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Abstract
There exist several equivalent equations for the Poincaré
series of a collection of valuations on the ring of germs of
functions on a complex analytic variety. We give defini-
tions of the Poincaré series of a collection of valuations
in the real setting (i.e., on the ring of germs of functions
on a real analytic variety), compute them for the case of
one curve valuation on the plane and discuss some of
their properties.
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1 INTRODUCTION

Let 𝕂 be either the field ℂ of complex numbers or the field ℝ of real numbers, let (𝑉, 0) be a germ
of an analytic variety over 𝕂, and let 𝑉,0 be the ring of germs of functions on 𝑉 (if 𝕂 = ℂ, 𝑉,0
is usually denoted by𝑉,0). A function 𝜈 ∶ 𝑉,0 → ℤ⩾0 ∪ {+∞} is called an order function on 𝑉,0
if

(1) 𝜈(0) = +∞;
(2) 𝜈(𝜆𝑓) = 𝜈(𝑓) for 𝑓 ∈ 𝑉,0, 𝜆 ∈ 𝕂∗ ∶= 𝕂 ⧵ {0};
(3) 𝜈(𝑓1 + 𝑓2) ⩾ min{𝜈(𝑓1), 𝜈(𝑓2)} for 𝑓1, 𝑓2 ∈ 𝑉,0.
If besides that, one has

𝜈(𝑓1𝑓2) = 𝜈(𝑓1) + 𝜈(𝑓2) ,
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2 CAMPILLO, DELGADO, GUSEIN-ZADE

the function 𝜈 is called a valuation. (Sometimes for a valuation one demand that 𝜈(𝑓) ≠ +∞ for
𝑓 ≠ 0. In this case, a function described above is called a pre-valuation.)
Let {𝜈𝑖; 𝑖 = 1, 2, … , 𝑟}, be a collection of order functions on 𝑉,0. The Poincaré series of the col-

lection {𝜈𝑖}was defined in [6]. For 𝑣 = (𝑣1, … , 𝑣𝑟) and 𝑣′ = (𝑣′
1
, … , 𝑣′𝑟) fromℤ𝑟, one says that 𝑣 ⩾ 𝑣′

if 𝑣𝑖 ⩾ 𝑣′𝑖 for all 𝑖. For 𝑓 ∈ 𝑉,0, let 𝜈(𝑓) ∶= (𝜈1(𝑓), … , 𝜈𝑟(𝑓)). For 𝑣 ∈ ℤ𝑟, let 𝐽(𝑣) ∶= {𝑓 ∈ 𝑉,0 ∶
𝜈(𝑓) ⩾ 𝑣}. Let

{𝜈𝑖}(𝑡) ∶=
∑
𝑣∈ℤ𝑟

dim
(
𝐽(𝑣)∕𝐽(𝑣 + 1)

)
⋅ 𝑡𝑣,

where 𝑡 = (𝑡1, … , 𝑡𝑟), 1 = (1, … , 1). (Pay attention that the sum is over all 𝑣 ∈ ℤ𝑟 and therefore the
series{𝜈𝑖}(𝑡) contains summandswith negative exponents (at least for 𝑟 > 1).) The Poincaré series
of the collection {𝜈𝑖} is defined by

𝑃{𝜈𝑖}(𝑡) =
{𝜈𝑖}(𝑡) ⋅

∏𝑟
𝑖=1(𝑡𝑖 − 1)

(𝑡1 ⋅ … ⋅ 𝑡𝑟 − 1)
. (1)

For one curve valuation 𝜈 = 𝜈𝐶 on a complex analytic variety (𝑉, 0) (𝕂 = ℂ, (𝐶, 0) is a curve
germ on (𝑉, 0)), this definition gives the following. Let 𝑆𝐶 ⊂ ℤ⩾0 be the set (a semigroup) of values
of the valuation 𝜈. Then

𝑃𝜈(𝑡) =
∑
𝑣∈𝑆𝐶

𝑡𝑣. (2)

In [2], it was shown that, for 𝕂 = ℂ and for a collection {𝜈𝑖} of curve valuations on the algebraℂ2,0 of function germs in two variables defined by the irreducible components (𝐶𝑖, 0) of a plane
curve germ (𝐶, 0), the Poincaré series 𝑃{𝜈𝑖}(𝑡) coincides with the Alexander polynomial (in several
variables) of the link𝐶 ∩ 𝑆3𝜀 ⊂ 𝑆3𝜀 (for the number 𝑟 of valuations⩾ 2; for 𝑟 = 1,𝑃𝜈(𝑡) is equal to the
Alexander polynomial divided by 1 − 𝑡). In particular, for an embedded resolution 𝜋 ∶ (𝑋,𝐷) →
(ℂ2, 0) of the curve 𝐶, one has an “A’Campo type” representation

𝑃{𝜈𝑖}(𝑡) =
∏
𝜎

(1 − 𝑡𝑚𝜎)−𝜒(
◦
𝐸𝜎), (3)

where𝑚
𝜎
∈ ℤ𝑟

>0
are somemultiplicities defined for the components 𝐸𝜎 of the exceptional divisor

𝐷 = 𝜋−1(0) and
◦
𝐸𝜎 is the “smooth part” of the irreducible component 𝐸𝜎 of 𝐷, that is 𝐸𝜎 itself

minus the intersection points with all other components of the total transform𝜋−1(𝐶) of the curve
𝐶.
The computation of the Poincaré series in [2] was based on its relation with the so-called

extended semigroup of a collection of (curve) valuations. For a collection {𝜈𝑖} of valuations on
the algebra 𝑉,0 its extended semigroup𝑆{𝜈𝑖} is the union over 𝑣 ∈ ℤ𝑟

⩾0
of the fibers

𝐹𝑣 ∶=
(
𝐽(𝑣)∕𝐽(𝑣 + 1)

)
⧵

⋃
𝐼⊂𝐼0, 𝐼≠∅

(
𝐽(𝑣 + 1𝐼)∕𝐽(𝑣 + 1)

)
,

where 𝐼0 = {1, … , 𝑟}, the 𝑖th component of 1𝐼 ∈ ℤ𝑟 is equal to 1 if 𝑖 ∈ 𝐼 and to 0 otherwise. The
semigroup structure on 𝑆{𝜈𝑖} is induced by the product of function germs. In [2], it was shown that
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ON REAL ANALOGUES OF THE POINCARÉ SERIES 3

(for 𝕂 = ℂ) the Poincaré series of the collection {𝜈𝑖} is given by the equation

𝑃{𝜈𝑖}(𝑡) =
∑
𝑣∈ℤ𝑟

⩾0

𝜒(ℙ𝐹𝑣) ⋅ 𝑡
𝑣, (4)

where ℙ𝐹𝑣 is the projectivization 𝐹𝑣∕ℂ∗ of the fiber of the extended semigroup. (Here, we always
have in mind the additive Euler characteristic defined as the alternating sum of the ranks of
the cohomology groups with compact support. In fact, for a space being a complex quasiprojec-
tive variety, in particular for the projectivizations of the fibers of the extended semigroup in the
complex case: 𝕂 = ℂ, this Euler characteristic coincides with the “usual” one.)
In [10] (also for 𝕂 = ℂ), the Poincaré series 𝑃{𝜈𝑖}(𝑡) was expressed in terms of the integral with

respect to the Euler characteristic (appropriately defined) over the projectivization of ring 𝑉,0:

𝑃{𝜈𝑖}(𝑡) = ∫ℙ𝑉,0 𝑡
𝜈(𝑓)𝑑𝜒 . (5)

This equation led to a new, relatively simple computation of the Poincaré series in a number
of situations.
In the complex setting, all three equations of the Poincaré series: (1), (4), and (5) (and Equa-

tion 2 for the case of one curve valuation) are equivalent to each other. For collections of curve or
divisorial valuations on ℂ2,0 the Poincaré series has a cyclotomic form, that is, is product/ratio
of powers of binomials of the form (1 − 𝑡𝑚) like in (3). Here, we give analogues of definitions of
the Poincaré series of a collection of valuations (or of order functions) in the real setting based
on these equations. The definitions appear to be different. For the case of one curve valuation
on the plane, we compute three of these Poincaré series. (All three of them are cyclotomic: see
Theorems 4 and 8.)
The authors are thankful to the referee for useful remarks that helped to improve the presen-

tation.

2 ANALOGUES OF THE POINCARÉ SERIES IN THE REAL SETTING

Let (𝑉, 0) be a germ of a real analytic variety, let (𝑉ℂ, 0) be its complexification, 𝑉,0 is the ring of
germs of real analytic functions on (𝑉, 0),𝑉ℂ,0

is the ring of germs of complex analytic functions
on (𝑉ℂ, 0). (𝑉,0 is a subspace of 𝑉ℂ,0

.) Let {𝜈𝑖∶ 𝑖 = 1, … , 𝑟}, be a collection of valuations on the
ring 𝑉ℂ,0

. The valuations 𝜈𝑖 define valuations (denoted in the same way) on the ring 𝑉,0. (Each
valuation on 𝑉,0 is the restriction of a valuation on 𝑉ℂ,0

: see, e.g., [11, chapter 4, Theorem 1].)
Taking into account Equations (1), (4), and (5) for the Poincaré series in the complex setting, one
can consider some (different) analogues of it in the described situation.

(1) Let 𝑃{𝜈𝑖}(𝑡) be the classical Poincaré series defined by Equation (1), where 𝐽(𝑣) = {𝑓 ∈

𝑉,0 ∶ 𝜈(𝑓) ⩾ 𝑣}. The space 𝐽(𝑣)∕𝐽(𝑣 + 1) is a (real) subspace of the complex vector space
𝐽ℂ(𝑣)∕𝐽ℂ(𝑣 + 1), where 𝐽ℂ(𝑣) = {𝑓 ∈ 𝑉ℂ,0

∶ 𝜈(𝑓) ⩾ 𝑣}. Therefore 𝐽(𝑣)∕𝐽(𝑣 + 1) is the direct
sum of a complex vector subspace of 𝐽ℂ(𝑣)∕𝐽ℂ(𝑣 + 1) and of a “purely real” one. (By a purely
real subspace𝐴 of a complex vector space 𝐵wemean a (real) subspace such that𝐴 ∩ 𝑖𝐴 = {0}

(𝑖 =
√
−1).) In the case of one curve valuation 𝜈 on𝑉ℂ,0

all the coefficients of the series 𝑃𝜈(𝑡)
are equal to 0, 1, or 2 (if the subspace 𝐽(𝑣)∕𝐽(𝑣 + 1) is zero-dimensional, one-dimensional
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4 CAMPILLO, DELGADO, GUSEIN-ZADE

over ℝ, or one-dimensional over ℂ, respectively). This is a consequence of the following
reasoning. Let the curve valuation 𝜈 be defined by a curve germ (𝐶, 0) ⊂ (𝑉ℂ, 0) which is
the image of a map 𝜑 ∶ (ℂ, 0) → (𝑉ℂ, 0) (an uniformization of (𝐶, 0)). For 𝑓 ∈ 𝑉ℂ,0

the
value 𝜈(𝑓) is the degree of the leading term in the power series decomposition 𝑓(𝜑(𝜏)) =
𝑎(𝑓)𝜏𝜈(𝑓) + 𝑡𝑒𝑟𝑚𝑠 𝑜𝑓 ℎ𝑖gℎ𝑒𝑟 𝑑𝑒g𝑟𝑒𝑒, 𝑎(𝑓) ≠ 0. (If 𝑓◦𝜑 ≡ 0, 𝜈(𝑓) ∶= +∞.) If, for some func-
tion germs 𝑓𝑖 with 𝜈(𝑓𝑖) = 𝑣, the linear combination

∑
𝜆𝑖𝑎(𝑓𝑖) with real 𝜆𝑖 is equal to zero,

one has 𝜈(
∑
𝜆𝑖𝑓𝑖) is greater than 𝑣. Therefore, 𝐽(𝑣)∕𝐽(𝑣 + 1) can be identified with a real

subspace of the complex line ℂ, what implies the statement.
(2) Let the real Poincaré series𝑃ℝ

{𝜈𝑖}
(𝑡) be defined as the integral with respect to the Euler char-

acteristic of 𝑡 𝑣 over the projectivization (i.e., the quotient by ℝ∗) of the extended semigroup:
Equation (4). In the case of one curve valuation on 𝑉ℂ,0

one has 𝑃𝜈(𝑡) =
∑∞
𝑣=0 𝑎𝑣𝑡

𝑣 with
𝑎𝑣 = 0, 1 or 2. This gives 𝑃ℝ𝜈 (𝑡) =

∑∞
𝑣=0 𝜒(ℝℙ

𝑎𝑣−1)𝑡𝑣. For 𝑎𝑣 = 0, 1, 2, 𝜒(ℝℙ𝑎𝑣−1) is equal to
0,1,0, respectively. Therefore, the series 𝑃ℝ𝜈 (𝑡) is obtained from 𝑃𝜈(𝑡) by substituting all the
monomials with the coefficient 2 by 0 (equal to the Euler characteristic of ℝℙ1) and all the
coefficients of 𝑃ℝ𝜈 (𝑡) are equal to 0 or 1.

(3) One has an analogous version defined as the integral with respect to the Euler characteristic
(appropriately defined) of 𝑡 𝜈(𝑓) over the projectivization of the algebra 𝑉,0: Equation (5). One
can give an equation for it in the spirit of [3, Theorem 1], however the right-hand side of it
seems to be not really computable. (At least even in the simplest cases the result looks very
involved.) Therefore, we shall not discuss it below (in particular, for one curve valuation on
ℂ2,0).

(4) For the case of one valuation, one has the semigroup Poincaré series 𝑃𝑆𝜈 (𝑡) defined as the
generating series of the semigroup 𝑆𝜈 of values of 𝜈 on 𝑉,0 (an analogue of Equation 2):

𝑃𝑆𝜈 (𝑡) =
∑
𝑣∈𝑆𝜈

𝑡𝑣.

All the coefficients of 𝑃𝑆𝜈 (𝑡) are equal to 0 or 1. (In the case of one curve valuation on 𝑉ℂ,0
, it

can be obtained from 𝑃𝜈(𝑡) substituting all the monomials of the form 2𝑡𝑣 by the monomials
𝑡𝑣.) A reasonable analogue of this Poincaré series for the case of several valuations is not clear.

Example 1. Let the plane curve (𝐶, 0) ⊂ (ℂ2, 0) be given by the parameterization 𝑥 = 𝑡4, 𝑦 =
𝛼𝑡6 + 𝑡7 with a generic complex 𝛼. The monomials 1, 𝑥, 𝑦, 𝑥2, 𝑥𝑦, and 𝑥2𝑦 give the initial
terms 1 = 𝑡0, 𝑡4, 𝛼𝑡6, 𝑡8, 𝛼𝑡10, and 𝛼𝑡14, respectively. Therefore dim(𝐽(𝑣)∕𝐽(𝑣 + 1)) is equal to
1 for 𝑣 = 0, 4, 6, 8, 10, 14. There are two monomials that give the initial terms of degree 12: 𝑥3
(the initial term 𝑡12) and 𝑦2 (the initial term 𝛼2𝑡12). These initial terms are linear independent
over ℝ, therefore dim(𝐽(12)∕𝐽(13)) = 2 and 𝐽(12)∕𝐽(13) ≅ ℂ. The same holds for all even 𝑣 ⩾ 16:
dim(𝐽(𝑣)∕𝐽(𝑣 + 1)) = 2, 𝐽(𝑣)∕𝐽(𝑣 + 1) ≅ ℂ. There are three monomials that give the initial terms
of degree 24: 𝑥6 (the initial term 𝑡24), 𝑥3𝑦2 (the initial term 𝛼2𝑡24), and 𝑦4 (the initial term 𝛼4𝑡24).
There is only one (up to proportionality) nontrivial linear combination of thesemonomials whose
term of degree 24 vanishes: 𝑦4 − (𝛼2 + 𝛼2)𝑥3𝑦2 + 𝛼2𝛼2𝑥6. The initial term of this linear combi-
nation is a multiple of 𝑡25. Therefore, dim(𝐽(25)∕𝐽(26)) = 1. The same (dim(𝐽(𝑣)∕𝐽(𝑣 + 1)) = 1)
holds for 𝑣 = 29, 31, 33, 35, 39. Themonomials that give pairs of linear independent (overℝ) initial
terms with 𝑣 = 12, 16, 18, … multiplied by the function that represents 𝑣 = 25 (the combination
described above) give pairs of linear independent initial termswith 𝑣 = 37 and all odd 𝑣 ⩾ 41. This
gives the data for computing the Poincaré series 𝑃𝜈(𝑡), 𝑃ℝ𝜈 (𝑡), and 𝑃

𝑆
𝜈 (𝑡). (One can easily verify that

the results are given by Theorems 4 and 8.)
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ON REAL ANALOGUES OF THE POINCARÉ SERIES 5

F IGURE 1 The minimal real resolution graph Γ of the valuation {𝜈𝐶}.

F IGURE 2 The case when the resolutions of the curves 𝐶 and 𝐶 split after each of the curves is resolved.

3 THE POINCARÉ SERIES FOR ONE CURVE VALUATION

Let (𝐶, 0) ⊂ (ℂ2, 0) be an irreducible plane curve germ (where we regard the complex plane ℂ2
as the complexification of the real plane ℝ2) and let 𝜋 ∶ (𝑋,𝐷) → (ℂ2, 0) be the minimal real
resolution of the curve 𝐶 (or of the valuation 𝜈𝐶). This means that it is the minimal resolution of
the curve 𝐶 ∪ 𝐶, where𝐶 is the complex conjugate of the curve 𝐶. This resolution can be obtained
by a sequence of blow-ups either at real points or at pairs of complex conjugate points.
The (dual) resolution graph of𝜋 looks, in general, like on Figure 1. The vertex 𝛿𝐶 corresponds to

the component intersecting the strict transform of the curve𝐶, the vertices 𝜎𝑖 and 𝜎𝑖 , 𝑖 = 0, 1, … , g ,
are the dead ends of the graph, the vertices 𝜏𝑖 and 𝜏𝑖 , 𝑖 = 1, 2, … , g , are the rupture points, the vertex
𝜌 is the splitting point between the resolutions of 𝐶 and of 𝐶. The vertex 𝜌 (the splitting point)
may coincide with one of the rupture points 𝜏𝑞, 1 ⩽ 𝑞 ⩽ g , or with the initial point 𝜎0. There are
two options for the vertex 𝛿𝐶 : either it coincides with the rupture point 𝜏g (as on Figure 1; this
happens if the resolutions of 𝐶 and 𝐶 split not later than each of these curves is resolved), or with
the splitting point 𝜌 if, at the moment when each of the curves is resolved, their resolutions do
not split yet. In the latter case, the end of the resolution graph Γ looks like on Figure 2.
The complex conjugation acts on the resolution graph Γ (keeping fixed the part before the split-

ting point and exchanging the parts after it). The quotient of Γ by the complex conjugation looks
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6 CAMPILLO, DELGADO, GUSEIN-ZADE

F IGURE 3 The quotient of the resolution graph Γ by the complex conjugation.

like on Figure 3 and is a resolution graph of the curve 𝐶 (the minimal one if 𝛿𝐶 = 𝜏g ). (If 𝛿𝐶 ≠ 𝜏g ,
the end of this graph looks like on Figure 2.)
Let the exceptional divisor 𝐷 of the resolution 𝜋 be the union of its irreducible components

𝐸𝜎, 𝜎 ∈ Γ. (Each 𝐸𝜎 is isomorphic to the complex projective line.) One has the natural involution
of complex conjugation on Γ. Let (𝐸𝜎◦𝐸𝛿) be the intersection matrix of the components of the
exceptional divisor𝐷 (that is 𝜎 and 𝛿 run over all the vertices of the graph Γ). (The self-intersection
number 𝐸𝜎◦𝐸𝜎 is a negative integer and, for 𝛿 ≠ 𝜎, 𝐸𝜎◦𝐸𝛿 is either 1 (if 𝐸𝜎 and 𝐸𝛿 intersect) or
0 otherwise.) Let (𝑚𝜎𝛿) ∶= −(𝐸𝜎◦𝐸𝛿)

−1. The entries 𝑚𝜎𝛿 have the following meaning. Let 𝛾𝜎 be
the germ of a smooth curve on the surface (𝑋, 𝐷) of the resolution 𝜋 intersecting the exceptional
divisor 𝐷 transversally at a smooth point of the component 𝐸𝜎 (that is not at an intersection point
with another component). Let the curve 𝛾𝜎 ∶= 𝜋(𝛾𝜎) ⊂ (ℂ2, 0) be given by an equation g𝜎 = 0

(g𝜎 ∈ ℂ2,0). (The plane curve 𝛾𝜎 or the function germ g𝜎 is called a curvette at the component
𝐸𝜎.) Then𝑚𝜎𝛿 is the multiplicity of the lifting g𝜎◦𝜋 of the function g𝜎 along the component 𝐸𝛿. In
particular,𝑚𝜎𝛿 are positive integers (see, e.g., [13]). Let, as above, the strict transform of the curve
𝐶 intersect the exceptional divisor 𝐷 at a point of the component 𝐸𝛿𝐶 and let𝑚𝜎 ∶= 𝑚𝜎𝛿𝐶

.
Let𝑀𝜎 ∈ ℤ>0 be defined in the following way. If 𝐸𝜎 = 𝐸𝜎, one puts𝑀𝜎 = 𝑚𝜎; if 𝐸𝜎 ≠ 𝐸𝜎, one

puts𝑀𝜎 ∶= 𝑚𝜎 +𝑚𝜎.
Let 𝑆𝐶 be the usual semigroup of the complex curve𝐶, that is, 𝑆𝐶 = {𝜈𝐶(𝑓) ∶ 𝑓 ∈ ℂ2,0}. The set

of multiplicities {𝑚𝜎0
, … ,𝑚𝜎g

} is the minimal set of generators of 𝑆𝐶 . Let 𝑒𝑖 ∶= gcd{𝑚𝜎0
, … ,𝑚𝜎𝑖

}

for 𝑖 = 0, 1, … , g and let𝑁𝑖 = 𝑒𝑖−1∕𝑒𝑖 for 𝑖 = 1, 2, … , g . (One has𝑚𝜏𝑖
= 𝑁𝑖𝑚𝜎𝑖

for 𝑖 = 1, 2, … , g : see,
e.g., [13].)
For 𝛿 ∈ Γ, let𝜋𝛿 ∶ (𝑋𝛿, 𝐷𝛿) → (ℂ2, 0) be theminimalmodification of (ℂ2, 0) such that𝐸𝛿 ⊂ 𝐷𝛿.

In particular, 𝐸𝛿 is the last exceptional component appearing in 𝑋𝛿 and is produced by blow-up
at a point 𝑝𝛿 of a previous component. For 𝑓 ∈ ℂ2,0, we will denote by 𝑒𝛿(𝑓) the multiplicity
of the strict transform of the curve {𝑓 = 0} at the point 𝑝𝛿. Notice that 𝑒𝛿(𝑓) coincides with the
intersection multiplicity of the strict transform of {𝑓 = 0} and 𝐸𝛿 in the surface 𝑋𝛿.

Lemma 2. The integers𝑀𝜎0
,𝑀𝜎1

, … ,𝑀𝜎g
generate the semigroup 𝑆ℝ

𝐶
of values of the valuation 𝜈𝐶

on ℝ2,0. One has (𝑁𝑖 − 1)𝑀𝜎𝑖
∉ ⟨𝑀𝜎0

, … ,𝑀𝜎𝑖−1
⟩, 𝑁𝑖𝑀𝜎𝑖

∈ ⟨𝑀𝜎0
, … ,𝑀𝜎𝑖−1

⟩ and 𝑁𝑖𝑀𝜎𝑖
< 𝑀𝜎𝑖+1

.
(In particular,𝑀𝜎0

,𝑀𝜎1
, … ,𝑀𝜎g

is the minimal set of generators of the semigroup 𝑆ℝ
𝐶
.)

Proof. Let ℎ ∈ ℝ2,0 be irreducible, let 𝐻 = {ℎ = 0} be the curve defined by ℎ and let �̃� denote
the strict transform of 𝐻 on 𝑋. Making additional blow-ups at intersection points of pairs of
exceptional components one can assume that �̃� intersects 𝐷 at a smooth point of the compo-
nent 𝐸𝛿 ⊂ 𝐷. Along the proof, we will use known results relating the position of 𝛿 in the dual
graph and the corresponding value 𝜈𝐶(ℎ): see, for example, [7, 8, 13].
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ON REAL ANALOGUES OF THE POINCARÉ SERIES 7

Let 𝑞 be the maximal index such that 𝜏𝑞 precedes (or is equal to) 𝜌. (If such 𝑞 in between
1 and g does not exist (i.e., the resolutions of 𝐶 and 𝐶 split before 𝜏1), we put 𝑞 = 0.) If 𝛿
precedes 𝐸𝜌, that is, 𝐸𝛿 ⊂ 𝐷𝜌, then 𝜈𝐶(ℎ) ∈ ⟨𝑚𝜎0

, … ,𝑚𝜎𝑞
⟩ and so 𝜈𝐶(ℎ) ∈ ⟨𝑀𝜎0

, … ,𝑀𝜎𝑞
⟩. In par-

ticular, 𝑚𝜌 ∈ ⟨𝑀𝜎0
, … ,𝑀𝜎𝑞

⟩ because 𝑚𝜌 = 𝜈𝐶(𝜑𝜌), where {𝜑𝜌 = 0} is a curvette at the divisor
𝐸𝜌.
Now, let us assume that 𝛿 is after 𝜌. In this case ℎ is the product of two irreducible complex

conjugate functions, ℎ = 𝑓 ⋅ 𝑓, equivalently 𝐻 = 𝐹 ∪ 𝐹 with 𝐹 = {𝑓 = 0} being a complex irre-
ducible curve germ. As earlier, denote by 𝐸𝛿 the (unique) divisor on the minimal resolution of 𝐶
intersecting the strict transform 𝐹 of 𝐹, so 𝐸

𝛿
is the corresponding component for the conjugate

𝐹 of 𝐹. The splitting point of 𝛿 and 𝐶 is 𝜌 and therefore 𝜈𝐶(𝑓) = 𝑒𝜌(𝑓)𝑚𝜌. Let [𝛼, 𝛽] denote the
geodesic in Γ between the vertices 𝛼 and 𝛽.
If 𝛿 ∈ [𝜎𝑖, 𝜏𝑖] for some 𝑖 ⩾ 𝑞 + 1, then 𝜈𝐶(𝑓) = 𝑘𝑚𝜎𝑖

for some positive integer 𝑘. For the con-
jugate one has that 𝛿 ∈ [𝜎𝑖, 𝜏𝑖] and so 𝜈𝐶(𝑓) = 𝜈

𝐶
(𝑓) = 𝑘𝑚𝜎𝑖

. Thus, in this case one has that
𝜈𝐶(ℎ) = 𝜈𝐶(𝑓) + 𝜈𝐶(𝑓) = 𝑘(𝑚𝜎𝑖

+ 𝑚𝜎𝑖
) = 𝑘𝑀𝜎𝑖

.
In particular for𝑚𝜏𝑖

, it is known that𝑚𝜏𝑖
= 𝑁𝑖𝑚𝜎𝑖

and so𝑀𝜏𝑖
= 𝑁𝑖𝑀𝜎𝑖

. Moreover, if {𝜑 = 0} is
a curvette at 𝐸𝜎𝑖 there is 𝑒𝜎𝑖 (𝜑) = 𝑒𝜏𝑖−1(𝜑) = 1 and therefore

𝑒𝜌(𝜑)𝑚𝜌 = 𝑚𝜌𝑒𝜏𝑞 (𝜑) = 𝑚𝜌

𝑒𝜏𝑞 (𝜑)

𝑒𝜏𝑞+1(𝜑)
⋅ … ⋅

𝑒𝜏𝑖−2(𝜑)

𝑒𝜏𝑖−1(𝜙)
𝑒𝜏𝑖−1(𝜑) = 𝑁𝑞+1 ⋅ … ⋅𝑁𝑖−1𝑚𝜌 . (6)

The last equality is due to the fact that 𝑒𝜏𝑗−1(𝜑)∕𝑒𝜏𝑗 (𝜑) = 𝑒𝑗−1∕𝑒𝑗 for 𝑗 ⩽ 𝑖 − 1. Thus one has
𝑀𝜎𝑞+1

= 𝑚𝜎𝑞+1
+ 𝑚𝜌 and

𝑀𝜎𝑖
= 𝑚𝜎𝑖

+ 𝑚𝜎𝑖
= 𝑚𝜎𝑖

+ 𝑁𝑞+1 ⋅ … ⋅𝑁𝑖−1𝑚𝜌 for 𝑖 > 𝑞 + 1 . (7)

If 𝛿 ∈ [𝜌, 𝜏𝑞+1], one has 𝜈𝐶(𝑓) ∈ ⟨𝑚𝜎0
, … ,𝑚𝜎𝑞

⟩. On the other hand, 𝛿 ∈ [𝜌, 𝜏𝑞+1] and therefore

𝜈𝐶(𝑓) = 𝑒𝜌(𝑓)𝑚𝜌. Thus, 𝜈𝐶(ℎ) = 𝜈𝐶(𝑓) + 𝜈𝐶(𝑓) ∈ ⟨𝑀𝜎0
, … ,𝑀𝜎𝑞

⟩.
Finally, let us assume that 𝛿 ∈ [𝜏𝑖, 𝜏𝑖+1] for some 𝑖 ⩾ 𝑞 + 1. In this case 𝜈𝐶(𝑓) ∈ ⟨𝑚𝜎0

, … ,𝑚𝜎𝑖
⟩

and so 𝜈𝐶(𝑓) =
∑𝑖
𝑗=0 𝑘𝑗𝑚𝜎𝑗

with 𝑘0 ⩾ 0 and 0 ⩽ 𝑘𝑗 < 𝑁𝑗 for 𝑗 = 1,… , 𝑖; moreover the integers 𝑘𝑗
are uniquely determined by these conditions. On the other hand, 𝛿 ∈ [𝜏𝑖, 𝜏𝑖+1] and then 𝑒𝜏𝑖 (𝑓) =
𝑒𝜏𝑖 (𝑓) ⩾ 1. By Equation (6), one has

𝑒𝜌(𝑓) = 𝑒𝜏𝑞 (𝑓) = 𝑁𝑞+1 ⋅ … ⋅𝑁𝑖𝑒𝜏𝑖 (𝑓) ⩾ 𝑁𝑞+1 ⋅ … ⋅𝑁𝑖

and therefore 𝜈𝐶(𝑓) = 𝑁𝑞+1 ⋅ … ⋅𝑁𝑖𝑒𝜏𝑖 (𝑓)𝑚𝜌 ⩾ 𝑁𝑞+1 ⋅ … ⋅𝑁𝑖𝑚𝜌. By Equation (7), one has

𝑖∑
𝑗=𝑞+1

𝑘𝑗𝑚𝜎𝑗
=

𝑖∑
𝑗=𝑞+1

𝑘𝑗𝑁𝑞+1 ⋅ … ⋅𝑁𝑗−1𝑚𝜌 ⩽ 𝑚𝜌

𝑖∑
𝑗=𝑞+1

𝑁𝑞+1 ⋅ … ⋅𝑁𝑗−1(𝑁𝑗 − 1)

= 𝑚𝜌(𝑁𝑞+1 ⋅ … ⋅𝑁𝑖 − 1) < (𝑁𝑞+1 ⋅ … ⋅𝑁𝑖)𝑚𝜌 ⩽ 𝜈𝐶(𝑓) .
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8 CAMPILLO, DELGADO, GUSEIN-ZADE

As a consequence, for some integer 𝑎 > 0, one has

𝜈𝐶(ℎ) = 𝜈𝐶(𝑓) + 𝜈𝐶(𝑓) =

𝑖∑
0

𝑘𝑗𝑚𝜎𝑗
+ 𝑒𝜌(𝑓)𝑚𝜌

=

𝑞∑
0

𝑘𝑗𝑚𝜎𝑗
+

𝑖∑
𝑞+1

𝑘𝑗(𝑚𝜎𝑗
+ 𝑚�̄�𝑗

) + 𝑎𝑚𝜌

=

𝑖∑
0

𝑘𝑗𝑀𝜎𝑗
+ 𝑎𝑚𝜌 ∈ ⟨𝑀𝜎0

, … ,𝑀𝜎𝑖
⟩

and the first part of the statement is proved.
The remaining statements of lemma are trivial consequences of the same properties for the

set of multiplicities𝑚𝜎0
, … ,𝑚𝜎g

(the minimal set of generators of the semigroup 𝑆ℂ), taking into
account that 𝑒𝑖 = gcd{𝑀𝜎0

, … ,𝑀𝜎𝑖
} for 0 ⩽ 𝑖 ⩽ g . □

Remark 3. Let 𝑆 ⊂ ℤ⩾0 be a numerical semigroup (i.e., a subsemigroup of (ℤ⩾0, +) such
that #(ℤ⩾0 ⧵ 𝑆) < ∞) and let {𝑏0 < 𝑏1 < ⋯ < 𝑏g } be its minimal set of generators. Let 𝑎𝑖 =
gcd(𝑏0, … , 𝑏𝑖), 0 ⩽ 𝑖 ⩽ g and 𝑁𝑖 = 𝑎𝑖∕𝑎𝑖−1 for 𝑖 = 1, … , g . It is known (see [1] or [12]) that 𝑆 is the
semigroup of values a complex plane branch𝐶′ if and only if𝑁𝑖𝑏𝑖 ∈ ⟨𝑏0, … , 𝑏𝑖−1⟩ and𝑁𝑖𝑏𝑖 < 𝑏𝑖+1
for 𝑖 = 1, … , g . Notice that 𝐶′ is unique up to topological equivalence as the semigroup is a
complete invariant of equisingularity. Thus, Lemma 2 implies that the “real” semigroup 𝑆ℝ

𝐶
coin-

cides with the usual semigroup 𝑆𝐶′ of another plane curve singularity (𝐶′, 0). Examples: for 𝐶
given by 𝑥 = 𝑡4, 𝑦 = 𝛼𝑡4 + 𝑡6 + 𝑡7 with a generic complex 𝛼, as the curve 𝐶′ one can take 𝑥 = 𝑡4,
𝑦 = 𝑡10 + 𝑡11; for 𝐶 given by 𝑥 = 𝑡4, 𝑦 = 𝛼𝑡6 + 𝑡7 with a generic complex 𝛼, as the curve 𝐶′ one
can take 𝑥 = 𝑡4, 𝑦 = 𝑡6 + 𝑡19; for 𝐶 given by 𝑥 = 𝑡4, 𝑦 = 𝑡6 + 𝛼𝑡7 with a generic complex 𝛼, as the
curve 𝐶′ one can take the initial curve: 𝑥 = 𝑡4, 𝑦 = 𝑡6 + 𝑡7. In general, if one defines 𝛽0 ∶= 𝑀𝜎0

,
𝛽1 ∶= 𝑀𝜎1

and 𝛽𝑖+1 ∶= 𝑀𝜎𝑖+1
− 𝑁𝑖𝑀𝜎𝑖

for 𝑖 ⩾ 1, the semigroup 𝑆ℝ
𝐶
is the semigroup of values of

the complex branch defined among other curves by 𝑥 = 𝑡𝛽0 , 𝑦 =
∑
𝑖⩾1 𝑡

𝛽𝑖 .

Theorem 4. One has

𝑃𝑆𝜈𝐶
(𝑡) =

∏g

𝑖=1
(1 − 𝑡𝑀𝜏𝑖 )

∏g

𝑖=0
(1 − 𝑡𝑀𝜎𝑖 )

.

Proof. Lemma 2 implies that any element of the semigroup 𝑆ℝ
𝐶
can be in a unique way represented

as 𝑘0𝑀𝜎0
+ 𝑘1𝑀𝜎1

+⋯ + 𝑘g𝑀𝜎g
with 𝑘𝑖 ∈ ℤ⩾0 for 𝑖 = 0, … , g and 𝑘𝑖 < 𝑁𝑖 for 𝑖 ⩾ 1. This yields the

statement (as𝑀𝜏𝑖
= 𝑁𝑖𝑀𝜎𝑖

). □

Proposition 5. Let an element 𝑎 ∈ 𝑆ℝ
𝐶
be less than𝑀𝜌 = 𝑚𝜌, then one has dim(𝐽(𝑎)∕𝐽(𝑎 + 1)) = 1.

Moreover, one has dim(𝐽(𝑀𝜌)∕𝐽(𝑀𝜌 + 1)) = 2 (and therefore 𝐽(𝑀𝜌)∕𝐽(𝑀𝜌 + 1) ≅ ℂ).

Proof. Let 𝑎 = 𝜈𝐶(𝑓1) = 𝜈𝐶(𝑓2) with 𝑓𝑖 ∈ ℝ2,0. As 𝑎 < 𝑚𝜌, the strict transforms of the curves
{𝑓𝑖 = 0} intersect the exceptional divisor 𝐷 only at components preceding 𝐸𝜌. One has 𝜈𝐶(𝑓1) =
𝜈𝐶(𝑓2) < 𝑚𝜌. The multiplicities of the liftings 𝑓1◦𝜋 and 𝑓2◦𝜋 of the germs 𝑓1 and 𝑓2 along the
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ON REAL ANALOGUES OF THE POINCARÉ SERIES 9

components 𝐸𝜎 with 𝜎 ⩾ 𝜌 are the same. Therefore on all these components the ratio
𝑓1◦𝜋
𝑓2◦𝜋

is a
constant different from zero (and from infinity). As its values at the components 𝐸𝜎 and 𝐸𝜎 are
conjugate to each other, this ratio is real. Therefore, dim(𝐽(𝑎)∕𝐽(𝑎 + 1)) = 1.
One has𝑚𝜌 =

∑
𝑖∶𝜎𝑖<𝜌

𝑘𝑖𝑚𝜎𝑖
with 𝑘𝑖 ⩾ 0. Let us take a real function 𝑓1 such that the strict trans-

form of the curve {𝑓1 = 0} is the union of 𝑘𝑖 real curvettes at the components 𝐸𝜎𝑖 for all 𝑖 such that
𝜎𝑖 < 𝜌. Let 𝜋𝜌 ∶ (𝑋𝜌, 𝐷𝜌) → (ℂ2, 0) be the modification of (ℂ2, 0) produced in the course of the
resolution 𝜋 up to the moment when the component 𝐸𝜌 is created. Let 𝑧 be an affine coordinate
on 𝐸𝜌 with real values on the real part of 𝐸𝜌 and equal to zero at the intersection point of 𝐸𝜌 with
the previous component. Let 𝑓2 be a real function such that the strict transform of {𝑓2 = 0} is a
real curvette at 𝐸𝜌 at infinity. The components 𝐸𝜎 with 𝜎 > 𝜌 are obtained after blow ups the com-
ponent 𝐸𝜌 at nonreal points 𝑧0 and 𝑧0. The ratio 𝜓 =

𝑓1◦𝜋
𝑓2◦𝜋

on the component 𝐸𝜌 is equal to 𝑐𝑧with
real 𝑐. (It has a zero at 𝑧 = 0 and a pole at 𝑧 = ∞.) Therefore, its value at the point 𝑧0 (from which
the component intersecting the strict transform of the curve 𝐶 emerges) is not real. The ratio 𝜓 is
equal to this constant on all the components from the corresponding connected component of the
part of the resolution graph consisting of the vertices 𝜎 > 𝜌. Therefore, the ratio 𝑓1◦𝜋

𝑓2◦𝜋
on the curve

𝐶 tends to a nonreal (nonzero) number at the origin. This implies that 𝐽(𝑚𝜌)∕𝐽(𝑚𝜌 + 1) ≅ ℂ and
dim 𝐽(𝑚𝜌)∕𝐽(𝑚𝜌 + 1) = 2. □

Lemma 6. Let 𝛿 be a vertex of the resolution graph Γ lying on the geodesic from 𝜌 to 𝛿𝐶 . Them
𝑀𝛿 ∈ 𝑚𝜌 + 𝑆

ℝ
𝐶
.

Proof. Let 𝜑 ∈ ℂ2,0 be the equation of a curvette at the point 𝛿 and let us assume that either
𝛿 ∈ [𝜏𝑖, 𝜏𝑖+1], for some 𝑖 > 𝑞 + 1 or 𝛿 ∈ [𝜌, 𝜏𝑞+1]. Then,𝑀𝛿 = 𝜈𝐶(𝜑) + 𝜈𝐶(𝜑) and by the last part
in the proof of Lemma 2, one has that𝑀𝛿 =

∑𝑖
0 𝑘𝑗𝑀𝜎𝑗

+ 𝑎𝑚𝜌 for some 𝑎 > 0. Thus,𝑀𝛿 −𝑚𝜌 ∈

𝑆ℝ
𝐶
. □

Proposition 7. Let 𝑆2 be the set of elements𝑎 of the semigroup 𝑆ℝ𝐶 such that dim(𝐽(𝑎)∕𝐽(𝑎 + 1)) = 2.
Then 𝑆2 = 𝑚𝜌 + 𝑆

ℝ
𝐶
.

Proof. If 𝑎 = 𝑚𝜌 + 𝑏 with 𝑏 ∈ 𝑆ℝ
𝐶
, then obviously 𝑎 ∈ 𝑆2: if 𝑓1 and 𝑓2 are functions described

above and 𝜈(ℎ) = 𝑏, then the classes of 𝑓1 ⋅ ℎ and 𝑓2 ⋅ ℎ are linear independent over ℝ in 𝐽(𝑚𝜌 +

𝑏)∕𝐽(𝑚𝜌 + 𝑏 + 1).
Assume that 𝑎 ∉ 𝑚𝜌 + 𝑆

ℝ
𝐶
and dim(𝐽(𝑎)∕𝐽(𝑎 + 1)) = 2. Let𝑓 be a real functionwith 𝑣𝐶(𝑓) = 𝑎,

and let the strict transform of the curve {𝑓 = 0} intersect the exceptional divisor 𝐷 at points of
the subset Γ′ of Γ. The subset Γ′ cannot contain a vertex from the geodesic from 𝜌 to 𝛿𝐶 (due to
Lemma 6). One has

𝑓 = 𝑓′ ⋅
∏

𝑖∶𝜎𝑖≠𝜎𝑖
𝑓′𝑖 𝑓

′
𝑖
,

where 𝑓′ is a real function such that the strict transform of the curve {𝑓′ = 0} intersects the excep-
tional divisor 𝐷 only at points of components 𝐸𝛿 with 𝛿 = 𝛿, 𝑓′

𝑖
is a (complex analytic) function

such that the strict transform of the curve {𝑓′
𝑖
= 0} intersects only at points of the components 𝐸𝛿

from the tail containing 𝐸𝜎𝑖 . One has 𝜈𝐶(𝑓
′
𝑖
𝑓′
𝑖
) = 𝑘𝑖𝑀𝜎𝑖

. If 𝑘𝑖 ⩾ 𝑁𝑖 then 𝜈𝐶(𝑓′𝑖 𝑓
′
𝑖
) ∈ 𝑚𝜌 + 𝑆

ℝ
𝐶
(as

𝑁𝑖𝑀𝜎𝑖
= 𝑀𝜏𝑖

and Lemma 6). Thus, 𝑘𝑖 < 𝑁𝑖 .
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10 CAMPILLO, DELGADO, GUSEIN-ZADE

If ℎ is another real function with 𝜈𝐶(ℎ) = 𝑎 and ℎ = ℎ′ ⋅
∏

𝑖∶𝜎𝑖≠𝜎𝑖 ℎ′𝑖ℎ′𝑖 , then 𝜈𝐶(ℎ
′
𝑖
ℎ′
𝑖
) =

𝜈𝐶(𝑓
′
𝑖
𝑓′
𝑖
) (because of the uniqueness of the representation in terms of the minimal set of genera-

tors {𝑀𝜎0
, … ,𝑀𝜎g

}). This implies that ℎ◦𝜋
𝑓◦𝜋

is constant on the union of the two geodesics from 𝜌 to

𝛿𝐶 and 𝛿𝐶 (𝜌 included). As its values at complex conjugate points are complex conjugate to each
other, this constant is real. Therefore, the elements of the extended semigroup defined by 𝑓 and
ℎ are linear dependent over ℝ. This contradicts the assumption that dim(𝐽(𝑎)∕𝐽(𝑎 + 1)) = 2. □

Theorem 8. One has:

𝑃𝜈𝐶 (𝑡) = 𝑃𝑆𝜈𝐶
(𝑡)(1 + 𝑡𝑚𝜌) = 𝑃𝑆𝜈𝐶

(𝑡)
1 − 𝑡2𝑚𝜌

1 − 𝑡𝑚𝜌
; (8)

𝑃ℝ𝜈𝐶
(𝑡) = 𝑃𝑆𝜈𝐶

(𝑡)(1 − 𝑡𝑚𝜌).

Proof. One has

𝑃𝜈𝐶 (𝑡) = 𝑃𝑆𝜈𝐶
(𝑡) +

∑
𝑎∈𝑆2

𝑡𝑎 = 𝑃𝑆𝜈𝐶
(𝑡) +

∑
𝑣∈𝑆ℝ

𝐶

𝑡𝑚𝜌+𝑣 = 𝑃𝑆𝜈𝐶
(𝑡) + 𝑡𝑚𝜌𝑃𝑆𝜈𝐶

(𝑡) ;

𝑃ℝ𝜈𝐶
(𝑡) = 𝑃𝑆𝜈𝐶

(𝑡) −
∑
𝑎∈𝑆2

𝑡𝑎 = 𝑃𝑆𝜈𝐶
(𝑡) −

∑
𝑣∈𝑆ℝ

𝐶

𝑡𝑚𝜌+𝑣 = 𝑃𝑆𝜈𝐶
(𝑡) − 𝑡𝑚𝜌𝑃𝑆𝜈𝐶

(𝑡) . □

Remark 9. Assume that the group ℤ2 of order 2 acts on (ℂ2, 0) and (𝐶′, 0) ⊂ (ℂ2, 0) is a complex
curve such that the dual graph of its equivariant resolution (together with the ages of the ver-
tices) coincides with the resolution graph Γ. In [4], there was defined the equivariant Poincaré
series 𝑃ℤ2

𝐶′
(𝑡) as an element of 𝑅1(ℤ2)[[𝑡]] where 𝑅1(ℤ2) = ℤ[𝜎]∕(𝜎2 − 1) is the ring of represen-

tations of ℤ2. One has its reduction under the dimensional homomorphism red ∶ 𝑅1(ℤ2) → ℤ

as an element red 𝑃ℤ2
𝐶′
(𝑡) ∈ ℤ[[𝑡]]. Equation (8) and the equation of [4, Theorem 2] imply that

𝑃𝜈𝐶 (𝑡) = red 𝑃
ℤ2
𝐶′
(𝑡). We have no independent explanation of this coincidence.

Remark 10. As it was indicated in Remark 3, the semigroup 𝑆ℝ
𝐶
is the semigroup of values of a com-

plex plane curve 𝐶′. Therefore, its elements are symmetric with respect to the conductor 𝑐 of the
semigroup in the sense that 𝑎 ∈ 𝑆 ⟺ 𝑐 − 1 − 𝑎 ∉ 𝑆. One has one more symmetry concerning
the coefficients of the series 𝑃𝜈𝐶 (𝑡). This symmetry is with respect to 𝑐 + 𝑚𝜌:

dim (𝐽(𝑎)∕𝐽(𝑎 + 1)) + dim
(
𝐽(𝑐 + 𝑚𝜌 − 1 − 𝑎)∕𝐽(𝑐 + 𝑚𝜌 − 𝑎)

)
= 2

(cf. [6]). (Thus, if one of these dimensions is equal to zero, the other one is equal to 2, and if one
of them is equal to 1, then the other one is equal to 1 as well).

Remark 11. From Remark 3, one can easily see that the semigroup Poincaré series 𝑃𝑆𝜈𝐶 (𝑡) does not
determine the real topology of the curve 𝐶, that is, the topology of the curve 𝐶 ∪ 𝐶. On the other
hand, each of the series 𝑃𝜈𝐶 (𝑡) and 𝑃

ℝ
𝜈𝐶
(𝑡) permit to determine not only the semigroup Poincaré

series 𝑃𝑆𝜈𝐶 (𝑡), but also the value 𝑚𝜌 and thus the splitting point 𝜌. Therefore, each of these series
determines the real topology of the curve 𝐶.
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