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ABSTRACT
In this work, we introduce a new semi-Lagrangian numerical method proposed to
solve a cell population balance model which describes cell dwarfism, by allowing
cell division at any size. We analyze its convergence and derive an optimal rate.
Numerical experiments are reported to demonstrate the predicted accuracy of the
scheme. Finally, the good behavior of the numerical method is exhibited in stressed
conditions that can provoke lack of smoothness and simulations are included to show
how the increase in the division rate of small size-cells promotes dynamics in which
nonfunctional dwarf cells are saturating the total cell population.
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1. Introduction

In this work, we analyze a numerical method proposed to obtain the solution of a
specific cell population balance model (CPBM) in which cells of any size may divide.
This is an abnormal model in the sense that we do not assume a minimal positive cell
size for cellular division to take place. The model is based upon the one developed by
Diekmann et al. [6], and analyzed first by Howard [10].

We consider an unlimited environment in which all possible nonlinear mechanisms
are ignored, where cells are distinguished by their individual size, represented by x.
Cells size grows exponentially, x′(t) = x(t), as in a Petri dish experiment, where
t represents time. The size-distribution of the cell population at time t is given by a
function u(x, t). As time evolves, the following processes are also relevant in the model:
cells die with a death rate µ(x) and a mother cell splits into two equal daughter cells
with a division rate b(x); both vital functions depend on the cell size. We deviate from
the usual cell population balance model by incorporating a source term to take into
account the immigration of new cells from a regulatory source, in which a renewal of
the cell population occurs at a rate ν(x) depending upon cell size. An example for this
kind of regulation is given by the blood production system, which needs to replace the
red blood cells daily in order to sustain a viable population. In case of a closed system,
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as in a Petri dish, we have to consider ν(x) ≡ 0. The model is given by the following
initial value problem, which consists in a partial differential equation that represents
the balance of the size structured cell population and an initial condition,

ut(x, t) + (xu(x, t))x = (ν(x)− µ(x)− b(x))u(x, t) + 4 b(2x)u(2x, t),

0 < x < 1, t > 0, (1.1)

u(x, 0) = φ(x), 0 ≤ x ≤ 1, (1.2)

where we assume that the death rate µ(x), and the division rate b(x) are both positive,
and ν(x) is nonnegative. Its dynamics are completely determined once we know the
vital functions (µ, b and ν) and the initial state of the population density. We want
to point out that a proper combination of growth, division and mortality rates would
introduce a natural maximum cell size [1]. Otherwise we could fix it as one (normalized)
and we would consider that larger cells may only grow and die.

From a theoretical point of view, mathematical treatment of lineal CPBMs has
been developed since the early eighties [6, 8, 9], where the study of the well-posedness,
the convergence towards an asymptotically stable size distribution and the stability
analysis were carried out. In the case of nonlinear models, the theoretical properties
of existence and uniqueness of solutions have been addressed in [9]. These models
assume the existence of a minimal cell size a > 0 for cellular division to take place,
which generates a minimal cell size a/2.

In the particular model we present, an abnormal behavior occurs: cells of any size
may divide. Consequently, the minimal cell size is set to a = 0. The idea of a cell with
size zero is biologically unrealistic, although it could be considered as a limit value to
describe an abnormality in the cellular division process: the accumulation of cells of
various sizes including a population of non-functional “dwarf” cells. The presence of
such “dwarf” cells is observed in the hereditary blood disorder known as α-thalassemia
which is associated with sickle cell anemia. It has the effect of greatly reducing the mean
corpuscle volume of red blood cells, what is known as microcytosis [7, 13]. Some theo-
retical properties of this particular model (1.1)-(1.2) were developed by Howard [10],
where the existence and uniqueness of generalized solutions and their stability and un-
stability was addressed. In particular, a representation of the generalized theoretical
solution of (1.1)-(1.2) was given by

u(x, t) =

∞∑
n=0

Kn(x, t)φ(2
n x e−t), (1.3)

in which the multiplicative factors Kn(x, t) were computed successively as

K0(x, t) := exp

(∫ t

0
µ∗(x e−r) dr

)
,

Kn(x, t) := 4n
∫ t

0

∫ sn

0
· · ·
∫ s2

0
exp

(∫ t−sn

0
µ∗(x e−r) dr +

∫ t−sn−1

t−sn

µ∗(2x e−r) dr

+ · · ·+
∫ t

t−s1

µ∗(2n x e−r) dr

)
b(2x e−(t−sn)) · · · b(2n x e−(t−s1)) ds1 . . . dsn−1dsn,
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n = 1, 2, . . .. Here µ∗(x) = 1 + µ(x) + b(x)− ν(x).
It is not an easy task to obtain an explicit formula for u(x, t) even in the case

of constant death, division and migration rates. Also, data functions properties were
proposed to arrive to the topological transitivity of the different cellular generations.
Such an issue has been subsequently refined (see [11, 12] and references therein). The
theoretical representation (1.3) for the solution, although explicit, does not provide a
method to compute the solution for general function data µ(x), b(x) and ν(x).

However, the knowledge of their qualitative or quantitative behavior in a more
tangible way is sometimes necessary. Therefore, numerical methods provide a valuable
tool to obtain such quantitative information. Different techniques have been used
for both symmetric and asymmetric division rates (see [1, 4, 5] and the references
therein). However, in general, they are proposed for the solution of models with a
positive minimal cell division size, and it is very important to design numerical schemes
specially adapted to the characteristics of this particular CPBM. We proposed two
first-order numerical schemes in [2] based on classical techniques. Here, we present and
analyze a new first-order method based on the discretization of the solution along the
characteristic curves, but now on a fixed grid: the so-called semi-Lagrangian technique.
It is specially adapted to obtain the solution to the problem (1.1)-(1.2) and combines
the advantages of finite difference and characteristics schemes. This procedure has
been previously considered for a cell model with a positive minimal cell size [3].

We want to point out that the exponential growth introduces a characteristic curve
at the minimum size. As a consequence, there is no recruitment from the boundary,
which represents the unavailability of a left boundary condition in opposition to what
is usual in this kind of hyperbolic problems.

The paper is organized as follows. Section 2 is devoted to the description of the
proposed numerical method. In Section 3, we analyze the convergence of the numerical
scheme, and in Section 4 we carry out a representative numerical simulation, including
stressed conditions that can provoke lack of smoothness and experiments to show the
proportion of nonfunctional dwarf cells in the total cell population.

2. Numerical Method

The main objective of this work consists in integrating numerically the problem (1.1)-
(1.2) on a fixed time interval [0, T ]. This model presents several special features we
must avoid in the proposal of a new numerical method. First, hyperbolic evolutionary
problems are usually described with a left or right hand boundary (depending on
the flow direction) when a bounded domain is declared. However, in this case, the left
boundary condition is a characteristic curve of the problem and, therefore, there is not
a useful definition of the solution on this boundary that we must avoid numerically.
Second, in general, the combination of the vital functions (growth, mortality and
division rates) do not carry out to the existence of a natural maximum cell size. Thus,
cells grow further than the maximum division size (x = 1) and beyond this value they
only grow and die. This question makes the solution of the problem not to be regular
enough to employ high order methods. In the following we describe a numerical scheme
of first order specially adapted to the model that circumvents these peculiarities.

The method we present is based on the integration of the problem along the char-
acteristic curves, thus we transform the problem. First, we rewrite (1.1) as

ut(x, t) + xux(x, t) = −µ∗(x)u(x, t) + 4 b(2x)u(2x, t), (2.1)
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0 < x < 1, t > 0. Now, we denote by x(t; t∗, x∗) = x∗ exp (t− t∗), the characteristic
curve of the equation (2.1) (and (1.1)) which takes the value x∗ at time t∗, and we
define w(t; t∗, x∗) = u(x(t; t∗, x∗), t), t ≥ t∗. It satisfies

d

dt
w(t; t∗, x∗) = −µ∗(x(t; t∗, x∗))w(t; t

∗, x∗) + 4 b(2x(t; t∗, x∗))u(2x(t; t
∗, x∗), t),

t > t∗,
w(t∗; t∗, x∗) = u(x∗, t

∗).
(2.2)

The solution to (2.2) can be written as (see [4])

u(x(t; t∗, x∗), t) = u(x∗, t
∗) exp

{
−
∫ t

t∗
µ∗ (x(τ ; t∗, x∗)) dτ

}

+ 4

∫ t

t∗
exp

{
−
∫ t

τ
µ∗ (x(s; t∗, x∗)) ds

}
b(2x(τ ; t∗, x∗))u(2x(τ ; t

∗, x∗), τ)dτ, t ≥ t∗.

(2.3)

We will employ this formula in the design of the numerical method.
In the following we detail the numerical procedure. First, we introduce a uniform

grid on the size domain. Let J be a positive integer, we define the discretization
parameter in size, h = 1/(2 J), and the grid points as Xj = j h, 0 ≤ j ≤ 2 J . Hence,
XJ = 1/2 and X2 J = 1, therefore the possible discontinuity point and the normalized
maximum size are on the grid. This is a particularity of the scheme. It employs a
uniform grid on the size interval, as a finite difference method does, and avoids the
accumulation of the grid nodes which usually affects common methods that employ
the integration along the characteristics.

Next, we introduce the discretization parameter in time k > 0, define N = ⌊T/k⌋
and the discrete time levels tn = nk, 0 ≤ n ≤ N . From now on, we refer to the grid
point Xj with a subscript j, and to the time level tn with a superscript n, and we
denote unj = u(Xj , t

n), as the values of the solution restricted to the grid points, and
Un
j will be a numerical approximation to unj , 0 < j ≤ 2 J , 0 ≤ n ≤ N . We also employ

the vectorial notation Un = (Un
1 , U

n
2 , . . . , U

n
2 J), 0 ≤ n ≤ N .

Now, we propose a one-step method based on the discretization of (2.3) that in-
volves points in the same characteristic curve. Therefore, first we have to compute an
auxiliary grid, with points that are on the same characteristic curve as the correspond-
ing values of the uniform grid, Yj = Xj exp (−k), 1 ≤ j ≤ 2 J . It represents the grid
at the previous time level. The approximation to the solution at this new grid points,
u(Yj , t

n), will be denoted as Ūn
j , 1 ≤ j ≤ 2 J , 1 ≤ n ≤ N . Finally, as we discussed

above, there is no left boundary condition, therefore we do not define the value of Un
0 ,

1 ≤ n ≤ N .
Thus, once we introduce U0, an approximation to the discrete restriction to the

grid of the initial condition, the general step is obtained by means of the following
first-order discretization of (2.3), for 0 ≤ n ≤ N − 1,

Un+1
j = Ūn

j exp
{
−k µ∗

j

}
+ 4 k b2 j U

n+1
2 j , 1 ≤ j ≤ J, (2.4)

Un+1
j = Ūn

j exp
{
−k µ∗

j

}
, J + 1 ≤ j ≤ 2 J, (2.5)

where µ∗
j = µ∗(Xj), bj = b(Xj), 1 ≤ j ≤ 2 J . The numerical method is completely
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defined once Ūn
j , 1 < j ≤ 2 J , 1 ≤ n ≤ N , is computed. We define Ūn

j = Un
1 , when

Yj ∈ (0, X1], and

Ūn
j = Un

j−rj + (Un
j−rj+1 − Un

j−rj )
Yj −Xj−rj

h
, (2.6)

with rj ∈ N, such that Xj−rj ≤ Yj < Xj−rj+1, 1 ≤ j ≤ 2 J . We note that, assuming
the time discretization parameter k < ln(2), we assure that Yj > X1 and, therefore,
the interpolatory formula (2.6) is applicable for 2 ≤ j ≤ 2 J . We have to notice that:
first, we allow Yj to move backwards without constraining it to belong to the interval
[Xj−1, Xj ]. Second, with respect to the size grid given by Yj , 1 ≤ j ≤ 2 J , the integer
shift rj that localizes each Yj within the corresponding interval [Xj−rj , Xj−rj+1], and
the coefficients of the linear interpolation, are computed only once. The unique excep-
tion to this computation is when Ūn

1 must be approximated by the constant value Un
1 ,

because we do not have information on the left boundary x = 0.
This numerical procedure seems to be implicit. However, if we compute the approx-

imations at the new time level tn+1 backwards it turns out to be explicit. We compute
first Un+1

j from J +1 to 2 J using (2.5); next, backwards, Un+1
j from J to 1 by means

of (2.4).

3. Convergence Analysis

In this section, the convergence analysis of the scheme is performed. The linearity of
the model allows us to present it in a matrix form. The study of the amplification due
to the matrix (stability) and the consistency carry out the convergence of the method.

The description of the numerical scheme can be made in matrix form as

(I − B(k))Un+1 = D(k)Un,

where I is the identity matrix in M(2 J)×(2 J)(R), B(k) = (bi,j(k))
2 J
i,j=1 and D(k) =

(di,j(k))
2 J
i,j=1 are sparse matrices. Matrix B(k) has, at most, one nonzero entry at each

row, bi,2 i(k) = 4 k b2 i, 1 ≤ i ≤ J . With respect toD(k), there are, at most, two nonzero
entries at each row. That is, for 2 ≤ i ≤ 2 J , di,i−ri(k) = (1 + i (1 − e−k) − ri) e

−k µ∗
i

and di,i−ri+1(k) = (ri − i (1 − e−k)) e−k µ∗
i ; and, d1,1(k) = e−k µ∗

1 , if we assume that
k < ln (2). The explicit definition of the numerical method is given by means of

Un+1 = A(k)Un, 0 ≤ n ≤ N − 1,

where A(k) = (I − B(k))−1D(k).
Now, we suppose that u is the solution to problem (1.1)-(1.2), and we define

un = (un1 , . . . , u
n
2 J), unj = u(Xj , t

n), 1 ≤ j ≤ 2 J, 0 ≤ n ≤ N.

On the one hand, the local discretization error, τn+1 = (τn+1
1 , . . . , τn+1

2 J ), 0 ≤ n ≤
N − 1, is given by

τn+1 =
1

k

(
un+1 −A(k)un

)
, 0 ≤ n ≤ N − 1. (3.1)
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On the other hand, we introduce the global discretization error as En =
(En

1 , E
n
2 , . . . , E

n
2 J), E

n
j = unj − Un

j , 1 ≤ j ≤ 2 J , 0 ≤ n ≤ N . Thus,

En+1 = A(k)En + k τn+1, 0 ≤ n ≤ N.

From now on, C will denote a positive constant which is independent of k, for k small
enough, n (0 ≤ n ≤ N) and j (0 ≤ j ≤ 2 J); C possibly has different values in different
places. We also employ the following notation, we denote by ∥v∥∞, the maximum norm
of a vector v = (v1, v2, . . . , v2 J), and with ∥A∥∞ the operator maximum norm of a
general matrix A = (aij)

2 J
i,j=1, where

∥A∥∞ = max
1≤i≤2 J


2 J∑
j=1

|aij |

 .

The consistency analysis and the boundedness of ∥A(k)∥∞ will give us the conver-
gence.

Lemma 3.1 (Stability). Let µ∗ and b be bounded on (0, 1]. Then

∥A(k)∥∞ ≤ 1 + C k, (3.2)

for k > 0 small enough.

Proof. On the one hand, as b is bounded, ∥B(k)∥∞ ≤ 4 k ∥b∥∞, where we define
∥b∥∞ = sup0<x≤1 |b(x)|. Thus, for k small enough, ∥B(k)∥∞ < 1. Then

(I − B(k))−1 =

∞∑
m=0

B(k)m

and

∥(I − B(k))−1∥∞ ≤
∞∑

m=0

∥B(k)∥m∞ =
1

1− ∥B(k)∥∞

≤ 1

1− 4 k ∥b∥∞
= 1 + k

4 ∥b∥∞
1− 4 k ∥b∥∞

≤ 1 + C k, (3.3)

for k ≤ k0 with 4 k0 ∥b∥∞ < 1. On the other hand,

∥D(k)∥∞ ≤ max
{
e−k µ∗

1 ,

max
2≤j≤2 J

{
|1 + j (1− e−k)− rj | e−k µ∗

j + |rj − j (1− e−k)| e−k µ∗
j

}}
. (3.4)

We observe that conditions Xj−rj ≤ Yj < Xj−rj+1, 1 ≤ j ≤ 2 J , are equivalent to
the positivity of both expressions inside the absolute value in (3.4). Then, taking into
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account the regularity of function µ∗, we arrive at

∥D(k)∥∞ ≤ 1 + C k.

Finally, ∥A(k)∥∞ ≤ ∥(I − B(k))−1∥∞ ∥D(k)∥∞ and we conclude with the esti-
mate (3.2).

Lemma 3.2 (Consistency). Let functions µ∗ and b have bounded and continuous first
derivative on (0, 1], and let u have Lipschitz continuous first derivatives in (0, 1]×[0, T ].
Then, as k → 0, assuming a constant rate r = k/h, the following estimates hold

||τn+1||∞ = O(k), 0 ≤ n ≤ N − 1. (3.5)

Proof. The equation (3.1) allows us to write

τn+1 = (I − B(k))−1 1

k

(
(I − B(k))un+1 −D(k)un

)
= (I − B(k))−1 εn+1,

0 ≤ n ≤ N − 1, where the definitions of B(k) and D(k) allow us to describe the
components of the vector εn+1 as

εn+1
1 =

1

k

(
un+1
1 − un1 exp {−k µ∗

1} − 4 k b2 u
n+1
2

)
, (3.6)

εn+1
j =

1

k

(
un+1
j − ūnj exp

{
−k µ∗

j

}
− 4 k b2 j u

n+1
2 j

)
, 2 ≤ j ≤ J, (3.7)

εn+1
j =

1

k

(
un+1
j − ūnj exp

{
−k µ∗

j

})
, J + 1 ≤ j ≤ 2 J. (3.8)

In (3.7) and (3.8), assuming k < ln (2),

ūnj = unj−rj + (unj−rj+1 − unj−rj )
Yj −Xj−rj

h
, 2 ≤ j ≤ 2 J.

Now, we use equation (2.3) in (3.6) to achieve,

εn+1
1 =

1

k

(
u(X1 e

−k, tn) exp

{
−
∫ tn+1

tn
µ∗ (x(τ ; tn+1, X1)

)
dτ

}

+ 4

∫ tn+1

tn
exp

{
−
∫ tn+1

τ
µ∗ (x(s; tn+1, X1)

)
ds

}
b(2x(τ ; tn+1, X1))u(2x(τ ; t

n+1, X1), τ)dτ

−
(
un1 exp {−k µ∗

1}+ 4 k b2 u
n+1
2

))
.
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Next, we transform the equation in the following inequality

|εn+1
1 | ≤ 1

k
u(X1 e

−k, tn)

∣∣∣∣∣exp
{
−
∫ tn+1

tn
µ∗ (x(τ ; tn+1, X1)

)
dτ

}
− exp (−k µ∗

1)

∣∣∣∣∣
+

1

k
e−k µ∗

1

∣∣∣u(X1 e
−k, tn)− un1

∣∣∣
+

4

k

∣∣∣∣∣
∫ tn+1

tn
exp

{
−
∫ tn+1

τ
µ∗ (x(s; tn+1, X1)

)
ds

}
b(2x(τ ; tn+1, X1))u(2x(τ ; t

n+1, X1), τ)dτ

−k b2 u
n+1
2

∣∣∣∣ ,
in which we use the regularity properties of µ∗, b and u, the convergence properties of
the rectangular quadrature rule, and the mean value theorem to obtain

|εn+1
1 | =

1

k
O(k2) +

1

k
O(X1 (e

−k − 1)) +
1

k
O(k2) (h → 0, k → 0).

Now, the definition of X1 allows us to arrive at

|εn+1
1 | =

1

k
O(k2) +

1

k
O(h (e−k − 1)) +

1

k
O(k2) (h → 0, k → 0)

= O(k) (h → 0, k → 0). (3.9)

Next, we use equation (2.3) in (3.7), 2 ≤ j ≤ J , to achieve

εn+1
j =

1

k

(
u(Yj , t

n) exp

{
−
∫ tn+1

tn
µ∗ (x(τ ; tn+1, Xj)

)
dτ

}
− ūnj exp

{
−k µ∗

j

})

+
4

k

(∫ tn+1

tn
exp

{
−
∫ tn+1

τ
µ∗ (x(s; tn+1, Xj)

)
ds

}
b(2x(τ ; tn+1, Xj))u(2x(τ ; t

n+1, Xj), τ)dτ

−k b2 j u
n+1
2 j

)
.

Then, we transform it into the following inequation

|εn+1
j | ≤ 1

k
u(Yj , t

n)

∣∣∣∣∣exp
{
−
∫ tn+1

tn
µ∗ (x(τ ; tn+1, Xj)

)
dτ

}
− e−k µ∗

j

∣∣∣∣∣
+

1

k
e−k µ∗

j

∣∣∣∣u(Yj , tn)− (unj−rj + (unj−rj+1 − unj−rj )
Yj −Xj−rj

h

)∣∣∣∣
+

4

k

∣∣∣∣∣
∫ tn+1

tn
exp

{
−
∫ tn+1

τ
µ∗ (x(s; tn+1, Xj)

)
ds

}
b(2x(τ ; tn+1, Xj))u(2x(τ ; t

n+1, Xj), τ)dτ

−k b2 j u
n+1
2 j

∣∣∣ ,
where we apply the regularity properties of µ∗, b and u, the convergence properties of
rectangular quadrature rule and linear interpolation, and the mean value theorem to
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arrive at

|εn+1
j | ≤ C k. (3.10)

Finally, we employ the same procedure to bound (3.8), J + 1 ≤ j ≤ 2 J , and thus,

|εn+1
j | ≤ C k. (3.11)

Then (3.3) and (3.9)-(3.11) produce the estimate (3.5).

In the following result, we prove the convergence assuming that the discretization
steps k, h, are chosen in such a way we keep constant the proportion r = k/h.

Theorem 3.3. Under the hypotheses of Lemma 3.2, if ∥E0∥∞ = O(k), as k → 0,
then

∥En∥∞ = O(k), 0 ≤ n ≤ N, (3.12)

as k → 0.

Proof. From the definition of the global discretization error, we have

En = A(k)En−1 + k τn = An(k)E0 + k

n−1∑
l=0

Al(k) τn−l, 1 ≤ n ≤ N.

Then

∥En∥∞ ≤ (∥A(k)∥∞)n ∥E0∥∞ + k

n−1∑
l=0

(∥A(k)∥∞)l ∥τn−l∥∞, 1 ≤ n ≤ N.

Therefore, the use of (3.2), (3.5) and k = r h, produces (3.12].

4. Numerical experiments

As a first experiment to evaluate the unconditional stability and the optimal rate of
convergence of the method, we consider the case when µ(x) = ν(x). This situation
models a cell population in which the dynamics is only driven by the division rate of
the individuals. We take the size-specific division rate function as

b(x) = 26 x3 (1− x)3 , 0 < x ≤ 1,

and the initial data,

φ(x) = φc · (1− x)x3 (sin (π (4x+ 1)) + 1) , 0 < x ≤ 1,

where φc is the chosen constant to obtain max0<x≤1 (φ(x)) = 1. This model problem
was also considered by Abia et al. [2] for testing the upwind scheme and a first-order
natural grid method. In contrast with those methods, the semi-Lagrangian approach
we consider here produces an unconditionally stable scheme.
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We compute the numerical solution until a final time T = 1 for different values of
the discretization parameters. As we do not know an analytical expression for the exact
solution of this problem, the global discretization errors are computed by comparing
the numerical solution Un

k,h, 0 ≤ n ≤ N , with a fixed approximation to the exact

solution, Un∗

k∗,h∗ , 0 ≤ n∗ ≤ N∗, calculated with very small values for the size and

time steps (in this case, we take h∗ = k∗ = 1.525886 · 10−5). To make comparisons
possible, both the discretization size and time steps, h∗ and k∗, are chosen as an
appropriate division by a power of two of the coarsest values of h and k in the numerical
experiments.

Then, for each h and k, we compare at every time step tn = nk, 0 ≤ n ≤ N , the
numerical approximations (Un

k,h)j , 0 ≤ n ≤ N , 0 ≤ j ≤ 2 J , with the corresponding

nodal approximations (Un∗

k∗,h∗)j∗ , 0 ≤ n∗ ≤ N∗, 0 ≤ j∗ ≤ 2 J∗, j h = j∗ h∗, nk = n∗ k∗,
of the computed exact solution, and we define

ek,h = max
0≤n≤N

max
0≤j≤2J

|(Un
k,h)j − (Un∗

k∗,h∗)j∗ |. (4.1)

Figure 1. On the left: global error plots obtained with the numerical scheme with different values of r (dashed

lines). Solid line shows order 1. On the right: efficiency plot of the semi-Lagrangian method with different values

of r.

In Figure 1, we represent efficiency plots using logarithm scales for both axes: global
error versus time discretization parameter, on the left, and global error versus CPU
time, on the right. In both, the global error is computed with formula (4.1). Each dot
on the left plot corresponds to the discretization for given values of the parameters h
and k: from the coarsest value of k taken equal to 1.562 ·10−2 with r = 16, to the finest
value of k equal to 1.220 · 10−4 with r = 0.5. The first order of convergence is clearly
confirmed by the slope of each curve of global error versus k for constant r = k/h
(here we clearly observe the first-order convergence which is represented by a solid
line). The most efficient implementation of the method corresponds to a relationship
between the time and size parameters of r = 8.

Figure 2 presents a comparison of the efficiency plots (global error versus CPU
time) of the proposed numerical scheme with the upwind and the natural grid methods
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Figure 2. Efficiency plot (global error vs. CPU time): comparison of the efficiency of natural grid method

(blue dashed line), upwind method (red dotted line) and semi-Lagrangian method, r = 8 (black solid line).

studied in [2]. We show how the semi-Lagrangian method is the most efficient.
We also want to pay attention to the behavior of the numerical method when dealing

with singularities of the solution. For constant division rate functions, the disconti-
nuity of the division rate function at x = 1 produces discontinuities of the first and
second derivatives of the solution at sizes x = 1/2 and x = 1/4, respectively. This lack
of smoothness of the solution was not considered in the convergence theorems of the
previous section. However, we illustrate the numerical resolution of these discontinu-
ities with the analyzed numerical method. With this purpose, we have performed a
numerical experiment on the model with constant biological rate functions b(x) = 4,
µ(x) = 4, and ν(x) = 0, in [0, 1]. In this case, at T = 1, we observe that the approxi-
mated first derivative of u is discontinuous at x = 0.5 but it is continuous at x = 0.25
(Figure 3, first row) and the approximated second derivative of u is discontinuous both
at x = 0.25 and x = 0.5 (Figure 3, second row).

In the case of constant rate functions, we can compute the theoretical solution of
the model problem (1.1)-(1.2) by means of the formula (1.3). For example, in Figure 4
we present the solution, at T = 1, when b(x) = 0.5, µ(x) = 0.5 and ν(x) = 0 (left
plot), and b(x) = 2, µ(x) = 2 and ν(x) = 0 (right plot). We have observed that, as
we increase the constant division rate, the theoretical solution u(x, t) shows strong
oscillations with increasing amplitudes and frequencies, close to the boundary x = 0,
making the approximation to the solution even more difficult. This is reflected in the
loss of the convergence order we get for the numerical solution when, for example,
b(x) = 2, µ(x) = 2, and b(x) = 4, µ(x) = 4.

However, the numerical solution computed with the analyzed numerical
scheme (2.4)-(2.5), with discretization parameters k = h = 6.1035 · 10−5, reproduce
the same theoretical solution given by (1.3). This behavior involves the growth of the
cell population with small sizes as the constant division rate increases. It is convenient
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Figure 3. Approximated first (first row) and second derivative (second row) of u around x = 0.25 and x = 0.5

at T = 1.

to know what its impact is on the whole cell population, which is measured through
the proportion of dwarf cells in the population. With this goal, we fix a threshold
x = xα > 0, and we compute the values

α(t) =

∫ xα

0
u(x, t) dx∫ 1

0
u(x, t) dx

, 0 ≤ t ≤ T. (4.2)

The quantity α(t) represents the time evolution of a measure of the proportion of dwarf
cells (cells with size less than the threshold value xα > 0) within the total proliferating
cell population. Figure 5 shows the curves we obtain for constant values of b in the
range 0 ≤ b ≤ 1, for the time interval [0, 50] and a threshold value xα = 0.125. It shows
how this proportion is increasing to one, which represents a mathematical predictor
of a size distribution disorder in the population.

Finally, we declare that the whole computation was carried out using double preci-
sion arithmetic on a personal computer with an Intel i7-4790 CPU.
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Figure 4. Solution values computed with the theoretical solution with different constant vital functions. Plot

on the left: b(x) = 0.5, µ(x) = 0.5. Plot on the right: b(x) = 2, µ(x) = 2.

5. Conclusions

The study of cell populations by means of structured population models, and their
numerical simulation, are current topics of interest. In this work we have proposed a
new numerical method to attain the solution to a size-structured population model
describing the dynamics of a cell population when the reproduction process is achieved
by division into two equal parts in a particular situation. This specific problem allows
the division of cells of all sizes, a modeling aproach to describe the phenomenom of
“dwarfism”, appearing as a dynamic size-distribution disorder in certain blood dis-
eases.

We have designed a semi-Lagrangian numerical scheme based on the integration
along the characteristic curves using a fixed uniform grid on the size of cells interval.
Therefore, the size grid is not recomputed at each time step. With this approach,
the resulting numerical method is unconditionally stable, in contrast with numerical
methods based on finite difference discretizations of the problem. We have proved
first-order convergence for smooth solutions, and we have corroborated this behavior
experimentally.

From a biological point of view, we have shown, via simulations, how the increase of
the division rate of small size cells promotes a dynamics in which nonfunctional dwarf
cells are saturating the total cell population.

We have also presented the size behavior of the proposed numerical scheme in
stressed situations in which solutions present discontinuities in the first and second
derivatives.
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Captions of Figures

• Figure 1: On the left: global error plots obtained with the numerical scheme
with different values of r (dashed lines). Solid line shows order 1. On the right:
efficiency plot of the semi-Lagrangian method with different values of r.

• Figure 2: Efficiency plot (global error vs. CPU time): comparison of the efficiency
of natural grid method (blue dashed line), upwind method (red dotted line) and
semi-Lagrangian method, r = 8 (black solid line).

• Figure 3: Approximated first (first row) and second derivative (second row) of u
around x = 0.25 and x = 0.5 at T = 1.

• Figure 4: Solution values computed with the theoretical solution with different
constant vital functions. Plot on the left: b(x) = 0.5, µ(x) = 0.5. Plot on the
right: b(x) = 2, µ(x) = 2.

• Figure 5: Proportion of dwarf cells (α(t)), computed with (4.2) with t ∈ [0, 50].
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