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The concept  of  stimulus–secretion  coupling  was born  from  experiments  performed  in  chromaffin  cells  50

years ago. Stimulation  of  these cells  with  acetylcholine  enhances calcium (Ca2+)  entry and  this generates  a

transient elevation  of the  cytosolic  Ca2+ concentration  ([Ca2+]c)  that  triggers  the  exocytotic release  of  cat-

echolamines. The control  of  the  [Ca2+]c signal  is complex and depends  on various  classes  of plasmalemmal

calcium channels,  cytosolic  calcium  buffers,  the  uptake  and  release  of  Ca2+ from  cytoplasmic  organelles,

such as  the  endoplasmic  reticulum,  mitochondria,  chromaffin  vesicles  and  the  nucleus,  and  Ca2+ extru-

sion mechanisms,  such  as  the  plasma membrane  Ca2+-stimulated  ATPase, and the  Na+/Ca2+ exchanger.

Computation of the  rates of Ca2+ fluxes between  the  different  cell compartments  support the  proposal

that the  chromaffin cell  has developed  functional  calcium  tetrads  formed  by  calcium  channels,  cytosolic

calcium buffers,  the  endoplasmic  reticulum,  and mitochondria  nearby the  exocytotic  plasmalemmal  sites.

These tetrads  shape  the  Ca2+ transients  occurring  during  cell  activation  to  regulate  early and  late  steps  of

exocytosis, and the  ensuing  endocytotic  responses.  The different  patterns  of catecholamine  secretion  in

response to stress may  thus depend  on  such  local [Ca2+]c transients  occurring  at  different  cell compart-

ments, and  generated  by  redistribution  and  release of Ca2+ by  cytoplasmic organelles.  In  this manner,

the calcium  tetrads serve to  couple  the  variable  energy  demands  due  to exo–endocytotic  activities  with

energy production and  protein  synthesis.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Stressful conflicts trigger a surge of the catecholamines

adrenaline and noradrenaline that mobilize the body to survive by

combating an enemy or to flee from danger, the so-called “fight

or flight” response. This response is  the end result of a  secretory

event  that takes place in  the adrenal medulla, the inner part of

the two adrenal glands located just above the kidneys. The adrenal

medulla is composed of chromaffin cells that secrete adrenaline

and noradrenaline. These cells are of interest not only to explore

the mechanisms underlying the “fight or flight” response, but also

because they have been used for decades as excellent models to

study the working of other secretory cells, in particular neurons.
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Acetylcholine, the physiological neurotransmitter at the

splanchnic nerve-chromaffin cell synapse [1],  causes the release of

catecholamines from the adrenal gland. This secretory response is

suppressed in  the absence of extracellular calcium (Ca2+) [2].  Also,

acetylcholine enhances Ca2+ entry into adrenal medullary chromaf-

fin cells [3].  On the basis of these and other pioneering experiments

William W.  Douglas coined the expression “stimulus–secretion

coupling” as the basic mechanism involved in  neurotransmitter

and hormone secretion; Ca2+ was  the coupling ion between the

stimulus and the exocytotic response [4]. Since then, adrenal chro-

maffin cells from various mammalian species but mostly from

bovine, rats and mice have extensively been used to study the rela-

tionship between the changes of cytosolic concentrations of free

Ca2+ ions in the cytosol ([Ca2+]c), its redistribution into organelles,

its clearance from the cytosol and the exocytotic and endocytotic

responses triggered by  acetylcholine and other nicotinic and mus-

carinic receptor agonists, various agonists for G-protein coupled

receptors and different depolarising stimuli including high con-

centrations of potassium (K+), square depolarising pulses or action

potentials.

0143-4160/$ – see front matter ©  2011 Elsevier Ltd. All rights reserved.
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Chromaffin cells are excitable cells and fire action potentials

that open various of the neuronal-type voltage-dependent calcium

channels (VDCCs) and produce Ca2+ entry; the resulting [Ca2+]c sig-

nal  triggers exocytosis. Because cytoplasmic organelles can take

up  and release Ca2+ to the cytosol, understanding the [Ca2+]c sig-

nal requires understanding of the Ca2+ redistribution between the

cytosol and the different organelles. The coding of the photopro-

tein aequorin gene [5] made it possible to introduce targeting

sequences, and measuring selective [Ca2+]  changes in different

organelles [6].  This methodology has been applied during the last

decade to gain insight into the role of organelles in shaping [Ca2+]c

signalling and exocytosis in  chromaffin cells. This review focuses on

the pathways for Ca2+ entry into the chromaffin cell, on the intra-

cellular organelles that contribute to the redistribution of the Ca2+

entering the cell, and on the mechanisms that terminate the [Ca2+]c

signals and extrude the cation outside the cell. We  also analyse the

influence of this Ca2+ trafficking between the different organelles

on the exocytotic responses. Finally, we analyse the kinetics of Ca2+

handling at different cell compartments, trying to obtain a  uni-

fied picture of Ca2+ handling and the exo–endocytotic responses of

chromaffin cells. Several reviews of some of these questions have

been published [7–11].

2. Calcium influx

The most relevant Ca2+ entry pathways in chromaffin cells are

VDCCs, store-operated Ca2+ channels (SOCCs) and ligand-gated cal-

cium channels. The characteristics and regulation of the various

VDCC subtypes will extensively be described by E. Carbone in this

special number of Cell Calcium. So, we will only make a  brief men-

tion to them.

2.1. Voltage-dependent calcium channels

As in neurons [12],  multiple VDCCs are  expressed in  chromaffin

cells  [13]. Significant differences exist in the densities of each chan-

nel subtype in cells from different species. For  instance, L  channels

(�1D, Cav1.3) carry near 50% of the whole-cell current in cat, rat

and  mouse chromaffin cells. In contrast, P/Q channels (�1A, Cav2.1)

account for 50–60% of the current in  bovine and human chromaf-

fin  cells. N-type channels (�1B,  Cav2.2) contribute 80% in  pig, 45%

in cat and 30% in  bovine, rat, mouse and human chromaffin cells.

Finally, R-type channels (�1E,  Cav2.3) are present only in  mouse

chromaffin cells [9].

2.2.  Store-operated calcium channels

In many non-excitable cells, inositol 1,4,5-trisphosphate (InsP3)

generated by agonist stimulation causes a  biphasic elevation of

[Ca2+]c. The initial peak is  due to ER Ca2+ release via the InsP3

receptor channel while the subsequent maintained plateau phase

is associated to Ca2+ entry through SOCCs [14–16].  The plateau

phase is produced by a  small-conductance, voltage-independent

Ca2+ release activated Ca2+ current (ICRAC), that serves to replenish

the Ca2+ store [17–19].  Having multiple types of VDCCs, excitable

cells could be refilling their depleted ER Ca2+ store by Ca2+ entering

through those high-conductance channels. This has been shown to

apply for some neurosecretory cells [20,21] including bovine chro-

maffin cells; in  these cells loaded with ER-targeted aequorin, high

K+ accelerates the ER Ca2+ store refilling upon Ca2+ reintroduction

[22].

Early experiments demonstrated Ca2+ influx through SOCCs

upon  ER Ca2+ depletion of bovine chromaffin cells [23];  this was

corroborated by later experiments [22,24–28].  A direct proof for

the presence of SOCCs was obtained from voltage-clamped bovine

chromaffin cells where a  small-amplitude, voltage-independent

ICRAC carried by Ca2+ and Na+, was  characterised under conditions

of  Ca2+ store depletion [29]. A Ca2+ entry pathway triggered by  his-

tamine and independent of the ER Ca2+ store is also present in these

cells [25,30].

A  few studies have explored the role of Ca2+ entry through

SOCCs in triggering exocytosis in bovine chromaffin cells. Thus,

histamine and angiotensin II stimulate exocytosis by a combina-

tion of ER Ca2+ release and additional Ca2+ entry through SOCCs

[24].  More convincing evidence arises from experiments performed

in  voltage-clamped cells, where angiotensin II-induced exocytosis

was associated with an uncharacterised leak current [27]. In addi-

tion,  exocytosis could be elicited in the absence of depolarisation by

photolysis of caged InsP3 [31] or by bradykinin [32].  But  the most

convincing evidence comes from experiments done with stimula-

tion of Ca2+ entry through SOCCs by store depletion that produces

exocytosis at negative membrane potentials that maintain closed

the  VDCCs [29].

Why a  bovine chromaffin cell expressing L, N and P/Q high-

conductance VDCCs [9] should still require additional pathways

for Ca2+ entry is puzzling. The fact such pathways can be physio-

logically activated by action potentials or sustained depolarisation

triggered by acetylcholine is even more puzzling. Combining

aequorins and confocal microscopy, Ca2+-induced Ca2+ release

(CICR) was shown to be activated by  K+ or  50-ms depolarising

pulses in  bovine chromaffin cells [22].  Upon repetitive stimulation

with bursts of  action potentials under stress, CICR may  produce

partial ER Ca2+ depletion and give rise to  SOCC activation. A  modula-

tory role of this capacitative Ca2+ entry on exocytosis in  chromaffin

cells has been suggested, but other pathways for Ca2+ entry were

not under control in  these experiments [26]. Later, direct experi-

ments demonstrated that receptor-free activation of Ca2+ entry via

SOCCs is  sufficient to trigger and or facilitate exocytosis in  these

cells [29].  In  this context, it is interesting that hyperpolarisation is

associated with histamine receptor stimulation that is coupled to

ER  Ca2+ release and activation of small-conductance Ca2+-activated

K+ channels [33]. This mechanism could amplify Ca2+ influx via

SOCCs, thus facilitating the exocytosis triggered by  bursts of action

potentials, in  a  kind of long-lasting modulatory mechanism for

stimulus–secretion coupling.

2.3. Ligand-gated calcium channels

Nicotinic receptors for acetylcholine (nAChRs), as well as recep-

tors for glutamate and ATP, underlie excitatory transmission at

central and peripheral synapses. These receptors are ion channels

permeable to cations. The fraction of the inward cation current car-

ried by  Ca2+,  triggered by agonists in various cell types is about

5% for nAChRs and ATP receptors and around 10% for N-methyl-

d-aspartate (NMDA) receptors [34,35].  In bovine chromaffin cells

the fraction of acetylcholine-elicited inward current carried by

Ca2+ accounts for about 5% [36].  Ca2+ entering through nAChRs

may  contribute to augment vesicle movement and the size of the

ready-release vesicle pool [37,38]. Furthermore, glutamate recep-

tors  seem to mediate an increase of [Ca2+]c and exocytosis in bovine

chromaffin cells [39]. On the other hand, various purinoceptor sub-

types that respond to ATP with a  [Ca2+]c increase have also been

found  in these cells [40].  Remarkable differences among species

have been found. For instance, rat chromaffin cells lack P2X recep-

tors  while in the guinea-pig, ATP generates an inward current

that seems to be  associated to P2X2 receptors [41].  Na+ influx

through P2X channels causes depolarisation of  bovine chromaf-

fin cells, enhances Ca2+ entry through VDCCs and catecholamine

release  [42].  On the other hand, P2X receptors seem to be pref-

erentially expressed by noradrenergic cells, while adrenergic cells

preferentially contain P2Y metabotropic receptors [43]. These latter
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receptors exert an autocrine regulatory inhibition of inward Ca2+

currents through VDCCs of bovine cells [44,45].

GABAA receptor agonists also cause cell depolarisation, an ele-

vation of [Ca2+]c, likely due to opening of VDCCs and the release of

catecholamines [46–48].  Furthermore, GABA enhances the [Ca2+]c

elevation elicited by low-frequency electrical field stimulation of

perfused rat adrenals [49].  It  is  still unclear how GABA can exert

those modulatory effects; a paracrine role has been suggested for

GABA co-stored and co-released with catecholamines during elec-

trical stimulation of the splanchnic nerves at the adrenal medulla

[49].

3.  Calcium redistribution

The abrupt [Ca2+]c transient generated by depolarising stimuli

elicited by either action potentials or sustained depolarisations, are

controlled not only by the different subtypes of VDCCs expressed

by chromaffin cells, but also by cytosolic calcium buffers, Ca2+

sequestration or release by cytoplasmic organelles and extrusion

by plasmalemmal calcium transporters. We  will separately analyse

these calcium regulatory elements (Fig. 1).

3.1. Cytosolic calcium buffers

Ca2+ buffering and diffusion in bovine chromaffin cells has

been studied extensively by Neher and coworkers (see Section 5).

However, the molecular nature of the cytosolic calcium buffers

is  unknown. Only a few reports have been devoted to  the study

of  calcium-binding proteins in  chromaffin cells. For  instance, in

Fig. 1. Calcium (Ca2+) cycling in the chromaffin cell. Upon cell depolarisation, extra-

cellular Ca2+ enters the cell  through voltage-dependent Ca2+ channels (1, VDCCs).

This generates a  local  cytosolic Ca2+ transient ([Ca2+]c), with activation and clear-

ance phases exhibiting spatial and temporal patterns that are tightly regulated by

nearby poorly defined immobile cytosolic calcium buffers (2, CCB), the endoplasmic

reticulum (3, ER) and the mitochondrion (4, MIT). Ca2+ taken up by  organelles and

cytosolic calcium buffers is  released back into the cytosol allowing its redistribution

towards the cell core (5). Finally, to  re-establish the cell  Ca2+ balance, the plas-

malemmal Ca2+ pump (6, PMCA) and Na2+/Ca2+ exchanger NCX (7) drive Ca2+ efflux

back to  the  extracellular space. The nucleus (8) and chromaffin vesicles (9, CV)  may

also contribute to Ca2+ redistribution. Pathways for Ca2+ entry other than VDCCs,

such as store-operated calcium channels (SOCCs), nicotinic acetylcholine receptors,

purinergic receptors, GABA and glutamate receptors have also been reported to be

present in chromaffin cells; they are not represented for the sake of simplicity. Being

an excitable cell driven by  the sympathetic nervous system, the Ca2+ cycling must

be continuously going on in the intact adrenal medullary tissue. The velocity of such

Ca2+ cycling (10), depends on the rate of action potential firing and the sympathetic

cholinergic input at different stress situations. Such variations in the velocity of Ca2+

cycling serve to adapt the bioenergetic needs of the cell, in order to  secure the rapid

release of catecholamines into the circulation, to prepare the body for the fight or

flight response.

bovine cells parvalbumin contains Ca2+/Mg2+ mixed sites that show

slow  Ca2+-binding kinetics under physiological conditions. Parval-

bumin acts as a  Ca2+ source during relaxation of [Ca2+]c peaks

and extends the [Ca2+]c transient by  conversion of a monoexpo-

nential decay in a  biexponential one [50].  Another study reported

that  calbindin-D28k is homogeneously distributed in  the cytosol

of bovine cells while its distribution was  preferentially concen-

trated at submembrane sites in mouse cells. The clearance of the

K+-evoked [Ca2+]c transients was slower in bovine cells, but the

initial quantal secretory response was faster in mouse chromaf-

fin cells. Thus, the different distribution of  calbindin-D28k does

certainly affect Ca2+ signalling and exocytosis in  both cell types

[51].

3.2.  Nucleus

Ca2+ has relevant functions in  the regulation of gene expres-

sion in  the nucleus. In addition, a  few studies have approached

the nuclear Ca2+ kinetics [52].  For instance, there is  consensus

that  the nuclear envelope may  somewhat delay the propagation

of  Ca2+ waves from the cytosol to  the nucleus [53–55].  In PC12

and other cell types, half-equilibrium times for Ca2+ fluxes through

the  nuclear envelope are in the range of seconds [54]. Under these

conditions, strong stimuli such as K+ depolarisation or stimula-

tion with UTP or bradykinin generate Ca2+ signals that are quickly

transmitted to  the nucleus. On the contrary, the progression of

high-frequency [Ca2+]c oscillations to  the nucleus may  be  damp-

ened by the nuclear envelope [54]. The nuclear matrix also differ

from the cytosol in having a  larger Ca2+-buffering capacity [56],

which would also result in  an obvious slowing in  the progression

of  the Ca2+ wave. It  is interesting to note that selective nuclear sig-

nalling might be achieved by Ca2+ release from nuclear stores in

certain cells [57].

3.3. Chromaffin vesicles

Chromaffin vesicles of bovine chromaffin cells contain as much

as  40 mM calcium [58].  Most of  this calcium (>99.9%) is  bound

to  chromogranins and the free Ca2+ concentration is  about 40 �M

[59,60].  At pH 7.5, chromogranin A binds 32 mol of Ca2+/mol pro-

tein, with a  KD of 4 mM;  the binding capacity increases to 55 mol  of

Ca2+/mol protein with a  KD of 2.7 mM at the intravesicular pH of 5.5

[61].  Thus, an increase of intravesicular pH increases the free Ca2+

concentration, thereby facilitating its release into the cytosol. This

has been experimentally demonstrated with alkalinising agents

and protonophores, which enhance vesicular Ca2+ release, vesicle

motion and exocytosis [62–66].  As much as  20–30% of the basal

chromaffin cells volume is occupied by about 20,000 chromaffin

vesicles [67] that store around 60% of total cell Ca2+ [59,68]; how-

ever, scarce data are available to  support the original hypothesis

stating that intravesicular Ca2+ could be involved in  the exocytotic

process [69].  Experiments with alkalinising agents are certainly

interesting; but  it is difficult to envision the physiological con-

text that they could mimic. The presence of InsP3 receptors in  the

chromaffin vesicle membrane [70,71] and InsP3-induced vesicu-

lar Ca2+ release [60,72,73] suggest that the InsP3 pathway may  be

physiologically relevant. It  seems likely that  vesicular Ca2+ release

could be involved in  slow pre-exocytotic steps aimed at mobiliz-

ing  vesicles from a reserve pool to a  ready-releasable pool, as it

is  the case for Ca2+ release from the ER (see Section 3.4). How-

ever,  it is  unlikely that this slow Ca2+ release can compete with the

rapid  high-Ca2+ microdomains (HCMDs) formed at subplasmalem-

mal  exocytotic sites nearby VDCCs and docked vesicles ready to

undergo fast exocytosis. Experimental protocols and techniques

capable of distinguishing the various Ca2+ sources contributing
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to such HCMDs may  enlighten the contribution of vesicular Ca2+

release in  the various steps of exocytosis. For further analysis of

this topic, see two recent reviews [74,75].

3.4.  Endoplasmic reticulum

Earlier observations established that Ca2+ uptake occurred in

the sarcoplasmic reticulum of skeletal muscle [76,77] through a

Mg2+- and ATP-dependent P-type transport Ca2+ ATPase, the sarco-

endoplasmic reticulum Ca2+-ATPase (SERCA) [78].  This led  to the

concept of intracellular calcium stores that was soon extended to

most nonexcitable and excitable cells including neurons and neu-

rosecretory cells [79].  Two channels are mainly responsible for

the release of Ca2+ from the ER store namely, the InsP3 receptor

channel, which is  activated by the InsP3 generated as a result of

G-protein coupled membrane receptor activation, and the ryan-

odine receptor channel (RyR) that is  activated by  enhanced [Ca2+]c,

caffeine and ryanodine. Ca2+ binding to  RyR opens the channel,

thereby triggering the release of Ca2+ into the cytosol through the

Ca2+-induced Ca2+ release mechanism (CICR).

Considerable efforts have been devoted to clarify the kinetics

of Ca2+ fluxes of the ER Ca2+ store, and its role in  controlling pre-

exocytotic and the last exocytotic steps in chromaffin cells. For

instance, histamine, angiotensin II, bradykinin and carbachol have

been shown to  augment the production of InsP3 in  bovine chro-

maffin cells [80–82].  A parallel increase of InsP3 and [Ca2+]c occurs

upon challenging these cells with histamine or  angiotensin II [83].

The augmentation of [Ca2+]c elicited by stimulation with histamine

is  mimicked by direct stimulation with InsP3, suggesting that stim-

ulation of histamine receptors is  coupled to InsP3 generation and

the subsequent stimulation of InsP3 receptors to cause ER Ca2+

release [84,85].  Pituitary adenylate cyclase-activating polypeptide

(PACAP) has also been shown to  enhance both InsP3 production

and  enhanced [Ca2+]c [86].  In rat chromaffin cells, stimulation of

muscarinic and �2 adrenergic receptors modulates the amplitude

of [Ca2+]c oscillations [87];  such Ca2+ oscillations are dependent on

ER  Ca2+ release from heparin-sensitive Ca2+ stores [88].

The functional correlate of histamine-elicited ER Ca2+ release

has also been studied. For instance, this [Ca2+]c signal activates

small-conductance Ca2+-activated K+ channels leading to hyperpo-

larisation of bovine chromaffin cells [33].  In this line is  the finding

that muscarine produces a  [Ca2+]c elevation and an outward K+ cur-

rent, due to activation of Ca2+-activated K+ channels in  guinea-pig

chromaffin cells [89].  These channels are  regulating the nicotinic

and muscarinic secretory response of cat and bovine chromaffin

cells [90–92]. While ER Ca2+ release by  histamine causes a mild

and transient catecholamine release response [93], a more sus-

tained application causes a  longer effect [93–95].  This greater effect

could be explained by the fact histamine-elicited [Ca2+]c eleva-

tions has two components: an initial transient phase due to  ER

Ca2+ release and a  late more sustained phase due to Ca2+ entry

[30,83,96,97].  The second component has been associated to  inhi-

bition of  an M-current by sustained histamine application, leading

to  cell depolarisation, discharge of action potentials and opening

of  VDCCs in bovine chromaffin cells [98],  although stimulation of

SOCCs by ER emptying could also contribute to this effect (see Sec-

tion 2.2). Finally, it is  interesting that histamine has been used as

a tool to elicit subthreshold [Ca2+]c elevations in  voltage-clamped

bovine chromaffin cells. This [Ca2+]c signal does not elicit exocyto-

sis  by itself, but potentiates the subsequent exocytotic response to

a  depolarising stimulus, likely due to  an acceleration of the flow of

new  vesicles towards exocytotic subplasmalemmal sites [99]. Also,

angiotensin II augments [Ca2+]c and secretion in bovine chromaffin

cells but to  a  lesser extent than histamine [24,100].  On the other

hand, the nicotinic response seems to have a  component linked to

ER  Ca2+ release [101].

Concerning RyR channels, it has been known for long that bovine

chromaffin cells possess a  powerful caffeine-sensitive calcium store

[102].  The release of ER Ca2+ by caffeine was later shown to  follow a

quantal pattern, suggesting that the caffeine-sensitive Ca2+ pool is

composed of  functionally discrete stores with heterogeneous sensi-

tivities to caffeine [103,104].  Additionally, the presence of separate

or overlapping Ca2+ pools responsive to either caffeine, InsP3 or

cyclic ADP ribose, their differential sensitivity to SERCA inhibitors

such  as thapsigargin, and the physiological significance or the dif-

ferent Ca2+ release mechanisms, have been subject of debate for

many years [85,105–108].

Direct monitoring of  changes in  the ER Ca2+ concentration

([Ca2+]ER) in bovine chromaffin cells transfected with ER-targeted

aequorin, permitted clarification of some of those issues [22,109].

Thus, Ca2+ entry elicited by  depolarisation triggers a  transient

Ca2+ release from the ER that is highly dependent on [Ca2+]ER

and sensitised by low caffeine concentrations. On the other hand,

caffeine-induced Ca2+ release was  quantal in nature due to mod-

ulation by  [Ca2+]ER.  Whereas caffeine releases essentially all the

Ca2+ from the ER, InsP3-producing agonists release only 60–80%.

However, in digitonin-permeabilised cells both InsP3 and caffeine

emptied completely the calcium store while cyclic ADP ribose has

no effect. Finally, the wave of Ca2+ elicited by 100 ms depolarising

pulses measured with confocal microscopy, is  delayed and reduced

in  intensity in ryanodine-treated cells. These data suggest that the

ER of bovine chromaffin cells behaves as a single thapsigargin-

sensitive calcium pool that can release Ca2+ both via InsP3 receptors

or CICR. A later report showed that mouse chromaffin cells in  the

intact  gland exhibited a smaller or nonexistent CICR [110]. How-

ever, in a recent study performed on cultured mouse chromaffin

cells  the expression of  RyRs and a functional CICR mechanism was

shown [111].

In  isolated bovine chromaffin cells, caffeine causes a mild secre-

tory response [102], and this effect is  also observed in  the absence

of  extracellular Ca2+ [112,113].  Activation of CICR during cell depo-

larisation may  have functional consequences for the control of the

exocytotic process. In this context, it is interesting that when the

Ca2+ store has been depleted by sustained caffeine stimulation, a

subsequent depolarisation by high K+ elicits a smaller secretion.

Consistently, after full ER Ca2+ depletion, the first two  or  three initial

depolarisations contribute to refill the ER with Ca2+ and therefore,

the ER behaves as a  sink, reducing the amount of Ca2+ available for

secretion [113].

In voltage-clamped bovine chromaffin cells, exocytosis is unaf-

fected by previous ER Ca2+ depletion with thapsigargin [114,115];

however, a later study show depressed secretion [115]. In bovine

chromaffin cells stimulated with acetylcholine, severe ER Ca2+

depletion with a  mixture of caffeine, ryanodine and thapsigar-

gin  halves the catecholamine release responses. However, the K+

responses are little affected. This may  be due to  the fact that

acetylcholine elicits discrete and more localised [Ca2+]c eleva-

tions, whereas K+ pulses produce higher [Ca2+]c transients that

spread quickly throughout the cytosol [116].  This difference may

be explained considering that acetylcholine evokes action poten-

tials [117] while K+ produces sustained cell depolarisation [118] in

bovine  chromaffin cells. Thus, it is plausible that the contribution

of  CICR to  the exocytotic response is  more visible under conditions

of physiological stimulation of chromaffin cells with acetylcholine.

3.5. Mitochondria

Mitochondria are the main energy-producing centres of eukary-

otic cells [119,120].  They are capable of accumulating vast amounts

of Ca2+ in  their matrix through their Ca2+ uniporter, that uses the

driving force of the electrical potential across the mitochondrial

membrane [121]. The matrix is  more negative than the cytosol,
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with a  large transmembrane potential difference (near −180 mV)

that is generated by the respiratory chain or by ATP hydrolysis. Ca2+

accumulated in  mitochondria is then released back into the cyto-

sol by electroneutral antiporters that export Ca2+ from the matrix

by swapping one Ca2+ ion for two Na+ through the mitochondrial

Na+/Ca2+ exchanger (mNCX). A Na+/H+ exchange mechanism does

also exist, but it is less active than mNCX [122,123].  Additionally,

mitochondrial Ca2+-induced Ca2+ release mediated by the calcium

uniporter has also been observed [124].

During cell activation, some mitochondria take up Ca2+ from

cytosolic HCMDs that are created by the opening of nearby VDCCs

[109,125].  In rat chromaffin cells, mitochondria act as rapid and

reversible Ca2+ buffers during cell stimulation [126,127];  they also

contribute to the clearance of large Ca2+ loads in bovine chromaffin

cells [109,128].  However, early measurements of [Ca2+] changes in

the  mitochondrial matrix ([Ca2+]M) provides values only in  the low

micromolar range [126],  most probably because underestimation

by saturation of the measuring fluorescent Ca2+ probe. By using

mitochondrially targeted aequorins with different Ca2+ affinities,

which have a  much wider dynamic range [52,129], it was later on

shown that bovine chromaffin cell mitochondria exhibit surpris-

ingly rapid millimolar Ca2+ transients upon cell stimulation with

acetylcholine, caffeine or K+ [130].

This avid Ca2+ uptake by mitochondria surely has functional

consequences. For instance, dissipation of the proton gradi-

ent  by protonophores decreases the Ca2+ buffering capacity of

mitochondria [130,131] and drastically augments the exocytotic

response in  voltage-clamped bovine chromaffin cells stimulated

with depolarising pulses [132].  In perifused populations of bovine

chromaffin cells stimulated with acetylcholine, caffeine or K+,

mitochondrial protonophores enhance 3–5 fold the release of cat-

echolamines [116,130,133].  Blockade of the mitochondrial calcium

uniporter also enhances the K+-evoked secretion in  single bovine

chromaffin cells [131].  K+-elicited secretion is  particularly aug-

mented by  protonophores when Ca2+ entry via L-type VDCCs is

enhanced by FPL64176 [134]. In mouse chromaffin cells however,

protonophores halved the K+-evoked [Ca2+]c and catecholamine

release responses [135]; this could be explained by differences in

the  expression of VDCC subtypes in  bovine versus mouse chromaf-

fin cells, and/or different rates of inactivation of  VDCC subtypes dur-

ing blockade of mitochondrial Ca2+ uptake by protonophores [136].

4. Calcium efflux

The main transporters used by cells to  extrude Ca2+ from the

intracellular to  the extracellular compartment are the plasmalem-

mal  Ca2+ pump or Ca2+-ATPase and the Na+/Ca2+ exchanger (NCX)

(Fig. 1). Both transporters contribute to maintain the long-term

Ca2+ homeostasis through a well balanced Ca2+ influx and Ca2+

efflux activities. The functional expression of these two  trans-

porters was first demonstrated using plasma membrane vesicles

from bovine adrenal medulla [137]. The plasmalemmal Ca2+-

ATPase has a  high Ca2+ affinity (KD in  the 10−7 M range) and

operates as an electrogenic Ca2+/H+ exchanger with a  1:1 stoi-

chiometry [138].

The NCX uses the energy provided by  the Na+ gradient to achieve

an electrogenic exchange of 3 Na+ ions for 1 Ca2+ ion. Under

physiological conditions Na+ is transported into the cell and Ca2+

is extruded from the cytosol [139]. However, when the electro-

chemical gradient for Na+ is  reversed, such as during membrane

depolarisation or the opening of gated Na+ channels, the exchanger

moves Na+ out of the cell and Ca2+ into the cell [140].  The Ca2+

exit mode is referred to as the forward mode, and the Ca2+ entry

mode as the reverse mode of the NCX [141]. Bovine chromaffin cells

express the major isoform of the NCX, namely NCX1 [142],  which

can mediate Na+-dependent Ca2+ influx [143] or  Ca2+ export [144],

depending on the circumstances.

The cardiotonic steroid ouabain, the classical inhibitor of the

plasmalemmal Na+/K+-ATPase (NKA) or Na+ pump [145] has been

widely used to infer the role of the NCX in various cell types.

Although ouabain upsets primarily the Na+ and K+ gradients across

the plasma membrane, the collapse of the Na+ gradient can sec-

ondarily drive Ca2+ entry though NCX. This is  the mechanism

underlying the heart inotropic effect of cardiac glycosides. On  the

other hand, repeated action potential firing leading to Na+ accu-

mulation, can also force NCX to  work in reverse mode, thereby

increasing [Ca2+]c and favouring the replenishment with Ca2+ of

the sarcoplasmic reticulum. During subsequent action potentials,

augmented CICR, which is potentiated by the increased [Ca2+]ER,

leads  to  enhanced cardiac contraction [146].

Since long we know that ouabain enhances both the sponta-

neous  [147–149] and the K+-evoked catecholamine release from

cat chromaffin cells [150] and bovine chromaffin cells [151,152].

These effects were initially interpreted as a  secondary activation of

the  NCX by ouabain [143,153,154],  through a  mechanism similar

to that occurring in the heart. However, an alternative explanation

can be inferred from the recent observation that NKA co-localises

with subplasmalemmal regions of the ER [155,156].  Recent data

on  bovine chromaffin cells show that ouabain causes the release

of Ca2+ from the ER and augments the catecholamine secretory

responses to  sequential K+ pulses. ER Ca2+ depletion prevents such

potentiation and causes a  gradual decrease of the responses to  K+.

Furthermore, ouabain enhances the number of docked vesicles at

subplasmalemmal regions, as revealed with TIRF microscopy [152].

All  these data support earlier suggestions that the ER Ca2+ store

contributes to maintain healthy secretory responses elicited by

depolarising pulses applied to bovine chromaffin cells [115,116].

The  fact that endogenous ouabain has been identified in human

plasma [157,158] and that bovine adrenal cortex is particularly

rich  in endogenous ouabain [159], suggests a  physiological role of

this  mediator in the control of Ca2+-dependent vesicle flow from a

reserve pool towards ready-release and immediate-release vesicle

pools at subplasmalemmal sites [7].

Bovine chromaffin cells express the major isoform of  the

NCX, NCX1 [160].  In bovine chromaffin cells NCX1 can favour

Na+-dependent Ca2+ influx [143] or  Ca2+ export [144] and has

been proposed to  participate in the regulation of [Ca2+]c and

exocytosis in cat [150,161,162] and bovine chromaffin cells

[142,143,153,163–165].  In addition, chromaffin cells co-express

NCX and the retinal rod-type K+-dependent Na+/Ca2+ exchanger

[166]. Attempts to clarify the participation of the NCX in physio-

logical and pathological processes have been hampered by the lack

of  potent and selective blockers. The antagonist KB-R7943 pref-

erentially inhibits, at low micromolar concentrations, the reverse

mode  of the NCX [167].  Unfortunately, this compound also blocks

other transporters, such as the mitochondrial uniporter [168],  and

the  nicotinic receptors of bovine chromaffin cells [169]. Novel and

more selective inhibitors such as SEA0400, SN-6 and YM-244769

[170] should help to further clarify the role of the NCX in Ca2+ sig-

nalling and exocytosis in chromaffin cells. In fact, SEA0400 inhibits

Na+-dependent Ca2+ uptake and catecholamine release in bovine

chromaffin cells, with IC50 of  40 and 100 nM,  respectively, com-

pared  with IC50 of 1.8 and 3.7 �M for KB-R7943, that was  40-fold

less  potent [171].

5.  A functional tetrad shapes calcium gradients and
calcium microdomains

In  the intact organism, the fight or flight stress response is  trig-

gered by acetylcholine, the physiological neurotransmitter at the
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Fig. 2. Functional tetrads to  shape the high-Ca2+ microdomains (HCMDs) an low-

Ca2+ microdomains (LCMDs) that determine, respectively, the fast exocytosis (FE)

release of adrenaline (AD) and noradrenaline (NA), from an  immediately releasable

vesicle pool (IRP), and chromaffin vesicles movement (CVM) from a  reserve pool

(RP). Tetrads are formed by  voltage-dependent Ca2+ channels (1,  VDCCs), cytosolic

Ca2+ buffers (2, CCB), the endoplasmic reticulum (3, ER) and the mitochondrial pool 1

(MIT1) located nearby the plasmalemma (4). This tetrad (red line) is  responsible for

generating and shaping the HCMD transients (10–100 �M),  nearby subplasmalem-

mal  exocytotic sites, to trigger fast catecholamine release from the IRP, that can

be monitored at the single-vesicle level as amperometric spikes (AS) with a  carbon

fibre microelectrode (5). The  LCMD (<1  �M)  is located at cytosolic sites away from

the plasmalemma, and facilitate the Ca2+-dependent CVM. Crosstalk between HCMD

and LCMD is  needed to secure the supply of new vesicles to the secretory machinery

under different stimulation rates of chromaffin cells (see text for further details).

synapse of the splanchnic nerve and chromaffin cells [1].  Direct

membrane depolarisation or  action potentials fired by the inter-

action of acetylcholine with nicotinic receptors on the surface of

chromaffin cells [117] is likely the primary stimulus that induces

the [Ca2+]c transient, thus triggering the discharge of adrenaline

and noradrenaline into the circulation [38]. Ca2+ entry through

the various subtypes of VDCCs is  the primary determinant for the

extent and shape of the initial [Ca2+]c transient. However, cytosolic

calcium buffers, Ca2+ sequestration or release from the cytoplasmic

organelles, and plasmalemmal Ca2+ extrussion have a  prominent

role  in the fine tuning of the Ca2+ signal. On the other hand, correct

Ca2+ signalling is  critical to warrant the adaptation of the entire

organism to a stress response which determines its survival. We

will emphasise here our present integrative view of the biophysics

of  Ca2+ redistribution, which is the ultimate regulator of the exo-

cytotic response (Fig. 2).

Essential to  the understanding of Ca2+ function in chromaffin

cells is the concept that organelles and cytosolic calcium buffers

shape [Ca2+]c transients at different cell locations, the so-called

HCMDs, that do  not necessarily crosstalk. Several kinds of these

HCMDs have been described in different cell systems and given

evocative names, such as sparks, puffs, sparklets and syntillas

[172,173]. Syntillas are brief focal [Ca2+]c transients elicited by

localised ER Ca2+ release via RyR channels, first reported in  neuro-

hypophysial terminals at magnocellular neurons [174]. These focal

Ca2+ transients were later on found in  mouse chromaffin cells [175]

and,  paradoxically, they seem to  block spontaneous exocytosis in

these cells [176]. Because CICR is present in bovine chromaffin cells,

it  could be  of interest to  investigate whether the Ca2+ wave that

extends from subplasmalemmal sites to the inner cytosol following

a  100 ms  depolarising pulse and CICR activation [22],  is  composed

of elementary syntillas. We have recently found that nanomolar

concentrations of the wine grape polyphenol resveratrol causes ER

Ca2+ release in  bovine chromaffin cells and, at the same time, it

blocks the quantal catecholamine release response [177]. It would

be  interesting to clarify whether these effects of resveratrol are

linked to  the production of Ca2+ syntillas. It seems however that

the presence and functional role for Ca2+ syntillas are seriously

questioned and controversial. In fact, caffeine or ryanodine do not

augment [Ca2+]c and neuropeptide release at neurohypophysial

terminals [178,179].

The rate of Ca2+ fluxes between different chromaffin cell

compartments have been estimated using more or less direct

approaches, and under temperature conditions (i.e. room tempera-

ture) that might affect the activity of some Ca2+ transporters. Even

with these limitations, putting together the estimates of the dif-

ferent fluxes allows for several interesting predictions [109]. For

instance, for a 15-�m diameter bovine chromaffin cell, a rate of  Ca2+

entry of 700 �mol  L cells−1 s−1 can be computed from the measured

Ca2+ inward current [180]. A  similar value (400 �mol  L cells−1 s−1)

was  estimated by measuring 45Ca2+ uptake into K+ depolarised

bovine chromaffin cells [181].  Ca2+ entry would be focused at the

channels location and then diffuse through the surrounding cytosol.

Regarding progression of  the Ca2+ wave generated by Ca2+ entry

through plasma membrane Ca2+ channels, binding to cytosolic cal-

cium buffers is  a  most important determinant. The cytosol of bovine

chromaffin cells has a  Ca2+ binding capacity of ∼4 mmol/L cells.

The cytosolic calcium buffers are  scarcely mobile and have a  low

Ca2+ affinity (KD ∼ 100 �M)  with an activity coefficient of ∼1/40

[128,180]. The two-dimensional diffusion coefficient is ∼40 �m2/s

and shows inhomogeneities at the nuclear envelope and at the

plasma membrane [53]. Brief openings of VDCCs generate HCMDs

near the channel mouth that can be detected in Ca2+ imaging mea-

surements [182]. These HCMDs can reach concentrations as high as

10–100 �M [7,182] Because of rapid diffusion of  Ca2+ towards the

surrounding cytosol, the HCMDs are highly restricted in time and

space [7,183].  The presence of mobile calcium buffers accelerates

diffusion and opposes the development of HCMDs [180,184–186];

for example, at concentrations of 50 �M, fura-2 increases the

apparent rate of Ca2+ diffusion four times [180].

Ca2+ entering the cell redistributes among the different cell com-

partments. The increase of [Ca2+]c activates the SERCA and the ER

avidly takes up Ca2+ from the cytosol. For example, during stimula-

tion  of bovine chromaffin cells [22,109,128] and rat chromaffin cells

[187],  the maximal Ca2+ uptake by the ER ranges between 40 and

80 �mol  L cells−1 s−1. At rest, the rate of Ca2+ exchange between ER

and cytosol at steady state is  2–3 �mol  L cells−1 s−1. The net Ca2+

influx upon maximal stimulation with caffeine or InsP3-producing

agonists is 10–20 times faster [22].

Concerning mitochondria, it is  notorious that the Ca2+ activity

coefficient (free Ca2+/bound calcium) in the matrix is  very low,

in  the 1/1000 range [109,126].  Mitochondria are very effective

in  the clearing of [Ca2+]c transients, although drastic differences

have been reported between bovine and rat chromaffin cells.

For  instance, in experiments with photorelease of caged Ca2+

in  bovine chromaffin cells, rates of [Ca2+]M increase as high as

4800 �mol  L cells−1 s−1,  at saturating [Ca2+]c (200 �M),  were found

[128]. In  contrast, in  rat chromaffin cells, mitochondrial uptake

rates  are  150–300 fold slower but at [Ca2+]c of only 0.2–2 �M,

were found [187]. These differences are consistent with depen-

dence of the rate of uptake through the uniporter on the second

power of [Ca2+]c [123,124,130,188]. Using mitochondria-targeted

aequorin to specifically monitor [Ca2+]M,  we found that mito-

chondria took up about 1100 �mol  L cells−1 s−1 upon maximal

stimulation of Ca2+ entry into bovine chromaffin cells depolarised

with  K+ [109,124,130]; this value is  comparable with the rate of

Ca2+ entry through VDCCs. The maximal rate of Ca2+ release from

mitochondria trough the mNCX at 37 ◦C in bovine chromaffin cells

is  about 800 �mol L  cells−1 s−1.  Regarding the kinetics of this mito-

chondrial Ca2+ efflux, the dependence on [Ca2+]M is exponential

and K50 approaches 200 �M [109]. Transport through the uniporter

is usually unidirectional (entry); however, when mitochondria are
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completely depolarised, the uniporter may  allow Ca2+ exit from the

matrix in a  sort of mitochondrial CICR mechanism [124].

Ca2+ extrusion from the cell to the extracellular medium is due

to  joint operation of both Ca2+-ATPase and NCX. The joint action of

both transport systems has been estimated to decrease [Ca2+]c to a

maximal rate of 20 �mol  L cells−1 s−1,  in  rat chromaffin cells at 27 ◦C

[127,187]. At 37 ◦C the rate can be close to  100 �mol  L cells−1 s−1

[109].

At  each and every moment the [Ca2+]c is defined by the rate

of  Ca2+ redistribution into chromaffin cell compartments which

in  turn depends on fluxes between the extracellular medium, the

cytosol, cytosolic calcium buffers and organelles. At  rest, a steady

state with Ca2+ exchange rates below 10 �mol  L cells−1 s−1 and

[Ca2+]c near 0.1 �M is established; [Ca2+]M is similar to [Ca2+]c

while [Ca2+]ER is much higher, reaching 500–1000 �M. Conse-

quently, there are enormous electrochemical gradients favouring

Ca2+ diffusion to the cytosol from both, the ER and the extracellular

medium where the Ca2+ concentration is above 1 mM.

At low-frequency stimulation with action potentials, the rate of

Ca2+ diffusion through the cytosol and binding by the endogenous

Ca2+ buffers are the main determinants of the [Ca2+]c signal [7,183].

Under  these conditions, global [Ca2+]c goes up to about 1 �M

and Ca2+ clearance is  primarily achieved through the high-affinity

Ca2+-ATPase and SERCA. Upon strong stimulation (high-frequency

action potentials or prolonged depolarisation), global [Ca2+]c may

approach 10 �M, a  concentration high enough to activate Ca2+

uptake through the mitochondrial uniporter. Under these condi-

tions, most of the Ca2+ that enters chromaffin cells is  taken up

by  mitochondria [109,127,130,187].  For example, mitochondria-

targeted aequorin revealed that 90% of the Ca2+ that enters a  bovine

chromaffin cell stimulated with a 10-s K+ pulse is  taken up by

mitochondria. Later, when the stimulation ceases, the Ca2+ accu-

mulated in  mitochondria is released back to the cytosol during a

period of seconds or even minutes [109]. The Ca2+ accumulated in

mitochondria stimulates respiration until Ca2+ extrusion from the

mitochondrial matrix is complete [109]. It  can be speculated that

the extra energy provided in  this way may  be used for clearing the

Ca2+ load and restoring Ca2+ homeostasis after the activity period.

In  bovine chromaffin cells, the opening of VDCCs gener-

ates HCMDs of about 0.3  �m diameter and 10 �M [Ca2+]c

[99,182,189–191].  Building of HCMDs may  be favoured by co-

localisation of VDCC clusters and chromaffin vesicles [31,192,193].

Evanescent microscopy has shown fast (t1/2 ∼  100 ms)  and localised

(∼350 nm)  HCMDs beneath the plasma membrane of stimulated

chromaffin cells [194]. These HCMDs selectively trigger the release

of  vesicles docked within 300 nm,  indicating that some vesicles are

docked but not primed. It is  interesting that HCMDs reduce the

distance between docked vesicles and Ca2+ entry sites, suggest-

ing a role for stimulation-dependent facilitation of  exocytosis in

chromaffin cells [193,194].

Mitochondria located nearby VDCCs at subplasmalem-

mal  sites can sense HCMDs during physiological stimulation

[109,127,130,187,195]. Through measurements of aequorin con-

sumption upon repeated stimulation of bovine chromaffin cells,

the cumulative history of Ca2+ uptake may  be  traced. Using this

approach, two pools of mitochondria with different subcellular

distribution were evidenced. Pool M1,  located nearby exocytotic

sites, accumulates [Ca2+]c at a rate of 2000 �mol  L cells−1 s−1, while

pool M2 located at inner cytosolic areas takes up  Ca2+ at a much

lower rate, 12 �mol  L cells−1 s−1 [109,130].  These rates are reached

at  concentrations of 20 and 2  �M [Ca2+]c respectively, which are

coincident with the concentrations reached at subplasmalemmal

sites  and the cell core during cell stimulation. The M1 pool would

tune the mitochondrial function to match the local energy needs

for exocytosis and Ca2+ redistribution whereas the M2 pool, located

at the bulk cytosol, could serve to redistribute Ca2+ and canalize

it towards inner cytosolic regions to serve other cell functions, i.e.

transport of  new secretory vesicles to plasmalemmal exocytotic

sites.

ER Ca2+ fluxes could also contribute to the regulation of HCMDs

formed during cell stimulation. For instance, under K+ depolar-

isation of bovine chromaffin cells transfected with ER-targeted

aequorin, reductions of  60–100 �M [Ca2+]ER are observed (about

10–15%  of the total ER Ca2+ content) [22],  suggesting Ca2+-induced

Ca2+ release. Although the decrease of [Ca2+]ER may  seem quite

small, it could correspond to large release at certain subcellular ER

locations compensated by strong uptake in  others. CICR sites seem

to co-localise with plasmalemmal VDCCs and the M1 mitochondrial

pool. Thus, complex functional tetrads including VDCCs, cytosolic

calcium buffers, the mitochondrial uniporter and the RyR are essen-

tial for the efficacious regulation of adequate local [Ca2+]c transients

to  control the rate and extent of exocytotic catecholamine release

(Fig.  2).

6.  Relationship between calcium and the exo–endocytotic
responses

A few studies have addressed the question of the quantita-

tive relationship between Ca2+ and the exo–endocytotic responses

triggered by  chromaffin cell stimulation. One approach consists

in  the dialysis of bovine chromaffin cells with solutions contain-

ing  known [Ca2+]  to elicit secretion, measured as an increase of

membrane capacitance (�Cm) [32]. Also caffeine is  used to aug-

ment [Ca2+]c and measure �Cm [196]. Both approaches lead to

a  [Ca2+]c-exocytosis relationship that scaled to a  power function

with an exponent of 3. Still other studies use voltage steps (square

depolarising pulses) to boost Ca2+ influx (QCa)  and exocytosis; they

found a  QCa/�Cm relationship that fitted a  power function with an

exponent of 1.5 [197,198].  There are additional studies in bovine

chromaffin cells stimulated with single or trains of depolarising

pulses [199] or action potential waveform trains as well as 100 ms

depolarising pulses [132]. The longer depolarising pulses produced

QCa/�Cm relationships that fitted to power functions of 1.2–2. In

line  with these conclusions is  the observation in rat chromaffin

cells  stimulated with single depolarising pulses of  increasing length

(10–150 ms), showing a linear QCa/�Cm relationship [200]. Flash

photolysis of caged Ca2+ has also been used to study the kinetic

components of a fast exocytotic burst [201]. Depolarising pulses are

known to  be much less efficient than Ca2+ photorelease in  triggering

exocytosis [202,203].

Other studies have used action potential waveforms to cor-

relate  the stimulation frequency in bovine chromaffin cells with

amperometric spike secretion in rat chromaffin cells [192] or with

capacitance increase in bovine chromaffin cells [204]. In addi-

tion, depolarising pulses have been used in  transgenic mice to

study the role of exocytotic proteins on the kinetics of �Cm

[203]. On  the other hand, a study comparing depolarising pulses

of increasing length with acetylcholine-type action potentials in

voltage-clamped bovine chromaffin cells, found less Ca2+ entry and

slower activation of [Ca2+]c transients with faster delayed decay.

With action potentials a  linear relationship is found between QCa

and stimulus duration, capacitance increase and stimulus duration

and QCa and capacitance increase. These relationships are nonlin-

ear  with depolarising pulses. Furthermore, capacitance increase

responses elicited by action potential trains are followed by little

slow  endocytosis, while those induced by depolarising pulses are

followed by a  pronounced endocytosis, particularly at the longer

pulses [205].

Controversy exists over the manner in  which membrane

retrieval during endocytosis is affected by  Ca2+. For instance,

compensatory and excess endocytosis represent two  indepen-

dent Ca2+-regulated mechanisms of rapid internalisation in  bovine
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chromaffin cells [204,206].  The existence of these two  Ca2+ sensors

is consistent with the fact that  Ca2+ and Ba2+ support excessive

membrane retrieval in bovine chromaffin cells [207]. In contrast,

a  previous study in  the same cells showed that rapid endocyto-

sis  was supported by Ca2+ but not by Sr2+ or Ba2+ [208].  A recent

study shows a  linear correlation between endocytosis and QCa in

voltage-clamped bovine chromaffin cells [209].

It is interesting that Ca2+-dependent endocytosis triggered by

single long depolarising pulses in voltage-clamped bovine chro-

maffin cells seems to  be coupled to L-type VDCCs, whereas N- or

PQ-type of calcium channels seem to  play little role [210,211].

Lack of co-localisation between VDCC subtypes and clathrin or

dynamin suggests a  functional, rather than physical coupling

between L-type calcium channels and the endocytotic machin-

ery. In bovine chromaffin cells, L-type calcium channels undergo

a  Ca2+-dependent inactivation slower than N- or PQ-type of cal-

cium channels [136,212].  It is therefore plausible that a slower but

more sustained Ca2+ entry through slowly inactivating L-type cal-

cium channels, rather than through higher but fast-inactivating N-

and  PQ-type of calcium channels, is  a requirement to trigger endo-

cytosis efficiently, at least in  bovine chromaffin cells [211].  This

Ca2+-dependent endocytotic response is enhanced by sphingosine

dialysis, that seems to play a permissive role for endocytosis by act-

ing on an endocytotic pathway different to those of dynamin- and

calmodulin-signalling pathways [209].

7. Conclusions and perspectives

A number of studies have clarified the role of several families of

ion channels and transporters in shaping the [Ca2+]c signals and

the exo–endocytotic responses occurring during chromaffin cell

stimulation. From the 1970s onwards most of the studies were

performed in ready available bovine chromaffin cells. During the

last  two decades, however, chromaffin cells from rats have also

been thoroughly used. It is surprising, however, that only few

studies on Ca2+ handling in mouse chromaffin cells have been

performed. Transgenic mice lacking or over-expressing a  given

protein have extensively been used to clarify molecular mecha-

nisms of the secretory machinery. It  would be  very interesting

to use chromaffin cells as models to identify alterations of Ca2+

homeostatic mechanisms and the release of catecholamines in

mouse models of disease. For instance, in transgenic mouse models

of  Alzheimer’s disease, amyotrophic lateral sclerosis, Parkinson’s

disease and other neurodegenerative diseases, the expectation

is  that high and low Ca2+ microdomains may  differently affect

pre- and exocytotic steps, which could be a peripheral marker

of  a brain synaptic dysfunction. There is  increasing concern

on  the involvement of Ca2+ dyshomeostasis in these diseases

[213–216].

Whether the large Ca2+ concentrations in chromaffin vesicles

play a function other than the mere packing of catecholamine such

as for instance, contributing to  regulation of the last steps of exo-

cytosis, requires further clarification. We also know little on the

role of Ca2+ fluxes in  the chromaffin cell nucleus, although they are

likely involved in the control of gene expression. It would be nice to

know, for example, whether such nuclear Ca2+ signalling is  involved

in  the expression of the enzymes of catecholamine synthesis and

degradation.

Efforts should also be  done to  extrapolate the numerous data

obtained in cultures of chromaffin cells to more physiological

preparations such as adrenal slices or even the intact adrenal, using

electrical stimulation of the sympathetic cholinergic nerve termi-

nals that innervate chromaffin cells to regulate secretion. Attempts

to  establish organotypic cultures of adrenal slices should also be

pursued, as this could facilitate chronic treatments to  study novel

aspects of catecholamine synthesis, storage and release and on the

role of Ca2+ signalling under these more physiological conditions

of  preservation of tissue structure.
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