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ETS. Ingenieros de Telecomunicación

Universidad de Valladolid

Campus Miguel Delibes sn. 47011

Valladolid, Spain

 emargon@lpi.tel.uva.es

® https://www.lpi.tel.uva.es/emargon

https://orcid.org/0000-0002-5922-4960

mailto:emargon@lpi.tel.uva.es
https://www.lpi.tel.uva.es/emargon
https://orcid.org/\unskip 
https://orcid.org/0000-0002-5922-4960




A mi padre y a mi madre.





“Conf́ıa en el tiempo, que suele dar dulces salidas a

muchas amargas dificultades.”

— Miguel de Cervantes





Acknowledgements

First and foremost, I would like to express my heartfelt gratitude to my

supervisors, Carlos and Pablo, for their support, guidance and encour-

agement throughout my doctoral journey. Their invaluable insights and

constructive feedback have been instrumental in shaping my research and

helping me to stay focused and motivated. I am deeply grateful for their

mentorship and their unconditional dedication.

I am also sincerely grateful to the team of researchers at the LPI for

their assistance and support throughout my time here. I want to thank
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Resumen

La imagen por resonancia magnética (MRI) es una técnica de imagen médica

que produce imágenes detalladas de los órganos y tejidos corporales sin

utilizar radiaciones ionizantes. En el campo de la cardioloǵıa, la resonancia

magnética cardiaca (CMR), también conocida como MRI cardiaca, es una

valiosa herramienta para la evaluación de pacientes con distintas patoloǵıas.

Las modalidades de CMR como cine cardiaco y perfusión de primer paso

permiten visualizar el comportamiento dinámico del miocardio y evaluar la

perfusión sangúınea en el tejido cardiaco respectivamente, pero requieren

contención de la respiración durante la adquisición y presentan dificultades

técnicas debido a la dinámica del corazón. Además, la CMR presenta otros

inconvenientes, como la duración del protocolo, los elevados costes y la

probabilidad de degradación de la imagen debido a movimientos card́ıaco y

respiratorio irregulares. Existe una gran demanda de mejora de la eficiencia

de la adquisición de datos para reducir los tiempos de las pruebas o mejorar

las resoluciones espacio-temporales.

Para aumentar la comodidad del paciente, es necesario reducir la

cantidad de información necesaria para la reconstrucción de las imágenes,

es decir, recoger sólo una parte del espacio k (submuestreo), lo que se

traduce en una mayor complejidad en el procesamiento de las adquisiciones.

El problema surge porque la información del problema de reconstrucción

es insuficiente para determinar una solución, es decir, el problema está

mal condicionado, por lo que hay que añadir información y restricciones

adicionales. Esto da lugar a una función de coste que se optimiza para

proporcionar una solución regularizada.

Esta Tesis se centra en el reto de reconstruir eficientemente imágenes de

resonancia magnética dinámicas a partir de datos altamente submuestrea-
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dos, aprovechando el movimiento presente en las secuencias dinámicas

para utilizar la información redundante tanto en tiempo como en espacio.

Para ello, partimos de la solución groupwise compressed sensing (GWCS),

previamente desarrollada en el grupo de investigación.

Por un lado, se explora un marco paralelo para GWCS. GWCS es un

problema altamente paralelizable, por lo que haremos uso del framework

OpenCLIPER, también desarrollado previamente en el grupo, para su

implementación. Esta solución está compensada en movimiento para au-

mentar el carácter sparse de la solución, por lo que tenemos que paralelizar

tanto el algoritmo de registro groupwise para estimar el movimiento, que

se hará usando FFDs con B-splines cúbicos, como el algoritmo de opti-

mización de la propia reconstrucción, para lo que usaremos NESTA. Se

analizan los resultados obtenidos con y sin estimación y compensación de

movimiento, lo que nos permite afirmar que la solución es cĺınicamente vi-

able en términos de tiempos de ejecución, y apta para cualquier dispositivo

informático que disponga de una implementación OpenCL.

Por otro lado, se propone una solución tipo GWCS basada en deep

learning. Proponemos sustituir los pasos de optimización por aprendizaje

profundo para que las reconstrucciones sean más rápidas y se reduzca la

complejidad computacional. Primero creamos una solución rápida para

el registro con DL no supervisado, llamada dGW, y luego una solución

DL autosupervisada para la reconstrucción compensada en movimiento

que hace uso del registro previamente entrenado, llamada SSMoComp. En

cuanto a dGW, los resultados fueron comparables a los de una solución

basada en la optimización, mientras que los tiempos de ejecución del

registro se redujeron claramente. En cuanto a SSMoComp, se comparó con

una solución del estado del arte y los resultados favorecieron nuestro diseño.

Se adaptó además una versión modificada de la solución cine DL para la

perfusión de primer paso, denominada SECRET. En comparación con los

enfoques más avanzados, el método SECRET mantiene reconstrucciones

de buena calidad para tasas de aceleración más altas, con tiempos de
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entrenamiento bajos y tiempos de reconstrucción reducidos.





Abstract

Magnetic Resonance Imaging (MRI) is a medical imaging technique that

produces detailed images of the body organs and tissues without the use

of ionizing radiation. In the field of cardiology, cardiac magnetic resonance

(CMR), also known as cardiac MRI, is a valuable tool for the evaluation of

patients with different pathologies. CMR modalities such as cardiac cine

and first-pass perfusion allow practitioners to visualize the myocardium

dynamic behavior and to evaluate blood perfusion in the heart tissue

respectively, but they require breath-holds during acquisition and have

technical difficulties due to the dynamics of the heart. In addition, there are

other drawbacks to CMR, including the protocol duration, high costs, and

the likelihood of image degradation due to irregular cardiac and respiratory

motion. There is a high demand to improve the efficiency of data collection

to reduce scan times or to improve spatio-temporal resolutions.

To increase patient comfort, the amount of information required for

image reconstruction must be reduced, i.e. collecting only a portion of

k-space (undersampling), which results in increased complexity in pro-

cessing the acquisitions. The issue arises because the information in the

reconstruction problem is insufficient to determine a solution, i.e. the

problem is ill-conditioned, so additional information and constraints must

be added. This results in a cost function that is optimized to provide a

regularized solution.

The focus of this Thesis is on the challenge of efficiently reconstructing

dynamic MRI images from highly undersampled data, taking advantage

of the motion present in the dynamic sequences to utilize the redundant

information in both time and space. For this purpose, we start from the

groupwise compressed sensing (GWCS) solution, previously reported by

xix
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our research group.

On the one hand, a parallel framework for GWCS is explored. GWCS

is a highly parallelizable problem, so we will make use of the OpenCLIPER

framework, another previous work of ours, for its implementation. This

solution is motion compensated to increase the sparse character of the

solution, so we have to parallelize: 1) the groupwise registration algorithm

to estimate the motion, which will be done using FFDs with cubic B-splines,

and 2) the optimization algorithm of the reconstruction itself, for which

we will use NESTA. Results obtained with and without motion estimation

and compensation are analyzed to conclude that the solution is clinically

viable in terms of execution times, and suitable for any computing device

which has an OpenCL implementation.

On the other hand, we propose a GWCS-like approach that leverages

deep learning to enhance the reconstruction process. Our approach elimi-

nates the need of optimization steps and utilizes deep learning techniques

instead to speed up reconstructions and reduce computational complexity.

We first create a fast solution for registration with unsupervised DL, called

dGW, and then a self-supervised DL solution for motion-compensated

reconstruction (SSMoComp) that relies on the previously trained registra-

tion. Regarding dGW, we found that it achieved comparable accuracy to

traditional optimization-based approaches, but with significantly reduced

registration runtimes. As for SSMoComp, we conducted a comparative

analysis with a state-of-the-art solution and observed that our design out-

performed it, yielding superior results. A modified version of the cine DL

solution was additionally adapted for first-pass perfusion, called SECRET.

Compared with state-of-the-art approaches, the SECRET method main-

tains good quality reconstructions for higher acceleration rates, with low

training and very fast reconstruction times.
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Chapter 1
Introduction

This Chapter introduces and motivates this Thesis dissertation. The

objectives pursued, the methodology used to achieve these objectives, as

well as the materials and resources available during the development of

this Thesis, are described. The publications and communications that have

resulted from this work are also enumerated.

1.1 Motivation

MRI is a medical imaging method that produces detailed images of the

body organs and tissues. It works by using energy released from hydrogen

atoms in the body, which are present in water and fat. When protons

are subjected to a strong and uniform magnetic field and then energized

with radio-frequency (RF) waves, they give off echoes that are detected by

antennas –also known as coils– located near the part of the body being

examined. These echoes, which are received as RF waves, are then used to

create images of the tissues.

The basis of this phenomenon was firstly described by Isidor Rabi in

1938. A few years later, in 1946, Felix Bloch and Edward Purcell, from two

independent research groups, demonstrated the nuclear magnetic resonance

(NMR) phenomenon, and developed equations explaining the origin and

1
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properties of the NMR signal [1, 2]. In 1973, Paul Lauterbur realized

that the information from NMR signals could be recovered in the form

of images [3]. Later, Peter Mansfield improved the technique to reduce

the time taken to perform a scan, which led to the use of this non-invasive

technique for practical applications and resulted in the use of NMR, also

called MRI, as a diagnostic tool [4, 5].

MRI is a safe imaging modality that can be performed repeatedly or in

dynamic studies without concerns about radiation exposure because there

is no ionizing radiation involved [6]. This is a substantial advantage for

MRI compared to other imaging modalities, such as computed tomography

(CT), single photon emission computed tomography (SPECT) and positron

emission tomography (PET). CT uses multiple X-ray beams from various

angles and positions to create a detailed image, which implies a high

exposure to ionizing radiation. For SPECT or PET scans, on the other

hand, the patient must be injected with a liquid containing small radioactive

particles, i.e., the patient is exposed to ionizing radiation.

There are some other advantages of MRI, as well as disadvantages or

limitations. On the one hand, MRI is a very flexible and powerful technique

that can provide not only anatomical, but also physical, chemical, metabolic,

and functional information about the imaged tissue or organ. The main

imaging advantage of MRI is its soft tissue contrast, making it ideal for

imaging many organs and tissues. Its application for hard tissues (i.e., bone

and teeth) poses some issues due to the very low level of water contained

in these tissues [7]. This technique can image slices in any direction, as

well as imaging complete three-dimensional (3D) volumes. The arbitrary

slice orientation capability in MRI allows for easy scan planning and image

plane alignment. Furthermore, MRI has numerous contrast mechanisms

that can be used to differentiate between different tissues without the

administration of contrast agents, although they may be necessary for

certain studies.

On the other hand, the MRI system is very expensive (hundreds of



1.1. Motivation 3

thousands of euros depending on the strength of the magnetic field), making

it suitable only for hospitals and radiology centers. In addition, MRI is a

relatively slow imaging technique, which may be problematic if the patient

moves during the scan. Further, the tight space inside the MRI scanner

and loud noise are problems for claustrophobic patients. Finally, the strong

magnetic field involved poses a contraindication for imaging patients with

certain metal implants or implanted devices [6].

In the world of cardiology, around which this Thesis revolves, CMR,

also known as cardiac MRI, plays an important role, being the non-invasive

gold standard method to assess cardiac function and anatomy, so it is a

valuable tool for the evaluation of patients with different pathologies. Its

basic principles are the same as MRI but with certain characteristics of its

own, such as the use of electrocardiogram (ECG) or photoplethysmography

(PPG) gating, as well as the need of rapid imaging techniques or sequences.

By combining a variety of such techniques into protocols, key functional

and morphological features of the cardiovascular system can be assessed [8].

Some criticisms of CMR include the lengthy test duration and high

costs, as well as the possibility that some patients with claustrophobia may

not be able to complete the study. Despite improvements in pacemaker

compatibility with CMR, there are still some devices that are contraindi-

cated for use with this type of imaging. Additionally, in routine clinical

practice, CMR images are often taken during breath-holds to avoid respi-

ratory artefacts that can affect image quality. This is especially important

in cine images, which show the movement of the heart muscle during the

cardiac cycle and require each slice to be taken during a breath-hold, which

can significantly extend the time needed for the scan [9].

In general, the relative discomfort due to lengthy breath-holds or,

in the case of free-breathing acquisitions, the overall scan duration, are

considered drawbacks of CMR over other imaging modalities. In addition,

the likelihood of image degradation due to irregular cardiac and respiratory

motion tends to amplify with longer measurement times. Therefore, there
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has been high demand to improve the efficiency of data collection, thereby

permitting improved spatio-temporal resolutions or reduced scan times or

combinations thereof.

As outlined above, cardiac cine MRI allows practitioners to visualize

the myocardium dynamic behaviour throughout the cardiac cycle, which

also makes it possible to calculate descriptive parameters of its function and

anatomy, as well as to detect and assess abnormalities in cardiac muscle

contractility. In a conventional cine examination, a set of two-dimensional

(2D) slices covering the entire cardiac volume —or, at least, the left ventricle

(LV)— is acquired. To mitigate the motion effect in acquisition, current

techniques either require the cooperation of the patient to maintain a

state of apnea during acquisition or make use of navigators, which tell the

machine at what times to perform the partial acquisition phases of the

image. They also require synchronisation with cardiac activity signals, such

as ECG/PPG. Thus, the ultimate goal to be achieved is the improvement

of patient comfort during the test.

First-pass perfusion (FPP) is another CMR modality that will be

analysed in this Thesis. This modality provides means for visualizing the

passage of a contrast agent through the heart during the cardiac cycle for

a given slice, which allows the physician to evaluate the blood perfusion

in the heart tissue for abnormality inspection. Quantitative maps can be

associated to the perfusion mechanism that provide point-wise information

for tissue analysis. In terms of acquisition, cine and FPP have differences,

but they both share technical difficulties due to the dynamics of the heart

and the need of apnea for conventional sequences.

For either modality, patient comfort would increase if the amount of

information required for image reconstruction could be diminished. This

translates into increased complexity in processing the acquisitions to recon-

struct the images, but this is where technology plays a role. Specifically,

the image information in MRI is not acquired directly in the image space

but rather in k-space, which contains information about spatial frequencies
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within the image. The image space and k-space are related by a Fourier

transform. Once the field-of-view (FOV) and spatial resolution of the

image that we wish to obtain have been prescribed, the k-space informa-

tion that must be acquired is determined by the Nyquist criterion [10,11]

if conventional processing is carried out for reconstruction. One way of

reducing image acquisition time is to reduce the number of profiles that

populate the k-space. However, adopting this measure without further

provision leads to negative effects on image quality [12].

A well-known approach to avoid this effect consists in reconstructing the

dynamic series by optimizing an objective function, which typically consists

of two terms, namely, a data fidelity term and a regularization term. The

first term uses the same information as the conventional processing we have

referred to in the previous paragraph. Regarding the second term, current

solutions (other than ours) propose a spatio-temporal smoothness function,

typically defined on the basis of the total variation, calculated directly on

the image data. In our case we propose to apply this function to cardio-

respiratory motion-compensated data. This can be done by groupwise

(GW) registration, and the overall procedure is referred to as groupwise

compressed sensing (GWCS) [13]. The inclusion of this term provides

an improvement in the reconstruction by increasing the sparse nature of

the solution. In particular, in the case of perfect motion compensation,

each material point of the myocardium would remain static along the

respiratory and cardiac dimensions; for this reason, the signal would be

highly redundant and therefore expressible in a very small number of

coefficients in a transformed domain (which is the meaning of the term

sparse in this context).

However, the problem stems from the fact that in order to estimate

the movement it is necessary to have the images, when our objective is

precisely to carry out these reconstructions. Therefore, the problem is posed

as successive approximations, i.e., motion can be estimated from a first

reconstruction without motion compensation, motion is then compensated
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for, a new refined solution can be provided, as the process starts over. The

issue is that this procedure is computationally expensive.

Overall, GWCS produces good results, but it is slow and computa-

tionally demanding as it involves iterative processes to solve both the

registration problem and the reconstruction itself. We believe that re-

placing the optimization steps with deep learning (DL) will make the

reconstructions faster, and the computational complexity will be handled

during the training phase. Additionally, the problem is parallelizable, and

since all current solutions are limited to single-vendor devices, we suggest

a device-agnostic solution.

In this Thesis we analyse and explore fast computational techniques for

accelerated reconstruction of CMR dynamic images. As for cine images,

two types of solutions will be sought. On one hand, we will depart from the

GWCS solution, which has a bottleneck in the motion estimation (ME) and

motion compensation (MC) step, and we will develop a parallel framework

to give rise to an open-source device-agnostic solution. On the other, we

will propose a GWCS-like solution fully based on DL. As for FPP-CMR, a

modified version of the cine DL solution will be adapted to the specificities

of this modality.

1.2 Objectives

The overall objective of this Thesis is to accelerate the reconstruction of

2D CMR dynamic images, for both cine and perfusion, from undersampled

acquisitions. The ultimate practical goal is to increase patient comfort

by shortening acquisition time, on the one hand, and to contribute to a

better efficiency by achieving clinically-viable reconstruction times that

would be compatible with re-acquisitions in case they were needed. We

will depart from GWCS [13], a ME/MC reconstruction solution previously

proposed by the research group in which this Thesis has been carried
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out. Although GWCS yields competitive results, it is time-consuming and

requires significant computational resources as it goes through iterative

processes to solve the registration problem and the reconstruction itself.

Both parallelization and DL techniques will be used to substantially speed

up computations. Then, the DL solution will be adapted to solve the

problem of FPP-CMR reconstruction.

In order to achieve this objective, the following specific objectives must

be met:

1. To give rise to a parallel device-agnostic version of GWCS, with

special emphasis on the ME/MC procedure. Results should have

high quality images as well as speed in the reconstruction procedure

so as to achieve clinically-viable delays.

2. To design a DL architecture that achieves GW monomodal registra-

tion of cardiac cine MRI in affordable devices.

3. To design a self-supervised DL-based solution that replicates GWCS

performance at much lower computing times.

4. To adapt the self-supervised kernel of the previous solution to account

for FPP-CMR reconstruction.

Figure 1.1, which will be also referred to in Section 1.5, provides a

graphical overview of the specific objectives just enumerated.

1.3 Methodology

The methodology of this Thesis is based on the general research phases

defined by Glass [14] and extended by Kontio [15]. The engineering method

consists in observing existing solutions, proposing a better solution and

developing it to subsequently measure, analyse and repeat until no further
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improvements are possible. The particular steps followed throughout this

Thesis can be described as follows: [16]:

• Informational phase consists in observing the current state-of-art

and practice to identify problems and potential solutions. We found

that the registration performed in the ME/MC step is a bottleneck of

the GWCS reconstruction pipeline, due to its computational cost and

time consumption. To solve this complex computation we can use

parallelization techniques, as well as DL techniques. We identified

a Graphics Processing Unit (GPU) programming solution, using

OpenCL language, and also, we identified valid DL architectures

for estimating motion in the context of the efficient dynamic MRI

reconstruction problem.

• Propositional phase consists in proposing a hypothesis or a method.

We aim to reduce the execution time of the groupwise registration

algorithm. For this purpose, we propose, on the one hand, a GPU

implementation based on free form deformations (FFDs) that allows

the parallel execution of those operations that are executed pixel by

pixel or point by point, and on the other hand, a DL implementation

that delegates the complexity of the processing to the training stage.

• Analytical phase consists in analysing the proposition previously

stated. Regarding the parallelization of the groupwise registration

algorithm by GPU programming, we analyse which of the operations

carried out by FFDs are parallelizable. Regarding the implemen-

tation of groupwise registration by means of DL, we look at which

neural network architectures and configurations are appropriate for

this type of image problems, as well as the complexity of such con-

figurations, in order to avoid the need for expensive equipment for

their development and use.

• Evaluative phase consists in testing and evaluating the propo-
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sition empirically. The proposed and implemented methods were

validated through several performance experiments, including mea-

surements of both registration and reconstruction time, as well as

image quality metrics. Different databases and GPUs were used in

those experiments where possible.

Furthermore, as part of this Thesis, we conducted a dissemination

phase in which we shared our motivation, final conclusions, methods, and

results with the research community through international journals and

conferences. This included a detailed comparison with current research in

the field.

1.4 Materials

To prove the validity of the proposed rapid approaches throughout this

Thesis, experiments were carried out with acquisitions performed in dif-

ferent MR scanners from two different vendors (Philips and Siemens) and

with different pathologies (hypertrophic cardiomyopathy, coronary artery

disease, patients with no cardiac pathologies). Throughout the develop-

ment of the thesis, different GPUs have been used. Depending on the

experiment, both the database used and the hardware resources vary. All

these resources are presented below:

• Main workstation characteristics:

– CPU Intel(R) Core(TM) i7-4790 CPU @ 3.60GHz

– 16 GB RAM

• GPUs used:

– AMD Radeon RX 480

– AMD Radeon RX 5700 XT
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– NVIDIA GeForce RTX 2080 Ti

– NVIDIA Quadro RTX 6000

• Clinical tests used:

␃ Cine MRI: clinical magnetic resonance imaging test performed

to capture motion. Cine studies are typically obtained by re-

peatedly imaging the heart at a single slice location throughout

the cardiac cycle.

␃ Perfusion MRI: clinical magnetic resonance imaging test

performed on patients with known or suspected coronary artery

disease to examine the blood flow to the heart both at rest and

under stress.

Details of the specific experiments are provided in each chapter.

1.5 Publications

Below, a list of publications related to this Thesis is included, as well as a

diagram in which they are interrelated with the objectives previously stated

(see Figure 1.1). The list is divided into three parts: indexed international

journals, conference presentations and electronic posters.

• Indexed international journals:

– Mart́ın-González, E., Sevilla, T., Revilla-Orodea, A., Casaseca-

de-la-Higuera, P., Alberola-López, C. (2020). Groupwise Non-

Rigid Registration with Deep Learning: An Affordable Solution

Applied to 2D Cardiac Cine MRI Reconstruction. Entropy.

22(6):687. The organising committee of the Annual Congress

of the Spanish Society of Biomedical Engineering invited us to

submit the work to this journal. Journal Citation Reports: SCI

JCR 2020 IF=2.587, Q2, 38/86. Physics, Multidisciplinary.
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– Mart́ın-González, E., Moya-Sáez, E., Menchón-Lara, R.M.,

Royuela-del-Val, J., Palencia-de-Lara, C., Rodŕıguez-Cayetano,

M., Simmross-Wattenberg, F., Alberola-López, C. (2021). A

clinically viable vendor-independent and device-agnostic solu-

tion for accelerated cardiac MRI reconstruction. Computer

Methods and Programs in Biomedicine. 207:106143. Journal

Citation Reports: SCI JCR 2021 IF=7.027, Q1, 20/98. Engi-

neering, Biomedical.

• Conference presentations:

– Mart́ın-González, E., Casaseca-de-la-Higuera, P., San-José-

Revuelta, L.M., Alberola-López, C. (2019). Groupwise Deep

Learning-based Approach for Motion Compensation. Appli-

cation to Compressed Sensing 2D Cardiac Cine MRI Recon-

struction. In Proceedings of the 37th Annual Congress of the

Spanish Society of Biomedical Engineering (CASEIB 2019),

pp:299-302, Santander, Spain. This work won second place

for the José Maŕıa Ferrero Corral prize in the communications

competition held by the organising committee of the Annual

Congress of the Spanish Society of Biomedical Engineering.

– Mart́ın-González, E., Alskaf, E., Chiribiri, A., Casaseca-de-

la-Higuera, P., Alberola-López, C., Nunes, R.G., Correia, T.

(2021). Physics-Informed Self-supervised Deep Learning Re-

construction for Accelerated First-Pass Perfusion Cardiac MRI.

In Proceedings of the 4th International Workshop of Machine

Learning for Medical Image Reconstruction (MLMIR 2021),

held in conjuction with the 24th International Conference on

Medical Image Computing and Computer Assisted Intervention

(MICCAI 2021).

– Mart́ın-González, E., Alskaf, E., Chiribiri, A., Casaseca-
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de-la-Higuera, P., Alberola-López, C., Nunes, R.G., Correia,

T. (2022). The deep SECRET to accelerated first-pass perfu-

sion cardiac MRI. In Proceedings of the Joint Annual Meeting

ISMRM-ESMRMB & ISMRT 31st Annual Meeting (ISMRM

2022).

– Mart́ın-González, E., Alskaf, E., Chiribiri, A., Casaseca-

de-la-Higuera, P., Alberola-López, C., Nunes, R.G., Correia,

T. (2022). Deep SECRET: self-supervised accelerated myocar-

dial perfusion MRI. In Proceedings of the 2nd ISMRM Iberian

Chapter Annual Meeting (ISMRM Iberian Chapter 2022).

• Electronic posters:

– Rodŕıguez-Galván, J.R., Mart́ın-González, E., Alberola-

López, C. (2021). A Network Solution for Self-supervised 2D

Cardiac Cine Reconstruction that includes Motion Compensa-

tion. 1st ISMRM Iberian Chapter Annual Meeting (ISMRM

Iberian Chapter 2021). Online.

– Mart́ın-González, E., Rodŕıguez-Galván, J.R., Alberola-

López, C. (2021). Efficient 2D Cardiac MR Cine Reconstruction

through a Self-Supervised Motion Compensated (SSMoComp)

Architecture. 38th Annual Scientific Meeting of the European

Society for Magnetic Resonance in Medicine and Biology (ESM-

RMB 2021). Online.

1.6 Document Overview

In order to best reflect the research work that has resulted in this Thesis

dissertation, this document is divided into seven chapters. The current

chapter is complemented with Chapter 2, which deals with the background
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Figure 1.1: Relation between each of the contributions related to this Thesis

grouped by the major objectives stated in Section 1.2.

knowledge necessary to understand the methods described in Chapters 3, 4,

5 and 6. These four chapters contain the methods developed in this Thesis,

together with the description of the evaluation results and a discussion

about each of them. Chapter 7 introduces some final remarks, summarizes

the contributions of the thesis and proposes some ideas for future work. A

more detailed description is portrayed next:

• Chapter 1: Introduction, which introduces and motivates this

Thesis dissertation. The objectives pursued, the methodology used

to achieve these objectives, as well as the materials and resources

available during the development of this Thesis, are described. The

publications and communications that have resulted from this work

are also enumerated.

• Chapter 2: Background, which contains the background knowledge

needed to fully understand the different issues addressed throughout

this dissertation. It starts by explaining the principles of MRI and
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the fundamentals of CMR together with a brief list of its applications

and limitations, and finishes with the elemental knowledge needed

to understand the registration and reconstruction algorithms, as

well as the basics on GPU programming and DL techniques. The

state-of-the-art is also reviewed.

• Chapter 3: DL Groupwsise Registration: dGW, presents the work

in which DL techniques are used to perform cine CMR registration

using a GW paradigm.

• Chapter 4: Cine MR Reconstruction with ME/MC using Open-

CLIPER, focuses on the GPU parallelization of our reference ME/MC

reconstruction algorithm, GWCS. For this purpose, we use the Open-

CLIPER framework, developed within this research group.

• Chapter 5: DL Cine Reconstruction with MC: SSMoComp, presents

the SSMoComp framework, a self-supervised scheme for motion-

compensated cine CMR reconstruction. This motion compensation

is carried out with dGW, another contribution of this Thesis. Fur-

thermore, SSMoComp is compared with the parallel implementation

of GWCS in OpenCLIPER.

• Chapter 6: DL Perfusion Reconstruction: SECRET, presents

SECRET, an adaptation of work carried out with DL techniques to

FPP-CMR.

• Chapter 7: Conclusions and future work, which concludes this

Thesis dissertation. It includes our contributions but also pinpoints

our limitations as well as hypothesizes some future lines of research.



Chapter 2
Background

This Chapter contains the background knowledge needed to fully under-

stand the different issues addressed throughout this dissertation. It starts

by explaining the principles of MRI and the fundamentals of CMR together

with a brief list of its applications and limitations, and finishes with the ele-

mental knowledge needed to understand the registration and reconstruction

algorithms, as well as GPU programming and DL techniques.

2.1 Magnetic Resonance Principles

2.1.1 The Physics of MRI

Atoms, which make up objects, contain a nucleus with protons and neutrons,

and have electrons orbiting around it. When an external magnetic field has

the same frequency as the nuclei, it will interact with the atoms, causing

NMR to occur. This is referred to as resonance.

Subatomic particles (protons, neutrons and electrons being the three

main ones) have a property called spin, to which a small magnetic moment

is associated. Nuclei with an odd atomic number have a net nuclear

magnetic moment and are said to be MR active. There are many MR

active elements such as carbon (13C), fluorine (19F), phosphorus (31P),

15
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B0 B0 B1 B0

a) b) c) d)

Figure 2.1: Precession. a) Magnetic moments of nuclear spins pointing in

random directions due to thermal motion. b) Once B0 is applied, magnetic

moments tends to align with it. c) Displacement of M out of its equilibrium

alignment by the application of B1 magnetic field. d) Precession of M in the

transverse plane at the Larmor frequency after the application of B1.

sodium (23Na), and hydrogen (1H); the latter being the most widely used

nucleus in MRI because of its abundance in the body [6].

In the absence of an external magnetic field, the magnetic moments of

all nuclear spins point in random directions (Figure 2.1a). Despite this,

when an external magnetic field B0 is applied, spins tend to align with

such a field, and start to precess around the axis of B0 tilted at a constant

angle, which depends on the initial position of the spin when B0 is turned

on. The frequency of spin precession (ωL) is proportional to the strength

of the B0 field (in units of Tesla, T) and is known as the Larmor frequency:

ωL = γB0 [rad/s], (2.1)

where γ, the gyromagnetic ratio, is a nucleus-specific constant (42.58

MHz/T for hydrogen) [6]. When B0 is applied, the distribution of the

angles is random, and thus, no net magnetization is expected. However,

the thermal motion of the molecules favours the direction parallel to B0

(Figure 2.1b). The magnetic moments of the precessing spins sum up

to a net non-zero magnetization, M0, also precessing around the axis of

B0 [6, 17].

The precessing magnetization M0 has a non-zero component along the
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axis of B0 (called the longitudinal direction) and a zero component in the

perpendicular plane (called the transverse plane). M0 is too small relative

to B0 to be directly measured while in the longitudinal direction; therefore,

it is better detected if tipped away from the longitudinal direction. This

is achieved by the application of a RF magnetic field, B1, in a direction

perpendicular to B0 (Figure 2.1c). The frequency of this RF field is tuned

to the Larmor frequency to achieve the resonance condition, enabling

efficient energy transfer to the spins. The pulse is modeled as [6]:

B⃗1(t) = B1(t) ·
[
cos(ωLt)x⃗− sin(ωLt)y⃗

]
, (2.2)

where x⃗ and y⃗ are two orthogonal unit vectors in the transverse plane.

As a result of the combined effect of B0 and B1 fields, the spins precess

around an axis that is the vector sum of them, eventually spiraling down

from the longitudinal direction to the transverse plane (Figure 2.1d).

The RF magnetic field, B1, is used to rotate the magnetization into a

plane that is perpendicular to B0. This field is typically applied for a brief

duration, τ , causing the magnetization to rotate by a specific angle, known

as the flip angle, around the axis of B1. This flip angle, α, is calculated

using the equation provided:

α = γB1τ (2.3)

where τ is the duration of the RF pulse, which is assumed to be constant

with magnitude equal to B1. A flip angle of 90° applied to a magnetization

initially aligned along the longitudinal direction (usually taken as the z -axis)

tips the magnetization completely into the transverse plane, producing

maximum signal. This RF pulse is called an excitation pulse. Excitation

pulses of smaller flip angles (<90°) are also commonly used to partially

rotate the longitudinal magnetization. In this case, the excitation RF

pulse, α, creates a transverse magnetization component Mxy = M0 sin(α),
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Figure 2.2: Magnetization patterns. Evolution of components. a) RF pulse

application for arbitrary alpha, b) relaxation for RF pulse of arbitrary alpha, c)

evolution of the magnetisation components in relaxation after a 90° RF pulse and

after an RF pulse of less than 90°.

leaving the longitudinal magnetization at a value of Mz = M0 cos(α) [6].

If a loop of wire (RF coil) oriented orthogonal to B0 is brought close

enough, the precession of the magnetization M0 induces an electric current

in the coil according to the Faraday’s law of induction. This is the MR

signal used to construct the MRI image, which will be described further
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Figure 2.3: Relaxation of both (a) longitudinal (Mz recovery) and (b) transverse

(Mxy decay) components for different constant decays, together with FID.

below.

When the RF pulse used to excite the magnetization vector is turned

off, the vector begins to return to its equilibrium position (aligned with the

longitudinal direction and at a magnitude of M0). This process results in

both the transverse Mxy and longitudinal Mz magnetization components

decaying and recovering at different rates, with time constants T2 and

T1, respectively (as shown in Figure 2.3). The signal received from the

transverse magnetization’s decay is referred to as the free induction decay

(FID) and has the shape of an exponentially decreasing sine wave (see

Figure 2.3b).

The process of getting back to normal is described by an exponential

growth and is defined by the constant T1. It takes T1 for Mz to reach

63% of its final value (Mz is close to M0 after 5 × T1). T1 is known as

the spin-lattice or longitudinal relaxation time constant and is unique to

each type of tissue. The way Mz recovers over time, t, can be represented

mathematically as

Mz = M0

(
1− e

− t
T1

)
, (2.4)

were t = 0 is the time point immediately after the end of the excitation

pulse.
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In contrast to the growing behavior of Mz during relaxation, Mxy

experiences an exponential decay during relaxation. The time constant

that characterizes the decay of Mxy is called spin-spin, or transverse,

relaxation time, which is a tissue-specific characteristic and is denoted by

T2. It should be noted that T2 is always less than o equal to the longitudinal

relaxation time constant T1. The decay of the transverse magnetization

(in the rotating frame of reference) is mathematically expressed as

Mxy = M0e
− t

T2 (2.5)

In practice, two factors contribute to the actual decay of Mxy. The first is

the natural spin-spin interaction, characterized by the T2 time constant.

The second factor is denoted by T
′
2 time constant, which is a result of the

inhomogeneity in the B0 field (1/T
′
2 = γ∆B0), which causes differences

between the resonance frequencies of the neighboring precessing nuclei.

The effective transverse decaying time constant is denoted T ∗
2 , given by

1

T ∗
2

=
1

T2
+

1

T
′
2

. (2.6)

T ∗
2 is always shorter than T2. It should be noted that while the T2 decaying

effect is an intrinsic property of the tissue, the T
′
2 effect can be reversed.

Both T1 and T2 are field dependent. At higher magnetic (B0) fields, T1

becomes longer, whereas T2 stays approximately the same.

The effect of the net magnetization under the application of B1 can

be described by a phenomenological differential equation known as the

Bloch equation, which relates the rate of change of (M) in the presence of

a magnetic field (B):

d

dt
M(t) = γM(t)×B(t)− Mx(t)x⃗+My(t)y⃗

T2
− (Mz(t)−M0) z⃗

T1
(2.7)

where M and B are the vector notations for the magnetization vector and
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the applied magnetic field, respectively, and × denotes the cross (vector)

product [6].

The vector B encompasses both the constant magnetic field, B0, and

any additional RF field, B1. The first component of the Bloch equation

depicts the rotation of the magnetization in response to the magnetic

field, while the second and third components depict the transverse and

longitudinal decay of the magnetization. When relaxation effects are

disregarded, the Bloch equation results in the fundamental Larmor rotation

of the magnetization vector M around the direction of B.

To obtain sufficient data for reconstructing the MRI image, RF excita-

tion and signal recording are usually repeated multiple times. The series

of RF pulses and accompanying gradients (described in Section 2.1.2) form

the MRI pulse sequence. Broadly speaking, the time duration between two

successive excitation RF pulses is called the repetition time (TR), and the

time duration between the application of an excitation RF pulse and signal

acquisition is called the echo time (TE). While increasing TR allows for

more longitudinal magnetization recovery and stronger signals, increasing

TE causes more transverse magnetization decay and signal loss [6].

2.1.2 Image Formation

Now that we have discussed the fundamental concepts of NMR, we can

delve into how MRI generates images of the spatial distribution of spins

through the process of relaxation in an external magnetic field. Specifically,

we will explain how this principle is used to create 2D images.

By altering the strength of the external magnetic field in specific loca-

tions, it is possible to distinguish the positions of different spins within the

body. This is because the resonance frequency of each spin is proportional

to the strength of the magnetic field at its location. This technique provides

the means to limit spin excitation to a single slice within the body. The

orientation of the selected slice in MRI can be selected arbitrarily by simple



22 Chapter 2. Background

application of a field BG, whose amplitude varies linearly with the position

and the strengths of three gradients:

BG = Gxx+Gyy +Gzz (2.8)

The presence of such gradient modifies the precession frequency of the

spins of the object along its direction

ω(x, y, z) = ω0 + γBG. (2.9)

In addition to selecting slices, the gradient fields can also be used to

identify specific positions within a slice through a process called frequency

encoding. This technique creates a one-dimensional projection of the image

along the direction of the gradient field. Similar to frequency encoding,

phase encoding uses gradient fields. The net effect of applying both phase

encoding and frequency encoding is modulating the signal in each pixel with

a position-dependent phase and frequency. All signals are then recorded

into a 2D data matrix, called k-space.

Phase
encoding

Slice
selection

Frequency
encoding

k-space

time

RF

Gz

TR

TE

Treadout

Gx

Gy

Readout

Slice selection

Frequency encoding

Phase encoding

Figure 2.4: Simplified pulse sequence representing slice selection, frequency

encoding and phase encoding stages. An example of k-space can also be observed.
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2.1.2.1 K-space

The method for obtaining an MR image using frequency encoding results

in Nx × Ny pieces of data, where each signal is generated from all the

spins in the specific slice being examined. This collection of signals forms

the spatial frequency content of the image, also known as the k-space.

The relationship between the image (I) and the k-space (or signal, S) is

determined through the use of the Fourier transform

S(t) = S (kx(t), ky(t)) =

∞̈

−∞

I(x, y)e−j2π(kx(t)x+ky(t)y) (2.10)

where kx and ky are related to the applied gradients by

kx(t) =
γ

2π

ˆ t

0
Gx(τ) dτ, ky(t) =

γ

2π

ˆ t

0
Gy(τ) dτ. (2.11)

The criterion of filling k-space is called the k-space trajectory. If the

data in k-space lie on a uniform grid, i.e., if k-space is filled line by line

in a cartesian fashion, the Fast Fourier Transform (FFT) algorithm is

implemented to efficiently reconstruct the MRI image.

The gradient waveforms can be altered to create a variety of k-space

trajectories, including spiral and radial. These trajectories are characterized

by their ability to oversample the k-space center, which makes them less

prone to artifacts. However, using non-linear trajectories requires additional

steps, such as regridding, in order to properly reconstruct images using

FFT techniques.

2.1.2.2 Multislice vs. 3D Imaging

There are two ways to study a whole volume with an MRI exam: multislice

and volumetric 3D imaging. Multislice involves taking multiple 2D slices

to cover the volume. This method has low resolution in the slice selection



24 Chapter 2. Background

direction since it requires a large slice thickness to achieve an acceptable

signal-to-noise ratio. Volumetric 3D imaging, on the other hand, acquires

the signal by exciting the whole volume, providing high resolution in

all directions with improved signal-to-noise ratio. However, this method

requires a longer scan time, which makes it more susceptible to problems

caused by patient movement.

2.1.3 Image Artifacts

Artifacts are unwanted elements that appear in an MRI image. These

can be caused by issues with the MRI scanner, such as poor performance

or malfunction, as well as factors like patient movement, incorrect scan

parameter selection, or inherent physical limitations. Examples of common

MRI artifacts include:

• Motion artifacts One of the main reasons for inconsistencies or

errors in MRI images is the movement of the patient during the scan.

This movement can be intentional or unintentional, and include

breathing, heartbeats, eye movements, swallowing, blood flow and

many others. This motion can cause issues with data acquisition

and result in blurred or distorted areas in the image, particularly

along the phase-encoding direction in Cartesian acquisitions.

• Ringing artifact The ringing artifact, Gibbs artifact or truncation

artifact is a visual phenomenon characterized by a series of bright

and dark stripes that appear along the edges of an image. This

artifact is caused by the sharp truncation of k-space. This results in

a lack of high-frequency information, which becomes visible as the

Gibbs artifact along sharp edges in the image.

• Partial volume artifact The partial volume artifact occurs when

there is a mix of different tissues within a single imaging voxel,
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leading to a blurry appearance in the image. This can also happen

when the slice thickness used for imaging is too large.

• Aliasing artifact Aliasing, fold-over, or wrap-around artifact occurs

when the field of view of the imaging device is smaller than the size

of the organ being imaged. As a result, tissues outside of the field

of view will appear to fold back into the field of view, potentially

obscuring other details in the image.

• Off-resonance artifact Spins that rotate at different frequencies

are referred to as off-resonance. This can be a natural characteristic

of the tissue, such as the frequency difference between fat and water,

or it can be caused by variations in the magnetic field or the tissue’s

susceptibility to the field.

2.2 Cardiac Magnetic Resonance

Imaging: CMR

Cardiovascular imaging, which involves the use of various techniques to

examine the heart and blood vessels, has long been a key part of patient

diagnosis and treatment. One popular method is echocardiography, which

is relatively inexpensive and portable. X-ray-based techniques, such as

fluoroscopy and CT scans, are also commonly used. CMR imaging has

become the gold standard for evaluating heart function, due to its high

tissue contrast and spatial resolution, 3D imaging capabilities, lack of ion-

izing radiation, and ability to adjust various parameters to assess different

aspects of cardiac function. As CMR technology continues to improve,

its applications are expanding. In addition to providing anatomical in-

formation, CMR imaging can also provide functional, perfusion, viability,

and metabolic information about the heart muscle, as well as information

about blood vessels and flow dynamics [6].
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This section briefly presents the CMR techniques used in this Thesis,

namely cardiac cine MR and FPP-CMR.

2.2.1 Cine Imaging

Cine CMR is a highly effective method for imaging the heart’s contractile

function due to its high spatial and temporal resolution. It is commonly

used in CMR examinations and is considered the best non-invasive option

for assessing contractile function. Cine CMR can provide numerous details

about the heart’s function, including overall function, the movement of the

LV and right ventricle (RV) walls, ventricular volume, ejection fraction,

and mass measurements. It is often used as a benchmark for evaluating

LV remodeling and as reference method for other imaging techniques.

The CMR sequence is a technique used to create a movie-like repre-

sentation of the heart that shows its contractile function, as can be seen

in Figure 2.5. The standard protocol involves obtaining images through a

process called segmented acquisition, which involves dividing the acquisition

of data over multiple heartbeats to improve resolution. Each segment rep-

resents a different phase of the cardiac cycle and is acquired at a different

time within the RR interval. The raw data are then sorted by cardiac

phase and the resulting images can be displayed as a movie of the beating

heart. For patients with breathing problems or irregular heart rhythms,

real-time cine techniques are available that allow for free-breathing and do

not require an ECG signal.

Typically, a stack of multiple closely spaced (contiguous or with 1-2

mm gaps) short-axis slices of 6-8 mm thickness is acquired to provide

full coverage of the LV and RV. Short-axis views, perpendicular to the

long-axis views, can be planned on long-axis scout images. In addition,

cine images can be obtained in multiple long-axis orientation, such as the

two-chamber, three-chamber, or four-chamber views.
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Figure 2.5: Frames extracted from cine series. Four frames of a short axis

acquisition selected to show the contractile function of the heart, which is evident

in the third one.

2.2.2 Perfusion Imaging

Over the last decade, a series of MRI technical and clinical advancements

have let to the growing use of myocardial perfusion CMR imaging for

the detection of coronary artery disease (CAD). CAD is the occlusion

of the coronary arteries usually caused by atherosclerosis, which causes

abnormalities in blood flow to the heart. Non-invasive imaging techniques

that are widely used clinically for the evaluation of CAD are SPECT and

PET, but the reference for non-invasive myocardial perfusion quantification

is PET [18]. However, the clinical value of FPP-CMR has been shown in

comparison to these techniques [18–21], having emerged as an alternative

way of detecting blood flow anomalies without the use of potentially harmful

ionising radiation. In addition, FPP-CMR has other advantages, such as

higher spatial resolution, wider availability and lower scan cost compared

to PET.

Perfusion CMR acquires a temporal series of single-shot images that are

later played as a movie showing the transit of a gadolinium-based contrast

media during its first pass through the myocardium, as can be seen in Fig-

ure 2.6. Stress perfusion is performed during pharmacological vasodilation,

usually with adenosine. A perfusion defect is typically represented by a

“hypoenhanced,” darker area. As a last step of a CMR examination, the

same perfusion scan is repeated at rest, meaning in absence of a stress
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Figure 2.6: Frames extracted from FPP-CMR series. Four frames of a short

axis acquisition selected to show the passage of the contrast agent through the

heart. It can be seen how in the first image the contrast has not yet arrived and

in the following images how it passes from the RV to the LV.

agent. Comparison of stress and rest scans and of delayed-enhancement

images at the same slice locations allows for identifying reversibly and irre-

versibly injured myocardium [6]. This test allows to differentiate abnormal

myocardial tissue in which there is an excess accumulation of the contrast

agent relative to normal tissue.

2.3 Image Reconstruction

As explained previously, MRI data are not acquired directly in image space.

A set of data processing steps are required to turn the acquired raw data

or k-space data into actual images that can be interpreted by a clinician.

The process of transforming the acquired data to images is called image

reconstruction and it is carried out by dedicated reconstruction software.

In the simple case, where the entire k-space is fully sampled, the inverse

Fast Fourier transform (iFFT) can then be used to reconstruct the k-space

data into clinically interpretable images, as in Equation (2.12),

y = Fm, m = F−1y, (2.12)

where y is the acquired k-space data, m is the image, and F and F−1 are

the FFT and iFFT operators.
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Due to the sequential nature of MRI scanning, acquisition time is

roughly proportional to the number of k-space samples collected. Therefore,

it is desirable to collect as few samples as possible. However, if the sampling

rate is reduced below that required by the Nyquist criterion, aliasing

artefacts will appear in the image [22].

In general terms, the image reconstruction can be formulated as the

following inverse problem:

y = Em+ ϵ (2.13)

where y is the measured k-space data, E is the system matrix or encoding

operator, m is the image and ϵ is a random noise term. When k-space

data are undersampled and noise corrupted, the inverse problem in Equa-

tion (2.13) is ill-posed: a solution might not exist, infinite solutions might

exist, and it may be unstable with respect to measurement errors. As a

result, direct inversion is generally not possible. Instead, an optimal solu-

tion in the least-squares sense may be obtained by recasting the problem

as the following minimization:

m̂ = arg min
m

1

2
∥Em− y∥2ℓ2 (2.14)

Much research effort has been devoted to image reconstruction from

an undersampled k-space over the last few decades. Two broad technolo-

gies stand out for their importance, namely parallel imaging (PI) and

compressed sensing (CS). They will be briefly described below, as well

as groupwise compressed sensing, on which we rely for the development

of this Thesis. These enable substantial reductions in acquisition time

while preserving image quality [22]. In addition, DL techniques have

made a breakthrough in the field, sometimes achieving better results than

traditional techniques.

In this section, the fundamentals of image reconstruction are described
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as well as different ways to accelerate acquisitions. We will focus on tech-

niques that use prior knowledge and regularization, paying more attention

to those that have served as the basis for the development of this Thesis.

2.3.1 Parallel Imaging

As mentioned above, it is possible to accelerate the acquisitions by under-

sampling the k-space, i.e. collecting less lines in k-space. The resulting

spatial aliasing must be removed before the images can be used for clinical

purposes. PI has been developed to address this issue [23]. There are some

common characteristics shared by all PI methods, which are listed below:

1. Instead of using a single large coil to acquire data, Nc smaller coils are

used simultaneously to collect data. These coils are more sensitive

to the specific tissue areas closest to them, which provides additional

spatial information for image reconstruction. The signal received by

each coil sn can be written as

sn = Cn · s, n = 1, . . . , Nc (2.15)

where Cn is the coil sensitivity map and s is the original image.

2. Some k-space lines can be skipped to reduce the scan time. If the

Nyquist criterion is not met, the result is an aliased image. The

acceleration factor, AF, is defined as the ratio of the amount of k-

space data required for a fully sampled image to the amount collected

in an accelerated acquisition.

3. An algorithm that takes into account the specific sensitivities of each

coil is used to synthesize the undersampled data from each receiver

coil into a single, unaliased image, trying to solve the problem in

Equation (2.13), where the system matrix E is composed by k-space

sampling, FFT and coil sensitivities.
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PI can be used with any pulse sequence to reduce scan time. Neverthe-

less the speed advantage of PI is penalized by a reduction in signal-to-noise

ratio (SNR) by a factor of
√
AF [6].

There are two widely used PI techniques. The SENSitivity Encoding

(SENSE) method works by unfolding the aliasing in the image domain

using the known coil sensitivity maps, and will be briefly described be-

low [24]. As an alternative, k-space methods try to estimate the missing

k-space lines from the acquired data before implementing the Fourier trans-

form as in the GeneRalized Autocalibrating Partially Parallel Acquisition

(GRAPPA) method [25]. Both methods involve using additional k-space

lines to measure coil sensitivities and using this information to weight

image reconstruction. Additional temporal undersampling techniques like

TSENSE [26] and TGRAPPA [27] have been developed, but a combination

of spatial and temporal undersampling, such as k-t SENSE, k-t GRAPPA

and k-t BLAST (Broad-use Linear Acquisition Speed-up Technique), is

becoming more popular as it takes advantage of correlations in both k-space

and time [28–30].

2.3.1.1 SENSE

This technique is performed in the image domain after reconstruction of

data from the individual coils, using the known coil sensitivity maps [24].

The first and most important step in this method is the generation or

calculation of the sensitivity maps of the coils. These sensitivity maps

quantify the relative weighting of signals coming from different locations

within the coverage area of each coil. After the maps are determined, the

data from each coil’s partial k-space view are obtained and the partial

FOV images for each coil are reconstructed. The partial FOV images are

then combined using matrix inversion.

The key idea of SENSE is that the superposition of signals occurs with

different weights according to the local coil sensitivities. Let us take as an
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example an acquisition with two coils and AF=2. Due to undersampling,

the images obtained from each coil suffer aliasing and therefore each pixel

p obtained from each coil has contributions from two pixels (A and B, in

this example) of the image we want to reconstruct; which can be written

as follows:

p1 = s1A ·A+ s1B ·B

p2 = s2A ·A+ S2B ·B
(2.16)

where s denotes the coils sensitivities. The problem can then be formulated

as follows:

y = Em = AFSm (2.17)

where A represents the undersampling mask, and S denotes the coil

sensitivity maps1.

The matrix inversions necessary for the unfolding process in Equa-

tion (2.17) can only be performed if the AF is less than or equal to the

number of coils. However, in most cases this is not possible and must be

addressed through iterative optimization.

2.3.2 Compressed Sensing

As well as PI, CS is an image reconstruction method for undersampled

acquisitions. CS is based on the fact that if the underlying image exhibits

transform sparsity, where sparse is understood to mean that the majority

of the coefficients of a vector are equal to zero and very few coefficients

will contain all the information, and if k-space undersampling results in

incoherent artifacts in that transform domain, then the image can be

recovered from randomly undersampled frequency domain data, provided

an appropriate nonlinear recovery scheme is used [31,32].

1It should be noted that in the case of single-coil acquisitions S is a matrix of
ones.
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The reconstruction is performed by minimizing the ℓ1 norm of a trans-

formed image, i. e. the sum of the absolute values of the pixels in the

transform domain, is minimized. The smaller the ℓ1 norm, the higher the

sparsity. This minimization is subject to data fidelity constraints [31]:

minimize ∥Ψm∥ℓ1
s.t. ∥Em− y∥ℓ2 < ϵ,

(2.18)

ϵ controls the fidelity of the reconstruction to the measured data and Ψ

is the linear operator that transforms from pixel representation into a

sparse or compressed representation the image m to be reconstructed. The

threshold parameter ϵ is usually set below the expected noise level.

The optimization process of CS is then described by the following

equation:

min ∥Em− y∥2ℓ2 + λ ∥Ψm∥ℓ1 (2.19)

CS involves multiple steps and data transformations, guided by an iterative

optimization algorithm, following a scheme similar to this [33]:

1. The first step is to measure the k-space y. Two characteristics of

the acquisition must be taken into account: strong sub-sampling and

incoherent sampling. The undersampled k-space is transformed into

an image m using iFFT. This image serves as a starting point for

the iterative optimization.

2. The image m is then transformed into a sparse representation Ψm.

There are various different transformations Ψ that can be beneficial

for this purpose.

3. After the Ψ transformation, the noise can be removed by a thresh-

olding procedure. Then, the Ψ-space representation is transformed

back into image space with the inverse Ψ transformation (Ψ−1).

4. An FFT is applied to transform the image back to k-space, with all
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spatial frequencies so it is necessary to mask this k-space by only

depicting the points present in the sampling trajectory. The FFT

and masking together are the encoding operator E in Equation (2.19).

The resulting k-space Em can then be directly compared to the

measured k-space y.

5. We now subtract the k-space Em from step 4 from the measured

k-space y from step 1. The difference (Em–y) corresponds to the

error (non-consistency) that the thresholding from step 3 has created

compared to the measured k-space y. The image m is now updated

by adding this difference image previous Fourier transformation.

6. Steps 2 to 5 are now repeated. Each iteration will increase the

sparsity (in Ψ-space). This is an alternating optimization of data

consistency and transform sparsity. The factor λ in the formula is a

weighting that defines the trade-off between data consistency and

sparsity.

This is repeated until:

• either the least-squares difference of the data consistency term

(step 5), is smaller than a predefined threshold ϵ,

∥Em− y∥ℓ2 < ϵ (2.20)

• or a predefined number of iterations is reached.

The final image will (very closely) look as if we had measured k-space

completely, but at a much shorter scan time.

In the case of dynamic cardiac MRI, along the time dimension, the

sparsity is quite high. In CS cardiac cine, only little changes are expected

between subsequent time frames due to the high temporal resolution and

the static anatomy surrounding the heart. This increases the transform
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sparsity along the time dimension, and therefore high accelerations factors

can be achieved in CS cardiac cine.

In the last decade, research has proposed combining CS reconstruc-

tion with motion correction techniques. For example, the k-t FOCal

Underdetermined System Solver (FOCUSS) method incorporates motion

estimation to improve sparsity in the sparse representation for better CS

reconstruction [34–36]. However, this method only works in situations

where all data are acquired in one motion state. Other methods have

been proposed to handle data acquired in different motion states, such as

combining CS with PI and one-dimensional (1D) translational respiratory

motion correction [37], or performing CS reconstruction from data acquired

in each motion state and averaging the results after image-based affine

registration [38]. However, these methods are limited in their ability to

correct for arbitrary non-rigid motion. A CS-based motion correction

framework is needed to correct for arbitrary non-rigid motion in the CS

reconstruction using data acquired at multiple motion states. A general-

ized motion correction framework, introduced by Batchelor et al. [39], can

correct for general (affine or non-rigid) motion in the image reconstruction

by modeling the transformation from the motion free image to the acquired

motion corrupted k-space samples at different motion states via a matrix-

vector equation. Using information from multiple coils in parallel MRI, the

application of this framework has been demonstrated in brain imaging [39],

coronary MRI [40], cardiac cine [41,41–43], and liver MRI [44] to correct

for non-rigid motion.

2.3.3 Groupwise Compressed Sensing

GWCS is a reconstruction algorithm that was published in [13] and later

improved in [45], and exploits the redundancy of information along the

time dimension. It departs from the multi-coil k-space undersampled

information and solves a CS reconstruction problem. This is done following
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a classical optimization procedure based on a data fidelity term and a

regularization term. In this second term, sparsity is fostered by means

of penalizing the ℓ1 norm of the temporal total variation (tTV) of the

registered image set; this is where the GW-MC operator TΘ is applied [13].

Briefly described, the algorithm departs from the k-space subsampled

information y and solves a CS reconstruction problem which gives the

resulting image sequence mi, at iteration step i, as

mi = arg min
m

1

2
∥Em− y∥2ℓ2 + λ∥ΦTΘm∥ℓ1 (2.21)

where mi is a vectorized stack of image frames, one frame per cardiac

phase. E is the encoding operator that includes the multiplication by the

coil sensitivities S, the intra-frame spatial Fourier transform F and the

application of the undersampling mask A, as in Equation (2.17). Φ is the

tTV operator, TΘ is the GW transformation for MC that registers all the

frames in the sequence to a common reference and λ is a regularization

parameter, so the regularization term is given by:

∥ΦTΘm∥ℓ1 =
1

|X|N

ˆ
x∈X

N∑
n=1

|mn(Tn(x))−mn−1(Tn−1(x))| (2.22)

where cyclical motion has been considered by setting mN (x) = m0(x). As

for m0, the transformation TΘ is the identity, since there are no data from

which motion information can be estimated. Then, the iterative refinement

process finds mi with TΘ obtained by the heart ME on mi−1.

The reconstruction process is iterative, so that with each iteration

the provided solution is refined. This means that registration has to be

performed several times. ME and MC techniques lack the true dynamic

image to estimate the motion information from. A common approach

is to perform the ME step from an initial reconstruction of the images

themselves that, however, will be affected by the artifacts introduced

by the undersampling pattern that the initial reconstruction could not
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correct, what hinders the estimation of the true motion information. This

effect becomes more relevant as the AF increases [13]. The registration

itself is also iterative, since transformations and gradients therein must

be repeatedly calculated. This is highly computationally expensive, so

registration constitutes the bottleneck of the reconstruction algorithm. The

following section explains the registration method used.

Equation (2.21) is minimized with the well-known NESTA algorithm

based on Nesterov’s method [46]. Specifically, Nesterov’s method iteratively

minimizes a function f by estimating three sequences xk, yk and zk. The

xk sequence corresponds to the sequence we want to estimate (mi in the

Equation (2.21)), and it is obtained from a weighted sum of the other

two sequences. Nesterov’s method can be used for the minimization of

both smooth and non-smooth convex functions if using the appropriate

smoothing techniques. In [46], the ℓ1-norm in Equation (2.21) is component-

wise approximated by the well-known Huber function fµ(x), which depends

on a smoothing parameter µ; this parameter is iteratively decreased during

the optimization process. The starting guess x0 is the result of applying the

adjoint encoding operator (EH) to the subsampled k-space (x0 = EHy).

2.4 Image Registration

As stated above, image registration is necessary in order to carry out the

ME/MC steps that take place in the GWCS algorithm. ME involves the

steps to estimate the motion (the deformation created) from a reference and

MC refers to the steps in which the information obtained with ME is used

to deform each cardiac phase to that reference to achieve a pseudo-static

sequence. i.e. the application of TΘ. This section focuses on its description.

Image registration is the process of aligning two or more images for

subsequent joint processing; it is especially widespread in the medical

imaging field either for processing images acquired in different time instants–
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or with different imaging devices–for the same patient or to carry out

comparative analyses with multiple patients [47, 48]. Registration is a

three-tier process, in which the following elements must be defined:

(a) a deformation model,

(b) a measure of similarity between the entities to be aligned and

(c) an optimization procedure.

According to the deformation model, registration may be labelled as

rigid or non-rigid; the latter is still subdivided as affine and elastic. Rigid

models are often used for brain longitudinal studies on the same patient,

while non-rigid or elastic models are used for moving deformable organs,

such as the heart. On the one hand, rigid registration uses a simple uniform

mapping between images related by rotation and translation, examples of

linear transformations. On the other hand, elastic registration allows a

non-uniform mapping between images, to correct small, varying discrepan-

cies by deforming one image to match the other. That is, it uses non-linear

transformations, providing higher accuracy as well as increased computa-

tional complexity. Optimization procedures must be chosen according to

the deformation model employed. As for the measure of similarity, both

monomodal and multimodal metrics can be found; monomodal registration

is based on the assumption that corresponding pixels have similar intensity

values; otherwise, multimodal registration tries to find correspondence be-

tween images acquired using different imaging modalities. This is because

different modalities may assign different intensities to the same struc-

ture [49]. Registration of monomodal dynamic medical images is frequently

encountered because of patient motion, either involuntary or spontaneous

(heart pumping or breathing) as well as small voluntary motion due to

discomfort during the scanning or to non-cooperative patients (children,

elderly, . . . ). This is the kind of registration we will focus on. Follow up of

patients is also an application domain for this type of registration [50].
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Registration of multiple images can be tackled as a pairwise (PW)

or as a GW problem. The former may be carried out sequentially, i.e.,

the next image in the sequence is registered against the previous image

or, alternatively, one of the images in the sequence may be selected as

the reference image while the others will be registered (in pairs) against

that reference. On the other hand, the GW approach consists of a joint

optimization problem in which the reference is created with information of

the whole temporal sequence. The choice of a reference space can have a

large impact on the quality of the result. GW methods typically outperform

PW since the problem is solved as a whole. However, this comes at the

expense of a higher computational cost, due to their iterative nature [51].

2.4.1 Deformation

As mentioned above, there are two types of image registration depending

on the deformation model: rigid and non-rigid, but also there are two

types of image registration depending on the deformation parameterization,

i.e. how the deformation is represented in a computer: parametric and

non-parametric. Parametric image registration involves a model with

fixed parameters that transforms the input image. Non-parametric image

registration, conversely, does not involve a fixed set of parameters. [52].

In parametric registration, there is a finite set of unknown values

known as Θ that are used to create a spatial transformation called TΘ

using a system of basis functions. For instance, the values of Θ may include

displacement vectors located at control points on a grid, and the continuous

transformationTΘ is created through interpolation using these displacement

vectors. Examples of parametric registration are Thin-plate spline (TPS)

and FFD with B-splines. The use of TPS interpolation as point-based

registration method of medical images was first proposed by Bookstein [53]

and it is based on the use of landmarks. This technique involves mapping

source and target landmarks onto each other exactly, but in real situations
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the positions of the landmarks can only be roughly determined. Meanwhile,

in FFD based registration, a B-spline basis function is commonly utilized to

build the transformation model. The deformation of an image is determined

by a small number of control points that are evenly spaced on the fixed

image’s grid. This creates two grids that are aligned with each other: a

densely populated pixel grid and a more spread out control point grid.

Cubic splines, which are bi-cubic polynomials that are parameterized using

a grid of control points, are commonly used for parametric registration [54].

These splines have limited influence, only affecting the grid cells around

each control point and not affecting the parametric function TΘ outside of

this region.

Non-parametric registration involves treating the transformation pa-

rameters, represented by Θ, as an unknown function, which is solved

using variational calculus. Examples of non-parametric registration include

Demons and Large Deformation Diffeomorphic Metric Mapping (LDDMM).

The Demons algorithm is a fast method that utilizes basic image process-

ing techniques such as combining transformation fields, calculating image

gradients, and using a Gaussian convolution kernel [55]. LDDMM, on the

other hand, defines non-parametric registration as a problem of minimizing

energy while ensuring the solution fits the characteristics of diffeomorphism.

This approach allows for precise measurements and statistical analysis in

the infinite-dimensional space of images, making it widely used in research

on anatomical variability [56,57].

We now describe what the deformation we are focusing on consists in.

A basic assumption in the development of mechanical models of the heart

is that the heart is a single, spatially continuous entity [58]. A deforming

tissue has its particles moved from their reference position, x, at a time

t0 to a new position, x′, at time t. The displacement of a particle which

moved from position x to position x′ is a vector, u, given by

u(x, t) = x′ − x (2.23)
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Equation (2.23) can be rewritten as

x′ = x+ u(x, t) (2.24)

Whether the deformation is rigid or non-rigid is determined by the func-

tional form of u(x, t). In the present case, cardiac motion in the images

for the ME stage is estimated by using a GW registration method based

on the FFD model with cubic B-splines [54]. These B-splines are made

up of control points and are defined using polynomials that have a mini-

mal amount of support in relation to a specific degree, smoothness, and

domain partition [59]. B-splines pass through a series of control points

and create smooth shapes and surfaces. FFD models that use third-order

basis functions are frequently used because they offer a good balance be-

tween smoothness and support region [60]. Therefore, they are effective for

modeling the elastic deformations of the heart and surrounding tissues [61].

The FFD method is effective in creating models for any type of defor-

mation by embedding an object in a space that can be altered [62]. In 2D,

an object can be deformed by adjusting the grid of control points with

a fixed resolution. The method uses a parametric model that deforms

an object by manipulating a mesh of K control points {uk ≤ k ≤ K}
governed by a set of transformation parameters Θ = {Θn|1 ≤ n ≤ N}
with Θn = {θn,uk

} [61]. FFDs are used to create N non-rigid deformations,

one for each time frame in a dynamic series. These deformations, known

as TΘn, map the coordinates of each point in the original template to the

corresponding coordinates in a specific frame.

Specifically, we apply a GW paradigm in which no particular frame is

selected as a reference, but the reference is built along the optimization

process as the average of the transformed images. We need to solve the

optimization problem in order to determine the set of transformation

parameters Θ that describe the spatial transformations TΘ. As for the

metric to be optimized, we have used the sum of the intensity squared
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differences (SSD) with respect to the reference image (see Equation (2.25));

this metric is enlarged with smoothness terms so as to force a realistic

motion field solution (see Equation (2.26)). For SSD, the optimum template

is known to be the average of the registered images [47]. The SSD is defined

as

SSD(TΘ(x)) = V (x) =
1

N

N∑
n=1

[
mn(TΘn(x))−

1

N

N∑
k=1

mk(TΘk(x))

]2
(2.25)

where TΘ = {TΘ1, . . . ,TΘN} is the set of transformations, N is the number

of frames in the sequence, mn the n-th frame and TΘn is the transformation

that maps each material point x in the template onto its corresponding

position in the n-th frame. Then, the optimization problem to be solved

can be expressed as follows:

Θ̂ = arg min
Θ

{
N∑

n=1

∑
x∈Xcr

[
mn(TΘn(x))−

1

N

N∑
k=1

mk(TΘk(x))

]2
+R(Θ)

}
(2.26)

with Xcr the cardiac region of interest (ROI) to be registered and R(Θ)

represents an additional regularization term, which will be defined later,

in Section 3.4.

The remainder of this section discusses the concept of 2D control points,

for which Appendix A provides support. The control points, represented

by the set u, can be placed anywhere within a region of interest in a

pixel grid, represented before by Xcr, or across the entire image. The

distance between control points is represented by ∆, which is assumed to

be constant for simplicity. The position of each control point is constrained

such that −
⌊
Kl
2

⌋
≤ ul ≤

⌊
Kl−1

2

⌋
, where Kl is the number of control points

and Nl is the number of pixels in the region of interest along the l direction,

and must also satisfy the condition ∆lKl ≤ Nl. The center of the control

point grid in the image coordinate space is represented by c, and the

position of a control point u can be calculated as p(u) = pu = c+∆⊙ u,



2.4. Image Registration 43

using the Hadamard product.

The control point grid’s resolution affects the elasticity of the trans-

formation. If ∆ is lower, the transformation will be more specific to a

small area around the control points. On the other hand, if ∆ is higher,

the control points will have a larger influence on the overall transforma-

tion. The radius of influence of control points is given by rl =
(E+1)∆l

2 ,

where l denotes the dimension and E, the order of the B-spline functions,

which has been set to 3 in this Thesis. Thus, the local neighbourhood

affected by a control point is determined by the interval
[
Cinf
l , Csup

l

]
with Cinf

l = −
⌊
cl−xl+rl

∆l

⌋
and Csup

l =
⌊
xl−cl+rl

∆l

⌋
. The previous ex-

pressions can be rewritten as Cinf
l = max

(
−
⌊
cl−xl+rl

∆l

⌋
,−
⌊
Kl
2

⌋)
and

Csup
l = min

(⌊
xl−cl+rl

∆l

⌋
,
⌊
Kl−1

2

⌋)
because points outside the image will

not have any impact.

Using the preceding definitions, it is possible to obtain the B-spline

dependent transformation as:

x′ = x+

Csup
1∑

u1=Cinf
1

Csup
2∑

u2=Cinf
2

[
2∏

l=1

BE

(
xl − pul

∆l

)]
· θu (2.27)

where the displacements of the control points are denoted by θu = (θ1, θ2)

and the third order B-spline function with Cox-De Boor recursion formula,

defined in [63], is represented by BE=3. The deformations at each point

are obtained through a 2D tensor product of 1D, as described in [54].
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2.5 Registration and Reconstruction

Acceleration: Parallelization and

DL Techniques

In this section we will focus on the techniques used in this Thesis for

the acceleration of the registration and reconstruction algorithms. In

particular, we will present the parallelization using GPU programming

with the OpenCL language through the OpenCLIPER framework as well

as the use of DL through convolutional neural networks (CNN) for the

reduction of cardiac cine reconstruction times.

2.5.1 Parallelization using GPU Programming

The use of specialized devices for medical image processing, particularly

with the advancement of GPUs towards general-purpose computing de-

vices (GPGPU), has gained significant attention in recent years. However,

it is important to note that developing software for GPU devices is not

straightforward due to the challenges of parallelization and communication

and synchronization issues with the Central Processing Unit (CPU). Addi-

tionally, developers may focus on only one device type, leading to increased

effort if multiple device types need to be supported later on. There are

alternative processing devices available, such as digital signal processor

(DSPs), field-programmable gate arrays (FPGAs), and many-core systems

like Intel Phi, and OpenCL is a solution for supporting multiple device

types, but it may not be as simple or mature as its competitor, NVIDIA

Compute Unified Device Architecture (CUDA).
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2.5.1.1 Related Work

There has been high activity in the field of MR reconstruction, particularly

in regards to implementing algorithms on GPUs. Two survey papers, one

focusing on GPU-based medical image reconstruction [64] and the other

specifically on MR reconstruction [65], provide a comprehensive overview

of the field.

The two most important works in MR reconstruction of which we are

aware are the Berkeley Advanced Reconstruction Toolbox (BART) [66]

and the framework “Gadgetron” [67]. BART is a programming library

and a set of command line tools used for magnetic resonance imaging

reconstruction [68]. It offers support for parallel computation using multiple

CPUs or, for certain algorithms, GPUs with NVIDIA’s CUDA as the only

supported API. Gadgetron, on the other hand, is a framework that enables

users to create pipelines for streaming data processing through a series of

modules called gadgets. The pipeline is set up using an XML description

file and offers parallel computing support for both CPUs and GPUs [69]

through CUDA.

As for the FFDs, some GPU-based implementations were described in

Ansorge et. al. [70], Modat et al. [71], Ruijters et al. [72], Du et al. [73],

Ellingwood et al. [74], Punithaku-mar et al. [75]; however, these proposals

are pairwise and device-specific.

Developing algorithms with CUDA technology differs significantly based

on whether the final computing device is a CPU or NVIDIA GPU. As

a result, both BART and Gadgetron have separate versions of the same

algorithm specifically written for either the CPU or GPU. This limitation

is inherent to the foundations of CUDA and cannot be easily bypassed.

It typically manifests as the requirement for two different data structures

to hold the same information, namely, one for host data used in CPU

computing and another for device data used in GPU computing.

As mentioned above, programming with a GPU is specific to a particular
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device. OpenCL [76] is a standard for parallel computing that can be used

with devices from various manufacturers, but the programmer must handle

device selection, memory management, and other tasks. An OpenCL

program consists of three key components: compute devices, kernels, and

data buffers. Compute devices can be any processor like GPU or CPU.

Kernels are OpenCL programs that work on blocks of data stored in data

buffers, which are usually in the form of N-dimensional arrays. These

kernels and data buffers are then sent to the compute devices, where the

kernels are replicated several times, corresponding to the data dimensions.

Each copy of the kernel, known as a “work item”, is assigned to a processing

element, and a group of these work items are executed simultaneously on

the compute device’s memory, with each work item handling a specific

section of the memory. The host program manages the execution of kernels

on compute devices. The host program is typically written in C, but there

are also bindings available for other languages such as C++ and Python.

The main steps of a host program include (a) obtaining information about

the platform and available devices on the computer, (b) selecting the devices

to be used in execution, (c) creating an OpenCL context, (d) creating

a command queue, (e) creating memory buffer objects, (f) transferring

data to memory buffers on the device, (g) creating a program object, (h)

loading and compiling the kernel source code or loading a precompiled

binary OpenCL program, and (i) creating a kernel object, among others.

The OpenCLIPER framework [77] was created to make it easier to

work with a range of devices, including CPU, GPU, DSP, and FPGA, and

to simplify the process compared to using pure OpenCL. That is why we

propose the use of the OpenCLIPER framework for the acceleration of the

registration and reconstruction of cine images.
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2.5.2 Deep Learning

DL is a subcategory of machine learning (ML), which belongs to a broad

set of techniques encompassed in what is known as artificial intelligence

(AI). In simple terms, AI refers to systems or machines that mimic human

intelligence to perform tasks and can iteratively improve on the information

they gather. While AI is about creating human-like machines, ML teaches

machines how to learn from data without explicit help from humans, and

DL is about computers learning how to think using structures that are,

apparently, very close to those modeled on the human brain. The concept

of acquiring more significant representations by learning successive layers

is a crucial aspect of DL. The depth of a DL model refers to the number

of layers used to build it. As data pass through each layer, the model

learns increasingly complex representations. Each layer in the network

is responsible for extracting meaningful representations from the input

data, which are then used to solve the specific problem at hand. These

simple layers are combined to form the model. The model comprises a

sequence of layers that refine the input data, with the network learning

trainable parameters or weights during training. These weights capture

the information that the network has acquired from the training data [78].

Two types of learning techniques will be of interest in this theses, namely,

supervised, and self-supervised. Supervised learning involves a set of input-

output pairs that allow the learning of a system that maps inputs to the

correct outputs. This is in contrast with unsupervised learning only, which

has input data with no corresponding labels or classifications, and the goal

is to discover patterns within the dataset. Self-supervised learning is a

variation or enhancement of unsupervised learning in which the system

learns to predict part of its input based on optimizing a cost function that

does not require labelled data.

In this Thesis we focus on CNNs. CNNs were developed to incorporate

two key concepts: preserving spatial locality in images and learning through



48 Chapter 2. Background

successive levels of abstraction. When a network has only one layer, it can

only learn simple patterns. However, with multiple layers, the network

can learn multiple patterns. The primary building block of a CNN is the

convolutional layer, which includes a set of filters that have parameters

that are learned during training. Typically, the filter size is smaller than

the size of the input image. Each filter convolves with the image, producing

an activation map. The output volume of the convolutional layer is created

by stacking the activation maps of each filter along the depth dimension.

The convolutional layer’s local connectivity requires the network to learn

filters that provide the maximum response to a specific region of the input.

The initial convolutional layers capture low-level features such as lines,

while later layers extract high-level features such as shapes and specific

objects [78]. Normally, following a convolutional layer, we will see Batch

normalization (BN). BN is a technique used for normalizing the activations

between layers. This normalization is performed on mini-batches of the

data, as opposed to the entire dataset. The purpose of BN is to accelerate

the training process and to enable the use of higher learning rates, making

learning easier and more efficient [79]. After BN we will find the rectified

linear activation or ReLU activation function, defined by h = max(0, a).

The reason why the ReLU is typically used as the activation function in a

CNN is to increase the non-linearity of the dataset. ReLUs have become

increasingly popular due to two significant advantages they offer. The first

is sparsity, which occurs when the output of the ReLU function is less

than or equal to zero. The second advantage is a reduced probability of

the vanishing gradient problem, as the gradient has a constant value when

the output is greater than zero. This results in faster learning, making

ReLUs a preferred choice over other activation functions. Other layers

we will use are average pooling and deconvolutions. Average Pooling is

a pooling operation that calculates the average value for patches of a

feature map, and uses it to create a downsampled (pooled) feature map.

It is usually used after a convolutional layer. Deconvolutions, fractionally
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strided convolutions or transposed convolutional layers carry out a regular

convolution but revert its spatial transformation.

Before training a neural network, three additional steps are required

during the compilation stage. Firstly, a loss function must be selected

to enable the network to evaluate its performance on the training data,

allowing it to adjust its parameters in the correct direction. Secondly, an

optimizer must be chosen, which provides the mechanism for the network

to update its weights based on the data it receives and the loss function.

Finally, metrics are defined to monitor during both training and testing

phases to assess the network’s performance [78].

Backpropagation is a crucial technique in deep learning that enables a

network to learn from its mistakes. It works by identifying and correcting

errors as soon as they are detected. Each layer of a neural network has its

own set of weights that determine the output values for a given input. These

weights are initially assigned randomly. The network is then activated for

each input in the training set, and the values are propagated from the input

stage to the output stage, where a prediction is made. The primary idea

behind backpropagation is to propagate the error back through the network

and utilize an appropriate optimization algorithm to adjust the neural

network weights with the goal of minimizing the error. This process of

forwarding values from input to output and backward propagation of errors

is repeated several times until the error is below a predefined threshold

or a maximum number of iterations is reached. The model is updated in

such a way that the loss function is progressively minimized, enabling the

network to gradually adjust its internal weights. When dealing with the

depth of a network and the backpropagation method, one problem that

needs to be considered is the issue of vanishing gradients. Backpropagation

involves propagating a feedback signal from the output loss down to earlier

layers. However, if this signal has to travel through multiple layers, it

may become weak or even disappear completely, making it impossible to

train the network. This is referred to as the vanishing gradient problem.
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To address this problem, skip and residual connections introduce a linear

information carry track that runs parallel to the main layer stack, aiding

in the propagation of gradients through arbitrarily deep stacks of layers.

The introduction of AI into the world of cardiovascular imaging greatly

broadens the capabilities of the field [80]. In recent times we have seen

AI gaining ground and expanding into numerous fields, improving various

technologies already in practice. DL became popular in 2012 when a

DL-based technique had an overwhelming victory in the computer vision

competition [81]. More so, DL techniques improved their performances

and by 2015 they had exceeded human accuracy during large-scale visual

recognition challenges [82]. DL learns image data directly while traditional

techniques require human intervention for feature extraction [81, 83]. A

more general overview of DL can be found in [81–87]. DL techniques have

the ability to accurately perform image registration and reconstruction on

their own. The advantage of this is that the connection between images

based on spatial statistics can be learned during a training phase, and during

the testing phase, only one pass through the network is needed. This makes

the typically slow processes of registration and reconstruction extremely

fast and allows for new real-time applications since it can complete image

registration or image reconstruction in one step, without the need of

multiple iterations.

2.5.2.1 Related Work

DL techniques such as CNNs have been used for image reconstruction in

MRI. Many DL frameworks have been proposed and experimental results

have demonstrated high-quality image reconstructions over traditional

and compressed sensing-based reconstruction methods. Work has been

reported on knee [88–90], brain [88–91] and cardiac [92–96] MRI, using both

supervised [88,89,91] and self-supervised learning [90,96,97]. Occasionally,

the network is unrolled to mimic a CS iterative reconstruction problem,
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giving rise to a cascade of CNNs [88, 89, 93]. The issue of large amounts of

training data required has been solved by reducing the number of trainable

parameters [88,98]. However, several limitations have also been identified

such as the existing techniques being computationally expensive [99], some

frameworks do not apply to parallel imaging [100], and theoretical analysis

is still needed to explain why the algorithms work [98]. An interesting

survey can be found in [87].

The field of registration has a long record [101]; the DL paradigm

has also entered the field with solutions that provide fast registrations

once networks have been trained [102]. On the one hand, supervised

solutions such as [103] and [104] rely on segmentations or landmarks to

estimate the displacements. On the other hand, there are unsupervised

solutions such as [105] and [106] that do not require any ground truth.

The VoxelMorph learning framework [107,108] belongs to the second group

and parameterizes deformations using a CNN to implement a PW solution.

In the GW arena, we are aware of few attempts that make use of DL

technology. In [109], the authors describe a framework specifically designed

to address two main challenges in multi-spectral imaging (MSI) registration,

namely the multi-modal nature of images obtained from different spectra,

and the need of joint registration of sequential images. A large number of

images was employed, but it was divided into subsets so that not many

were left for validation and testing. The resources with which the system

was trained are not modest. In addition, prediction times were somewhat

high. In [110,111], the registration is applied to brain MR scans. While

in the first case supervised learning is used, in the second case deforming

autoencoders are employed. In [112] the authors propose a single-shot

learning GW registration network to register respiratory motion-resolved

3D CT images. None of these alternatives apply GW registration to

dynamic cardiac sequences.

We should also mention the work of [113], where the authors propose

a novel joint learning approach that combines non-rigid GW registration
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and reconstruction of highly undersampled dynamic MRI. The proposed

approach utilizes an unrolled deep learning architecture that incorporates

a GW registration network and a reconstruction network in each iteration.

To train the proposed approach, registration loss and reconstruction loss

are formulated for each unrolled iteration. The input to the registration

network is the undersampled or intermediate reconstructed images, whereas

the registration loss is computed based on the fully sampled ground truth

dynamic images. On the other hand, the reconstruction loss is evaluated

by comparing the reconstruction of each unrolled iteration with the fully

sampled ground truth.

Two methods based on DL are briefly described below. The first one

is used for reconstruction, while the second is used for registration. The

importance of these methods lies in the fact that they will be the subject

of comparison in the development of this Thesis.

MoDL MoDL, which stands for Model Based Deep Learning Architec-

ture for Inverse Problems, combines the power of DL with model-based

approaches [88, 114]. It uses a CNN as a denoiser and applies it as a

regularizer to solve the optimization problem given by:

mk+1 = arg min
m

∥Em− y∥22 + λ∥m− zk∥22 (2.28)

mk+1 =
(
EHE+ λI

)−1 (
EHy + λzk

)
(2.29)

where k denotes the k-th iteration and zk is the denoised version of mk,

obtained through a CNN network. MoDL requires supervised learning to

optimize the denoiser network. The data consistency layer is immediate by

conjugate gradient blocks, but as the input is zk and the output is mk+1,

which, in turn, generates a zk+1, this requires iterating until convergence.

The iterative algorithm is unrolled for a fixed number of iterations, K, in

which the weights or parameters to be optimized are shared.
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The MoDL method has the zero-filled reconstruction, the coil sensi-

tivities and the subsampling mask as inputs, but it also needs the fully

sampled images for training. The loss is defined as the mean square error

between mK and the desired image t: C =
Nsamples∑

i=1
∥mK(i)−t(i)∥2, where

t(i) is the i-th target image.

VoxelMorph VoxelMorph (VM) is a framework that utilizes a fast

learning approach to register medical images in a pairwise manner, allowing

for deformable image registration [107]. A CNN is used to set the parame-

ters for the function, and these parameters are fine-tuned using a collection

of images. When presented with new scans, VM quickly calculates the

deformation field by evaluating the function directly.

There are two different alternatives of VM, namely one of the initial

unsupervised learning variants (VM-2, as referred to in [107]) and the

probabilistic and diffeomorphic formulation (VMdiff) [108]. The two VM

implementations use two well-known metrics as their loss function, namely

mean square error (MSE) and negative cross-correlation. The former is

defined as:

MSE(T(x)) =
1

|Xcr|
∑

x∈Xcr

(f(x)−m(T(x)))2 (2.30)

with f(x) and m(T(x)) being the fixed image or template and the deformed

images, respectively. While normalized cross-correlation (NCC) is defined

as follows:

NCC(T(x)) =
∑

x∈Xcr

(∑
xi
(f(xi)− f̄(x))(m(T(xi))− m̄(T(x))

)2(∑
xi
(f(xi)− f̄(x))2

) (∑
xi
(m(T(xi))− m̄(T(x))))2

)
(2.31)

f̄(x) and m̄(T(x)) denote local mean intensity images. xi iterates over

a square region around x with a 9-pixel size in each dimension. Notice

that the better the alignment the higher NCC; additionally, this function



54 Chapter 2. Background

always provides values between zero a one; consequently, the loss function

uses the negative of NCC, hereinafter, NegCC.

It should be noted that, VMdiff is a method for aligning images using

probabilistic models. It uses a combination of a neural network and

unsupervised learning to speed up the process. It also utilizes a unique

approach to diffeomorphic transforms, which involves integrating stationary

velocity fields through specific network operations that can be differentiated.

2.6 Conclusion

The preceding sections have provided an overview of recent research in the

field of MRI reconstruction and registration, a field that is continuously

advancing.

In this Thesis, the focus is on improving the process of reconstructing

dynamic images in CMR, with the goal of making the test more comfortable

for patients, which can be achieved by reducing the amount of information

required for image reconstruction. One way to reduce image acquisition

time is to reduce the k-space data, but this can negatively impact image

quality. To avoid this, the GWCS method makes use of an optimization

approach to reconstruct the dynamic series, where the target functions

consist of a data fidelity term and a regularization term. The first term

uses the same information as conventional processing, while the second

term, a spatio-temporal smoothness function, is calculated on motion-

compensated data using GW registration. This increases the sparse nature

of the solution, making the signal highly redundant and expressible in a

small number of coefficients. However, this process is computationally

intensive as it involves iterative steps to estimate motion, which is necessary

for the reconstruction.



Chapter 3
DL Groupwise Registration:

dGW

This Chapter presents the process of designing a DL architecture for

registering cardiac cine following a GW paradigm using affordable devices.

3.1 Introduction

As mentioned in Section 2.3 registration constitutes the bottleneck of the

reconstruction algorithm. So, in order to reduce that load, we replace

the original registration algorithm used to implement operator TΘ in

Equation (2.21) with a DL-based solution, say TDL, keeping the rest of

the reconstruction algorithm unaltered [48].

In this chapter we focus on providing a DL-based elastic GW registra-

tion solution with respect to an optimization-based traditional solution. We

propose a much simpler network than that described in [109] (see Section

2.5.2.1 for more insight on references in this paragraph); our network fits a

single affordable GPU within an average workstation to solve a GW elastic

and dynamic registration problem; in addition, results will show that our

solution outperforms the increasingly popular VM [107,108].

We will use this registration DL-based solution to replace the ME/MC

55
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stage described for GWCS in [13]. In this work we include, for completeness,

a reconstruction comparative with both results; we show that computational

costs are greatly diminished while keeping an acceptable performance.

We have used two databases of 2D cardiac cine MRI with short axis

orientation. The first database consists of multi-slice acquisitions from

89 subjects, both healthy and affected by hypertrophic cardiomyopathy

(HCM) (in the proportion 1/3 and 2/3, respectively). This database has

been previously used by our team elsewhere [115,116]. This database will

be hereinafter referred to as Database I. The different slices have been

extracted from each subject as independent 2D dynamic sequences. The

dataset has been separated into two subsets, namely training and validation,

containing 609 and 151 two-dimensional sequences, respectively (not all

data from the database have been used in this study). Each of the dynamic

sequences contains N = 30 time frames1. The images were pre-processed

so that they had a 1 mm2 resolution, and then cropped to 320× 320 pixels.

Finally, each of the dynamic sequences was intensity-normalized between 0

and 1. The second database was used for validation and testing. It consists

of 41 subjects with at least an ischemia episode. In this case, acquisitions

were single-slice, in which the slice was relatively centered in the base-apex

direction; the number of frames was also equal to 30. Images had different

in plane resolutions but, as before, they all were pre-processed so that they

had a 1 mm2 resolution, and then cropped to 320 × 320 pixels. Images

in the sequences were also intensity-normalized between 0 and 1. This

database will be hereinafter referred to as Database II.

As stated in Section 2.4, the purpose of image registration is to trans-

form the images so that corresponding structures coincide. In the cardiac

reconstruction problem, elastic deformations are applied to the original

1Notice that the cardiac cycle is divided into N equally spaced cardiac phases so
separation between frames is patient-dependent. In addition, arrhythmia episodes,
provided they occur during the acquisition, are automatically discarded by the
MR equipment.
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sequence so that the registered sequence looks static; ideally, the registered

frames in the time sequence should all be pixelwise equal, so the total vari-

ation term would be null. Following [13], an elastic deformation is achieved

by means of FFDs [54], using as a metric the SSD (see Equation (2.25))

between the images in the sequence and the reference (the reference would

be hereinafter referred to as template); the GW approach consists in solv-

ing a joint problem to find out both the optimum transformations of the

images in the time sequence to the template, as well as the calculation of

the template itself. This decision is made to avoid the bias that would

stem from choosing beforehand one of the images in the sequence as the

template [117].

Overall, the registration problem is posed as

min
T

∑
x∈Xcr

SSD(T(x)) + F (T(x)) (3.1)

where F (T(x)) is a function that imposes some regularity conditions or

constraints on the transformations and Xcr is some region in the template

domain; this region could include the whole template or could be limited

to some parts of the template (for instance, the cardiac area). Equations

(2.25) and (3.1) show that registration needs the reconstructed images,

which are obtained by minimizing Equation (2.21) which, in turn, requires

the registration solution. Therefore, as previously stated, the problem is

iterative in nature.

In this work, we solve the problem posed in Equations (2.25) and (3.1)

by means of a DL-based approach. The pipeline, hereinafter referred to as

deep groupwise (dGW), is depicted in Figure 3.1; the solution consists of

a CNN that is sequentially fed with each of the images in the time sequence

to be registered together with the available template. The network provides

a sequence of the deformation fields (i.e., transformations TDLn(x), ∀x ∈
Xcr, n = {1, . . . , N}) and it is followed by a spatial transformation module

that provides the registered images. The solution proposed is iterative;
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Figure 3.1: Outline of the proposed dGW registration network. A 2D cardiac

cine sequence consisting of N frames enters the network, one at a time together

with the template, which is calculated as described in Section 3.3. The output

of the N executions of the CNN is a sequence of N 2D deformation fields. The

original frames, together with their two-channel deformation fields, enter the

Spatial transformation block, giving rise to the registered images. This process is

applied L+ 1 times (see Section 3.5), both for training and for prediction.

specifically, we refer to an iteration as the set of actions that begins by

feeding the network with the first frame in the data sequence and finishes

with the output of the last frame in the sequence. The final solution

is obtained after several iterations; this is the first hyperparameter that

has been set in the design by means of training and validation. In the

first iteration, i.e., when no output is available yet, the template is one

of the input frames, which is selected to minimize a geodesic distance

criterion; details are provided in Section 3.3. In subsequent iterations,

the template is updated by averaging the transformed images from the

previous iteration. Let L be the number of template averages performed;

the number of iterations will be denoted by L+ 1. The main ingredients

in Figure 3.1 are now described in detail.
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Figure 3.2: Proposed convolutional architecture of the dGW network. The num-

ber of channels is shown above each layer. Skip connections involve concatenation

of feature maps extracted in the encoding stage with new feature maps from the

decoding stage.

3.2 Architecture

We propose a CNN based on the well-known U-net [118], widely used in

medical imaging. Figure 3.2 shows the network architecture; the network

has some resemblance with the network proposed in [109] although we

have reduced substantially the number of filters so that it fits an average

GPU. As can be inferred from the figure, both input and output have

two channels. With respect to the former, each channel corresponds to a

particular image frame and the available template. As for the output, each

channel represents the displacement of each material point in one coordinate

direction. The figure also shows each constituent block, the details of which

are coded both with a color and a legend. Numbers on top of each block

in the network indicate the number of channels. Skip connections are also

included both to maintain information from previous layers, as well as to

avoid the problem of vanishing gradients during backpropagation.
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3.3 Template Update

As previously stated, the Template update block carries out two different

operations, depending on the iteration number. For iterations l ≥ 1 this

module performs a pointwise average of the registered images due to its

optimality for SSD [47]. However, any other template construction policy

could be accomplished for other types of similarity measures [101]. As for

the initial iteration (l = 0), we resort to the selection of the template by

minimizing the geodesic distance of images to the template on an empirical

manifold constructed by means of a k-nearest neighbor (kNN) graph [119].

Specifically, the steps to find the reference using this method are the

following [115]:

(a) Define the similarity between two frames as the residual complexity

[119].

(b) Construct the connected kNN graph of frames based on that simi-

larity, where k is the number of neighbors of each frame. A frame is

considered connected to its k-closest frames, the higher k, the more

connected the graph.

(c) Compute the geodesic distance of every node in the graph.

(d) Select the node, i.e., the frame, with a minimum sum of distances to

the rest of the frames. This frame will be taken as the template.

Hereinafter we will refer to this procedure as automatic template selec-

tion. The template enters the network together with the dynamic sequence,

obtaining at its output the deformation fields used by the Spatial Trans-

formation block to give rise to the registered sequence. This registered

sequence will be used for the calculation of the template in the next

iteration.
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3.4 Loss Function

The proposed network may be trained by minimizing any derivable loss

function; hence, despite in this work we focus on a monomodal application

domain, the network lends itself to both monomodal and multimodal regis-

trations by appropriately choosing the similarity function in Equation (3.2).

Specifically, in our case the loss function is:

L(TDL(x)) = Similarity(TDL(x))

+ Regularization(TDL(x))

+ Constraint(TDL(x))

(3.2)

As for the similarity metric, we focus on SSD (see Equation (2.25)) for

the monomodal case [13]. The network has also been tested with NegCC

(see Equation (2.31)).

In addition, since smooth deformation fields are expected, function

F (·) in Equation (3.1) comprises some regularization terms in the first and

second-order spatial and temporal gradients; specifically:

Regularization(TDL(x)) =
∑

x∈Xcr

N∑
n=1

4∑
p=1

λpRp(TDLn(x)) (3.3)

with Xcr as defined in Equation (3.1). λp are the weights of the regular-

ization terms Rp, which are defined as:

R1(TDL(x)) =

∣∣∣∣∂Tn(x)∂x1

∣∣∣∣2 + ∣∣∣∣∂Tn(x)∂x2

∣∣∣∣2 (3.4)

R2(Tn(x)) =

∣∣∣∣∂2Tn(x)

∂x21

∣∣∣∣2 + ∣∣∣∣∂2Tn(x)

∂x22

∣∣∣∣2 + 2

∣∣∣∣∂2Tn(x)

∂x1∂x2

∣∣∣∣2 (3.5)

Rp(TDLn(x)) =

∣∣∣∣∂qTn(x)

∂nq

∣∣∣∣2 , q = p− 2, p = {3, 4}, (3.6)

with x = (x1, x2) the two coordinates of material point x. With respect to
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the temporal derivatives in Equation (3.6) we have used, in an abuse of

notation but for simplicity, the time index n as a continuous variable. All

the derivatives are approximated by finite differences.

Function F (·) in Equation (3.1) also comprises the penalty described

in [120], intended to constrain the space of solutions. Since the time

sequences under study comprise a cardiac cycle due to a synchronized

acquisition with the ECG signal, periodicity is assumed, which is enforced

by the constraint that the sum of the displacements from a given material

point is zero. This can be written as:

Constraint(x) = λc

∑
x∈Xcr

(
1

N

∑
n

(Tn(x)− x)

)2

(3.7)

3.5 Training

The proposed training scheme is now explained (see Figure 3.3 for reference).

Given an epoch, i.e., one passage of the whole training set through the

network for parameter update, the order in which dynamic series enter

the network is randomly chosen, so that sequences belonging to the same

subject do not enter consecutively; then, for each sequence, the steps taken

are:

1. Set l = 0. The template is calculated as described in Section 3.3.

2. The batch size is taken as the number of frames per slice; therefore,

following the definition of iteration previously given, network param-

eters are updated at the end of each iteration; at this moment, the

registered sequence m(T)0 is obtained.

3. Set l = l + 1. Update the template as the average of the registered

sequence at the previous iteration.
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Figure 3.3: dGW registration pipeline. The original 2D cardiac cine MRI

sequence m enters both the network and the template selection block (see Section

3.3, l = 0). The output is the registered sequence m(T)0, which is used to

calculate the template for l = 1. This is cycled until l ≤ L = 5.

4. Steps 2 and 3 are executed while l ≤ L = 5; consequently, 6 templates

are calculated for a given slice. The output at this stage is considered

to be the final registration output. The number L = 5 is a parameter

design that has been set beforehand.

The overall training consists of ten epochs; images employed for testing

were those from Database II.

When dGW is used in prediction mode, the steps taken are the same

as for training. As is customary, the selection of hyperparameters of the

trained networks is carried out using the results on the validation set. Final

network performance is calculated on the test set.
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3.6 Implementation

This proposed network is implemented in Tensorflow and Keras [121,122].

The Adam optimizer [123] was used to train the network, with a learning

rate of 10−4. We also use neuron [124] to carry out spatial transformations.

Tensorflow function add loss has been used to accommodate the three

terms defined in Equation (3.2), which have been written as different

functions.

Each network training for 10 epochs and using a batch size of 30 —which

corresponds, as previously stated, with the number of frames (N = 30)—

took 8 hours on one Intel® Core™ i7-4790 CPU @ 3.60GHz with 16GB

RAM and one NVIDIA GeForce RTX 2080 Ti GPU. This equipment is

deemed as affordable since it is quite common in an average research lab.

Figure 3.4 shows a graphical representation of the loss function on both

the training and the validation datasets from Database I as the number

of epochs. Choosing a number of epochs equal to 10 seems an adequate

trade-off between performance and runtime.

3.7 Performance Analysis and Hyperpa-

rameter Selection

We evaluated registration performance using the structural similarity in-

dex measure (SSIM) [125]; this measure incorporates three sources of

information to measure similarity between two images, namely luminance,

contrast and structure, where the latter is quantified as a measure of cross-

correlation. In our problem, because the ideal registration should give rise

to a registered dynamic sequence perfectly indistinguishable from the tem-

plate, SSIM is a suitable measure to evaluate the registration quality. For

each dynamic sequence in the validation/test dataset two distant frames are

selected to build a sample of SSIM values for a particular algorithm; using
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Figure 3.4: Loss evolution during training.

all the frames in the sequence would cause correlation within the sample

to grow. These frames correspond to systole and diastole. Comparative

performance analysis is carried out on the basis of the sample of SSIM

values from each algorithm that enters the comparison; boxplots will be

shown, and paired unilateral t-tests p-values [126] will be reported when

necessary. Sign-tests have also been calculated to avoid non-normality

issues. Unless otherwise stated p-values from t-tests will those reported;

sign-test values will only be reported when p-values are in the vicinity of

0.05.

The five hyperparameters to select are those in Equations (3.3) and

(3.7). To sample the parameter space, we resorted to a forward selection

procedure typically used in pattern recognition [127] for feature selection;

being exhaustive in our problem would lead to large training and validation

times, which we meant to avoid. Specifically, the process consists of several

stages:

• Stage zero: all the parameters in Equations (3.3) and (3.7) are set
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to zero; the network is trained and the SSIM sample is obtained on

the validation dataset.

• Stage one: we pursue to find the optimum value of each hyperpa-

rameter while the others are null. Then, the best among them is

selected. For the four parameters in Equation (3.3), we test the val-

ues {10−7, 5×10−7}; for λc in Equation (3.7) we tried {10−7,×10−7};
these values were pre-selected on the basis of the validation set in

Database I. Then, for each hyperparameter and each value within

the pairs just mentioned, we train a network and then a SSIM sample

is obtained with each validation dataset. Notice that 2 × 5 = 10

networks are trained. SSIM values turned out to be quite close to

the all-null solution indicated in Stage 0. Thus, we have obtained

the boxplots of the pairwise differences between the SSIM sample

with each parameter taking a non-null value and the SSIM sam-

ple obtained from the network in Stage 0. Figure 3.5, upper row,

shows these boxplots for the validation sets in Database I (left) and

Database II (right) for the best selection of each parameter within

the pair indicated above (i.e., for the value of this parameter that

provides the most favorable result to this parameter); clearly, λ1

turns out not to be relevant, while the others provide positive-shifted

distributions; in the four rightmost boxplots differences turned out

to be significant with p-values < 10−4. As can be appraised, the

highest median corresponds to the activation of λ3 = 10−7; this is

observed with the two databases. Hence, the result of this stage is

the setting of the first order (p = 3) temporal derivative defined in

Equation (3.6) to the value 10−7.

• Stage two: the purpose is to find whether the combination of two

non-null hyperparameters (being one of them λ3 = 10−7) provides

significantly different results than those provided by the network

with λ3 = 10−7 and the rest of them null. To this end, new networks
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are trained with λ3 fixed while the others can take values within the

pairs indicated above. Then, 2× 4 = 8 networks are trained and, for

each one, a SSIM sample is obtained with each validation dataset.

Should significant differences be found, the second hyperparameter

would be that value associated with the minimum p-value. Figure 3.5,

lower row, shows the corresponding pairwise differences in this stage

for the best selection of each parameter within the pair indicated

above for the validation sets in Database I (left) and Database II

(right); the figure clearly shows that adding a second parameter does

not provide better results than keeping λ3 activated on its own since

differences are negative. Therefore, the forward selection procedure

ends at this stage, with the selection of a network with only one

hyperparameter activated.

• Further stages: in the case that two parameters had been selected,

this process would continue by setting a third parameter, with the

selected two parameters from stage two remaining fixed, and would

continue until all the parameters were set or no significant differences

were obtained. Since such differences were not found on stage two,

no further stages were tested.

3.8 Experiments

In this section, we provide an overview of the experiments we have con-

ducted; when appropriate, we describe methodological details not directly

related to our proposal to make the section self-contained. Unless otherwise

stated, all the comparisons will be based on the SSIM distributions of the

solutions tested on the test set from Database II.
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Figure 3.5: Differences between the SSIM samples for the validation sets in

Database I (left) and Database II (right). (Upper row) Pairwise differences in

Stage 1 with each parameter taking a non-null value and the SSIM sample obtained

from the network in Stage 0. (Lower row) Pairwise differences in Stage 2 for the

best selection of each parameter within the pair indicated above.
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3.8.1 Experiment 1: Iterations, Time Sequence

Ordering and an Alternative Similarity Met-

ric

Once the network model has been selected and hyperparameters are set, we

meant to test whether our iterative solution i.e., L = 5, (recall Section 3.5

and Figure 3.3) was worth taking as opposed to providing a feedforward

solution (L = 0). To this end, the SSIM distribution of the outputs at

l = 0 and at l = L = 5 have been compared.

For visualization purposes, we also show some images that result from

the registration. In this case, we employ the Matlab function imshowpair

where differences between the images are highlighted by means of pseu-

docolor; the presence of color means differences between the images with

higher intensity for higher differences; green reddish tones can be appraised,

depending on which of the two images shows a higher value at a particular

pixel. Gray scale is maintained when pixel values are alike. Therefore, the

more colored the pixels and higher the intensity in the representation, the

higher dissimilarity between the images.

In addition, we also tested whether the order in which the frames

enter the network make a difference. To this end, two experiments were

conducted. In one of them, the first frame in the sequence was randomly

chosen and then the time ordering was followed (when the end of the

sequence was reached, we followed its periodic extension, i.e., the N -th

frame was followed by frame number 1). The second experiments consisted

in random permutation of the frames within the dynamic sequence.

Finally, although we have focused on SSD, we have conducted an

experiment to verify that our architecture can adapt to other types of

similarity metrics in the loss function. To this end, we have used the

NegCC, defined in Equation (2.31); this function is calculated for each

image in the sequence, i.e., 1 ≤ n ≤ N , and its values are accumulated.
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Template selection and batch size remain as described in Sections 3.5 and

3.6 and hyperparameters have all been set to zero. As for the SSD, we

have tested both the network with all hyperparameters null as well as the

solution we propose as optimal, i.e., that with λ3 = 10−7.

As for the importance of having L = 5 as opposed to L = 0, i.e., an

iterative vs. a feedforward solution, a paired t-test was conducted on the

outputs obtained from the test data from Database II. The p-value was

< 10−7, i.e., significant differences existed using L = 5 as opposed to L = 0.

Figure 3.6 shows the evolution of SSD as a function of the number of

iterations; we have drawn a vertical line of the number of iterations we set

as a design parameter. As can be observed, the SSD value diminishes with

the number of iterations but it stabilizes around six. Figure 3.7 shows an

example of two registrations with no iterations (left) and with six iterations

(L = 5, right); the SSD for the case L = 0 are 5.65 (upper figure) and 8.67

(lower figure) while for the L = 5 case the values are 2.49 (upper figure)

and 4.52 (lower figure). Although differences are subtle, one can observe

a general higher intensity in the color on the leftmost images; differences

have been highlighted by means of arrows.

As for the importance of the ordering of the data frames within the

dynamic sequence, the random selection of the first frame in the sequence

gave rise to non-significant differences (p = 0.05, sign-test p = 0.0442).

However, the random permutation did give rise to significant differences

(p = 2.05 ·10−4). Consequently, no differences exist with a random selection

of the cardiac cycle start but differences do exist when the time frames are

randomly shuffled.

As for using NegCC as opposed to SSD, Figure 3.8 shows boxplots

of the solutions; specifically the leftmost figure shows SSIM, from left to

right, values of the SSIM distribution for NegCC, SSD with all parameters

null and SSD with only λ3 non-null. Distributions show some degree of

overlapping. Pairwise differences are shown in the rightmost figure, where

the first boxplot shows the case NegCC - λ3 = 10−7 case and the second
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Figure 3.6: SSD obtained in dGW registration according to the number of

iterations.

one shows case of NegCC and all-null parameters for SSD. Differences in

paired comparisons do exist (p < 10−7) for both. Some example images

are shown in Figure 3.9.

3.8.2 Experiment 2: Performance Comparison

with Another DL Architecture

The performance of our model was compared with two different alternatives

of VM, which have been briefly described in Section 2.5.2.1.

VM networks were trained in two different ways as follows: (a) For

each slice in the training set, the first image in the sequence is chosen as

the template. The network parameters are updated once the remaining

frames in the sequence are registered, i.e., batch size equals N − 1. Then,

the next frame is chosen as the template and the same process is repeated

until all of the frames have acted as template; then, we move on to the

next slice and continue until the epoch finishes; (b) For each slice in the

training set the template is automatically chosen (following the procedure

described in Section 3.3 for l = 0), so batch size equals N as in dGW
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Figure 3.7: Differences between l = 0 and l = L = 5 in dGW registration quality.

We show systole and a diastole superimposed frames for two slices in Database

II. Leftmost column: dGW registration with l = 0. Rightmost column: dGW

registration with l = L = 5. Pink: registered systole with higher intensity. Green:

registered diastole with higher intensity.

training; then, we move on to the next slice and continue until the epoch

finishes. In prediction mode, the network operates as indicated in (b), i.e.,

the template is automatically chosen and the N − 1 remaining frames are

registered by means of the network. Comparisons, in this case, are made

on the basis of both SSIM as well as on other popular metrics, such as

signal to error ratio (SER), Mutual Information (MI) [128] and CC [129].

We also show exampled images in a pseudocolor composition.

Figure 3.10 shows boxplots that represent the distribution of different

values used to measure similarity in the registration. As for this section,

the nine rightmost boxplots are of interest; the boxplot labelled as dGW

corresponds to our solution. The following four boxplots correspond to the

original VM-2; the subindex indicated the type of training applied (see
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Figure 3.8: (Left) Distribution of SSIM samples in dGW registration, using

NegCC as similarity metric, SSD with null hyperparameters and SSD with

λ3 = 10−7. (Right) Differences between the SSIM samples on the left.
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Figure 3.9: Differences between the implementation with NegCC as a similarity

metric and two models with SSD in dGW registration quality. We show systole

and a diastole superimposed frames for a slice of a patient in Database II. From

left to right: dGW registration with SSD and λ3 = 10−7, dGW registration with

SSD and all hyperparameters null, dGW registration with NegCC and λ3 = 10−7.

Pink: registered systole with higher intensity. Green: registered diastole with

higher intensity.

Section 3.8.2), while the term after the comma indicates the similarity

metric (either Equation (2.30) or (2.31)). The last four boxplots show

similar results for VMdiff [108]). In this case we show one of the hyper-
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Figure 3.10: Performance comparison between dGW and other alternatives.

Four different similarity metrics are used. Upper line: SSIM (left) and MI (right);

Lower line: SER (left) and NCC (right).

parameters (λ); since this algorithm requires two, λ = 10 is accompanied

by the parameter σ = 0.02 while λ = 25 is accompanied by the parameter

σ = 0.01. As can be inferred from the figure, our algorithm shows a

better performance than the VM and VMdiff alternatives. As for SSIM,

significant differences exist for all the VM implementations (p < 10−7).

As an illustration, Figure 3.11 shows an example of registrations with

dGW and the eight VM implementations. As indicated in Section 3.8.2,

the presence of color indicates the presence of differences in the images.

This example seems to corroborate the general trends shown in Figure 3.10.
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Figure 3.11: Differences between dGW and the eight VM implementation in

registration quality. We show systole and a diastole superimposed frames for a

slice of a patient in Database II. Leftmost column: unregistered cine cardiac MRI

(up), dGW registration (down). Middle column: the four VM-2 implementations.

Rightmost column: the four VMdiff implementations. Pink: registered systole

with higher intensity. Green: registered diastole with higher intensity.
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3.8.3 Experiment 3: dGW vs. an Optimization-

Based Registration Approach

Our method dWG has been compared with the optimization-based group-

wise registration method described in [13] for ME/MC within an image

reconstruction procedure. In this experiment the registration procedure

is compared to our DL solution with fully sampled data. In this case, we

use the same parameters as those mentioned in Section 3.8.2 as well as the

same similar pseudocolor representation of the registered images.

The two rightmost boxplots in Figure 3.10 represent the distribution

of the metrics used to measure registration quality for GW and dGW.

The times taken in the registration process were 47.13± 14.23 for the GW

procedure while ours took 5.29± 0.06 (both expressed in seconds and with

the format average± estimated standard deviation).

Figure 3.6 shows the evolution of average SSD with the number of

iterations in the algorithm for both GW and dGW and the test set in

Database II. We have drawn a vertical line in L = 5 to indicate the ordinary

number of iterations that we use in dGW. For this experiment, however,

we executed a higher number of iterations to check whether this higher

number provides additional value; this does not seem to be the case.

As an illustration, Figure 3.12 shows the same example as that in

Figure 3.11; the left and right most figures (labelled as “Unregistered” and

“dGW”) coincide with the images on the leftmost column in the latter figure.

The image in the center is the result for GW registration. Differences

in this case are more subtle than for the VM case, accordingly with the

boxplots differences in Figure 3.10.
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Unregistered GW dGW

Figure 3.12: Differences between GW and dGW registration. From left to

right: unregistered cine cardiac MRI, GW registration, dGW registration. Pink:

registered systole with higher intensity. Green: registered diastole with higher

intensity.

3.8.4 Experiment 4: Dynamic Image Reconstruc-

tion

As a proof of concept, several reconstructions were performed using the GW

method published in [13]; this method makes use of an ME/MC procedure

using the GW optimization-based registration method mentioned in Section

3.8.3. dGW enters this field as a DL registration alternative to the original

optimization-based procedure. The method in [13] is doubly iterative, i.e.,

it iterates in Equation (2.21) as well as to solve the registration problem,

i.e., it also iterates in Equation (3.3). For simplicity, only one iteration

in Equation (2.21) has been carried out, both for GW and dGW. The

experiments were conducted as follows: for a time sequence, each frame

underwent a Fourier transform. Then, a fraction of the horizontal lines

in the transform was retained while the rest were set to zero. The ratio

between the lines retained and the overall number of lines is known as

AF. This operation is modelled by operator E in Equation (2.21). The

experiments have been conducted with different AFs.

As a proof of concept, several reconstructions were performed for
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Figure 3.13: Average SSIM obtained, for different AF values, between the

ME/MC reconstructions carried out with dGW and GW, with respect to the fully

sampled reconstruction.

different AFs, using the dGW method and the GW method published

in [13], for which a single iteration of ME/MC is carried out. Figure 3.13

shows the different average SSIM values for the sequence under study, when

comparing a fully sampled reconstruction with the ME/MC reconstructions

performed with dGW or GW.

Figure 3.14 shows the reconstructed images for AF=8. To facilitate

visualization, a frame corresponding to systole and another one corre-

sponding to diastole are presented. As stated in 3.1, our reconstruction

results seem comparable to those obtained with the original method, while

registration times are noticeably reduced. No clear differences between the

two types of reconstruction are appraised.

3.9 Discussion

In this chapter we present dGW, a GW registration methodology based on

DL techniques that can accommodate both monomodal and multimodal

metrics. The registration consists of a network composed of a CNN and a
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Figure 3.14: Systole and diastole reconstructions with AF=8. Upper row: systole;

lower row, diastole. Columns: from left to right, fully sampled reconstruction,

GW and dGW.

spatial transformation; the network undergoes an unsupervised training for

which there is no need of landmarks or any sort of labelling; self similarity

within the sequence with respect to the template has been pursued as a

design criterion. This self similarity can be defined for either monomodal

or multimodal images. Results in Section 3.8.1 reveals that our method

can deal with both types of metrics with satisfactory results; SSD turned

out to work better than NegCC but the latter was did not go through an

hyperparameter optimization procedure, so room for improvement exists.

Our solution is image-based as opposed to patch-based [130, 131]. The

latter may need to include an adaptive sampling strategy to assure that

a sufficient number of patches is used as well as to select the most repre-

sentative patches for the entire training set [132]. This overhead is not

necessary with our dGW.

We have adopted a methodology based on the forward selection method
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to avoid an exhaustive number of hyperparameter combinations. Despite

this solution is known to be suboptimal, it is our understanding that this

approach is worth taking as a balance between quality and manageability

of the required training. We have observed that although most of the

hyperparameters (recall Equations (3.1) and (3.7) as well as Figure 3.5)

are significant in isolation, when tested in pairs no additional benefits are

obtained with respect to using λ3) as the unique non-null hyperparameter.

This may be explained by the fact that the Spatial transformation block

(recall Figure 3.1) carries out an implicit spatial regularization with the

interpolation but no explicit provision is made in Equation (2.25) to foster

time continuity in the deformation fields, i.e., to enforce time-smooth

deformation fields. In addition, the constraint parameter λc (recall Equa-

tion (3.7)) does not seem so relevant; the network may be learning some

sort of periodicity through the time continuity and the periodicity of the

time derivatives through λ3 (specifically, notice that time derivatives in

Equations (3.6) are calculated as “mod N” finite differences, so frame N

makes use of the deformation fields at frame 1). Interestingly, as observed

in Section 3.8.1, the network is robust to a random selection of the starting

point in the cardiac cycle, but performance degrades with a shuffle in

cardiac phases within the cardiac cycle. This seems coherent with the fact

that shuffled cardiac phases would give rise to discontinuities in the motion

fields.

Registration performance in terms of the four metrics shown in Fig-

ure 3.10 draws higher figures for our dGW (second leftmost boxplot) with

respect to the four implementations of VM (next four boxplots) and the

four implementations of VMdiff (four rightmost boxplots). p-values for

the eight t-tests provided significative differences as well. We must say,

however, that these two approaches are PW and not originally intended

for dynamic sequence registration but for an atlas registration, for which

the template role would be played by the atlas. This being the case, we

have made an effort to adapt the training of these architectures to our
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case, as detailed in Section 3.8.2; this adaptation makes the network, in

fact, behave as a GW solution since we have used a batch size that com-

prises all (or most) of the frames in the sequence. No iterations, however,

are applied, nor the template is updated. These two shortcomings may

explain the lower performance of these networks reflected in Figure 3.10.

Unfortunately, no comparisons could be made with [109] because of three

reasons; first, the paper, in our opinion, does not include sufficient detail

so as to replicate the method. Second, the code is not available. Third, we

meant to replicate their network architecture but, when it was launched,

our GPU could not give room to the network, so training was prohibitively

long. We stress that our approach, on the other side, runs smoothly on an

average GPU in the market (recall the specific hardware used from Section

3.6).

dGW was also compared with GW, an optimization-based groupwise

registration method used by our team for an MR reconstruction procedure.

Figure 3.10 shows better performance from dGW, although differences

in an actual image (as shown in Figure 3.12) turned out to not to be so

remarkable.

Finally, reconstruction performance has provided comparable results in

terms of visual inspection for GW and dGW; it should be noticed, however,

that GW should be currently taken as an upper boundary for our perfor-

mance since the network has not been so far trained with undersampled

data. This has been set aside in this paper to focus on the canonical

design of the network as a GW registration tool; this is, consequently,

a current limitation of our solution. Approaches in which our solution

is jointly trained within and end-to-end reconstruction system [88] seem

worth exploring. Nevertheless, and as for registration runtimes, results in

Section 3.8.3 reveals that dGW has a 9-fold average gain with respect to a

traditional optimization-based solution; this is the objective we pursued.





Chapter 4
Cine MR reconstruction with

ME/MC using OpenCLIPER

In this Chapter, we present our work on developing a device-agnostic and

parallel version of GWCS, with a particular focus on the ME/MC procedure.

Our objective is to produce high-quality images while minimizing the time

required for the reconstruction process, in order to achieve clinically-viable

delays.

4.1 Introduction

The dynamic image reconstruction problem is highly parallelizable. This is

why we propose its implementation in OpenCLIPER [77], an OpenCL-based

framework for medical Image ProcEssing and Reconstruction developed

in a previous work, which facilitates the programming of such problems

on OpenCL, allowing its execution on any device (CPU, GPU, FPGA...)

regardless of the vendor.

Our parallel implementation is coded in OpenCL [76], and all parallel

operations are programmed as OpenCL kernels. In practice, high data

dimensionality implies that storage of matrices associated with operators

is not feasible due to memory requirements. Consequently, operators are

83



84 Chapter 4. Cine MR reconstruction with ME/MC using OpenCLIPER

implemented by means of functions and the latter have been the focus of

our parallelization effort. In the next two subsections we provide some

details on the ME/MC stage and the NESTA algorithm parallelization.

Pseudocode is included below, in Algorithm 1.

Algorithm 1 MRI reconstruction with ME/MC

1: Step 0: NESTA multicoil reconstruction

2: Inputs: multi-coil k-space subsampled data b, encoding operator
E = AFS, sparsifying operator U = Φ, their adjoints and parameters
λ, γ, La ∈ R+

3: Initialization: µ(0), x0 = EHb, the number of steps maxIter and
parameter Lµ

4: for t = 0 to maxIter do

5: Step 0.1: Apply Nesterov’s algorithm with µ = µ(t)

6: for k ≥ 0 do
7: a. Compute the gradient of the ℓ1-norm:

∇fµ(Uxk) =

{
1
µU

HUxk, if |Uxk| ≤ µ,

UHsgn(Uxk), otherwise,

where function sgn() applied to vector v means the stack of
sign(vi/|vi|), with vi the i-th vector component.

8: b. Compute the gradient of the cost function:

∇f(xk) = EH(Exk − b) + λ∇fµ(Uxk)

9: c. Compute yk:

yk = xk −
1

λLµ + La
∇f(xk)

10: d. compute zk:

zk = x0 −
1

λLµ + La

∑
j≤k

αj∇f(xk)

where αk = 1/2(k + 1).
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11: e. Compute xk+1:

xk+1 = τkzk + (1− τk)yk.

where τk = 2/(k + 3).

12: Stop when a given criterion is met

13: end for

14: Step 0.2: Decrease the value of µ : µ(t+1) = γµ(t)

15: end for

16: Outputs: reconstructed image m0 = xk+1

17: for i = 1 to MotionIters do

18: Step 1: ME-GW

19: Inputs: reconstructed image mi−1

20: Initialization: fix the region of interest, create the control points
mesh, compute B-splines products and coefficients, as in [13]

21: for j ≥ 0 do
22: Step 1.1: Calculate the pixel-wise displacement fields
23: Step 1.2: Transform images using linear interpolation
24: Step 1.3: Calculate the metric and smoothing terms
25: Step 1.4: Calculate gradients
26: Step 1.5: Update the movements of the control points

27: Stop 1
KN ||θn−1 − θn|| < ϵT and 1

|X|(Hn−1 −Hn) < ϵH
28: end for

29: Outputs: TΘ

30: Step 2: NESTA reconstruction with MC

31: Inputs: multi-coil k-space subsampled data b, encoding operator
E = KFS, sparsifying operator U = ΦTΘ, their adjoints, and parame-
ters λ, γLa ∈ R+

32: Initialization: µ(0), x0 = mi−1, the number of steps maxIter and
parameter Lµ

33: See above (step 0) for further details

34: Outputs: reconstructed image mi = xk+1

35: end for
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4.2 Parallel Implementation of GW

The registration procedure is determined by the values of the parameters

θu in Equation (2.27). These parameters are obtained by minimizing the

problem defined in Equation (2.26). In this section we will concentrate

on the implementation of the most resource-demanding operation, which

turns out to be finding the gradient of Equation (2.25). The gradient is,

in essence, calculated as follows:

∂V (x)

∂θ
=

∂V (x)

∂m
· ∂m

∂TΘ(x)
· ∂TΘ(x)

∂θ
(4.1)

where V (x) is the metric, m represents the image sequence and TΘ the

transformation. Notice that x will be a grid point (with coordinates

given as row and column numbers r, 1 ≤ r ≤ N1, and c, 1 ≤ c ≤ N2,

respectively). In addition, each parameter θ is associated to each of the

frames (with index n, 1 ≤ n ≤ N) as well as to each of the control points

(with coordinates, say (ru, cu)) and each of the directions of variation,

namely, horizontal (index l = 1) and vertical (l = 2); these indices will be

borne in mind for the derivatives.

The first factor in equation Equation (4.1) can be written:

∂V (x)

∂m r,c,n
=

2

N

(
mn (TΘn(x))r,c −

1

Nt

N∑
k=1

mk (TΘk
(x))r,c

)
(4.2)

with mn(x) the n-th frame in sequence m, evaluated at pixel x, and TΘ(x)

it the transformed position of pixel x in that phase. This equation is

computed in parallel for the N1 ×N2 ×N pixels.

The second factor in Equation (4.1) is the image gradient with respect to

the transformation. The actual operations we perform are the interpolation

of the gradient of each frame mn at position TΘn(x). The interpolation is

carried out within a region of interest, say Xm, so the number of operations
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launched in parallel is N1Xm ×N2Xm ×N , where the two first factors are

the dimensions of region Xm.

The last factor in Equation (4.1) is the gradient of the transformation

with respect to the variables θu to be optimized; since these variables enter

Equation (2.27) as factors, their derivative is straightforward and can be

precomputed. Hence, the calculation of the gradient of Equation (4.1) will

be performed parallelizing along the rows and columns affected by the

B-splines (rs and cs), the frame dimension (n), the rows and columns of

the control points (ru and cu) and the spatial dimension (l), as can be seen

below (Equation (4.3)):

∂V (x)

∂θ rs,cs,n,ru,cu,l
=

∂V (x)

∂m rs,cs,n,l
· ∂m

∂T(x) rs,cs,n,l
· ∂T(x)

∂θ rs,cs,ru,cu
(4.3)

4.3 Parallel Implementation of NESTA

For the parallelization of NESTA we must pay attention to the operators.

Specifically, for the encoding operator E the following parallelizations were

made: 1) Multiplication by the coil sensitivities S is performed parallelizing

along the spatial dimensions (i.e., N1×N2 operations launched in parallel).

2) The by-frame spatial Fourier transform F is performed parallelizing

along the coils and frames dimensions (i.e., C×Nt parallel operations) using

the clFFT [133] library. 3) Application of the undersampling mask A is

performed parallelizing along the spatial dimensions (i.e., N1 ×N2 parallel

operations). Note that in S, the coils and frames dimensions could have

also been parallelized; nevertheless, we empirically verified that this did not

constitute a performance gain, presumably caused by the limited number

of cores in the hardware. As for the adjoint encoding operator EH , the

following parallelizations were made: 1) Multiplication by coil conjugate

sensitivities SH and, 2) by-frame spatial inverse Fourier transform FH ,

Both of them were parallelized analogously to their counterparts S and F,
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respectively. 3) Summation of the resulting image sequence in each coil is

parallelized along the spatial and temporal dimensions (i.e., N1 ×N2 ×N

operations launched in parallel).

Regarding the sparsifying operator U = Ψ = ΦTΘ, the temporal total

cyclic variation Φ is performed parallelizing along the spatial dimensions

(i.e., N1 × N2 operations launched in parallel) and the TΘ groupwise

transformation for MC is performed parallelizing along both the spatial

and the frame dimensions (i.e. N1Xm × N2Xm × Nt parallel operations).

Similarly, the adjoint sparsifying operator UH is parallelized along the

same dimensions as U .

Finally, matrix operations needed in NESTA, such as scaling a vector

by a constant or addition of two vectors, are performed efficiently by the

clBLAST library [134]. Thus, all the algorithm steps (see Algorithm 1 for

details) can be straightforwardly computed by combining operators E and

U , their adjoints EH and UH , and a few matrix operations.

4.4 Algorithm Implementation on a Generic

Parallel Device

We have translated the original method into an actual device-agnostic

software solution which (a) finishes in clinically viable times, comparable

to other popular reconstruction frameworks, (b) is suitable for execution in

parallel devices, and (c) complies with the WORA paradigm (Write once,

run anywhere) so neither code nor data need be duplicated for CPU/GPU

or any other device. As stated in Sections 4.2 and 4.3, we make extensive

use of our framework OpenCLIPER to provide this solution.

In this section we provide details on this implementation; Figure 4.1

shows a diagram of our system functional units that will guide us through

the description that follows.
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4.4.1 Generalities

Together with the core algorithm —enclosed within the dashed rectangle

in Figure 4.1 and its operations represented by rectangles with white

background—, several other tasks must be carried out for the system to

be functional by itself. These tasks are not only part of the initialization

process but they are also active while the actual processing is taking place.

All these administrative tasks (shaded boxes in Figure 4.1) are dealt with by

OpenCLIPER with minimal programmer intervention. While the system

is at work, data pass through several transformations (called processes in

OpenCLIPER) that need to be connected appropriately.

An appropriate computing device must be selected (top row in Fig-

ure 4.1). Since OpenCL supports a wide range of them, an additional

workload is the need to detect the available platforms and devices (which

may be from different vendors), and to choose the most suitable among

them. Moreover, once a device has been selected, kernels must be loaded

and compiled for the chosen device. OpenCLIPER simplifies these tasks

significantly: kernel loading and compiling is done without user intervention

when a process demands it, caching them as necessary so time is dedicated

to compilation only once per device (and driver version). Platform/device

detection and selection may be either specified by the programmer (via

hints such as device type, model, supported CL version, etc.) or, alterna-

tively, left to the framework by just a single line of code. In the latter case

—or, in the former, whenever the specified hints match several candidate

devices—, the a priori fastest device is automatically chosen.

All compute-intensive transformations are performed in the computing

device, so the system takes full advantage of its parallel capabilities and

hence clinically viable execution times may be achieved (see quantification

in Section 4.5). The algorithms implemented in OpenCLIPER, which are

themselves processes, are made up from several other processes which may

be reused at programmer discretion. In this sense, OpenCLIPER provides
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a pool of frequently used processes as a ready-to-use toolbox. These tools

make the implementation of more involved processes —such as the two

described in Section 4.1— easy.

With respect to the four blocks on top of the NESTA Process in

Figure 4.1, after the selection of the most appropriate device (either

manually or automatically), kernel loading is delayed until a process requires

it. At that time, a previously compiled (i.e. cached) version of the kernel is

sought. If it does not exist yet, kernel compilation is automatically triggered

and the kernel cache is updated (loading of cached kernels is typically two

orders of magnitude faster than on-the-fly compilation). Compilation logs

(if any) are shown to the user for debugging purposes.

To maximize utilization of the computing device, data objects may be

loaded and saved concurrently while the device is busy processing other

objects. Since MRI data files are often large, this can save a noticeable

amount of processing time per patient.

4.4.2 Data Structures

OpenCLIPER is a software tool that simplifies the burden of keeping track

of pointers to data objects and their properties in GPU computing. It

does this by encapsulating all data properties within the buffer in the

computing device, which makes it transparent to the kernel programmer

and eliminates the need for additional kernel arguments. It supports data

with an arbitrary number of frames, coils, sensitivity maps, sampling

masks and data dimensionality for the special case of MRI data, and

arbitrarily complex data for the general case. The framework also provides

methods to traverse data buffers along any given dimension. Additionally,

OpenCLIPER maps all sub-objects in a data object contiguously in device

memory and properly adjusted to hardware alignment, allowing kernel

programmers to assume a linear layout when processing compound data

objects. Data transfers between host and device are also driven by the
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Direct Access Media (DMA) controller to maximize speed. OpenCLIPER

has been designed as a development tool for researchers.

4.5 Evaluation

Several reconstructions to test the behaviour of our platform were executed.

Reconstructions have been carried out on 7 healthy volunteers courtesy

of King’s College London. These data are 2D Cartesian, fully sampled

dynamic short axis cine breath-hold ECG-triggered acquisitions in a 1.5

T Philips scanner with a Balanced Steady State Free Precession (bSSFP)

sequence. Some relevant parameters of the acquisitions include flip-angle

60◦, TR/TE = 3/1.5 ms, spatial resolution 2×2 mm2, slice thickness 8 mm,

20 cardiac phases, FOV 320×320 mm2, 12-14 slices and the number of

channels is between 19 and 32, depending on the subject. Both sensitivity

maps and k-space data from all coils were provided to us. These datasets

were retrospectively subsampled with a Gaussian variable-density random

undersampling pattern along the phase encoding direction described in [135]

for different values of AF. Hence, for the experiments carried out we have

fully sampled images which have been used as a reference for measuring

some quality indices (QIs).

First, we have compared our platform with BART [66] to solve Equa-

tion (2.21). As for OpenCLIPER we have used NESTA. As for BART1,

since NESTA is not available in that platform, we have used the Alternating

Direction Method of Multipliers (ADMM) [136]. As for these comparisons,

TΘ in Equation (2.21) is the identity due to the fact that BART does not

incorporate —to the best of our knowledge— a GW ME/MC implementa-

tion.

Three experiments have been conducted, namely (a) AF=4 (AF4), (b)

1Release downloaded on February 25, 2020, from https://github.com/

mrirecon/bart/releases/tag/v0.5.00

https://github.com/mrirecon/bart/releases/tag/v0.5.00
https://github.com/mrirecon/bart/releases/tag/v0.5.00
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Table 4.1: Mean SSIM values evaluated on undersampled BART reconstructions

for a single slice of all patients and the three experiments (AF4, AF4CC, and

AF8). Maximal values (bold highlighted) indicate the optimal regularization

weight (λ in Equation (2.21)) for the experiments.

Reg. Term AF4 AF4CC AF8

λ = 10−5 0.8776 0.8923 0.8200
λ = 10−4 0.8832 0.8979 0.8293
λ = 10−3 0.9037 0.9201 0.8642
λ= 0.01 0.9056 0.9229 0.8719
λ = 0.1 0.8955 0.9133 0.8592
λ = 1 0.8951 0.9128 0.8589

AF=4 plus coil compression (AF4CC) from 19-32 to half of the channels

(9-16), and (c) AF=8 (AF8). The parameter λ in Equation (2.21) has been

chosen to maximize the SSIM [125] in the BART reconstruction. Table 4.1

shows SSIM values for the three experiments. Thus, λ = 0.01 has been

used for BART and OpenCLIPER reconstructions. For the sake of fairness,

since the two optimization algorithms are different, we have chosen the

internal NESTA parameters (namely, both µ and the stopping criterion,

see lines 5 and 12 in Algorithm 1) to guarantee that SSIM values are

comparable for ADMM and NESTA reconstructions; this is graphically

shown in Figure 4.2a, with boxplots of SSIM along all the slices of all the

patients. Boxplots have been grouped in pairs, i.e., AF4 for OpenCLIPER

and BART, and the same structure goes for AF4CC as well as for AF8, as

indicated in the horizontal labelling and in the legends on the figures. For

completeness, different QIs have been analyzed. Figure 4.2 also includes the

corresponding boxplots for the NCC (Figure 4.2b) and SER (Figure 4.2c).

Mann Whitney tests [126], show no significant differences in any of these

parameters between the compared frameworks.

Figs. 4.3 and 4.4 show two reconstruction examples for two different

patients. In both cases, the fully sampled reconstructed images are shown

as reference with the images reconstructed using BART and OpenCLIPER



94 Chapter 4. Cine MR reconstruction with ME/MC using OpenCLIPER

AF4 AF4CC AF8

QIs for OpenCLIPER/BART

SS
IM

OpenCLIPER
BART

0.
95

0.
90

0.
85

0.
80

0.
75

QIs for OpenCLIPER/BART

AF4 AF4CC AF8

(a)

N
C
C

OpenCLIPER
BART

AF4 AF4CC AF8

1.
00

0.
99

0.
98

0.
97

0.
96

0.
95

(b)

SE
R

25
20

15

AF4 AF4CC AF8

OpenCLIPER
BART

(c)

Figure 4.2: Boxplots of SSIM (a), NCC (b), and SER (c) for experiments AF4,

AF4CC, and AF8 on both OpenCLIPER, which makes use of NESTA, and BART

(which uses ADMM). No significant differences have been found.
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for the experiments AF4 and AF8; for the latter, ME/MC reconstruction

is also shown for OpenCLIPER. With these parameter setting, execution

times in identical computer load situations have been compared. To deal

with variability, each experiment has been run one hundred times for each

patient.

Four platforms with four different GPUs have been employed. All of

them are standard PC-class workstations based on Intel Core or AMD

Ryzen processors. The exact GPU models are GeForce 2080Ti and Quadro

RTX 6000 from NVIDIA, and Radeon RX 480 and Radeon RX 5700XT

from AMD. For reference, some tests have also been carried out using a

CPU as the computing device in a 70-thread Intel Xeon server. Notice that

BART can only be run on CPU or NVIDIA GPUs, so no further comparison

could be done between AMD and NVIDIA as for BART performance.

Figure 4.5 shows boxplots of execution times on the GeForce 2080Ti

(a) and RTX6000 (b) for the three experiments, with the same ordering

as in Figure 4.2. As for a comparison betweeen NVIDIA and Radeon,

Figure 4.6 shows boxplots of the AMD Radeon RX 5700XT (GFX1010)

and the NVIDIA Quadro RTX 6000 in the same conditions as in the

previous experiment. In terms of performance, the FFT implementation

used by the reconstruction algorithm plays a prominent role. BART uses

the NVIDIA’s well-known proprietary implementation cuFFT, whereas

OpenCLIPER uses the AMD’s open-source implementation clFFT. While

the former is highly optimized for NVIDIA GPUs, the latter is conceived to

be run on every possible computing device and hence lacks of any specific

optimization. This results in clFFT being slower than cuFFT, as shown in

table 4.2.

OpenCLIPER compensates this with performance enhancements in

other areas, such as parallel loading/saving of data and kernel caching (see

section 4.4)2.

2In our previous work [77], FFT times reported were overestimated since they
incorporated an additional synchronization of the device command queue.
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Figure 4.5: Boxplots for experiments AF4, AF4CC, and AF8 on (a) GeForce

2080Ti and (b) RTX6000. Times reported are per whole slice stack.

Figure 4.7 shows boxplots of SSIM for AF8 on OpenCLIPER with

and without ME/MC; whereas boxplots for NCC and SER are shown in

Figure 4.8. Results of the unilateral Mann-Whitney test for SSIM are

significant (p=0.008) for ME/MC. If a unilateral signed rank test is run per

patient, differences favor ME/MC in six out of the seven patients tested.
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Figure 4.6: Boxplots of computing time for AMD Radeon RX 5700XT (GFX1010)

and NVIDIA Quadro RTX 6000 (RTX6000) for the three experiments. Notice

that red-shaded boxes coincide with the red-shaded boxes in Figure 4.5. Times

reported are per whole slice stack.
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Figure 4.7: Boxplots of SSIM for AF8 on OpenCLIPER with (right, green) and

without (left, red) ME/MC.

Mann-Whitney tests are also significant for NCC and SER (p=0.006 and

p=0.007, respectively). The price to pay is the increase in computation

time, which reaches a median equal to 62.12 seconds and (q1, q3)=(53, 72.13)

for 2080Ti, with qi the i-th quartile. For RTX6000 the median is 60.16
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Figure 4.8: Boxplots of NCC (a) and SER (b) for AF8 on OpenCLIPER with

(right, green) and without (left, red) ME/MC.

and (q1, q3)=(50.74, 69.24) (times reported are per whole slice stack).

Finally, we have also run an experiment on CPU with both BART

and OpenCLIPER; the experiment is AF4CC with a randomly selected
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Table 4.2: Performance comparison between cuFFT and clFFT libraries on

various devices. A single experiment consists in transforming a k-space dataset

(160×160 images, 19 coils, 20 frames, complex floats) 1000 times. Each experiment

is run 100 times on each library and device. For each combination we show mean

execution times (mean) and their standard deviation (std), both in seconds.

cuFFT clFFT
Device mean std mean std

GeForce 2080Ti 0.6299 0.001 0.6518 0.0227
Quadro RTX 6000 0.5880 0.0016 0.6413 0.0020
Radeon RX 5700XT N/A N/A 0.8276 0.0015

patient, ten repetitions. As for the former, the median execution time is

24.58 seconds ((q1, q3)=(24.84, 24, 45)) while for OpenCLIPER median is

16.33 and (q1, q3)= (16.09, 16.59).

4.6 Discussion

OpenCLIPER reveals itself as a device agnostic platform for reconstruction

of MR dynamic images. We have shown results for 2D although the code

is prepared for higher dimensionality provided that sufficient memory is

available. Figure 4.5 shows that our computing times are comparable to

those needed by BART; this has been tested in two NVIDIA devices with

different memory capacities. Results are not point-by-point comparable

since optimization methods used by both approaches are different. However,

we meant to be fair by assuring that both platforms gave rise to images

with similar qualities; optimization parameters were selected to this end, a

goal that seems accomplished according to the evidence shown in Figure 4.2.

As for computing times themselves, we observe that our times are fairly

similar to those from BART; hence, no obvious losses are appraised by

using OpenCLIPER despite some administrative tasks need to be handled,

as pointed out in Section 4.4.1, due to its device agnostic character; this

overload is represented in Figure 4.1 by the shaded blocks located outside
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the dashed box that contains the core of the reconstruction algorithm.

BART cannot be tested in AMD devices; hence only OpenCLIPER

enters the comparisons in Figure 4.6. The figure shows that a device one

order of magnitude more economical can do a remarkable job. Therefore,

OpenCLIPER makes it possible that an affordable device is used for image

reconstruction in viable clinical times. When ME/MC enters the algorithm

the computing time needed reaches a quantity of about one minute for

a multislice reconstruction, a delay that seems also realistic in a clinical

setting. Whether ME/MC is worth taking depends on the acceleration

factor; for the AF=8 case we have employed in our experiments, statistical

differences were found.

The execution on CPU revealed that BART needed extra time for

image reconstruction with respect to OpenCLIPER. Since no obvious

differences were found on the NVIDIA devices, chances are that this is due

to the fact that BART, when executed on the CPU, parallelizes only the

FFT part of the reconstruction (making use of the threading support in

the FFTW library), whereas in OpenCLIPER, every process’ kernels are

executed in parallel. Additionally, clFFT (the OpenCL version of FFT

used by OpenCLIPER), has been used in both CPU and GPU experiments

since kernel code is unique.

The FFT algorithm is exhaustively used in each reconstruction step.

Hence, optimized implementations of this algorithm should have an ap-

preciable impact in the overall reconstruction computing time. Our HIP

interface could be an alternative to use other FFT libraries written in

CUDA (cuFFT, which is known to be highly optimized for NVIDIA de-

vices, might be one of such alternatives if its source code were available).

Nevertheless, interfacing overload is non-negligible and this requires further

investigation.



Chapter 5
DL Cine Reconstruction with

MC: SSMoComp

This Chapter focus on designing a self-supervised DL-based solution that

replicates GWCS performance at much lower computing times. We also

compare these results with those obtained using the device-agnostic imple-

mentation described in Chapter 4.

5.1 Introduction

Reduction of MRI acquisition time is a common goal in the MR scientific

community. Many reconstruction solutions from undersampled k-space

data have been reported and more recently those based on CNN have

gained popularity (see 2.5.2.1). In this chapter we present an efficient

2D cardiac MR cine Reconstruction through a Self-Supervised Motion

Compensated (SSMoComp) architecture. The function we optimize

includes MC via elastic GW registration, which is implemented itself by

means of the pretrained network dGW described in Chapter 3.

Our proposal uses a DL architecture designed to minimize the objective

103
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m̂

ŷ

y m

m̂

m

Figure 5.1: Flow chart illustrating the proposed SSMoComp method. Blue lines

represent steps that only take place during training. The inputs of the framework

are the undersampled k-space data y and the sampling masks A, resulting in the

reconstructed cine images m̂ as output, and ŷ if required.

function in Equation (5.1) below:

Θ̂ = arg min
Θ

∥AFC(m|Θ)− y∥2ℓ2 + λ∥ΦTDL(C(m|Θ))∥ℓ1 (5.1)

where TDL(·) represents the registration and Φ the tTV operator, F(·) the
Fourier transform, A the undersampling mask, y the measurements and

C(m|Θ) is the output of the CNN that we train and that is conditional on

the parameters Θ that are learned. As for TDL(·) we have used the result

in Chapter 3.

The CNN is based on the well-known U-Net [118], widely used in

medical imaging and which has been used during the development of

this Thesis. Skip connections are included to maintain information from

previous layers, as well as to avoid the problem of vanishing gradients

during backpropagation. At the end of the CNN, residual learning has

been appended as in [97], subtracting the input of the CNN m.

The regularization term is calculated by applying TDL to the estimated

reconstructed images, calculating the temporal total variation thereon and
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computing the ℓ1 norm of the result. TDL can consist of one, two or three

iterations of dGW. The load introduced by the regularization term only

takes place during the training phase of the network. During training, the

CNN weights are updated taking into account this information, relieving

the test or prediction phase of this load.

5.2 Evaluation

Training was carried out with Database I. In this case, 10 central frames

out of the 30 available were used, and images were resized to 160× 160.

Setting AF=10, experiments were carried out in order to find the best

solution. To do so, we sought the λ value giving the best results in terms

of peak signal-to-noise ratio (PSNR), normalized root mean square error

(NRMSE) and SSIM. A sweep was performed for three different ME/MC

stage alternatives using one, two or three iterations of dGW respectively.

Training and validation subsets were used to train with Early Stopping.

QIs were also obtained with the validation subset in order not to bias the

experiments in following section. The training, as well as the experiments,

were carried out on our main workstation Intel® CoreTM i7-4790 CPU @

3.60GHz with 16 GB RAM and one NVIDIA GeForce RTX 2080 Ti GPU.

Table 5.1 shows the QIs in terms of PSNR, SSIM and NRMSE, were

0.01 steps have been used for λ ∈ [0, 0.1], and 0.1 steps for λ ∈ (0.1, 1],

being λ the weight given to the regularization term, where the registration

with dGW takes place. The QI values for the three iteration alternatives

of dGW are presented. PSNR, SSIM and NRMSE values obtained from

the zero-filled reconstructions and from the SSMoComp reconstructions

without any regularization are given for reference.

Results in Table 5.1 show that the best SSMoComp model is the one

with λ = 0.2 and two iterations of dGW. This is the model that will be

used in the following experiments.
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Table 5.1: Sweep λ and number of iterations of dGW.

PSNR SSIM NRMSE

Zero-filled 19.72 0.58 0.56

Number of

registrations
1 2 3 1 2 3 1 2 3

λ

0 23.3 0.64 0,35

0.01 24,05 25,05 24,36 0,75 0,81 0,81 0,33 0,29 0,32

0.02 24,45 25,15 14,63 0,81 0,83 0,32 0,31 0,29 0,96

0.03 25,31 25,27 13,97 0,83 0,82 0,23 0,29 0,29 1,05

0.04 25,32 25,19 25,31 0,83 0,83 0,84 0,28 0,29 0,29

0.05 24,98 25,05 24,78 0,8 0,82 0,82 0,3 0,29 0,3

0.06 25,81 25,78 14,99 0,83 0,83 0,36 0,27 0,27 0,93

0.07 25,61 25,87 25,74 0,82 0,84 0,81 0,27 0,27 0,27

0.08 25,71 25,56 25,58 0,83 0,83 0,8 0,27 0,28 0,28

0.09 26,22 26,0 14,21 0,86 0,84 0,23 0,26 0,26 1,01

0.1 25,57 25,8 13,5 0,8 0,82 0,32 0,27 0,27 1,13

0.2 25,83 26,54 12,67 0,83 0,85 0,29 0,27 0,25 1,33

0.3 26,33 25,87 16,18 0,84 0,84 0,39 0,25 0,27 0,8

0.4 26,16 26,1 15,22 0,83 0,82 0,36 0,26 0,26 0,92

0.5 25,03 25,91 26,19 0,77 0,81 0,85 0,3 0,27 0,25

0.6 26,24 26,12 13,6 0,79 0,82 0,3 0,26 0,26 1,16

0.7 25,64 26,24 14,85 0,78 0,82 0,37 0,28 0,26 0,94

0.8 25,38 25,53 15,21 0,76 0,79 0,39 0,28 0,28 0,9

0.9 25,89 24,39 12,63 0,81 0,76 0,28 0,27 0,31 1,31

1.0 24,86 25,43 14,61 0,73 0,8 0,34 0,3 0,28 0,98
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5.3 Comparison between SSMoComp and

OpenCLIPER

Two proposals have been presented that speed up cine MR reconstruc-

tions: the implementation of the reconstruction algorithm with ME/MC in

OpenCL with the OpenCLIPER framework and the solution obtained with

DL SSMoComp. In this section we compare both proposals. In order to

compare the reconstruction carried out with OpenCLIPER with the recon-

struction obtained with SSMoComp, a series of experiments were carried

out, from which measures of QI and execution times were extracted. For

the experiments, we used the previously used databases, namely Database

I and Database II (see description in Section 3.1). It should be noted that

in order to compare the results obtained with both databases, and given

that SSMoComp was trained for 160×160×10, a spatial resizing is needed

in Database II to go from 320 × 320 to 160 × 160. In addition, the 10

central frames of each dynamic cine series are selected.

5.3.1 Prior to Comparison

To ensure fairness in the comparison between OpenCLIPER and SSMo-

Comp, a prior analysis of OpenCLIPER parameters needs to be carried

out so that the parameter values enabling reconstruction in both databases

are established. For this purpose, three values of the NESTA’s stopping

criterion tolerance used for problem solving in OpenCLIPER were assessed.

Two implementations of the reconstruction algorithm in OpenCLIPER

were tested: one without ME/MC and a version with two iterations of

ME/MC.

Table 5.2 shows the expected difference between the implementation of

the reconstruction algorithm without ME/MC and that with two iterations

of ME/MC, which reveals a better QI for the latter. The table shows values
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Table 5.2: Image quality metrics for reconstructions using OpenCLIPER without

ME/MC and with two iterations of ME/MC for the experiments carried out to

define the tolerance of the stopping criterion. PSNR, SSIM, NRMSE and the

quality index based on local variance (QILV) values obtained in reconstructions

for test subset in Database I and entire Database II from undersampled k-space

data with AF=10, with tolerance of the stopping criterion equals to 0.01, 0.005

and 0.001. QIs from zero-filled reconstructions are exposed as reference.

Database Zero-filled
OpenCLIPER

OpenCLIPER

ME/MC

0.01 0.005 0.001 0.01 0.005 0.001

PSNR
I 19.64 24.58 25.37 25.89 24.98 25.52 25.94

II 15.78 23.33 24.04 24.45 23.70 24.31 24.58

SSIM
I 0.61 0.78 0.80 0.81 0.80 0.81 0.81

II 0.47 0.74 0.76 0.77 0.76 0.77 0.78

NRMSE
I 0.50 0.29 0.26 0.25 0.28 0.26 0.25

II 0.76 0.32 0.28 0.27 0.30 0.27 0.27

QILV
I 0.72 0.86 0.88 0.90 0.87 0.88 0.90

II 0.50 0.86 0.89 0.91 0.88 0.90 0.91

for the QI metrics suggesting that 0.01 and 0.005 tolerances are sufficient

and good reconstructions are achieved for both databases. However, Figure

5.2 shows dynamic cine series in Database II that are not well reconstructed.

This means that, by setting the stop criterion tolerance to 0.01 or 0.005,

the reconstructions work for Database I but not for Database II. Figure

5.2 also shows that with 0.001 tolerance we were able to reconstruct some

cine sequences in Database II that were not reconstructed with the other

two values. As a conclusion, setting the stopping criterion tolerance to

0.01 works for Database I but does not work for Database II, 0.005 works

for Database I but does not work for non-ME/MC reconstructions for

Database II and 0.001 works for both databases. Therefore, for the rest of

the OpenCLIPER experiments this value was set to 0.001.
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5.3.2 Experiment 1

Since SSMoComp was trained with Database I, we aim to test its general-

ization performance with Database II. In addition to SSMoComp, we show

in boxplots the results for the test subsets of both databases in runs of

the reconstruction algorithm without ME/MC and with two iterations of

ME/MC implemented in OpenCLIPER.

Figure 5.3 and Figure 5.4 show boxplots with QIs in terms of PSNR,

SSIM, NRMSE obtained in reconstructions carried out with the implemen-

tation of the reconstruction algorithm without ME/MC, with two iterations

of ME/MC and with SSMoComp, for the restrospectively subsampled data

with AF=10 from Database I and Database II, respectively. The results of

the zero-filled reconstructions are shown for reference.

Figures show that SSMoComp achieves good reconstruction quality,

similar or even better than that from OpenCLIPER, and in fast times when

tested on Database I, which was the one it was trained with. However,

results are much worse for Database II. The next experiment aims to assess

whether generalization can be improved.

5.3.3 Experiment 2

Experiment 1 showed that the network trained with Database I, yielded low

performance when tested on Database II, thus showing poor generalization

capability. To ensure the network is trained with representative data, we

created three randomised folds from Database I and three randomised folds

from Database II to fine-tune the previously initialized network. Each

of the folds contains three subsets: training, validation and test, with

20, 10 and 11 cine series, respectively. We retrained the network from

the best performing combination of parameters assessed with Database

I (see Section 5.3.1): λ = 0.2 and two iterations. As training inputs we

combined the created folds from Database I and Database II. So, the final
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Figure 5.3: Boxplots of PSNR (a), SSIM (b), NRMSE (c), QILV (d)

and execution time (e) for AF=10 in Database I on OpenCLIPER with

(green) and without (red) ME/MC and SSMoComp (yellow). Results for

zero-filled reconstructions are also shown for comparison purposes.
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Figure 5.4: Boxplots of PSNR (a), SSIM (b), NRMSE (c), QILV (d)

and execution time (e) for AF=10 in Database II on OpenCLIPER with

(green) and without (red) ME/MC and SSMoComp (yellow). Results for

zero-filled reconstructions are also shown for comparison purposes.
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folds included 40, 20 and 22 cine sets for training, validation and test,

respectively.

Results are presented in terms of QI with PSNR, SSIM, NRMSE and

QILV [137] metrics obtained from retrospectively k-space sub-sampled

data with AF=10 with the zero filled reconstructions, OpenCLIPER with-

out ME/MC, OpenCLIPER with two iterations of ME/MC, SSMoComp

trained with Database I and SSMoComp tuned with the combination of

Database I and II.

Figure 5.5 shows the results obtained on the test fold from Database I.

Figure 5.6 shows the equivalent on Database II test fold. Finally, Figure

5.7 shows the aggregated results for both databases.

5.4 Discussion

The optimum SSMoComp configuration, as determined by the highest

PSNR, SSIM, and NRMSE scores, was achieved with a weight of λ = 0.2

and two iterations of dGW.

This solution is similar to the approach proposed by the authors

of [113], however, SSMoComp does not require fully sampled data to act

as ground truth, since we use self-supervised learning for reconstruction

and unsupervised for registration, although it is done offline. This is an

important point to bear in mind, as fully sampled images are not always

available.

The QI metrics in Database I, (the one used to initially train the

network) show good performance. The boxplots reveal that the median

values for SSMoComp are generally favorable, with a smaller interquartile

range. In contrast, the median values for Database II, which was not part

of the initial training, show a different behaviour.

As for execution times, SSMoComp clearly overcomes OpenCLIPER.

The time difference between the different SSMoComp experiments may
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Figure 5.5: Boxplots of PSNR (a), SSIM (b), NRMSE (c) and QILV (d) for

AF=10 in Database I random folds on OpenCLIPER with (green) and without

(red) ME/MC and SSMoComp before (yellow) and after (maroon). Results for

zero-filled (blue) reconstructions are also shown for comparison purposes.

be due to the first run being much slower. However, it only takes 0.015

seconds to get a prediction for a 160× 160× 10 sequence.
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Figure 5.6: Boxplots of PSNR (a), SSIM (b), NRMSE (c) and QILV (d) for

AF=10 in Database II random folds on OpenCLIPER with (green) and without

(red) ME/MC and SSMoComp before (yellow) and after (maroon). Results for

zero-filled (blue) reconstructions are also shown for comparison purposes.
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Figure 5.7: Boxplots of PSNR (a), SSIM (b), NRMSE (c) and QILV (d) for

AF=10 in Database I and Database II random folds on OpenCLIPER with (green)

and without (red) ME/MC and SSMoComp before (yellow) and after (maroon).

Results for zero-filled (blue) reconstructions are also shown for comparison pur-

poses.



Chapter 6
DL Perfusion Reconstruction:

SECRET

This Chapter discusses the adaptation of the self-supervised kernel pre-

sented in Chapter 5 to cater to the requirements of FPP-CMR reconstruc-

tion.

6.1 Introduction

FPP-CMR time frames must be acquired in real-time to capture the

rapid passage of compromised tissues. Thus, undersampled reconstruction

methods have been proposed to accelerate FPP-CMR acquisitions as a

means to improve spatial resolution and heart coverage [138–140]. However,

these methods can lead to long reconstruction times. This chapter presents

the work aimed at speeding up reconstructions and obtain the contrast-

enhanced dynamic image series from undersampled FPP-CMR using DL.

Then, these images will be used to generate quantitative perfusion maps

using a tracer kinetic model [141–143].

The problem with supervised learning techniques is the need to have

fully sampled reference images to train the network, which are not available

in FPP-CMR, particularly at high spatial resolutions. Even though the

117
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field of MRI reconstruction with DL is currently an active area, to our

knowledge and during the development of this work, self-supervised DL

techniques have not been applied to FPP-CMR reconstruction. In this

work, a SElf-Supervised aCcelerated REconsTruction (SECRET)

DL framework for FPP-CMR is proposed to directly reconstruct contrast-

enhanced dynamic image series from undersampled (k,t)-space data.

The proposed SECRET method directly reconstructs contrast-enhanced

dynamic images from the undersampled (k,t)-space data. The method

we follow here is similar to the one used in cine, except that we have not

included explicit regularization and we have changed the residual learning

strategy, averaging the zero-filled reconstructions. Considering only the

undersampled (k,t)-space data when enforcing data consistency, we can

train networks without the need for fully sampled images, simply by making

use of the physical models in the reconstruction [97]. This framework can

be formulated as follows:

Θ̂ = arg min
Θ

∥AFC(m|Θ)− y∥2 (6.1)

where C(m|Θ) is the output of a CNN, with Θ the parameter vector to be

optimized. Figure 6.1 shows the steps necessary for training our proposed

SECRET method for FPP-CMR. First, undersampled (k,t)-space data are

transformed to the image domain, obtaining m. Then, m enters the CNN

to provide the reconstructed contrast-enhanced dynamic images m̂. These

images are then transformed back to (k,t)-space and subsampling masks

are applied, thus obtaining the undersampled version ŷ. Finally, the loss

is computed with ŷ and the input y, to guide the training phase.

The CNN is based on the well-known U-Net [118], widely used in

medical imaging, and which has been used in previous chapters. Skip

connections are included to maintain information from previous layers, as

well as to avoid the problem of vanishing gradients during backpropagation.

At the end of the CNN, residual learning has been appended as in [97],



6.2. Dataset 119
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Figure 6.1: Flow chart illustrating the proposed SECRET method for FPP-CMR.

Blue lines represent steps that only take place during training. The inputs of the

framework are the undersampled (k,t)-space data y and the (k,t)-sampling masks

A, resulting in the reconstructed contrast-enhanced dynamic images m̂ as output,

and ŷ if required.

adding the average image of the input m.

6.2 Dataset

Rest and stress FPP-CMR acquisitions were performed in 21 patients using

a single-bolus injection of 0.05 mmol/kg Gadobutrol (Gadovist; Bayer,

Germany) and a 1.5T CMR scanner (MAGNETOM Aera, Siemens Health-

ineers, Erlangen, Germany) with an 18-channel chest-coil and a 32-channel

spine coil. A free-breathing FLASH perfusion dual-sequence [143] was used

to acquire a low-resolution image with low T1-sensitivity for estimating

the arterial input function and three short-axis slices (basal, mid and

apical) for high resolution myocardial perfusion imaging using the following
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parameters: FOV = 340× 308 mm2, in-plane resolution = 2.2× 2.2 mm2,

slice thickness = 10mm, TR/TE = 2.1/1ms, flip angle = 8◦, parallel imag-

ing acceleration factor 3, saturation recovery time = 100 ms, total scan

duration = 60s, contrast agent relaxivity = 5.0L/mmol s. Undersampled

datasets were generated for 3×, 6× and 10× acceleration factors, following

a radial (k,t)-sampling trajectory.

Preprocessing A first step to ensure that all data had the same size,

both spatially and temporally, prior to being fed to the CNN, consisted

of resizing the DICOM images to obtain a spatial resolution of 2 × 2

mm2, padding the k-space to obtain an image size of 256 × 256 pixels,

and interpolating each slice to a fixed number of frames (60 frames). A

final step included intensity normalisation so that all contrast-enhanced

dynamic image series present intensities between 0 and 1, without losing

the contrast variation between frames. In addition, image pre-registration

was also carried out to correct for respiratory motion.

Image quality metrics Image quality was assessed in terms of PSNR,

SSIM and NRMSE between the reference images and reconstructions

obtained with the SECRET, MoDL and CS (10× only) methods.

6.3 Implementation details

Patients were randomly split into training, validation and test subsets

(60%, 16% and 24%, respectively). Each slice is fed into the SECRET

framework so that the time frames are stacked in depth, creating a multi-

channel image. The proposed method is implemented in Python with

Tensorflow [121] and Keras [122], and it took about half an hour of training

using the Adam optimizer [123] with a learning rate of 10−4 consuming

about 3 GB of GPU memory for 100 epochs on one Intel® CoreTM i7-4790
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CPU @ 3.60GHz with 16 GB RAM and one NVIDIA GeForce RTX 2080 Ti

GPU. We use MoDL as a method of comparison. The MoDL training for

K=1 and 100 epochs took one hour and a half and the MoDL training for

K=10 and 200 epochs took forty-five hours using the same hardware. Note

that after training the SECRET method, it provides a reconstruction of a

complete contrast-enhanced dynamic image series in less than a second.

6.4 Evaluation

To perform the evaluation of our SECRET method, MoDL (K=1), MoDL

(K=10), SECRET and CS reconstructions were performed on retrospec-

tively subsampled k-space data with AF=6 and AF=10. Examples of that

reconstructions can be found in Section 6.5. Reconstruction times are also

exposed.

Although the images have been pre-registered, some residual movement

is still visible. However, the reconstructions obtained with SECRET appear

static. We see this fact by 1D projection of the dynamic images through

time, for a given slice.

In order to verify that SECRET reconstructions yield valid quantitative

maps, similar to those obtained from reference acquisitions, and to show

the potential of SECRET for objective, operator-independent myocardial

perfusion analysis, contrast transfer coefficient maps (KTrans) are calcu-

lated from Patlak’s model [144]. This model utilizes linear regression to

study the pharmacokinetics of tracers that involve irreversible uptake. It

does not rely on any particular compartmental model setup for the tracer

and only assumes that the tracer’s behavior can be approximated using

two compartments.



122 Chapter 6. DL Perfusion Reconstruction: SECRET

6.5 Results and Discussion

Figure 6.2 shows the SECRET reconstructions obtained for two represen-

tative patients from 6× and 10× undersampled (k,t)-space data together

with the reference and MoDL (K=1) reconstructions. CS reconstruction is

also shown for 10×. Three different time frames are shown, corresponding

to RV, LV and myocardial enhancement. Although the SECRET recon-

structions are slightly blurred, due to residual learning from the average

image of the CNN input (which is blurred due to residual motion), it can

be seen that they have better quality than the images obtained with MoDL

trained in the same amount of time. Moreover, SECRET images maintain

the variability of contrast that exists between frames in addition to not

losing the structure of the heart.

Figure 6.3 shows results of the FPP-CMR reconstructions in terms

of PSNR, SSIM and NRMSE. While the performance of MoDL becomes

noticeably worse as the acceleration rate increases, SECRET maintains

good image quality even at high acceleration rates. For the 10x accelerated

reconstructions, the median (interquartile range): PSNR was 34.66

(3.47), 31.46 (3.81), 34.52 (5.43), 30.67 (5.52); SSIM was 0.94 (0.04),

0.92 (0.07), 0.96 (0.06), 0.92 (0.06); NRMSE was 0.12 (0.06), 0.16

(0.10), 0.11 (0.09), 0.17 (0.11) for CS, MoDL (K=1), MoDL (K=10) and

SECRET methods, respectively. The image quality metrics indicate that

SECRET images maintain a more stable agreement with the reference as the

acceleration factor is increased than MoDL images, which deteriorate with

higher acceleration. CS and MoDL (K=10) show the best agreement with

the reference, but reconstructions take ∼87.08s and ∼1.99s, respectively,

whereas MoDL (K=1) takes ∼0.21s and SECRET only 0.15s.

Figure 6.4 shows a 1D projection of the dynamic images through time,

for a given slice. Note that although the images have been pre-registered,

there is still some residual motion. SECRET does not include any explicit
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Figure 6.2: SECRET and MoDL (K=1) reconstructions obtained from

6× and 10× undersampled FPP-CMR data for two representative subjects.

The reference images are displayed for comparison, in addition to CS

reconstruction for 10×. The RV, LV and myocardial enhancement time

frames are shown for one short axis slice.
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Figure 6.3: PSNR, SSIM and NRMSE between the reference images and the

reconstructions obtained with SECRET and MoDL methods, for 3×, 6× and 10×
acceleration factors, for all patients in the test dataset.

regularization term, however, due to the residual learning performed by

the network all reconstructions provided by the framework are inherently

corrected. Such good PSNR, SSIM and NRMSE values obtained when the

reference images are affected by little respiratory motion, would certainly

improve if some regularization were added. This would enable even higher

acceleration rates.

Quantitative parameter maps were estimated from the FPP-CMR

reconstructions, showing the potential of the technique for an objective

and operator-independent analysis of myocardial perfusion. Figure 6.5

displays the contrast transfer coefficient (KTrans) map estimated from fully
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Figure 6.4: Representative image profile across the heart demonstrating that

the SECRET framework improves consistency across time frames.

sampled, 6× and 10× undersampled patient data using the MoDL and

SECRET methods, through the Patlak model [144]. The image quality

of the quantitative maps obtained from the SECRET reconstruction at

accelerations 6× and 10× is comparable to the reference images, showing

less blurring than MoDL maps.

It is important to note that the challenge with supervised learning

techniques, as MoDL, is the requirement for fully sampled reference images

to train the network. However, these images are not readily accessible

in the case of FPP-CMR, particularly when working with high spatial

resolutions. We address this problem by utilizing a self-supervised learning

approach that focuses solely on working with undersampled data.
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Figure 6.5: Quantitative maps (KTrans) obtained from 6× and 10× undersampled

data using MoDL and the SECRET methods. The reference image is displayed

for comparison.



Chapter 7
Conclusions and future work

This Chapter concludes this Thesis dissertation. It includes our contribu-

tions but also pinpoints our limitations as well as hypothesizes some future

lines of research.

7.1 Conclusion

An MRI scan is a highly accurate and versatile medical imaging method

that gives rise to in-depth images of soft tissue. However, it takes longer to

complete than other procedures and requires skilled staff and specialized

equipment. Subsampling can reduce scan time but requires additional

computational effort to reconstruct the images, with added assumptions

and constraints during the optimization process.

The main focus of this Thesis has been to accelerate the reconstruction

of 2D CMR dynamic images, for both cine and perfusion, from highly

undersampled acquisitions. The research in this Thesis has attempted to

use motion as a source of information to reduce computational needs and

improve the speed of optimization, while also maintaining the quality of

the reconstructions. This approach takes advantage of the redundancy in

the images in both spatial and temporal dimensions.

This statement was our main objective, from which four sub-objectives
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were identified, namely (1) to give rise to a parallel device-agnostic version

of GWCS, with special emphasis on the ME/MC procedure, (2) to design

a DL architecture that achieves GW monomodal registration of cardiac

cine in affordable devices, (3) to design a self-supervised DL-based solution

that replicates GWCS performance at much lower computing times, and

(4) to adapt the self-supervised kernel of the previous solution to account

for FPP-CMR reconstruction.

The utilization of parallelization and DL techniques to accelerate the

registration and reconstruction of dynamic cardiac MRI holds significant

clinical implications. These advanced techniques empower faster image

processing, resulting in enhanced clinical workflows and improved patient

care. First of all, by reducing the processing time required for image

registration and reconstruction, these techniques can significantly expedite

the analysis and interpretation of cardiac MRI scans. This can improve

the efficiency of clinical workflows, allowing healthcare professionals to

promptly diagnose and treat cardiac conditions. To continue, this can

facilitate the implementation of personalized treatment approaches. By

obtaining real-time information on cardiac function and dynamics, clinicians

can make more informed decisions regarding the selection and adjustment of

treatment strategies. This personalized approach can contribute to better

patient outcomes and improved management of cardiovascular conditions.

Finally, we can say that the advancements achieved through this work

can serve as a foundation for further research and development. This can

lead to the discovery of novel imaging biomarkers, improved diagnostic

algorithms, and the development of innovative clinical tools for assessing

cardiac health and identifying early signs of cardiovascular diseases.

The contributions derived from this Thesis (described in Section 7.2)

demonstrate that the stated objectives have been achieved. This Thesis

has certain limitations that suggest further lines of research, which are

discussed in Section 7.3.
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7.2 Contributions

The main contributions and results of this Thesis are:

• dGW DL-based approach for GW elastic registration of a dynamic

cine MRI sequence. An unsupervised approach has been used for

training and our solution is image-based as opposed to patch-based.

Although we have focused on a monomodal application domain, the

solution can handle multimodal metrics easily. We have provided

an iterative solution and have observed that the iterations play a

role in the registration quality. We have identified the network

hyperparameters by a forward selection procedure and we have

observed the network robustness with the image ordering within the

sequence. In addition, we have compared our architecture with a

state-of-the-art solution and results favored our design.

Although our registration method is intended for image reconstruc-

tion (as pointed out in Chapter 5), any application that requires

material point tracking in a 2D dynamic sequence may benefit from

it.

• OpenCLIPER Parallel groupwise registration system for motion

estimation/compensation and a parallel multicoil NESTA subsystem

for ℓ1 − ℓ2 problem solving. This system is a) clinically viable in

terms of execution times, and b) suitable for any computing de-

vice which has an OpenCL implementation, including CPUs, GPUs,

FPGAs and DSPs from main vendors. The use of our framework

OpenCLIPER allowed us to partition the problem in independent

black boxes (processes) which are then connected as needed and

executed in parallel on any capable device, while the source code

remains unique for all prospective computing devices. Device ini-

tialization and maintenance is reduced to a minimum as well, while
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providing relevant development and debugging aids. Administrative

but time-consuming tasks such as data loading/saving and kernel

compilation are parallelized or cached so as to minimally affect overall

performance.

• SSMoComp Efficient 2D cardiac MR cine Reconstruction through a

Self-Supervised Motion Compensated architecture. A self-supervised

approach has been used for training so there is no need for fully

sampled images. The pretrained dGW network is used to carry out

the ME/MC phase. It should be recalled that dGW was trained

with fully sampled images, so the performance of the overall system

can be improved by training dGW with sub-sampled images. We

have identified the network hyperparameters, such as the weight of

the regularization term λ and the number of iterations of dGW, that

provide the best solution, among the values proposed by design. In

addition, we have compared our architecture with a state-of-the-art

solution and results favored our design.

• SECRET Physics-informed self-supervised deep learning recon-

struction framework for accelerating FPP-CMR scans. The proposed

SECRET method provides FPP-CMR reconstructions directly from

the undersampled (k,t)-space data and does not require fully sam-

pled reference data. Compared with state-of-the-art approaches, the

SECRET method maintains good quality reconstructions for higher

acceleration rates, with low training and very fast reconstruction

times. The proposed SECRET method shows promising results, with

the potential for improvement coupled with explicit regularization,

which will be explored in future work.
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7.3 Future work

During the development of this Thesis, we have encountered several limita-

tions that open up new lines of research and improvement of the proposed

solutions.

The first limitation is due to the 2D nature of the acquisitions, which

means that, in the case of motion-aware solutions, the movement does not

faithfully represent the real deformations suffered by the heart. Therefore,

the extension to 3D, i.e. dynamic 3D (3D+t), emerges as a natural line

of research. Furthermore, 3D reconstruction offers an advantage over 2D

reconstruction because the latter requires tedious spatial planning due

to the position of the heart and individual differences. The 3D method

with isotropic resolution eliminates this issue by allowing for retrospective

orientation from standard planes, but requires external contrast. Further

work includes extending the 2D reconstruction to the free-breathing 3D

problem, which poses additional issues due to typical data volumes that

extend far beyond the capacity of a single computing device memory, along

with much higher processing times.

Another limitation encountered comes from the fact that all the DL

solutions proposed in this Thesis have been based on preprocessed data

with an in-plane resolution of 1mm2, which forces to preprocess the data

at that resolution. This leads to the idea of exploring a single DL solution

that allows registrations and reconstructions at different resolutions.

Although the problem is formulated as multi-coil, given that the data

we have are single-coil, the proposed solutions have been made ad-hoc

for this type of data. The extension to multi-coil would imply a higher

consumption of computational resources, but its implementation would be

carried out in a straightforward manner.

In the particular case of SECRET, one possibility to consider is the

inclusion of a regularization term, in the same way that is added in
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SSMoComp.

It is worth mentioning that the retrospective undersampling approach

was employed due to the nature of the available datasets, which were in

DICOM format. However, we are aware of the importance of evaluating

developments in prospectively undersampled data to create a more realistic

scenarios.

Additionally, it is important to clarify the rationale behind the crop-

ping of images at a resolution of 1mm2, as this decision was driven by

the requirements of the CNNs employed in our methodology. To ensure

consistency and compatibility within the network architecture, all images

were resized to a uniform size. This approach allowed us to effectively

process the images within the proposed DL frameworks, facilitating the

training and evaluation stages.

While cropping the images may introduce a potential limitation in terms

of preserving the full extent of the original data, it was necessary to achieve

uniformity and facilitate the application of DL techniques. By resizing the

images to a standardized size, we could ensure that each image had the

same dimensions, enabling seamless integration into the neural network

models. This uniformity was critical for maintaining consistency and

facilitating accurate comparisons and evaluations across different datasets.

Future research efforts should explore alternative approaches that

preserve the entirety of the acquired data while still maintaining the

compatibility required for DL frameworks. Investigating techniques such as

dynamic resizing may provide opportunities to leverage the full resolution

of the images without compromising the network’s compatibility and

performance.

In terms of DL architectures or techniques, there are several options

in addition to the CNNs used in this work. Some of them include: recur-

rent neural networks, transformer neural networks, siamese networks, or

generative modeling techniques such as generative adversarial networks or

diffusion models, the latter being the most popular in a variety of fields
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at the moment. Diffusion models hold promise in various image analysis

areas, but their direct application to dynamic cardiac MRI registration

and reconstruction is relatively unexplored. While diffusion models have

potential benefits, their suitability for these specific tasks requires further

investigation and validation. Integrating diffusion models with existing

techniques or developing specialized adaptations could be a direction for

future research. Further exploration and validation are needed to assess

the direct application of diffusion models in dynamic cardiac MRI.

In any case, more data are needed, from different resolutions, acquired

with scanners from different vendors, to allow for more and better training

of the DL solutions and to allow for generalization.

As for parallelization through GPU programming, it would be beneficial

to parallelize the implementation of the B-splines through convolutions, as

in [145], where the deformation is posed as a cascade of 1D convolutions

along different dimensions, achieving great reduction in execution time for

evaluation of transformations and gradients.





Appendix A
Forward and Backward

Operators

This appendix has been created for the purpose of clarification and comple-

tion of Section 2.4.1, where an attempt has been made to describe non-rigid

complex displacements as linear combinations of B-splines using a group of

control points. These control points will be defined over the original pixel

mesh x and the control point mesh will enclose the ROI inside the image.

The parameters Θ represent the displacements of the control points

in the transformation, and are obtained by solving the problem stated in

Equation 2.26 using any gradient-based optimization method. These Θ

values are then used to transform the original x values into the transformed

x′ values using B-splines. The transformed x′ points can then be used for

interpolation.

A.1 Control Point Mesh

The control points will determine the mesh, and their coordinates in the

image coordinate space will be denoted by P = {pu} = {pu1,...,uL
}, where

L = 2 represents the dimensionality of the mesh. The resolution of the

mesh, indicated by ∆p, is a crucial factor in controlling the transformation
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elasticity level. Although the resolution is set to be constant along one

direction for simplicity, it may vary in other directions. With finer reso-

lutions, we can achieve highly localized transformations, as each control

point will only have an impact within a small vicinity. The size of this

vicinity will be determined by a distance or radius of influence

rpl =
(E + 1)∆p

l

2
(A.1)

in the different directions l. The value E represents the order of the B-spline

curve, which is determined by the degree of the constituent polynomials.

The compact support of these polynomials is E + 1. As a result, the range

of pixels in the direction l that are impacted by a particular control point

can be determined as

[
max(pul

− rpl , x1,l),min(pul
+ rpl , x2,l)

]
(A.2)

where xinfl and xsupl represent the inferior and superior pixel coordinate.

Let’s consider a ROI that can be described by its bounding box limits,

Xinf
l and Xsup

l , in the image coordinate space. Our objective is to create

a mesh with as few control points as possible to cover the entire bounding

box of the ROI. To avoid any boundary effects, we have added a certain

margin in each direction, extending these limits. If a control point is

positioned beyond these limits, it will not have any effect on the ROI. As a

result, we can create a matrix called C that indicates the lower and upper

bounds of the control point mesh in each direction l,
[
Cinf
l , Csup

l

]
. This

indexes are defined as:

Cinf
l = −

⌊
cl −Xinf

l + rpl
∆p

l

⌋

Csup
l =

⌊
Xsup

l − cl + rpl
∆p

l

⌋ (A.3)
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Figure A.1: Control point mesh design for non-rigid transformation of an object.

where c represents the center of the ROI.

As a result, the mesh will contain
∏L

l=1

(
Csup
l − Cinf

l + 1
)

control

points. The number of control points and the radius of influence rpl are

important factors that determine the complexity of the compensating

transformation, as well as the computational costs associated with the

procedure. Figure A.1 illustrates the elements involved in creating the

control point mesh, which should aid in understanding the process.

A.2 GW Forward Transformation

The forward transformation is defined as the mapping of the template

coordinates to the space of the images to be aligned. By means of this
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mapping, what is achieved is to deform the images to be aligned so that

they fit the template.

After defining the control point mesh, we can use Equation (2.27) to

create a dense transformation TΘ that maps the original grid of pixels x

to non-grid locations x′ based on Θ. The displacements of the control

points, Θ, can be obtained using an optimization method based on a

gradient-based algorithm, such as Gradient Descent or Conjugate Gradient,

in the ME step (see Equation (2.26)).

After registering, images are aligned to a reference frame using the

forward transformation TΘ. Depending on the application, knowing the

transformation that maps coordinates from one image to another can be

useful. To define this transformation, the inverse mapping or backward

transformation that maps coordinates from the reference frame to the

input image coordinate frame is required.

A.3 GW Backward Transformation

Sometimes we need to use the inverse transformations, T−1
Θ . However, we

cannot analytically find the inverse of a B-spline. Also, in general, the

inverse transformation will not be described by another B-spline transfor-

mation. Therefore, we use a numerical approach instead. We approximate

T
−1
Θ by finding the set of points x̃ that are mapped to the regular Cartesian

grid of spatial locations, x′, in the original images when TΘ is applied. We

solve this by

x̃ = arg min
x

{∑
x′∈X

∥∥TΘ(x)− x′∥∥2} (A.4)

Solving the optimization problem defined in Equation (A.4) is like

creating a table for finding T
−1
Θ for each point u. This method does not

require any assumptions about the inverse transformation’s deformation

model, but it is only applicable to the set of points in X where Equa-
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tion (A.4) is solved, which is consistent with the reconstruction techniques

that have been utilized.

A.4 Image Formation: Intensity Interpo-

lation

After calculating the forward and backward transformations, we can gener-

ate elastic transformations between images in our dataset by combining

them. However, defining the elastic transformation is not sufficient. We

must also perform an interpolation over the source images to obtain their

intensities associated with the updated mesh resulting from either the

forward or backward transformation.

The interpolation methods commonly used are nearest neighbor, linear,

and cubic. Nearest neighbor involves associating the intensity of the pixel in

the source image nearest to the target point x′. In linear interpolation, the

intensity of the target point x′ is obtained by weighting the intensity values

of adjacent points around x′ in the source image. Cubic interpolation is

similar to linear interpolation but uses a cubic polynomial kernel instead of

linear interpolations along each axis. In this Thesis, bilinear interpolation

was utilized to obtain the intensity of the deformed images. Figure A.2

represents the interpolation that takes place after the spatial transformation,

i.e. after finding the point mapping between the original image grid and

the non-gridded locations, in both the forward and the backward case.
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(a)

(b)

(c)

Figure A.2: Interpolation after (a) forward and (b) backward deformation.

(c) Detail to better understand the interpolation after backward deformation. The

contribution of the green point I to the adjacent points is shown. It should be

noted that these points will also be affected by contributions from other points,

e.g. point that has been numbered “4” is also affected by the orange and yellow

points..



Appendix B
Graphical user interfaces

Using code that has not been personally programmed increases the com-

plexity of successfully executing it. During the development of the work

presented in Chapter 3, we decided to create a couple of graphical user

interfaces (GUIs) that would facilitate both the execution of training ses-

sions and the use of previously trained networks to make predictions, i.e.

register dynamic cardiac cine series.

B.1 Training GUI

In order to simplify the training of our own solution dGW, as well as

VM alternatives, we developed a GUI that would allow not only to select

which network to train, but also other parameters specific to each of the

possible methods. Each of the tabs that make up this GUI correspond to

a different network or method, from left to right: dGW, VM-2 and VMdiff.

These tabs have a brief description of the corresponding method, as well

as drop-down menus and text insertion boxes that allow the user to easily

configure the training (see Figures B.1, B.2 and B.3).

Figure B.1 shows the training tab of our proposal, dGW. In the “Train-

ing specifications” section there is a drop-down menu that allows the user

to choose the images to be used for training, which can be the complete
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Figure B.1: Training GUI - dGW tab.

images or ROIs, as well as setting the number of epochs the training will

consist of. In the “Updates” section, the initial template is configured,

which can be either Manifold, in which case the automatic template se-

lection described in section 3.3 will be used, or Mean, in which case the

average image will be calculated for each dynamic series. The number of

updates refers to L. Finally, the hyperparameters belonging to the weights

of the loss function can be fixed, i.e. the four weights of the regularization

terms (two spatial and two temporal) and the weight corresponding to the

transformation degeneracy constraint.

Then, Figure B.2 shows the training tab of VM. As for dGW, the

selection of the images to be used for training and the number of epochs

is allowed. As for the loss function, it is possible to choose the similarity

metric between MSE and NegCC, as well as to set the weight of the

regularization term. Finally, Figure B.3 shows the training tab VMdiff.

The “Training Specifications” are the same as in the other two tabs.

The “Loss Parameters” section allows the user to set the λ and σ values
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(see [108]).

Figure B.2: Training GUI - VM tab.

Figure B.3: Training GUI - VMdiff tab.



B.2 Registration GUI

The registration GUI in Figure B.4 allows for one prediction at a time.

It can be used to quickly check whether a trained model succeeds in

registering a selected dynamic cardiac cine series. With this GUI, when we

load the data to be registered, we can see a sample frame, as well as the

number of rows, columns and frames the series consists of. We can also

see the configuration of the network model we want to test: weights of the

regularization and constraint terms, how many and how are the template

updates, and the number of parameters the model consists of. All this

information is displayed on the left side of the main window (Figure B.4a).

On the right, we can see a log of the data and model we have loaded. Once

we have the data and the model loaded, we can proceed to “Register” and

in the log we will see how long it takes to register. Once the sequence has

been registered it can be displayed and/or saved. If the “Display” button

is pressed, a new window (Figure B.4b) will appear showing a video of

the original series (unregistered) and the registered series (if the selected

model works as expected).



(a)

(b)

Figure B.4: Registration GUI. (a) Main window. (b) Display window: it shows

two videos, the dynamic series to be registered (left) and the series once registered

(right).
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deformation metric mappings via geodesic flows of diffeomorphisms.

International Journal of Computer Vision, 61(2):139–157, 2005.
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