A note for the SNIEP in size 5
 C. Marijuán, M. Pisonero *
 Dpto. Matemática Aplicada, Universidad de Valladolid/IMUVa, Spain

```
A R T I C L E I N F O
```


Article history:

Received 27 April 2023
Received in revised form 29 June 2023
Accepted 2 July 2023
Available online 5 July 2023
Submitted by R. Loewy

MSC:

15A18
15A29
15A42
Keywords:
SNIEP in size 5
Symmetric realizability

A B S T R A C T

The purpose of this note is to establish the current state of the knowledge about the SNIEP (symmetric nonnegative inverse eigenvalue problem) in size 5 with just one repeated eigenvalue.
© 2023 Elsevier Inc. All rights reserved.

The SNIEP (symmetric nonnegative inverse eigenvalue problem) is the problem of characterizing all possible real spectra of entrywise symmetric nonnegative matrices. A complete solution of this problem is known only for spectra of size $n \leq 4$. For these n 's the most basic necessary conditions are also sufficient. That is, the Perron and the trace conditions characterize the SNIEP for $n \leq 4$. Spectra of size 5 are not characterized and this problem has proven to be a very challenging one.

[^0]The open case for size $5, \sigma=\left\{\lambda_{1} \geq \lambda_{2} \geq \lambda_{3} \geq \lambda_{4} \geq \lambda_{5}\right\}$, is when there are 3 positive eigenvalues, the trace is positive, $\lambda_{1} \geq\left|\lambda_{5}\right|$ and $\lambda_{1}+\lambda_{2}+\lambda_{4}+\lambda_{5}<0$ (see [1]). Loewy in [4] studies this case. In fact, as he shows, when Loewy's result, see Theorem 1 below, is applied to the case of two repeated eigenvalues we have a wider area than the one excluded in [1, Theorem 1].

Theorem 1. ([4, Theorem 2.1]) Let $\sigma=\left\{\lambda_{1}, \lambda_{2}, \lambda_{3}, \lambda_{4}, \lambda_{5}\right\}$ be a list of real numbers, where the elements of σ are arranged in monotonically decreasing order and with λ_{3} $s_{1}(\sigma) \geq 0$. If σ is the spectrum of a nonnegative symmetric matrix, then $s_{3}(\sigma) \geq s_{1}(\sigma)^{3}+$ $6 \lambda_{3} s_{1}(\sigma)\left(\lambda_{3}-s_{1}(\sigma)\right)$.
$\left(s_{k}(\sigma)\right.$ is the k th moment of σ, i.e. $\left.s_{k}(\sigma)=\sum_{i=1}^{5} \lambda_{i}^{k}\right)$
Before this result was published, another result appeared about symmetric realization of spectra with 5 eigenvalues.

Theorem 2. ([3, Theorem 4]) Let $\sigma=\left\{\lambda_{1}, \ldots, \lambda_{5}\right\}$ be a list of monotonically decreasing real numbers such that $\sum_{i=1}^{5} \lambda_{i} \geq \frac{\lambda_{1}}{2}$. Necessary and sufficient conditions for σ to be the spectrum of a nonnegative symmetric matrix are:
(1) $\lambda_{1}=\max _{\lambda \in \sigma}|\lambda|$,
(2) $\lambda_{2}+\lambda_{5} \leq \sum_{i=1}^{5} \lambda_{i}$ and
(3) $\lambda_{3} \leq \sum_{i=1}^{5} \lambda_{i}$.

Previously, unresolved spectra with just one repeated eigenvalue are shown not to occur in [2]. The repetition could be either positive or negative, but the two situations are different.

Theorem 3. ([2, Theorem 3]) Let a, $d_{1}>0, d_{2}>d_{1}$ satisfy $a+d_{2}, d_{1}+d_{2}<1<a+d_{1}+d_{2}$. If $\left(a+d_{1}\right)^{3}+\left(a+d_{2}\right)^{3}>1+a^{3}+\left(a+d_{1}+d_{2}-1\right)^{3}$, then $1, a, a,-\left(a+d_{1}\right),-\left(a+d_{2}\right)$ are not the eigenvalues of a 5-by-5 symmetric nonnegative matrix.

Theorem 4. ([2, Theorem 4]) The spectrum 1, $a, a-r,-(a+d),-(a+d)$ with $d, r>0$, $a>r$ and $a+d, r+2 d<1<a+2 d$ is not realizable by a symmetric nonnegative 5-by-5 matrix if

$$
2(a+d)^{3}>1+a^{3}+(a+2 d-1)^{3} .
$$

The purpose of this note is to establish the current state of the knowledge about the SNIEP in size 5 with just one repeated eigenvalue. The next theorems show that Loewy's result is strictly stronger than the results in [2] when it is particularized to one repeated eigenvalue.

Theorem 5. Let $\sigma=\left\{1, a, a,-\left(a+d_{1}\right),-\left(a+d_{2}\right)\right\}$ with $a, d_{1}>0, d_{2}>d_{1}$ and $a+d_{2}, d_{1}+$ $d_{2}<1<a+d_{1}+d_{2}$. If $\left(a+d_{1}\right)^{3}+\left(a+d_{2}\right)^{3}-1-a^{3}-\left(a+d_{1}+d_{2}-1\right)^{3}>0$, then $s_{1}(\sigma)^{3}+6 a s_{1}(\sigma)\left(a-s_{1}(\sigma)\right)-s_{3}(\sigma)>0$. The reverse is not true.

Proof. First of all, note that the hypothesis $\lambda_{3}>s_{1}(\sigma)$ of Theorem 1 applied to our list is the hypothesis $1<a+d_{1}+d_{2}$. It is straightforward to show that

$$
\begin{array}{r}
s_{1}(\sigma)^{3}+6 a s_{1}(\sigma)\left(a-s_{1}(\sigma)\right)-s_{3}(\sigma) \\
=\left(1-d_{1}-d_{2}\right)^{3}+6 a\left(1-d_{1}-d_{2}\right)\left(a+d_{1}+d_{2}-1\right)-1-2 a^{3}+\left(a+d_{1}\right)^{3}+\left(a+d_{2}\right)^{3} \\
=\left(a+d_{1}\right)^{3}+\left(a+d_{2}\right)^{3}-1-a^{3}-a^{3}+\left(1-d_{1}-d_{2}\right)^{3}+6 a\left(1-d_{1}-d_{2}\right)\left(a+d_{1}+d_{2}-1\right) \\
>\left(a+d_{1}+d_{2}-1\right)^{3}-a^{3}+\left(1-d_{1}-d_{2}\right)^{3}+6 a\left(1-d_{1}-d_{2}\right)\left(a+d_{1}+d_{2}-1\right) \\
=3 a\left(1-d_{1}-d_{2}\right)\left(a+d_{1}+d_{2}-1\right)>0,
\end{array}
$$

where both inequalities are from the hypothesis of the theorem.
For $a=\frac{1}{2}, d_{1}=\frac{1}{4}$ and $d_{2}=\frac{3}{8}$ we are under the hyphotesis of the theorem and for these values we have

$$
s_{1}(\sigma)^{3}+6 a s_{1}(\sigma)\left(a-s_{1}(\sigma)\right)-s_{3}(\sigma)=\frac{9}{256}>0
$$

and

$$
\left(a+d_{1}\right)^{3}+\left(a+d_{2}\right)^{3}-1-a^{3}-\left(a+d_{1}+d_{2}-1\right)^{3}=-\frac{9}{256}<0 .
$$

Let a, d_{1} and d_{2} be under the hyphotesis of Theorem 5 and let define the functions

$$
\begin{aligned}
F\left(a, d_{1}, d_{2}\right)= & \left(\frac{4+d_{1}+d_{2}}{5}\right)^{3}+2\left(\frac{5 a-1+d_{1}+d_{2}}{5}\right)^{3} \\
& +\left(\frac{d_{2}-5 a-1-4 d_{1}}{5}\right)^{3}+\left(\frac{d_{1}-5 a-1-4 d_{2}}{5}\right)^{3} \\
G\left(a, d_{1}, d_{2}\right)= & \left(a+d_{1}\right)^{3}+\left(a+d_{2}\right)^{3}-1-a^{3}-\left(a+d_{1}+d_{2}-1\right)^{3} \\
L\left(a, d_{1}, d_{2}\right)= & s_{1}(\sigma)^{3}+6 a s_{1}(\sigma)\left(a-s_{1}(\sigma)\right)-s_{3}(\sigma)
\end{aligned}
$$

and, for a fixed a, the curves $s \equiv F\left(a, d_{1}, d_{2}\right)=0, t \equiv G\left(a, d_{1}, d_{2}\right)=0, n \equiv L\left(a, d_{1}, d_{2}\right)=$ 0 and $\ell=\left\{d_{1}+d_{2}=\frac{1}{2}\right\} \cap\{X=a\}$. See [2] for a more detailed explanation. For the spectra σ under the hyphotesis of Theorem 5 we have:

- If $a<\frac{4 \sqrt{5}-5}{11}$, for some $\left(d_{1}, d_{2}\right)$ the spectrum σ is symmetrically realizable with constant diagonal, those under or on curve s in Fig. 1. And for others, σ is not symmetrically realizable those above curve t in Fig. 1 (Theorem 3) and those above curve n in Fig. 1 (Theorem 1). The question mark in Fig. 1 means that the region between s and n (including n) is unresolved.
- If $\frac{4 \sqrt{5}-5}{11} \leq a \leq \frac{1}{2}$, for some $\left(d_{1}, d_{2}\right)$ the spectrum σ is not symmetrically realizable, those above curve t in Fig. 1 (Theorem 3) and those above curve n in Fig. 1 (Theorem 1). The question mark in Fig. 1 means that the region under or on n is unresolved.
- If $\frac{1}{2}<a<\frac{3}{4}$, for some $\left(d_{1}, d_{2}\right)$ the spectrum σ is not symmetrically realizable, those above curve t (Theorem 3), or those above curve n (Theorem 1) in Fig. 1, and for others neither, those under or on line ℓ in Fig. 1 (Theorem 2). Since all the section is covered between both, σ is not symmetrically realizable.

Fig. 1. $d_{1} d_{2}$-sections of the domain of Theorem 5 with curve $s \equiv F\left(a, d_{1}, d_{2}\right)=0$, curve $t \equiv G\left(a, d_{1}, d_{2}\right)=0$, curve $n \equiv L\left(a, d_{1}, d_{2}\right)=0$ and curve $\ell=\left\{d_{1}+d_{2}=\frac{1}{2}\right\} \cap\{X=a\}$ for $a \in\left\{\frac{1}{5}, \frac{3}{10}, \frac{4 \sqrt{5}-5}{11}, \frac{1}{2}, \frac{7}{10}, \frac{3}{4}\right\}$.

- If $a \geq \frac{3}{4}$, the spectrum σ is not symmetrically realizable by Theorem 2, see Fig. 1 . The new area that was unresolved is the one between curves n and t for $a \leq \frac{1}{2}$.

Theorem 6. Let $\sigma=\{1, a, a-r,-(a+d),-(a+d)\}$ with $d, r>0, a>r$ and $a+d, r+2 d<$ $1<a+2 d$. If $2(a+d)^{3}-1-a^{3}-(a+2 d-1)^{3}>0$, then $s_{1}(\sigma)^{3}+6(a-r) s_{1}(\sigma)(a-$ $\left.r-s_{1}(\sigma)\right)-s_{3}(\sigma)>0$. The reverse is not true.

Proof. The hypothesis $\lambda_{3}>s_{1}(\sigma)$ of Theorem 1 applied to our list is the hypothesis $1<a+2 d$. It is straightforward to show that

$$
\begin{array}{r}
s_{1}(\sigma)^{3}+6(a-r) s_{1}(\sigma)\left(a-r-s_{1}(\sigma)\right)-s_{3}(\sigma) \\
=(1-r-2 d)^{3}+6(a-r)(1-r-2 d)(a+2 d-1)-1-a^{3}-(a-r)^{3}+2(a+d)^{3} \\
=2(a+d)^{3}-1-a^{3}+(1-r-2 d)^{3}+6(a-r)(1-r-2 d)(a+2 d-1)-(a-r)^{3} \\
>(a+2 d-1)^{3}+(1-r-2 d)^{3}+6(a-r)(1-r-2 d)(a+2 d-1)-(a-r)^{3} \\
=3(a-r)(1-r-2 d)(a+2 d-1)>0,
\end{array}
$$

where both inequalities are from the hypothesis of the theorem.
For $a=\frac{1}{2}, d=\frac{8}{25}$ and $r=\frac{1}{10}$ we are under the hyphotesis of the theorem and for these values we have

$$
s_{1}(\sigma)^{3}+6(a-r) s_{1}(\sigma)\left(a-r-s_{1}(\sigma)\right)-s_{3}(\sigma)=\frac{1167}{62500}>0
$$

Fig. 2. $d r$-sections of the domain of Theorem 6 with curve $s \equiv H(a, d, r)=0$, curve $t \equiv J(a, d, r)=0$, curve $n \equiv L(a, d, r)=0$ and curve $\ell=\left\{r+2 d=\frac{1}{2}\right\} \cap\{X=a\}$ for $a \in\left\{\frac{\sqrt{5}-1}{4}, \frac{1}{2}, \frac{7}{10}\right\}$.
and

$$
2(a+d)^{3}-1-a^{3}-(a+2 d-1)^{3}=-\frac{1563}{62500}<0
$$

Let a, d and r be under the hyphotesis of Theorem 6 and let define the functions

$$
\begin{aligned}
H(a, d, r)= & \left(\frac{4+r+2 d}{5}\right)^{3}+\left(\frac{5 a-1+r+2 d}{5}\right)^{3} \\
& +\left(\frac{5 a-4 r-1+2 d}{5}\right)^{3}+2\left(\frac{r-5 a-3 d-1}{5}\right)^{3} \\
J(a, d, r)= & 2(a+d)^{3}-1-a^{3}-(a+2 d-1)^{3} \\
L(a, d, r)= & s_{1}(\sigma)^{3}+6(a-r) s_{1}(\sigma)\left(a-r-s_{1}(\sigma)\right)-s_{3}(\sigma)
\end{aligned}
$$

and, for a fixed a, the curves $s \equiv H(a, d, r)=0, t \equiv J(a, d, r)=0, n \equiv L(a, d, r)=0$ and $\ell=\left\{r+2 d=\frac{1}{2}\right\} \cap\{X=a\}$. See [2] for a more detailed explanation. For the spectra σ under the hyphoteses of Theorem 6 we have:

- If $a \leq \frac{\sqrt{5}-1}{4}$, the spectrum σ is always symmetrically realizable with constant diagonal.
- If $\frac{\sqrt{5}-1}{4}<a \leq \frac{1}{2}$, for some (d, r) the spectrum σ is symmetrically realizable with constant diagonal, those above or on curve s in Fig. 2. And for others σ is not symmetrically realizable, those on the right hand side of curve t (Theorem 4) and those on the right hand side of curve n (Theorem 1) in Fig. 2. The question mark in Fig. 2 means that the region under s and on the left hand side of n (including n) is unresolved.
- If $a>\frac{1}{2}$, for some (d, r) the spectrum σ is symmetrically realizable with constant diagonal, those above or on curve s, for others σ is not symmetrically realizable, those on the right hand side of curve t (Theorem 4), those on the right hand side of curve n
(Theorem 1), and those under or on line ℓ (Theorem 2) in Fig. 2. The question mark in Fig. 2 means that the region among ℓ, n and s (including only n) is unresolved.

The new area that was unresolved is the one between curves n and t for $a>\frac{\sqrt{5}-1}{4}$.

Declaration of competing interest

None declared.

Data availability

No data was used for the research described in the article.

References

[1] C.R. Johnson, C. Marijuán, M. Pisonero, Ruling out certain 5-spectra for the symmetric nonnegative inverse eigenvalue problem, Linear Algebra Appl. 512 (2017) 129-135.
[2] C.R. Johnson, C. Marijuán, M. Pisonero, Ruling out certain 5-spectra with one repeated eigenvalue for the symmetric NIEP, Linear Algebra Appl. 612 (2021) 75-98.
[3] R. Loewy, O. Spector, A necessary condition for the spectrum of nonnegative symmetric 5×5 matrices, Linear Algebra Appl. 528 (2017) 206-272.
[4] R. Loewy, Some additional notes on the spectra of non-negative symmetric 5×5 matrices, Electron. J. Linear Algebra 37 (2021) 1-13.

[^0]: th Partially supported by grant PGC2018-096446-B-C21 funded by MCIN/AEI/10.13039/501100011033, "ERDF A way of making Europe" and by the Spanish Research Council (Comisión Interministerial de Ciencia y Tecnología) under project PID2021-122501NB-I00.

 * Corresponding author.

 E-mail addresses: cmarijuan@uva.es (C. Marijuán), mpisonero@uva.es (M. Pisonero).

