent quality and energy usage during the N-
removal process are the standard performance indices recommended in the BSM1 platform
for the evaluation of control strategies applied to WWTPs.

In BSM1, the total average pumping energy (PE) over a certain period of time, T,
depends directly on the internal recirculation flow rate Qa, according to [24], calculated as:

PE =
0.04

T

∫ t0+T

t0

(Qa(t) + Qw(t))dt (35)
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expressed in kWh/day. In (36), Qa denotes the return sludge flow rate and Qw the excess
sludge flow rate, both in units of m3/day.

The aeration energy (AE) in kWh/day required to aerate the last three compartments
is written as:

AE =
24
T

∫ t0+T

t0

5

∑
i=3

(0.4032KLai(t)2 + 7.8408KLai(t))dt (36)

where KLai(t) is the oxygen transfer function in the aerated tank number i in units of h−1.
The effluent quality (EQ) in Kg pollution/day is defined as a weighted daily average

of the total concentration of different compounds in the effluent, as follows:

EQ =
1

1000T

∫ t0+T

t0

(2TSSe(t) + CODe(t) + 30Ntot,e(t)

+ 10SNO(t) + 2BODe(t))Qe(t)dt
(37)

where:

CODe = (SS,e + XB,Ae + XB,He) g/m3

BODe = 0.25((1− 0.08) + (1− 0.08)(XB,A + XB,H)) g/m3

Ntot,e = SNOe + SNHe + ixb(XB,He + XB,Ae) g/m3

TSSe = 0.75(XB,Ae + XB,He) g/m3

(38)

In the above equation, TSS denotes total suspended solids and Ntote is the total nitrogen
concentration in the effluent. The subscript ‘e’ indicates that those concentrations are
associated with the effluent of the settler. The weighting factors of TSSe, CODe and Ntote,
and BODe are adopted from [24]. The model considered in this work was developed
assuming that the separation in the settler produces: XB,Ae = 0.0038.XB,A and XB,He =
0.0038.XB,H .

The total cost expressed in (EUR/day) can be calculated during the interval T by:

OCI = w3(AE + PE) (39)

6.4. Control Problem Formulation

The paper has two major aims. The first one is to show the advantages of a two-layer
structure compared with a single-layer and the second one is to provide a theoretical
framework of the stability by proving that the deviation between the lower layer and the
economically optimal closed-loop trajectory computed by the upper layer is bounded. Two
advanced control strategies, both based on nonlinear model predictive control, are tested
in the WWTP.

6.4.1. Two Layer

(I). Lower layer control problem

In this work, the NCLGPC algorithm is applied in the lower layer to control the
oxygen SO2 in the aerobic reactor, and the nitrate levels SNO1 in the anoxic reactor. This is
carried by minimizing the cost function in (10) subject to the corresponding constraints
from Table 4. The manipulated variables are the oxygen transfer coefficient KLa and the
internal recycle flow rate Qa, considering the influent flow (Qin) (Figure 3), the organic
matter concentration (SS,in) (Figure 4) and the ammonium concentration (SNH,in) (Figure 5)
in the influent are measurable disturbances.

Summarizing, the specific WWTP control problem variables considered in this appli-
cation are:

• The state vector: x(t) = [SNH1 SNO1 SS1 SO1 SNH2 SNO2 SS2 SO2]
T .

• The output variables: y(t) = [SNO1 SO2]
T .
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• The manipulated variables: u(t) = [Qa KLa]T .
• The measured disturbances: w(t) = [Qin SS,in SNH,in]

T .

Rewriting the prediction model of Equations (32) and (33) as in Equation (1) gives:

ẋ(t) = A(t)x(t) + ψ(x(t), u(t), w(t)) (40)

where

A(t) =



−Qin
V1

0 0 0 0 0 0 0
0 −Qin

V1
0 0 0 0 0 0

0 0 −Qin
V1

0 0 0 0 0
0 0 0 −Qin

V1
0 0 0 0

Qin
V2

0 0 0 −Qin
V2

0 0 0
0 Qin

V2
0 0 0 −Qin

V2
0 0

0 0 Qin
V2

0 0 0 −Qin
V2

0
0 0 0 Qin

V2
0 0 0 −Qin

V2


Note that, for the WWTP, Qin is a positive slow time varying variable and, since A(t)

is a lower triangular matrix with negative diagonal entries, i.e., with negative eigenvalues
∀t > 0, the assumed condition on A(t) in the problem statement (Section 1) is verified.

ψ(x(t), u(t), w(t)) =

1
V1
[QinSNHin + QaSNH2 −QaSNH1]− ixbρ11 − ixbρ21 − (ixb +

1
YA

)ρ31
1

V1
[QaSNO2 −QaSNO1]− 1−YH

2.86YH
ρ21 +

1
YA

ρ31
1

V1
[QinSSin + QaSS2 −QaSS1]− 1

YH
ρ11 − 1

YH
ρ21

1
V1
[QaSO2 −QaSO1]− 1−YH

YH
ρ11 − ( 4.57

YA
+ 1)ρ31

1
V2
[Qa(SNH1 − SNH2)]− ixbρ12 − (ixb +

1
YA

)ρ32
1

V2
[Qa(SNO1 − SNO2)]− 1−YH

2.86YA
ρ22 +

1
YA

ρ32
1

V2
[Qa(SS1 − SS2)]− 1

YH
ρ12 − 1

YH
ρ22

1
V2
[Qa(SO1 − SO2)]− 1−YH

YH
ρ12 − 4.57−YA

YA
ρ32 + KLa(SO,Sat − SO2)


(II). Upper layer control problem

In the upper layer, the economic function to be minimized subject to the corresponding
constraints from Table 4 is:

feco(Kla(t), Qa(t)) = w3(AE(Kla(t)) + PE(Qa(t)) (41)

where AE and PE are defined in (36) and (37).
In order to defined the control problem in (9), the gradient of feco has been computed

according to (8), giving us:

D =
[

0.04 0.8064KLa + 0.4032
]

G =

[
0 0
0 19.3536

]
6.4.2. One Layer

The one-layer optimization problem proposed in [9] consists of the optimization of a
cost function that includes the penalization of control error, of control efforts and the same
( feco) for the economic objectives:
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J =
ny

∑
i=1
||w1(r(k + i|k))− y(k + i|k)||22 +

nu−1

∑
i=0
||w2∆u(k + i|k)||22

+
ny

∑
i=1

w3 feco(u(k + i|k), y(k + i|k))

subject to the following constraints:

umin 6 u(k + i|k) 6 umax, i = 0, · · · , nu − 1

ymin 6 y(k + i|k) 6 ymax, i = 1, · · · , ny

∆umin 6 ∆u(k + i|k) 6 ∆umax, i = 0, · · · , nu − 1

x(k + i|k) = A(x(k + i|k))x(k + i|k) + B(x(k + i|k))u(k + i|k), k > 1

y(k + i|k) = C(x(k + i|k))x(k + i|k), k > 1

Some specific characteristics of this control strategy are:

• The predicted control moves are centered around an unconstrained stabilizing control
law, u(k) = K(x(k))x(k), over the whole prediction horizon, and some additive
degrees of freedom, c(k), are added over a finite horizon to handle constraints.

• In the objective function the nonlinear economic term is replaced by its gradient.
• The prediction model, a nonlinear phenomenological model of the plant, is written as

a state dependent coefficient model, also called extended linearization.

7. Simulations Settings

The economic NMPC algorithm uses the phenomenological model of the plant de-
scribed in Equations (32)–(35) for predictions. The fmincon method of Matlab, based on
sequential quadratic programming, uses each sampling time to obtain the optimal manipu-
lated variables.

After some preliminary tests, the selected values to tune the economic NMPC for the
upper layer are the control horizon me = 2, prediction horizon Ne = 4 and the weight of
the economic function is w3 = 1, while the tuning parameters of the optimizing controller
for the lower layer are control horizon m = 2, prediction horizon N = 4, output weight
w1 = diag(0.155, 0.01, 0.155, 0.01) and input weight w2 = diag(0.01, 0.01).

Figures 3–5 present the different profiles of perturbations of BSM1 used in this study.
In this influent, we can observe strong variations in the flow and concentrations during
dry weather.

The performance assessment is made at two levels. The first level concerns the control
design. The second level measures the effect of the control strategy on plant performance.

8. Simulations Results

Several simulations are carried out to study the process behavior with the controller
and their effect on process economics and removal efficiency. The performance indices pro-
vided by the BSM1 platform are used to evaluate the process performance, with the different
controllers in the operating period under characteristic storm weather influent variations.

The evolution of the most relevant process variables along the operating horizon is
presented in the following figures.

Figure 6a,b present the two outputs that are, respectively, the dissolved oxygen in
the aerobic reactor and the nitrate in the anoxic reactor. From the Figure 6, the ability of
the controller to track the desired set point and disturbances rejection can be appreciated.
Figure 7a,b present the evolution of the concentrations SNH2 and N− Total. Good tracking
of the controller is observed in spite of the frequent changes of set point and the strong
variations in the influent. It is observed that the concentrations SNH2 and SNtot are below
the limits most of the simulation time.
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Figure 6. Responses of controlled variables under the proposed controller. (a) Dissolved oxygen
concentration SO2, (b) Nitrite and nitrate concentration SNO.
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(b)

Figure 7. Ammonium and total nitrogen concentration under the proposed controller. (a) Ammonium
concentration NH2, (b) Total Nitrogen N − Total.

The two manipulated variables are shown in Figure 8, indicating that suitable control
signals, Kla and Qa, drive the process to follow the set point, while satisfying the constraints
imposed. Finally, Figure 9 presents the evolution of the degree of freedom C.
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Figure 8. Manipulated variables with the proposed controller. (a) Oxygen transfer coefficient KLa,
(b) Internal recycled flow Qa.
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Figure 9. Evolution of the degree of freedom C. (a) Evolution of C1, (b) Evolution of C2.

The criteria for evaluating the advantages of the implementation of the different archi-
tectures are the tradeoff between economic benefit, process performance, and complexity
of the control structure. The performance evaluation criteria is the indicated in the BSM1
protocol for WWTPs.

In order to compare the economic efficiency of the proposed strategy developed in this
paper, the performance of the plant with a two layer structure is compared with a one layer
nonlinear economic closed-loop generalized predictive control described in Section 6.4.2
(for more details about this controller, please see [9]). The comparison is done in terms of
the overall cost index (Equation (40)), aeration energy (Equation (37)), pumping energy
(Equation (36)) and effluent quality (Equation (38)). To make a fair comparison, the same
process disturbances as in Figures 3–5 were applied to each closed-loop system simulation.
The details of the comparisons in stormy weather are shown in Table 5.

Table 5. Comparison of performance indices for one-layer and two-layer strategies.

Strategy Index One Layer [9] Two Layers %

AE 1449.40 1190.40 −17.87%
PE 421.55 401.64 −4.72%
EQ 5897.00 5845.00 −0.88%
OCI 1870.90 1592.10 −14.99%

Table 5 shows that the two-layer strategy improves the economic aspect by reducing
the OCI index by 14.99%, the AE by 17.87% and the PE by 4.72%, which proves that the
proposed two-layer controller is sufficient for good performance and, in addition, this
control could be easily extended to other applications.
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9. Conclusions

In this work, we have proposed a two-layer strategy for integrating dynamic economic
optimization and nonlinear closed-loop GPCs for nonlinear systems. In the upper layer,
an economic NMPC is used to compute an economically optimal time-varying operating
trajectory. Instead of including the nonlinear economic cost in the objective function,
an approximation of the reduced gradient of the economic function is used. The lower
layer is used to compute feedback control actions that force the outputs of the process
to track the trajectories received from the upper layer.The controller used in this layer is
a nonlinear closed-loop GPC. Instead of the classic dual-mode MPC (model predictive
controller) schemes, where the terminal control law defined in the terminal region is
obtained offline by solving a linear quadratic regulator problem, here, the terminal control
law is determined online by an unconstrained nonlinear generalized predictive control. We
have proved that the deviation between the actual closed-loop system and the economically
optimal closed-loop trajectory is bounded. This paper presents a two-level hierarchical
control structure for biological wastewater treatment plants, with the goal of improving
effluent quality and reducing operational costs. Modifying the tuning parameters of the
higher level, a tuning region is determined in which the effluent quality and operational
costs are simultaneously improved.

The proposed methodology has been successfully applied to the N-Removal process in
a WWTP. The strategy drives the plant to the economically optimal operating condition in
spite of strong disturbances in the influent. The application of the proposed control strate-
gies reduces the operational costs by around 15%, together with a satisfactory compromise
regarding effluent quality in comparison with the one-layer strategy. The methodology of
this work is general and can easily be extended to other applications.
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Appendix A

The system is discretized using Euler integration method and re-arranged into the
state-dependent coefficient form. State and control dependent matrices in general may be
formulated in an infinite number of ways. Finally we can write the discrete model in the
following matrix form:

xk+1 = Ã(xk)xk + B̃(xk)uk (A1)

yk = C̃(xk)xk (A2)

The state-dependent form of the model, in state space format, is substituted to the
traditional GPC format, allowing for inherent integral action within the model, including
the control increment as system input to the state space model. Thus, an extra system state
is included.

χk+1 = A(χk)χk + B(χk)∆uk (A3)

yk = C(χk)χk (A4)

where:

A(χk) =

[
Ã(xk) B̃(xk)

0 I

]
, B̃(χk) =

[
B̃(xk)

I

]
, C(χk) = [C̃(xk) 0] and

χk =

[
xk

uk−1

]
To derive the nonlinear predictive control algorithm, the assumption on the future

trajectory of the system must be made. In this work, we assume that the future trajectory for
the state of the system is known. State-space model (A4), (A5) matrices may be re-calculated
for the future using the future trajectory. The resulting state-space model may be seen as
a time-varying linear model and for this model the controller is designed. Therefore, the
following notations for state-dependent matrices Ak = A(χk), Bk = B(χk) and Ck = C(χk)
are used in the remaining part of the paper. Now, the future trajectory for the system has to
be determined. In the classic predictive control strategy, the vector of current and future
controls is calculated. For the receding horizon control technique, only the first control is
used for the plant inputs manipulation, and the remaining part is not. However, this part
may be employed in the next iteration of the algorithm to predict the future trajectory.

The cost function it can be written as:

Jk = ∑
p
i=1‖w1(r(k + i|k)− y(k + i|k)‖2

2

+∑m−1
i=0 ‖w2∆u(k + i− 1|k)‖2

2 +
∥∥w3ξT

u+∆u

∥∥2
2

(A5)

Next the following vectors containing current and future values are introduced:

Xk+1,p = [χT
k+1, . . . , χT

k+p]
T ,

∆Uk,m = [∆uT
k , . . . , ∆uT

k+m−1]
T

Yk+1,p = [yT
k+1, . . . , yT

k+p]
T ,

Rk+1,p = [rT
k+1, . . . , rT

k+p]
T

(A6)

The cost function (A6) with notation (A7) may be written in the vector form:

Jk = (Rk+1,p −Yk+1,p)
Tw1(Rk+1,p −Yk+1,p)+

∆UT
k,mw2∆Uk,m + (d + G∆Uk,m)

Tw3(d + G∆Uk,m)
(A7)

Now using (A7) the following equation for the future state predictions vector Xk+l,p is
obtained:

Xk,p = Ωk,p Akχk + Ψk,p∆Uk,m (A8)
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where

Ωk,p =

[[
Π0

i=1 Ak+i
]T[Π1

i=1 Ak+i
]T . . .

[
Πp−1

i=1 Ak+i

]T
]

.

Ψk,p =


[Π0

i=1 Ak+i]Bk 0
[Π1

i=1 Ak+i]Bk [Π0
i=2 Ak+i]Bk+1

...
...

[Πp−1
i=1 Ak+i]Bk [Πp−1

i=2 Ak+i]Bk+1

· · · 0
. . . · · ·
. . . . . .

· · · [Πp−1
i=m Ak+i]Bk+m−1


From the output equation it is clear that

yk+i = Ck+iχk+i (A9)

Combining (A7) and (A10) the following relationship between vectors Xk+l,p and
Yk+1,p is obtained:

Yk+1,p = Θk,pXk+1,p (A10)

where: Θk,p = diag(Ck+1, Ck+2, . . . , Ck+p)
Finally, substituting in (A11) Xk+p by (A9) the following equation for output predic-

tion is obtained
Yk+1,p = Φk,p Akχk + Sk,p∆Uk,m (A11)

where:
Φk,p = Θk,pΩk,p, Sk,p = Θk,pΨk,p

Substituting Yn+1,p in the cost function (A6) by the equation (A12) and performing the
static optimization, the control minimizing the given cost function is finally derived:

∆Uk,m = (ST
k,pw1Sk,p + w2 + GTw3G)−1

[
Sk,pw1(Rk+1,p −Φk,p Akχk)− GTw3d

]
(A12)

Appendix B

If we pose t = tk+1 and tk+1 − tk = δ in the Equation (28) gives√
V(tk+1) 6 exp(

1
2

α1δ)
√

V(tk) (A13)

Additionally, moving k in time from 0 until t√
V(1) 6 exp(

1
2

α1δ)
√

V(0) (A14)

√
V(2) 6 exp(

1
2

α1δ)
√

V(1) (A15)

√
V(t) 6 (exp(

1
2

α1)δ)
t
√

V(0) (A16)√
V(t) 6 exp(

1
2

α1)δt
√

V(0) (A17)
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