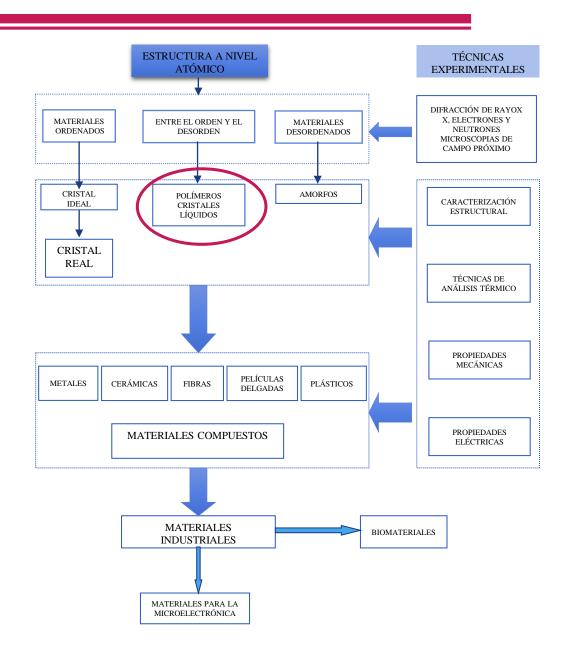


TEMA 5

Entre el orden y el desorden: polímeros

5. Entre el orden y el desorden

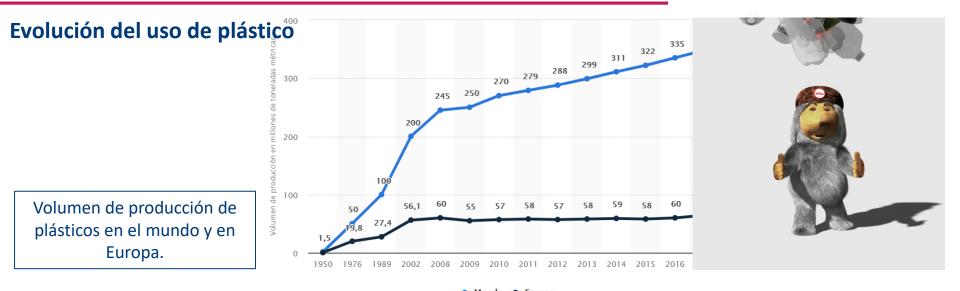

- 5.1. Los polímeros plásticos
- 5.2. La matriz polimérica
- 5.2.1. Arquitectura de las cadenas
- 5.2.2. Una clasificación física de los polímeros
- 5.3. El estado sólido de los polímeros semicristalinos
 - 5.3.1. Cristalización desde una disolución. Laminillas Cristalinas
 - 5.3.2. Cristalización desde el fundido. Esferulitas
 - 5.3.3. Parámetros fundamentales que caracterizan la estructura de un polímero semicristalino
- 5.4. Caracterización de los polímeros semicristalinos
 - 5.4.1. Difracción de rayos X a ángulos altos (WAXD). Caracterización de la celdilla unidad
 - 5.4.2. Difracción de Rayos X a ángulos bajos (SAXD). Caracterización de laminillas y fase amorfa
 - 5.4.3. Microscopía electrónica de barrido (SEM)
 - 5.4. 4. Determinación del índice de cristalinidad
- 5.5. Transiciones térmicas en los polímeros
 - 5.5.1. La fusión
 - 5.5.2. La transición vítrea
 - 5.5.3. Relajaciones secundarias
- 5.6. Propiedades mecánicas de los polímeros

5. Entre el orden y el desorden

5.1. Los polímeros plásticos

- 5.2. La matriz polimérica
- 5.2.1. Arquitectura de las cadenas
- 5.2.2. Una clasificación física de los polímeros
- 5.3. El estado sólido de los polímeros semicristalinos
 - 5.3.1. Cristalización desde una disolución. Laminillas Cristalinas
 - 5.3.2. Cristalización desde el fundido. Esferulitas
 - 5.3.3. Parámetros fundamentales que caracterizan la estructura de un polímero semicristalino
- 5.4. Caracterización de los polímeros semicristalinos
 - 5.4.1. Difracción de rayos X a ángulos altos (WAXD). Caracterización de la celdilla unidad
 - 5.4.2. Difracción de Rayos X a ángulos bajos (SAXD). Caracterización de laminillas y fase amorfa
 - 5.4.3. Microscopía electrónica de barrido (SEM)
 - 5.4. 4. Determinación del índice de cristalinidad
- 5.5. Transiciones térmicas en los polímeros
 - 5.5.1. La fusión
 - 5.5.2. La transición vítrea
 - 5.5.3. Relajaciones secundarias
- 5.6. Propiedades mecánicas de los polímeros

Stone Age



Metal Age

Factores que favorecen la utilización de plásticos

- **Eficacia de coste:** productos de lujo más asequibles: automoción, medicina, construcción, envases, transporte, deportes...
- **Reducción de peso:** reducción de emisiones, abaratamiento...
- Libertad de diseño
- **Seguridad:** El plástico es el material sometido a más controles que el resto y además cumple con las normativas internacionales más exigentes.
- Baja energía de obtención y transformación: Los materiales plásticos requieren menor consumo de energía para su producción.
- Alta Resistencia

PUESTOS DE TRABAJO

Más de 1,6 millones de personas

El sector de los plásticos ofrece empleo directo a más de 1,6 millones de personas en Europa

EMPRESAS

Casi 60.000 empresas

Un sector en el que operan casi 60.000 empresas, la mayoría pymes

VOLUMEN DE NEGOCIO

Más de 360.000 millones de euros

En 2018 el sector europeo de los plásticos generó un volumen de negocio superior a los 360.000 millones de euros

BALANZA COMERCIAL

15.000 millones de euros

En 2018 el sector europeo de los plásticos generó una balanza comercial de más de 15.000 millones de euros

* Los datos incluyen a los fabricantes de materias primas plásticas y a los transformadores de plásticos

00000

FINANZAS PÚBLICAS

Cerca de 30.000 millones de euros

En 2018 el sector europeo de los plásticos aportó 28.800 millones de euros a las finanzas públicas y al bienestar

EFECTO MULTIPLICADOR

x2,4 en PIB y casi x3 en puestos de trabajo

El sector europeo de los plásticos tiene un efecto multiplicador de 2,4 veces el PIB, y casi triplica los puestos de trabajo*

* Estudio de The European House Ambrosetti, datos para Italia, 2013

RECICLAJE

9,4 millones de toneladas

En 2018, se recogieron en Europa 9,4 millones de toneladas de residuos plásticos post-consumo para ser recicladas (dentro y fuera de la UE)

VALOR AÑADIDO INDUSTRIAL

7º en Europa

El sector europeo de los plásticos ocupa el séptimo puesto en la contribución al valor añadido industrial en Europa. Al mismo nivel que el sector farmacéutico* y muy cerca de la industria química

* Medido a partir del valor añadido bruto a los precios naturales, 2013

¿Son los plásticos un problema?

Cantidad de petróleo destinada a la fabricación de plásticos

7-9 % Otros

42 % Electricidad y calefacción

45 % Transporte

¿Alternativas?

Cristal			
Ventajas	Inconvenientes		
	Más caro que el		
Inerte	plástico		
Infinitamente			
reciclable y	Pesado		
reutilizable			
Barato	Frágil		

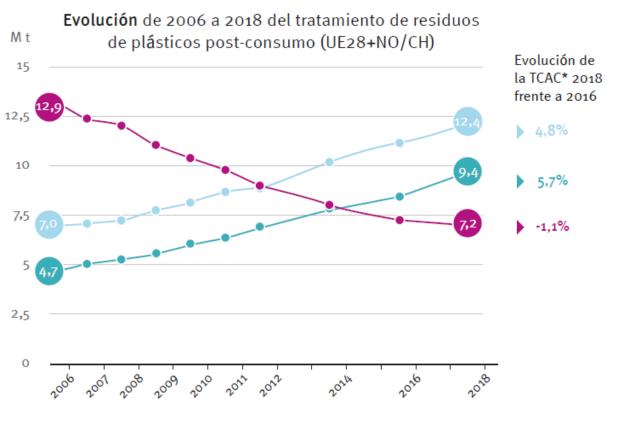
Acero			
Ventajas	Inconvenientes		
Duradero	Más caro que el plástico		
Resistente	Menos Maleable		
Reutilizable	Pesado		
Versatil	Corrosión		
Barato			

Aluminio			
Ventajas Inconvenientes			
Ligero	Caro		

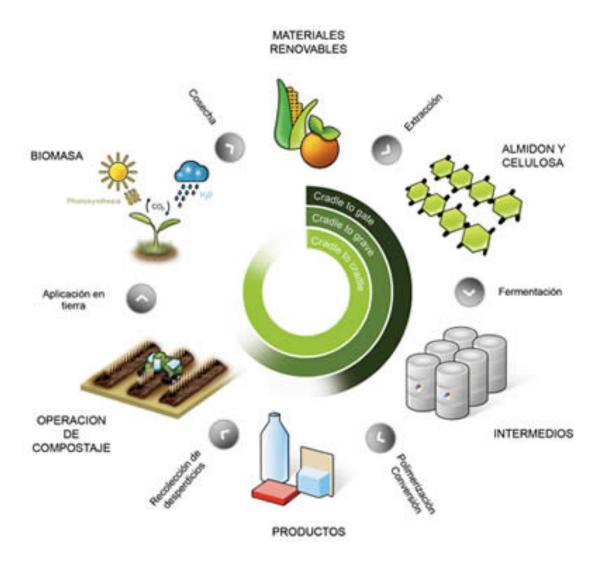
Madera? Insustituible en muchos usos

> Cerámica? Frágil, pesado y de fabricación cara

^{*} Desecho y vertido no autorizado



^{*} Desecho y vertido no autorizado


Reciclado

Valoración energética, reciclado, productos biodegradables...

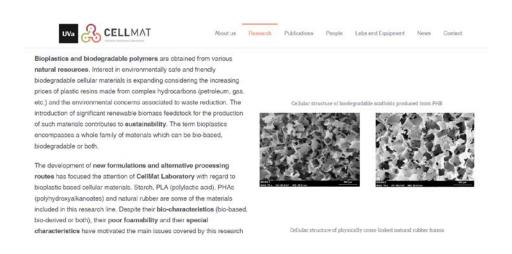
Biopolímeros: búsqueda de materiales con las mismas prestaciones y una degradación sencilla

Biopolímeros: búsqueda de materiales con las mismas prestaciones y una degradación sencilla

Universidad de Valladolid

FACULTAD DE CIENCIAS

DEPARTAMENTO DE FÍSICA DE LA MATERIA CONDENSADA, CRISTALOGRAFÍA Y MINERALOGÍA


TESIS DOCTORAL:

DESARROLLO DE BIOMATERIALES CELULARES EN BASE EVA, PLA Y PHB, FABRICACIÓN Y CARACTERIZACIÓN.

EVA: Etilvinilacetato

PHB: polihidroxialcanoatos

PLA: Ácido poliláctico

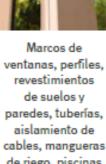
El grupo de investigación CellMat crea bandejas biodegradables para soportar alimentos

Su coste es similar al de los envases tradicionales y evitan el vertido de plásticos que tardan 500 años en degradarse

Aplicaciones típicas de los plásticos

Aplicaciones típicas de los plásticos

Monturas de gafas, vasos de plástico, bandejas de huevos (PS), envases, aislamientos para la construcción (EPS), etc.



7,4%

Botellas para agua, refrescos, zumos, productos de limpieza, etc.

Aislamientos para la construcción. almohadas v colchones. espumas aislantes para frigorificos, etc.

10%

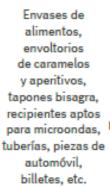
PVC

de riego, piscinas hinchables, etc.

Juguetes (HDPE, MDPE), botellas de leche, botes de champú, tuberías, menaje (HDPE). etc.

12,3%

HDPE,


MDPE

Bolsas reutilizables. bandejas y recipientes, film agrícola (LDPE), film para envasado de alimentos (LLDPE), etc.

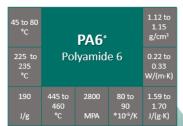
17,5%

LDPE,

LLDPÉ

láminas para techos (PC), pantallas táctiles (PMMA). revestimiento de cables de telecomunicaciones (PTFE) y muchos otros en los ámbitos de la implantología, productos quirúrgicos, membranas, válvulas y juntas, revestimientos protectores. aeroespacial, etc.

Aplicaciones típicas de los plásticos


Plásticos en el automóvil

- Reducción emisiones
- Libertad de diseño
- Versatilidad
- Ahorro

PP		
Propiedades	Usos	
Resistente altas temperaturas	Parachoques	
Alta Resistencia y rigidez	Cajas baterías	
Resistente quimicamente	Tanques químicos	

PUR			
Propiedades Usos			
Baja conductividad	Aislantes		
Cómodo	Asientos		

PE			
Propiedades	Usos		
Resistente al impacto	Cuerpo del coche		
Resistente a la humedad	Aislamiento eléctrico		

* PA6 chosen as representative for all PA grades

-95 to 125 °C - °C	butad	ABS Tylonitr liene-st opolym	yrene	1.03 to 1.07 g/cm ³ 0.19 to 0.20 W/(m·K)
- J/g	420 to 435 °C	2200 to 3000 MPA	80 to 100 *10 ⁻⁶ /K	1.26 to 1.68 J/(g·K)

10 to 180 °C	PUR		1.10 to 1.70 g/cm³	
- °C	Polyurethane			<0.19 W/(m·K)
- J/g	240 to 350 °C	(na) MPA	130 to 200 *10 ⁻⁶ /K	1.70 to 2.10 J/(g·K)

NETZSCH

Proven Excellence.

-50 to 80 °C	PVC-P*** (with plasticizer) Polyvinyl chloride			1.16 to 1.35 g/cm³
- ℃				0.13 to 0.20 W/(m-K)
- J/g	290-315 460-475 °C	0.8 to 0.9 J/(g·K)		

	_		_			•
***	PV/C with	n nlasticiz	er is	prevailingly	rused	
	1 4 5 1111	piasticiz		pr = v = i i i i i i i i i i	uscu	

Other	

-130 to -100 °C	PE-HD**		0.94 to 0.96 g/cm³	
125 to 135 °C	Polyethylene high density			0.33 to 0.53 W/(m-K)
293	480 to 498	1.80 to 2.70		
J/g	°C	1400 MPA	250 *10 ⁶ /K	J/(g·K)

**	PE-LE) al	lso	used	in	auto	omot	ive	manut	actı	urin	Ē
----	-------	------	-----	------	----	------	------	-----	-------	------	------	---

-20 to 20 °C		0.90 to 0.91 g/cm³		
160 to 165 °C	Poly	0.17 to 0.25 W/(m·K)		
207 to 209 J/g	450 to 470 °C	1300 to 1800 MPA	130 to 180 *10 ⁻⁶ /K	1.80 J/(g·K)

140 to 150 °C		1.20 to 1.24 g/cm³		
- ℃	Poly	0.19 to 0.21 W/(m·K)		
- J/g	480 to 535 °C	2200 to 2400 MPA	75 to 80 *10⁴/K	1.17 to 1.50 J/(g·K)

Glass Transition Temp.	Poly	mer 1	Density	
Melting Temp.		Thermal Conduc- tivity		
Melting Enthalpy	Decom- position Temp.	Young's Modulus	CTE	Specific Heat Capacity

Polímero:

Un polímero es un material de alto peso molecular, constituido por la agrupación de unidades de un compuesto sencillo, al que se le da el nombre de monómero.

- El peso molecular de un polímero puede variar desde 10.000 a 20.000 (u.m.a) en los considerados de bajo peso molecular, hasta los de alto peso molecular, materiales para los cuales el peso molecular puede alcanzar varios millones de u.m.a
- El número de unidades que se repiten a lo largo de una cadena determinada se llama grado de polimerización. Los átomos constituyentes de estos materiales son, esencialmente, los básicos de la materia orgánica (C,H,O,N, etc.).
- La característica mas sorprendente de los polímeros, posiblemente sea su gran diversidad, consecuencia de las innumerables estructuras moleculares y estados de agregación que pueden adoptar

Atendiendo a su origen:

<u>Naturales</u>

Los seres vivos están constituidos por macromoléculas **biológicas naturales**, es decir, biopolímeros (proteínas, polisacáridos, ácidos nucleicos, etc.).

<u>Sintéticos</u>

Por otro lado, existe una gran variedad de materiales poliméricos sintéticos, que se han hecho imprescindibles en el mundo tecnológico actual (plásticos, fibras, cauchos, resinas sintéticas, etc.).

Atendiendo a su <u>uso</u>:

Polímeros de uso general (commodity)

Polímeros de consumo entre los que se incluyen los más comunes y conocidos por sus cualidades de versatilidad, duración, resistencia y bajo coste (polietileno, polipropileno, poli(cloruro de vinilo, poliuretano, resinas fenólicas, epoxi, etc.); son materiales idóneos en infinidad de aplicaciones: bolsas, botellas, fibras textiles, marcos de ventana, tubos, etc.

Polímeros técnicos o de ingeniería

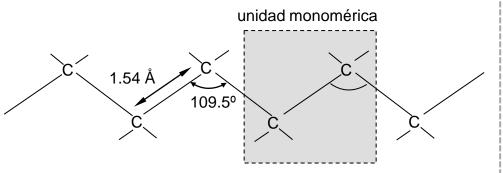
Materiales que conservan sus propiedades sin perdida importante de sus características iniciales a temperaturas inferiores a 0 ºC o superiores a 100 ºC. Entre ellos citar las poliamidas, policarbonatos, poliésteres aromáticos o alifáticos, polisulfonas, etc.

Polímeros especiales

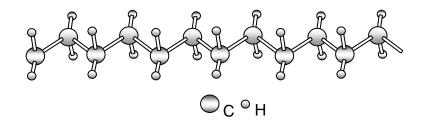
Materiales de altas prestaciones diseñados para utilizaciones muy concretas y con propiedades específicas. Polímeros conductores, fotosensibles, piezoeléctricos, de alta resistencia mecánica, etc., con aplicaciones en los campos de la electrónica, transporte, fibras de alta resistencia, oftalmología, cirugía plástica, órganos artificiales y un largo etc.

Polímeros industriales de cierta relevancia:

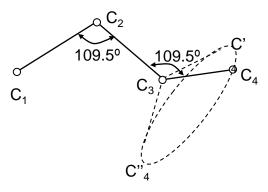
Polietileno	$ \begin{pmatrix} H & H \\ -C - C \\ H & H \end{pmatrix}_{n} $	
Cloruro de polivinilo (PVC)	H CI 	
Politetrafluoretileno (PTFE)	$\left(\begin{matrix} F & F \\ C - C \\ F & F \end{matrix}\right)_{n}$	
Poliestireno (PS)	H-C-H H-C-H	
Policaprolactama (nilón 6)	$\begin{bmatrix} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	
Poliisopreno (caucho natural)	H_3C CH_2	


En general los polímeros puros no satisfacen las demandas tecnológicas que se les requiere y en este estado sólo se usan en contadas ocasiones. Los polímeros se convierten en plásticos cuando se mezclan con aditivos:

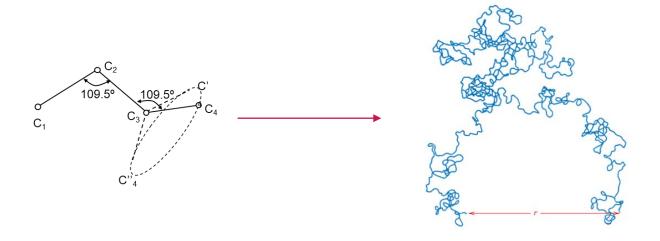
- **Pigmentos:** para producir colores. Debe resistir temperaturas y presiones durante el procesado siendo compatible con el mismo y estable.
- **Estabilizantes:** impiden el deterioro del polímero provocado por el medio ambiente. También evitan el deterioro ocasionado por la radiación ultravioleta.
- Agentes antiestáticos: al ser malos conductores eléctricos, generan electricidad estática. Estos agentes mejoran la conductividad superficial.
- **Retardantes a la llama:** la mayoría de polímeros son inflamables. Los aditivos con cloruros, bromuros, fósforos o sales metálicas reducen la posibilidad de que ocurra o se extienda la combustión. Son muy importantes en construcción.
- **Lubricantes:** la cera o el estearato de calcio reducen la viscosidad del plástico fundido para conformar y procesar.
- Plastificantes: moléculas de bajo peso molecular, que reducen la temperatura de transición vítrea, mejorando la conformabilidad.
- **Rellenos:** se añaden con muchos fines. Uno de los más conocidos es la adición de negro de humo al caucho, mejorando la resistencia a la carga y al desgaste en neumáticos. También fibras que mejoran las propiedades mecánicas...


5. Entre el orden y el desorden

- 5.1. Los polímeros plásticos
- 5.2. La matriz polimérica
- 5.2.1. Arquitectura de las cadenas
- 5.2.2. Una clasificación física de los polímeros
- 5.3. El estado sólido de los polímeros semicristalinos
 - 5.3.1. Cristalización desde una disolución. Laminillas Cristalinas
 - 5.3.2. Cristalización desde el fundido. Esferulitas
 - 5.3.3. Parámetros fundamentales que caracterizan la estructura de un polímero semicristalino
- 5.4. Caracterización de los polímeros semicristalinos
 - 5.4.1. Difracción de rayos X a ángulos altos (WAXD). Caracterización de la celdilla unidad
 - 5.4.2. Difracción de Rayos X a ángulos bajos (SAXD). Caracterización de laminillas y fase amorfa
 - 5.4.3. Microscopía electrónica de barrido (SEM)
 - 5.4. 4. Determinación del índice de cristalinidad
- 5.5. Transiciones térmicas en los polímeros
 - 5.5.1. La fusión
 - 5.5.2. La transición vítrea
 - 5.5.3. Relajaciones secundarias
- 5.6. Propiedades mecánicas de los polímeros


Componente básico cuya proporción es mayoritaria en el material plástico. Su composición química y estructural determinarán las posibles aplicaciones del material.

Molécula de polietileno en una **conformación** restringida al plano del papel



Perspectiva de la cadena de polietileno; estructura en zig-zag (conformación trans)

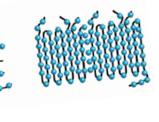
Articulación de una cadena de cuatro carbonos en el PE

Manteniendo la distancia y los ángulos, el número de posiciones admisible es enorme

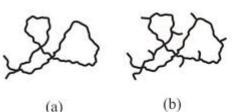
Modelo de macromolécula del polietileno: a) articulaciones posibles para un conjunto de carbonos, b) configuración de una cadena de PE en estado fundido

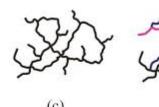
Polímero en estado fundido: plato de espaguetis

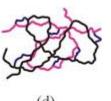
5. Entre el orden y el desorden

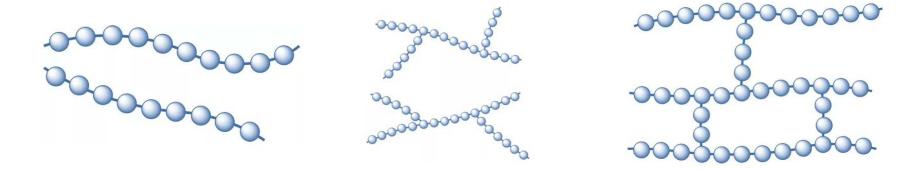

- 5.1. Los polímeros plásticos
- 5.2. La matriz polimérica
- 5.2.1. Arquitectura de las cadenas
- 5.2.2. Una clasificación física de los polímeros
- 5.3. El estado sólido de los polímeros semicristalinos
 - 5.3.1. Cristalización desde una disolución. Laminillas Cristalinas
 - 5.3.2. Cristalización desde el fundido. Esferulitas
 - 5.3.3. Parámetros fundamentales que caracterizan la estructura de un polímero semicristalino
- 5.4. Caracterización de los polímeros semicristalinos
 - 5.4.1. Difracción de rayos X a ángulos altos (WAXD). Caracterización de la celdilla unidad
 - 5.4.2. Difracción de Rayos X a ángulos bajos (SAXD). Caracterización de laminillas y fase amorfa
 - 5.4.3. Microscopía electrónica de barrido (SEM)
 - 5.4. 4. Determinación del índice de cristalinidad
- 5.5. Transiciones térmicas en los polímeros
 - 5.5.1. La fusión
 - 5.5.2. La transición vítrea
 - 5.5.3. Relajaciones secundarias
- 5.6. Propiedades mecánicas de los polímeros

Características fundamentales de la cadena polimérica


1. Composición química


Today.


- 2. Su tamaño (peso molecular, grado de polimerización)
- 3. Su forma (grado de torsión, doblado y plegado de la cadena)

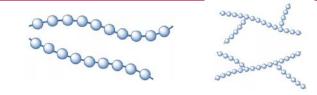


- 4. Grado de ramificación
- 5. Grado de reticulación

Arquitectura básica del polietileno: a) lineal, b) ramificada, c) entrecruzada

Polímeros lineales. los átomos de su cadena principal adoptan una configuración continua.

Polímeros ramificados, macromoléculas que presentan cadenas laterales, más o menos largas, las cuales a su vez pueden también estar ramificadas.


Polímeros entrecruzados, aquellos en los que las cadenas están unidas entre si mediante enlaces covalentes. Esta organización es tridimensional y el número de uniones o grado de entrecruzamiento es un parámetro fundamental en muchas de las eventuales propiedades del material.

La arquitectura de las cadenas es clave para las propiedades del polímero.

5. Entre el orden y el desorden

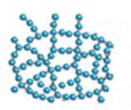
- 5.1. Los polímeros plásticos
- 5.2. La matriz polimérica
- 5.2.1. Arquitectura de las cadenas
- 5.2.2. Una clasificación física de los polímeros
- 5.3. El estado sólido de los polímeros semicristalinos
 - 5.3.1. Cristalización desde una disolución. Laminillas Cristalinas
 - 5.3.2. Cristalización desde el fundido. Esferulitas
 - 5.3.3. Parámetros fundamentales que caracterizan la estructura de un polímero semicristalino
- 5.4. Caracterización de los polímeros semicristalinos
 - 5.4.1. Difracción de rayos X a ángulos altos (WAXD). Caracterización de la celdilla unidad
 - 5.4.2. Difracción de Rayos X a ángulos bajos (SAXD). Caracterización de laminillas y fase amorfa
 - 5.4.3. Microscopía electrónica de barrido (SEM)
 - 5.4. 4. Determinación del índice de cristalinidad
- 5.5. Transiciones térmicas en los polímeros
 - 5.5.1. La fusión
 - 5.5.2. La transición vítrea
 - 5.5.3. Relajaciones secundarias
- 5.6. Propiedades mecánicas de los polímeros

Termoplásticos

Polímeros lineales o ramificados que se pueden reblandecer bajo la aplicación de calor.

A determinadas temperaturas adquieren una viscosidad adecuada para su moldeado de manera que la forma que se les confiere queda congelada al enfriarse. Estos tratamientos son reversibles, de manera que, en principio, el material se puede moldear cuantas veces se quiera, factor que resulta fundamental en su amplia utilización industrial (reciclado).

Los termoplásticos se caracterizan **por su carácter semicristalino**, es decir, estén constituidos por dos fases: una amorfa y otra cristalina. En condiciones especiales del proceso de solidificación también es posible, en ciertos materiales, conformar **termoplásticos completamente amorfos** (vidrios poliméricos).


Ejemplos: Polietileno, polipropileno, policloruro de vinilo, polietilentereftalato, poliamidas, etc.

Termoestable

Presentan un comportamiento contrario a los termoplásticos. Están constituidos por macromoléculas entrecruzadas que no pueden ni fundir ni disolverse. No son reciclables.

Para su producción, se parte generalmente de materias primas de carácter líquido o sólidas solubles, de peso molecular más bien bajo. El entrecruzamiento se puede conseguir calentando, con o sin presión, o mediante reacciones químicas con aditivos y adecuadas condiciones de moldeo.

Los productos resultantes tienen **alto peso molecular**, cadenas entrecruzadas de carácter tridimensional, muy resistentes a los solventes. **Sólo pueden romperse por destrucción química de los puntos de entrecruzamiento.**

Ejemplos: Resinas fenólicas, resinas epoxi, poliuretanos, etc. Son empleados en la fabricación de barnices, pinturas, adhesivos y como matriz en materiales compuestos

Elastómeros o Cauchos

Contienen cadenas entrecruzadas. El entrecruzamiento en los elastómeros no es tan denso como en los materiales termoestables y por ello presentan una elevada movilidad de segmentos por encima de una temperatura característica (temperatura de transición vítrea, Tg).

La característica fundamental de los elastómeros es que se deforman rápidamente si se les aplica una fuerza y se recuperan de forma casi instantánea cuando cesa esta. Las deformaciones pueden ser de hasta diez veces.

Si el material se encuentra estirado sin llegar a la rotura, cuando se deja de aplicar la tensión recupera su forma original, y vuelve al estado de equilibrio.

En el caso del caucho natural la reacción de vulcanización se provoca añadiendo ciertas sustancias, por ejemplo azufre, que contribuyen a formar los puentes intermoleculares.

Ejemplos: Siliconas, caucho natural, caucho butadieno-estireno.

Elastómeros termoplásticos

Variedad de elastómeros que **no presentan entrecruzamiento químico**. Son polímeros cuya unidad repetitiva contiene un **segmento rígido** (con una temperatura de transición vítrea moderadamente elevada) y un **segmento blando** (con una temperatura de transición vítrea relativamente baja). Por debajo de la temperatura de transición vítrea las secuencias duras y blandas son incompatibles y por tanto están separadas, de manera que **el segmento rígido actúa como si fuera un punto de entrecruzamiento.**

Estos materiales combinan las características de procesado de los termoplásticos con las propiedades físicas propias de los cauchos vulcanizados, presentando ciertas ventajas sobre estos últimos. Por ejemplo los cauchos de origen natural o sintético, una vez vulcanizados no pueden ablandarse o fundirse, lo que impide que el material se pueda reprocesar. Sin embargo, los elastómeros termoplásticos pueden ablandarse repetidamente por calentamiento a la temperatura de moldeo, y los materiales de desecho u otras piezas se pueden reprocesar fácilmente.

Ejemplos: TPU (Poliuretano termoplástico), SEBS (Estireno-etileno-butileno-estireno)

Propiedades de algunos termoplásticos

Tabla 16-2 Propiedades de termoplásticos seleccionados

	Resistencia a la tensión (MPa)	% alargamiento	Módulo elástico (MPa)	Densidad (g/cm³)	Impacto Izod (J/cm)
Polietileno (PE):					
Baja densidad	21	800	276	0.92	4.9
Alta densidad	38	130	1241	0.96	2.2
Peso molecular ultraalto	48	350	690	0.934	16.2
Cloruro de polivinilo (PVC)	62	100	4140	1.40	
Polipropileno (PP)	41	700	1517	0.90	0.5
Poliestireno (PS)	55	60	3103	1.06	0.2
Poliacrilonitrilo (PAN)	62	4	4000	1.15	2.6
Polimetilmetacrilato (PMMA) (acrílico, plexiglás)	83	5	3100	1.22	0.3
Policlorotrifluoroetileno	41	250	2070	2.15	1.4
Politetrafluoretileno (PTFE, teflón)	48	400	550	2.17	1.6
Polioximetileno (POM) (acetal)	83	75	3590	1.42	1.2
Poliamida (PA) (nylon)	83	300	3450	1.14	1.1
Poliéster (PET)	72	300	4140	1.36	0.3
Policarbonato (PC)	76	130	2760	1.20	8.6
Poliimida (PI)	117	10	2070	1.39	0.8
Polietereterketona (PEEK)	70	150	3790	1.31	0.9
Sulfuro de polifenileno (PPS)	66	2	3310	1.30	0.3
Sulfona de poliéter (PES)	84	80	2410	1.37	0.9
Poliamidaimida (PAI)	186	15	5030	1.39	2.2

Gran variedad de materiales y propiedades

Temperaturas de interés en materiales termoplásticos

Tabla 16-5 Intervalos de temperatura de fusión, de transición vítrea y de procesamiento (°C) para polímeros termoplásticos y elastómeros seleccionados

Polímero	Intervalo de temperatura de fusión	Intervalo de temperatura de transición vítrea (T_v)	Intervalo de temperatura de procesamiento
Polímeros por adición			
Polietileno de baja densidad (LD)	98–115	−90 a −25	149–232
Polietileno de alta densidad (HD)	130–137	-110	177–260
Cloruro de polivinilo	175–212	87	
Polipropileno	160–180	−25 a −20	190–288
Poliestireno	240	85–125	
Poliacrilonitrilo	320	107	
Politetrafluoroetileno (teflón) Policrorotrifluoroetileno	327 220		
Polimetilmetacrilato (acrílico)	220	90–105	
Acrilonitrilo butadieno estireno (ABS)	110–125	100	177–260
Polímeros por condensación			
Acetal	181	-85	
6,6-nylon	243-260	49	260-327
Acetato de celulosa	230		
Policarbonato	230	149	271–300
Poliéster	255	75	
Polietileno tereftalato (PET)	212–265	66–80	227–349
Elastómeros			
Silicona		-123	
Polibutadieno	120	-90 	
Policloropreno	80	-50 -70	
Poliisopreno	30	-73	

Gran variedad de materiales y propiedades

Propiedades de algunos termoplásticos

Tabla 16-2 Propiedades de termoplásticos seleccionados

	Resistencia a la tensión (MPa)	% alargamiento	Módulo elástico (MPa)
Polietileno (PE):			
Baja densidad	21	800	276
Alta densidad	38	130	1241
Peso molecular ultraalto	48	350	690
Cloruro de polivinilo (PVC)	62	100	4140
Polipropileno (PP)	41	700	1517
Poliestireno (PS)	55	60	3103
Poliacrilonitrilo (PAN)	62	4	4000
Polimetilmetacrilato (PMMA) (acrílico, plexiglás)	83	5	3100
Policlorotrifluoroetileno	41	250	2070
Politetrafluoretileno (PTFE, teflón)	48	400	550
Polioximetileno (POM) (acetal)	83	75	3590
Poliamida (PA) (nylon)	83	300	3450
Poliéster (PET)	72	300	4140
Policarbonato (PC)	76	130	2760
Poliimida (PI)	117	10	2070
Polietereterketona (PEEK)	70	150	3790
Sulfuro de polifenileno (PPS)	66	2	3310
Sulfona de poliéter (PES)	84	80	2410
Poliamidaimida (PAI)	186	15	5030

Propiedades de algunos termoestables

Tabla 16-11 Propiedades de polímeros termoestables comunes

	Resistencia a la tensión (MPa)	% elongación	Módulo elástico (MPa)
Fenólicos	62	2	9
Aminas	69	1	11
Poliésteres	90	3	5
Epóxicos	103	6	4
Uretanos	69	6	
Silicones	28	0	8

Propiedades de algunos cauchos

Tabla 16-9 Propiedades de elastómeros seleccionados

	Resistencia a la tensión (MPa)	% de alargamiento
Polisopreno	21	800
Polibutadieno	24	
Poliisobutileno	28	350
Policloropreno	24	800
Butadieno-estireno	21	2000
Butadieno-acrilonitrilo	5	400
Siliconas	7	700
Elastómeros termoplásticos	35	1300

5. Entre el orden y el desorden

- 5.1. Los polímeros plásticos
- 5.2. La matriz polimérica
- 5.2.1. Arquitectura de las cadenas
- 5.2.2. Una clasificación física de los polímeros

5.3. El estado sólido de los polímeros semicristalinos

- 5.3.1. Cristalización desde una disolución. Laminillas Cristalinas
- 5.3.2. Cristalización desde el fundido. Esferulitas
- 5.3.3. Parámetros fundamentales que caracterizan la estructura de un polímero semicristalino
- 5.4. Caracterización de los polímeros semicristalinos
 - 5.4.1. Difracción de rayos X a ángulos altos (WAXD). Caracterización de la celdilla unidad
 - 5.4.2. Difracción de Rayos X a ángulos bajos (SAXD). Caracterización de laminillas y fase amorfa
 - 5.4.3. Microscopía electrónica de barrido (SEM)
 - 5.4. 4. Determinación del índice de cristalinidad
- 5.5. Transiciones térmicas en los polímeros
 - 5.5.1. La fusión
 - 5.5.2. La transición vítrea
 - 5.5.3. Relajaciones secundarias
- 5.6. Propiedades mecánicas de los polímeros

El polietileno

El polietileno: -[CH₂-CH₂]_n-es el polímero industrial más sencillo, con un mayor volumen de ventas y un ejemplo característico generalizable a otros materiales.

MODELO DE ESTUDIO PARA POLÍMEROS SEMICRISTALINOS

Diferentes tipos de Polietilenos

	Ramificaciones cortas Por cada 1000 carbonos	Ramificaciones largas en cada cadena (longitud 200-300 carbonos)
Polietileno de baja densidad (LDPE)	15-25	3-7
Polietileno de alta densidad (HDPE)	0-5	0

Propiedades Polietilenos

	Temperatura de fusión (°C)	Densidad (kg/m³)	Módulo de Elasticidad: E (MPa)
Polietileno de baja densidad (LDPE)	105-115	910-930	≈250
Polietileno de alta densidad (HDPE)	130-140	940-970	≈900

Objetivo: Entender las diferencias previas en términos de la estructura

Formula Química + Disposición atómica en estado sólido

1

Propiedades Físicas

Objetivo: Entender las diferencias previas en términos de la estructura

Esquema:

- 1. Definición de polímero semicristalino. Ejemplos
- 2. ¿Cómo cristalizan los polímeros?
- 3. Parámetros fundamentales para describir la estructura
- 4. Técnicas Experimentales
- 5. Propiedades

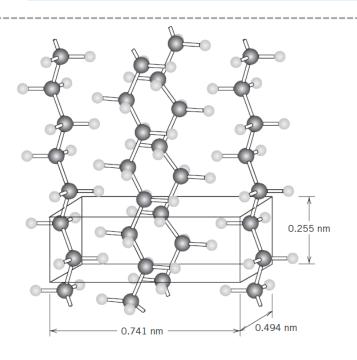
Polímeros semicristalinos

Materiales que presentan al menos dos fases; una ordenada (cristalina) y otra desordenada (amorfa).

La posibilidad de modificar la proporción de fase cristalina y fase amorfa da lugar a una versatilidad en las propiedades

Ejemplos de polímeros semicristalinos

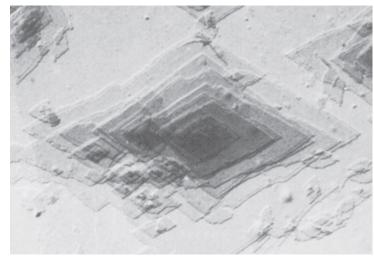
Polietileno	Bolsas, aislantes cables, tuberías, films
Polipropileno	Objetos moldeados y aplicaciones similares al PE
Copolímeros de etileno	Bolsas, films invernaderos, etc



Polímeros semicristalinos

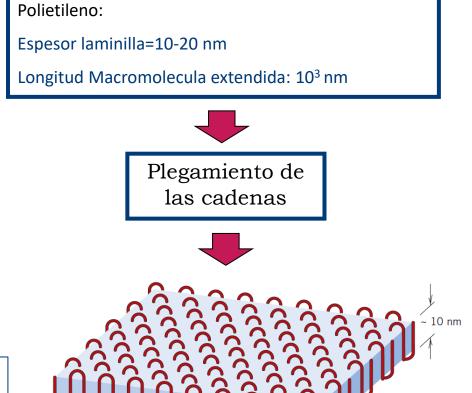
Materiales que presentan al menos dos fases; una ordenada (cristalina) y otra desordenada (amorfa).

La posibilidad de modificar la proporción de fase cristalina y fase amorfa da lugar a una versatilidad en las propiedades

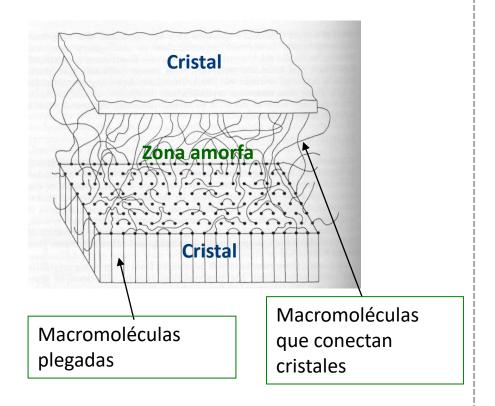

Polipropileno	Monoclínico	a=6.66 Å b=20.78 Å c=6.495 Å	α=90° β=99.62° χ=90°
Polietilen tereftalato (PET)	Triclínico	a=4.56 Å b=5.96 Å c=10.75 Å	$\alpha = 98.5^{\circ}$ $\beta = 118^{\circ}$ $\chi = 112^{\circ}$

Celdilla unidad de algunos polímeros semicristalinos

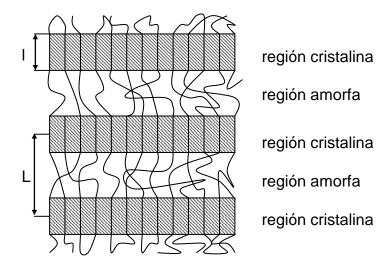
C O H


A partir de una disolución

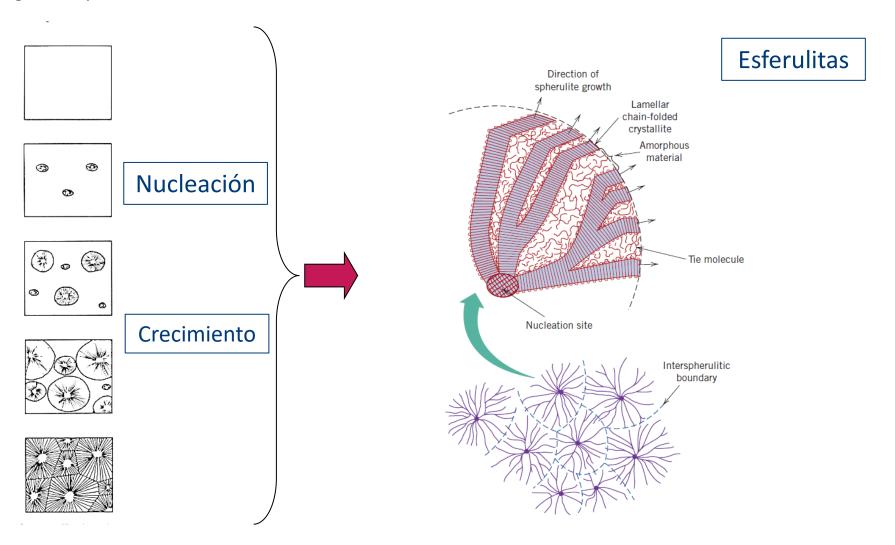
- El polímero se disuelve a alta temperatura en un disolvente adecuado
- Posteriormente se solidifica enfriando la disolución o bien dejando evaporar el disolvente.


Micrografía Electrónica de un monocristal de Polietileno x20000. A. Keller, D. Turubull, Editors, Growth and Perfection of Crystals. General Electric Company y John Wiley and Sons, INc, 1958, p.498)

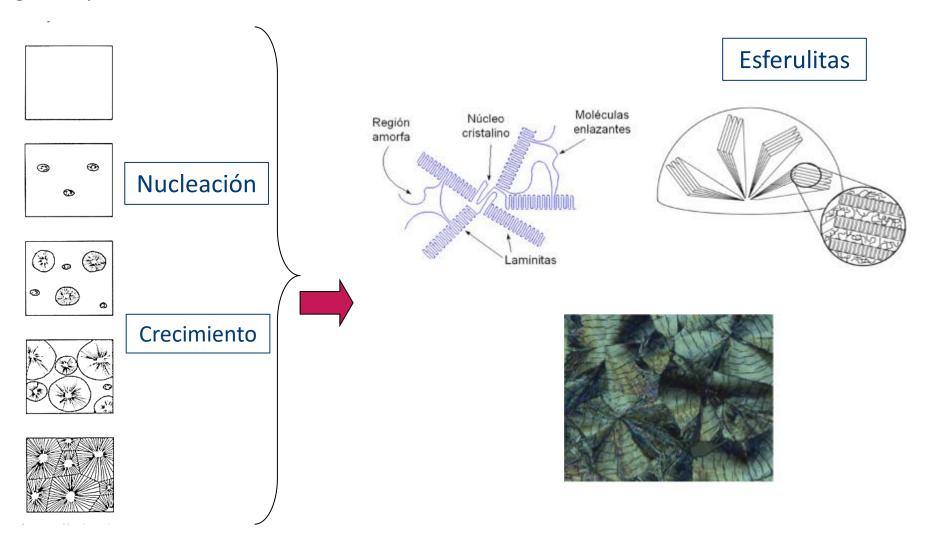
Modelo inicial


A partir de una disolución

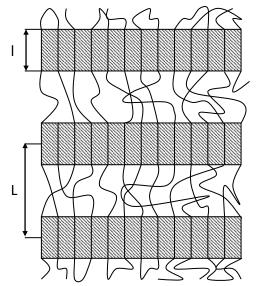
Modelo actual


Zona entre laminillas: Región isótropa

La secuencia parte cristalina parte amorfa es periódica y el periodo L, es característico en cada polímero.


Desde el fundido

En estado fundido la viscosidad del medio dificulta que las cadenas (en ovillo en estado líquido) se organicen para crear cristales aislados.


Desde el fundido

En estado fundido la viscosidad del medio dificulta que las cadenas (en ovillo en estado líquido) se organicen para crear cristales aislados.

Modelo simplificado

región cristalina

región amorfa

región cristalina

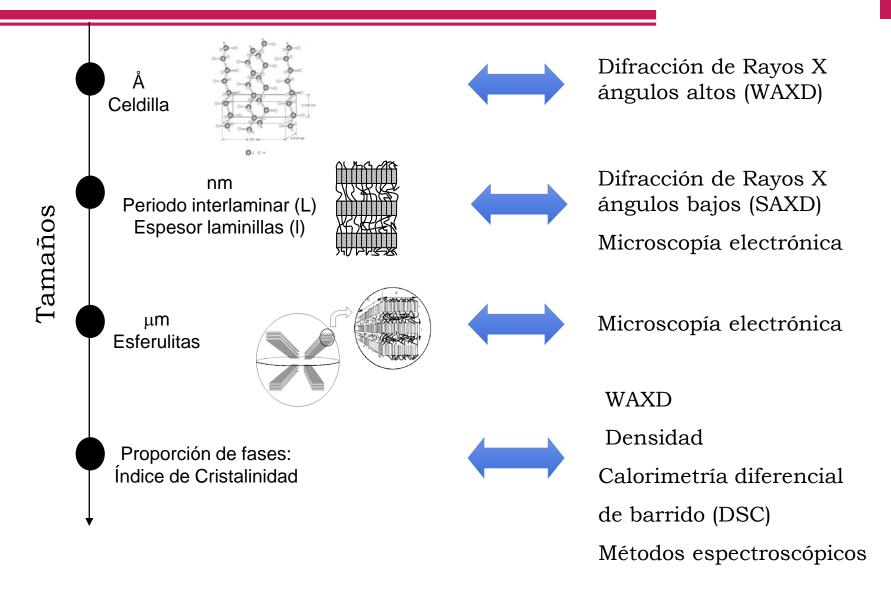
región amorfa

región cristalina

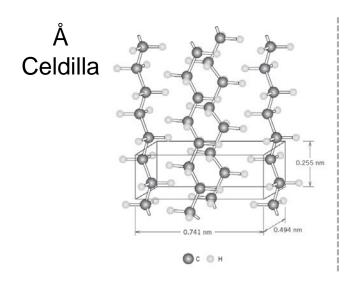
Índice de Cristalinidad Xc

$$X_c = 100 \frac{\text{Masa de la fase cristalina}}{\text{Masa total de la muestra}}$$

Parámetros fundamentales que caracterizan la estructura

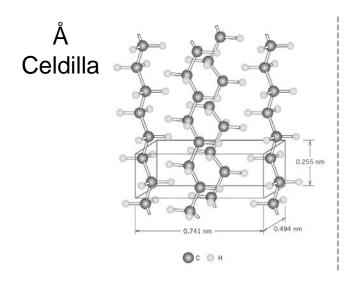

- Celdilla Unidad (Amstrongs)
- Periodo interlaminar; L (nm)
- Espesor de las Laminillas; I (nm)
- Tamaño de las Esferulitas (µm)
- Índice de Cristalinidad X_c: Proporción de fases

5. Entre el orden y el desorden


- 5.1. Los polímeros plásticos
- 5.2. La matriz polimérica
- 5.2.1. Arquitectura de las cadenas
- 5.2.2. Una clasificación física de los polímeros
- 5.3. El estado sólido de los polímeros semicristalinos
 - 5.3.1. Cristalización desde una disolución. Laminillas Cristalinas
 - 5.3.2. Cristalización desde el fundido. Esferulitas
 - 5.3.3. Parámetros fundamentales que caracterizan la estructura de un polímero semicristalino

5.4. Caracterización de los polímeros semicristalinos

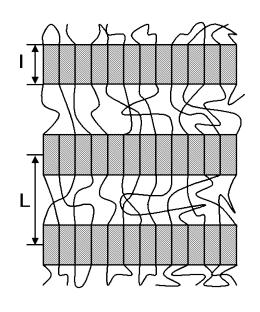
- 5.4.1. Difracción de rayos X a ángulos altos (WAXD). Caracterización de la celdilla unidad
- 5.4.2. Difracción de Rayos X a ángulos bajos (SAXD). Caracterización de laminillas y fase amorfa
- 5.4.3. Microscopía electrónica de barrido (SEM)
- 5.4. 4. Determinación del índice de cristalinidad
- 5.5. Transiciones térmicas en los polímeros
 - 5.5.1. La fusión
 - 5.5.2. La transición vítrea
 - 5.5.3. Relajaciones secundarias
- 5.6. Propiedades mecánicas de los polímeros

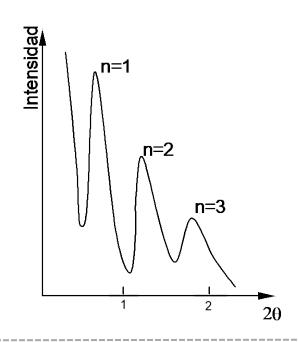

Difracción de Rayos X a ángulos altos (WAXD): Caracterización de la Celdilla Unidad

- Procedimientos análogos a los descritos en el capítulo segundo para la de estructuras cristalinas en materiales.
- Los cálculos son más complejos que los empleados en cristales inorgánicos:
 - Múltiples átomos por celdilla
 - Elementos atómicos de bajo peso atómico
 - Dificultades para obtener monocristales

- En equipos de difracción de rayos X convencionales es difícil obtener otra información aparte que la que caracteriza la celdilla unidad (simetria+dimensiones)
- Otras posibilidades
 - Radiación sincrotrón (Rayos X)
 - Difracción de Neutrones

Difracción de Rayos X a ángulos altos (WAXD): Caracterización de la Celdilla Unidad


- Procedimientos análogos a los descritos en el capítulo segundo para la de estructuras cristalinas en materiales.
- Los cálculos son ma inorgánicos:
 - Múltiples átor
 - Elementos ató
 - Dificultades pa

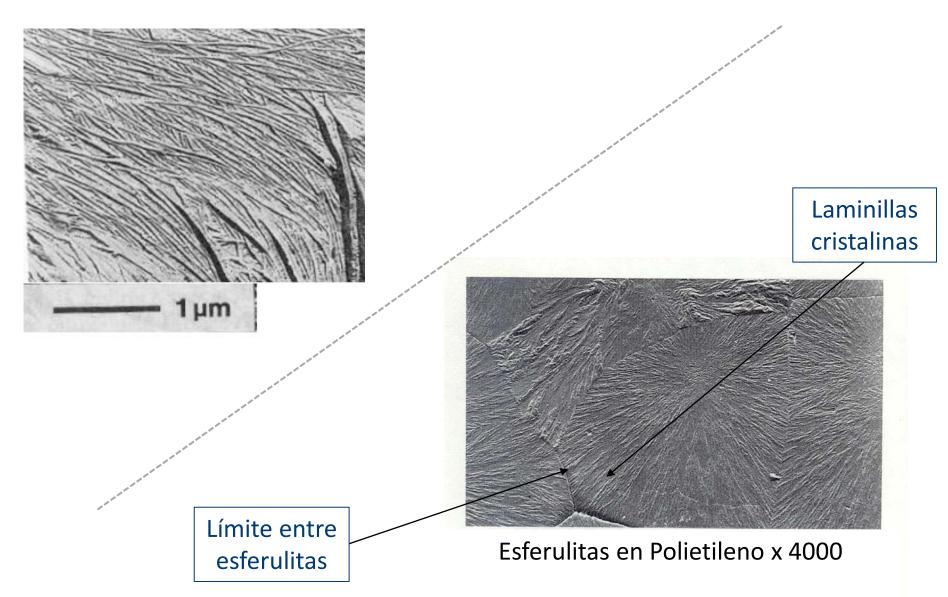


nales es difícil obtener otra información aparte que la que nes)

Difracción de Rayos X a ángulos bajos (SAXD): periodo interlaminar

Polímeros: Otras situaciones periódicas aparte de la asociada a la celdilla unidad

Laminillas Cristalinas


2Lsenθ=n λ

 λ =1.54 Å y L=200 Å

 θ : Varía entre 0 y 3 grados

Determinación de L

Microscopia electrónica + ataque químico: Laminillas Cristalinas y Esferulitas

Densidad

La densidad de un compuesto cristalino se encuentra comprendida entre la del mismo material totalmente amorfo y la del totalmente cristalino

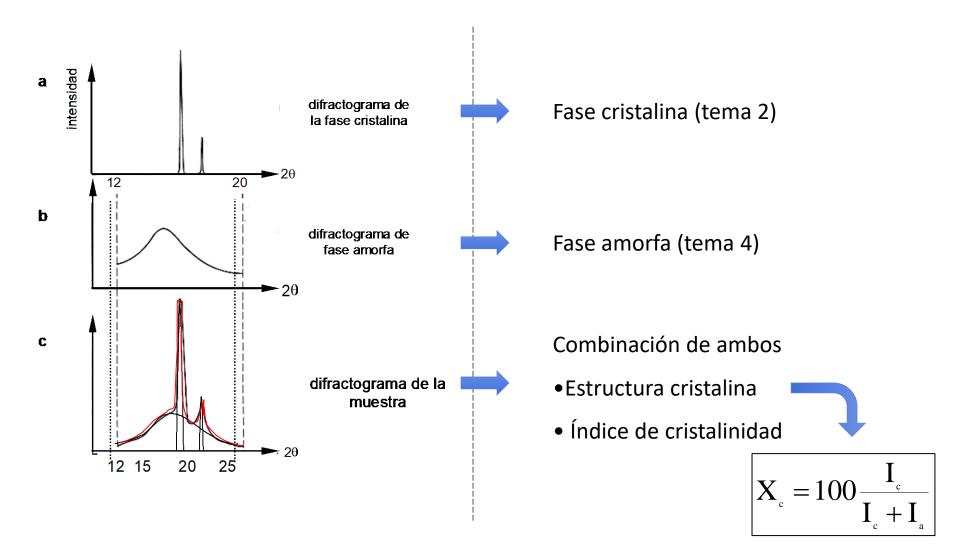
$$X_{c} = 100 \frac{\rho_{c}(\rho - \rho_{a})}{\rho(\rho_{c} - \rho_{a})}$$

 ρ_c densidad del material cristalino

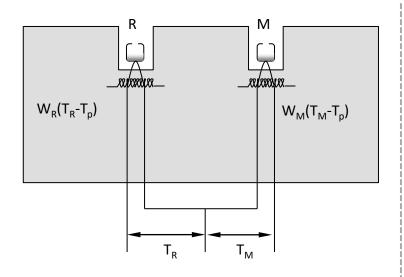
Calculado a partir de la estructura de la fase cristalina

 ρ_{a} densidad del material amorfo

Medida directa si es posible preparar el material amorfo.


Extrapolación

ρ densidad del material bajo estudio


Medida en el laboratorio

Difracción de Rayos X a ángulos altos (WAXD)

Calorimetría diferencial de barrido (DSC)

$$E_M = W_M(T_M - T_p)$$

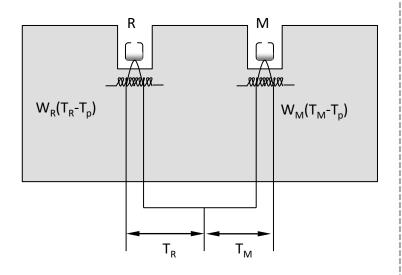
$$E_R = W_R(T_R - T_p)$$

Se registra $\Delta E = E_M - E_R$

 W_M y W_R : constantes del sistema que dependen del material muestra y referencia.

 $T_M T_R$ y T_p : temperaturas de la muestra la referencia y la programada.

 $E_M y E_R$: energías suministradas por las resistencias.


R=Referencia; libre de transiciones en el rango de temperaturas bajo estudio

M=Muestra

 $T_p(t)$ = Temperatura programada: Programa lineal de temperaturas

Calorimetría diferencial de barrido (DSC)

$$E_M = W_M (T_M - T_p)$$

$$E_R = W_R (T_R - T_p)$$

Se registra $\Delta E = E_M - E_R$

 W_M y W_R : constantes del sistema que dependen del material muestra y referencia.

 $T_M T_R$ y T_p : temperaturas de la muestra la referencia y la programada.

 $E_M y E_R$: energías suministradas por las resistencias.

R=Referencia; libre de transiciones en el rango de temperaturas bajo estudio

M=Muestra

 $T_p(t)$ = Temperatura programada: Programa lineal de temperaturas

Calorimetría diferencial de barrido (DSC)

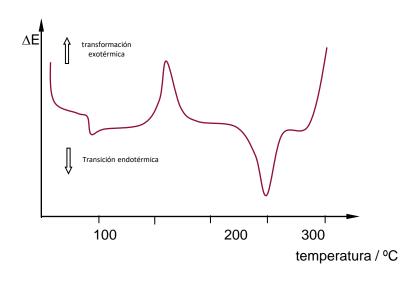
$$E_M = W_M(T_M - T_p)$$

$$E_R = W_R(T_R - T_p)$$

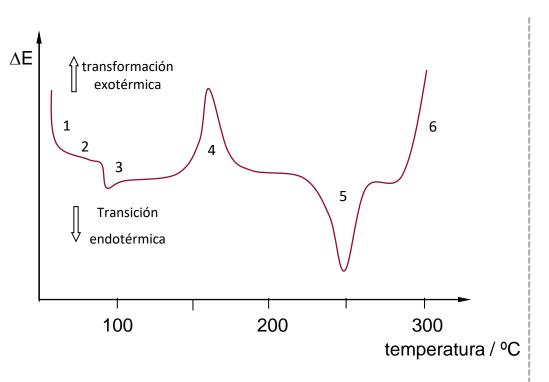
Se registra $\Delta E = E_M - E_R$

 W_M y W_R : constantes del sistema que dependen del material muestra y referencia.

 $T_M T_R$ y T_p : temperaturas de la muestra la referencia y la programada.


 $E_M y E_R$: energías suministradas por las resistencias.

R=Referencia; libre de transiciones en el rango de temperaturas bajo estudio

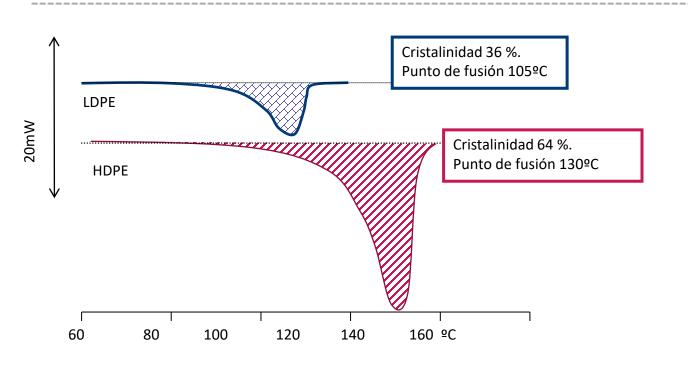

M=Muestra

 $T_p(t)$ = Temperatura programada: Programa lineal de temperaturas

<u>Termograma</u>

Comportamiento genérico de un polímero semicristalino en una experiencia DSC

- 1) Deflexión inicial proporcional a la capacidad calorífica de la muestra
- 2) Parte de la curva sin efectos térmicos (línea de base)
- 3) Transición vítrea de la fase amorfa
- 4) Pico de cristalización
- 5) Pico de fusión de la fase cristalina
- 6) Comienzo de la degradación


<u>Se detectan todos aquellos procesos que tengan asociados una variación en el aporte de energía a la muestra</u>

Determinación de la cristalinidad mediante DSC

$$X_{c} = 100 \frac{\Delta E_{f}}{\Delta E_{c}}$$

 ΔE_f energía de fusión del material cristalino. Curva DSC

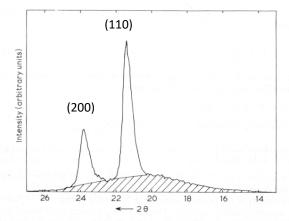
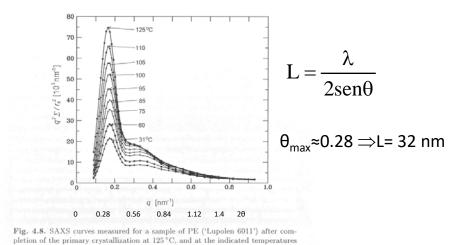
 ΔE_c energía de fusión del mismo material totalmente cristalino. Extrapolación o Bibliografía

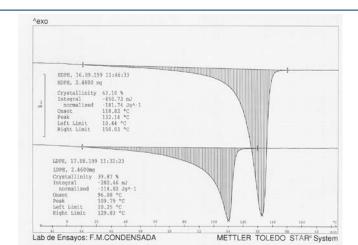
LDPE $\Delta E_f = 103 \text{ J/g}$ $\Delta E_c = 288 \text{ J/g}$

HDPE
$$\Delta E_f = 184 \text{ J/g}$$

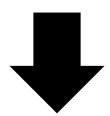
$$\Delta E_c = 288 \text{ J/g}$$

Difracción de Rayos X a ángulos en Polietileno

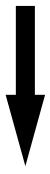

Fig. 4.18 WAXS curves for a medium-density polyethylene. The intensity of scattering is plotted as a function of 2Θ. The amorphous hump is shaded.

Difracción de Rayos X a ángulos bajos en LDPE



Calorimetría diferencial de Barrido. LDPE y HDPE

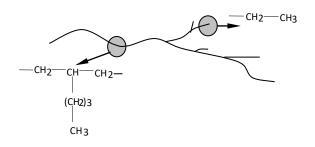
during a subsequent cooling [32],[33]


Parámetros fundamentales	LDPE	HDPE
Celdilla	Ortorrómbica a=7.4 Å, b=4.9 Å, c=2.5 Å	Ortorrómbica a=7.4 Å, b=4.9 Å, c=2.5 Å
Periodo Interlaminar	150 - 250 Å	195 - 420 Å
Espesor Laminillas	60 - 100 Å	130 -280 Å
Tamaño esferulitas	4 - 20μm	10 - 50μm
Índice Cristalinidad	≈ 40%	≈ 65%

Se pueden intuir algunas propiedades físicas elementales:

Arquitectura molecular

Estado Sólido


HDPE: Cadena Lineal — CH2—CH2—

> CRISTALIZA CON MAYOR FACILIDAD

Mayor Xc

Mayor L

LDPE: Cadena Ramificada

MÁS DIFICIL QUE SE ORDENE

Menor Xc

Menor L

Estado Sólido

Propiedades

Mayor Xc

Mayor L

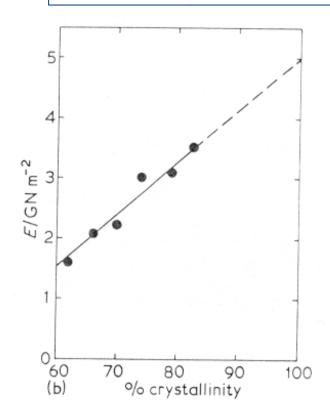
Menor Xc

Menor L

Mayor densidad

Mayor rigidez

Mayor Temperatura de fusión


Menor densidad

Menor rigidez

Menor Temperatura de fusión

VALORES EXPERIMENTALES	Temperatura de fusión (°C)	Densidad (kg/m³)	Módulo de Elasticidad: E Mpa)
Polietileno de baja densidad $(X_c \downarrow \rho \downarrow)$	105-115	910-930	≈ 250
Polietileno de alta densidad $(X_c \mid \rho \mid)$	130-140	940-970	≈ 900

Módulo de elasticidad frente a la cristalinidad para el polietileno

taken from Wang, J. Appl. Phys., 44 (1973) 4052).

Los polímeros frente al inconveniente de su baja temperatura de fusión presentan la ventaja de poder modificar su cristalinidad y con eso sus propiedades macroscópicas

Ejemplo 1. Invernaderos; Plásticos adaptables a una estructura metálica, Materiales flexibles (menos rígidos) y de mayor transparencia

Solución: FOMENTAR LA EXISTENCIA DE LA FASE AMORFA

Copolímeros etileno acetato de vinilo

$$\begin{array}{ccc} H & H \\ & & | & \\ [C - C] - & \\ & & | & \\ H & O \\ & & \\ O = C - CH_3 \end{array} \right) \quad \mbox{Dificulta la}$$

Ejemplo 2. Materiales con propiedades intermedias

Solución 1: Mezclas LDPE+HDPE

Solución 2: Contenido intermedio de ramificaciones cortas LLDPE (polietileno lineal de baja densidad)

Estructura	de	las	cadenas	

Clasificación

Estructura de los polímeros semicristalinos

Propiedades de los polímeros semicristalinos

Resumen: Polímeros

UVa

Estructura de las cadenas

- Alto peso molecular
- Cadenas de C, H, O, N...
- Plato de espaguetis
- Cadenas lineales, ramificadas o entrecruzadas

Clasificación

- Atendiendo a su origen : naturales y sintéticos.
- Dentro de los sintéticos atendiendo a su uso: commodity, técnicos y especiales
- Atendiendo a sus propiedades físicas: termoplásticos, termoestables, cauchos.

Estructura de los polímeros semicristalinos

- Celdilla unidad → DRX
- Periodo interlaminar y espesor laminillas
 → SAXD
- Esferulitas → SEM
- Cristalinidad → Densidad, DRX, DSC

Propiedades de los polímeros semicristalinos

Una mayor cristalinidad da lugar a:

- Mayor densidad
- Mayor temperatura de fusión
- Menor transparencia
- Mayor módulo de Young