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A B S T R A C T

The dynamics of a wobbling kink in a two-component coupled 𝜙4 scalar field theory (with an excited
orthogonal shape mode) is addressed. For this purpose, the vibration spectrum of the second order small kink
fluctuation is studied in order to find the corresponding vibration modes associated to the first (longitudinal)
and second (orthogonal) field components. By means of this analysis, it was found that the number of possible
shape modes depends on the value of the coupling constant. It is notable that when one of the orthogonal
field shape modes is initially triggered, the unique shape mode of the longitudinal field is also activated.
This coupling causes the kink to emit radiation with twice the frequency of excited mode in the first field
component. Meanwhile, in the orthogonal channel we find radiation with two different frequencies: one is
three times the frequency of the orthogonal wobbling mode and another is the sum of the frequencies of the
longitudinal shape mode and the triggered mode. All the analytical results obtained in this study have been
successfully contrasted with those obtained through numerical simulations.
1. Introduction

It is well known that topological defects have played a key role in
the last decades to understand nonlinear phenomena in many areas,
such as condensed matter [1–4], cosmology [5–7], superconductiv-
ity [8] or quantum communications [9,10]. Among all the existing
range of topological defects, the kinks, which arise when considering
nonlinear scalar field theories, are undoubtedly the simplest. In this
context, the most famous theory is the 𝜙4 model, for which kink
scattering and collisions have been extensively investigated due to the
complex pattern of collisions in which a fractal pattern arises [11–
15]. This same type of phenomena has also been observed when
studying other more complex scalar models, such as theories with other
polynomial potentials such as 𝜙6 [16–19] or 𝜙8 [20–22], theories with
two-component scalar fields [23–32], or more complex ones [33–37].
In addition to numerical analysis methods, analytical tools have been
developed to study and understand the physical behavior of these fas-
cinating solutions to the 𝜙6 and 𝜙8 models. An example of what we just
said can be found in the use of the moduli space approximation [38–43]
to reduce the degrees of freedom of the system. These methods have
successfully replicated phenomena observed in kink solutions, such as
radiation emission or oscillon formation.
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When kink scattering phenomena are studied, among the possible
final configurations of the system it is possible to find wobbling kinks
or wobblers, which consists of a kink solution where one of its vibra-
tion modes has been triggered due to the energy transfer mechanism
between its shape modes and the kinetic energy of the kink. In this
context, some perturbative approaches have been developed to try
to better understand how a wobbler behaves. It was found [44–46]
that a wobbling kink in the 𝜙4 model emits radiation with twice the
frequency associated with its shape mode, which also causes a decay
in the wobbling amplitude due to the loss of energy in the form of
radiation. These perturbative theories have also been implemented to
study the evolution of wobbling kinks in two-component scalar field
theories, such us the MSTB model [24]. In the present article, the theory
under study will consist of two separate copies of a 𝜙4 theory coupled
by a cross term [32]. The main difference between this theory and
the MSTB model is that in the first case the shape mode structure is
more complex than in the second, since the number of shape modes
corresponding to the second field depends on the coupling constant
between the two copies of the 𝜙4 model.

This paper is structured as follows: in Section 2 the model under
study will be presented and kink solutions will be found. In addition,
the linear stability of these solutions will be analyzed, which will allow
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Fig. 1. Plot of the potential 𝑈 (𝜙, 𝜓) given by (2) for 𝜅 = 4 (first plot) and for the shifted potential 𝑈 ′(𝜙, 𝜓) = 𝑈 (𝜙, 𝜓) + 1−𝜅
2(1+𝜅)

for 𝜅 = 0.5 (second plot). The corresponding kinks
(pink curves) and the minima (red dots) are shown in each case.
us to find the corresponding vibration eigenfunctions and eigenfrequen-
cies. In Section 3 the perturbative approach introduced by Manton and
Merabet in [46] will be used to describe the behavior of a kink when
one of its shape modes is activated. In Section 4 all the analytical results
found in the preceding sections will be compared with those obtained
by numerical simulations. The paper ends with a some concluding
remarks.

2. The two-component coupled 𝝓𝟒 model: kink solutions, linear
stability and shape modes

As already mentioned above, in the following sections we will
deal with a two-component real scalar field theory, consisting of two
separate copies of a 𝜙4 model, coupled by means of a cross term 𝜅𝜙2𝜓2,
where 𝜅 is a real positive parameter. Thus, the dynamics of this physical
system is governed by the Lagrangian density

 = 1
2
𝜕𝜇𝜙𝜕

𝜇𝜙 + 1
2
𝜕𝜇𝜓𝜕

𝜇𝜓 − 𝑈 (𝜙, 𝜓), (1)

where the potential 𝑈 (𝜙, 𝜓) is given by

𝑈 (𝜙, 𝜓) = 1
2
(𝜙2 − 1)2 + 1

2
(𝜓2 − 1)2 + 𝜅𝜙2𝜓2 − 1

2
, (2)

which is completely symmetric in the interchange of 𝜙 for 𝜓 . In
Eqs. (1)–(2) we assume that 𝜙 and 𝜓 are real scalar fields and the
Minkowski metric is taken in the usual form: 𝑔𝜇,𝜈 = diag{1,−1}. In
general, the field equations that govern the evolution of both fields,
which can be calculated from the Lagrangian density (1), are

𝜕𝑡𝑡𝜙 − 𝜕𝑥𝑥𝜙 + 2𝜙(𝜙2 − 1 + 𝜅𝜓2) = 0, (3)
𝜕𝑡𝑡𝜓 − 𝜕𝑥𝑥𝜓 + 2𝜓(𝜓2 − 1 + 𝜅𝜙2) = 0. (4)

2.1. Vacua and kinks

Both the vacuum structure (the set of minima of the potential that
make it take the value zero) and the kinks of the model depends on the
value of the parameter 𝜅, as explained below.

⊳ When 𝜅 < 1, the vacua are the following four constant solutions
of the field Eqs. (3)–(4)

𝜅<1 =

{

1
√

1 + 𝜅

(

(−1)𝑎

(−1)𝑏

)

, 𝑎, 𝑏 = 0, 1

}

. (5)

In fact, for this last set of solutions to be strictly vacua, it is
necessary to add to the potential (2) a constant term 1−𝜅

2(1+𝜅) , so
that the potential must really be 𝑈 ′(𝜙, 𝜓) = 𝑈 (𝜙, 𝜓) + 1−𝜅

2(1+𝜅) .
The kink structure for 𝜅 < 1 has already been studied in [32],
where the authors investigate the kink scattering characteristics
in this model. The discrete symmetries of the Lagrangian density
2

(1) can be used to find that the equation that governs both

components of the kink 𝐾(𝑥) =
(

𝜙(𝑥)
𝜓(𝑥)

)

is

−𝜕𝑥𝑥𝜙𝜅𝐾 + 2𝜙𝜅𝐾
(

(1 + 𝜅)(𝜙𝜅𝐾 )
2 − 1

)

= 0, (6)

whose solutions, except for an irrelevant translation in the 𝑥 coor-
dinate, are 𝜙𝜅𝐾 (𝑥) = ± 𝜙𝐾 (𝑥)

√

1+𝜅
. Here, 𝜙𝐾 (𝑥) satisfies the well-known

field equation of the 𝜙4 model

− 𝜕𝑥𝑥𝜙𝐾 + 2𝜙𝐾 (𝜙2
𝐾 − 1) = 0, (7)

whose solutions are ±𝜙𝐾 (𝑥) = ± tanh(𝑥). Therefore, there are two
pairs of different kinks, in such a way that each pair joins two
non-adjacent vacua of those we have in (5), one of them in one
direction and the other in the opposite direction, and these four
kinks 𝐾(𝑥) are of the form

𝐾 (𝑎,𝑏)(𝑥) = tanh 𝑥
√

1 + 𝜅

(

(−1)𝑎

(−1)𝑏

)

, 𝑎, 𝑏 = 0, 1. (8)

⊳ When 𝜅 > 1, the four vacua solutions are slightly different than
in the previous case (5):

𝜅>1 =
{(

(−1)𝑎

0

)

,
(

0
(−1)𝑏

)

, 𝑎, 𝑏 = 0, 1
}

. (9)

It is now possible to find the kink solutions 𝐾(𝑥) =
(

𝜙(𝑥)
𝜓(𝑥)

)

by

cancelling one of its components since, by doing this, from the
field Eqs. (3)–(4) we can deduce that the evolution of the non-zero
component of the field is again described by (7), whose solutions
have been already given. Taking into account all the previous
comments, we can finally infer that for 𝜅 > 1 the kinks in this
case are given by the two pairs

𝐾 (±)
1 (𝑥) =

(

±𝜙𝐾 (𝑥)
0

)

=
(

± tanh 𝑥
0

)

, (10)

𝐾 (±)
2 (𝑥) =

(

0
±𝜙𝐾 (𝑥)

)

=
(

0
± tanh 𝑥

)

. (11)

As before, each pair of kinks joins two of the non-contiguous
vacua that we have in (9), one of them in one direction and the
other in the opposite. For example, as 𝑥 goes from −∞ to +∞,

𝐾 (+)
1 (𝑥) connects

(

−1
0

)

with
(

1
0

)

, while 𝐾 (−)
1 (𝑥) connects

(

1
0

)

with
(

−1
0

)

.

To clarify as much as possible the problem we are dealing with, in
Fig. 1 we show graphs of the potential for two values of 𝜅. On the first
graph of the figure the four vacua (9) of the potentials 𝑈 (𝜙, 𝜓) in (2)
are shown as the minima (red dots) of the potential for 𝜅 > 1, and the
kinks (10)–(11) are the pink curves connecting two of the non-adjacent
vacua. On the second graph there is a plot of the situation that occurs
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when 𝜅 < 1, with the potential 𝑈 ′(𝜙, 𝜓) appropriately shifted to have
the four vacua (5) (red dots), showing again the kinks by pink lines
joining two of the non-contiguous vacua.

2.2. Linear stability and shape modes when 𝜅 > 1

Since in this paper we will focus on the analysis of the regime 𝜅 > 1,
we will now discuss in detail the linear stability of the kinks (10)–
(11), as well as the shape modes and the corresponding vibrational
frequencies that arise in this kind of study. First of all, to perform the
linear stability analysis, a perturbation in the kink solution 𝐾(𝑥) of the
form

𝐾(𝑥, 𝑡) = 𝐾(𝑥) + 𝑎 𝑒𝑖𝜔𝑡𝐹 (𝑥) =
(

𝜙(𝑥)
𝜓(𝑥)

)

+ 𝑎 𝑒𝑖𝜔𝑡
(

𝜂(𝑥)
𝜂(𝑥)

)

(12)

is inserted into the field Eqs. (3)–(4), where 𝜙(𝑥) and 𝜓(𝑥) are the two
components of the static solution of the model field equations and 𝑎 is
a small real parameter. This leads to the spectral problem


(

𝜂(𝑥)
𝜂(𝑥)

)

= 𝜔2
(

𝜂(𝑥)
𝜂(𝑥)

)

, (13)

where

 =

⎛

⎜

⎜

⎜

⎝

− 𝑑2

𝑑𝑥2
+ 6𝜙(𝑥)2 − 2 + 2𝜅 𝜓(𝑥)2 4𝜅 𝜙(𝑥)𝜓(𝑥)

4𝜅 𝜙(𝑥)𝜓(𝑥) − 𝑑2

𝑑𝑥2
+ 6𝜓(𝑥)2 − 2 + 2𝜅 𝜙(𝑥)2

⎞

⎟

⎟

⎟

⎠

. (14)

herefore, to study the kink stability of the solution (10) in the regime
> 1, the spectral problem to be solved is essentially the following1:

⎛

⎜

⎜

⎜

⎝

− 𝑑2

𝑑𝑥2
+ 6 tanh2 𝑥 − 2 0

0 − 𝑑2

𝑑𝑥2
+ 2𝜅 tanh2 𝑥 − 2

⎞

⎟

⎟

⎟

⎠

(

𝜂(𝑥)

𝜂(𝑥)

)

= 𝜔2

(

𝜂(𝑥)

𝜂(𝑥)

)

. (15)

From (15) it can be seen that the matrix-operator  is diagonal
which, in turn, implies that this problem consists of two decoupled
Schrödinger-like equations with Pöschl-Teller potential wells 11 =
− 𝑑2

𝑑𝑥2
+ 6 tanh2 𝑥 − 2 and 22 = − 𝑑2

𝑑𝑥2
+ 2𝜅 tanh2 𝑥 − 2. The solution

o this type of equations has been widely studied and can be found,
or example, in [47–49]. Since the orbit of the kink solution (10) lies
n the 𝜙-axis, the fluctuations corresponding to the first component of
he field will be called longitudinal eigenmodes and those corresponding
o the second component of the field will be called orthogonal eigen-
odes. Solving the spectral problem (15), the following eigenmodes and
igenfrequencies can be found.

• Longitudinal eigenmodes. There are two eigenmodes, one asso-
ciated with 𝜔 = 0, called zero mode or translational eigenmode, and
another associated with a frequency 𝜔 =

√

3, which is known as
longitudinal shape mode. The formulas for these two modes can be
expressed as follows [6,16,24,44–46,50]:

𝐹 0(𝑥) =
(

𝜂0(𝑥)
0

)

=
(

sech2 𝑥
0

)

, (16)

𝐹√3(𝑥) =
(

𝜂𝐷(𝑥)
0

)

=
(

sech 𝑥 tanh 𝑥
0

)

, (17)

where the subindex in 𝐹 (𝑥) indicates the corresponding fre-
quency. In addition to these vibration eigenfunctions, there are
also continuous modes associated with the frequencies

𝜔𝑐𝑞 =
√

4 + 𝑞2, 𝑞 ∈ R. (18)

1 In fact, all analytical calculations can also be performed with the kink
olution (11), but all the results would be the same as those corresponding to
he kink (10).
3

In this case, these eigenmodes take the form

𝐹√

4+𝑞2 (𝑥) =
(

𝜂𝑞(𝑥)
0

)

, (19)

with 𝜂𝑞(𝑥) = (−1 − 𝑞2 + 3 tanh2 𝑥 − 3𝑖𝑞 tanh 𝑥) 𝑒𝑖𝑞𝑥. It is easy to
verify that the complex conjugate of the previous function is also
a solution of (15), independent of the first one, which is also
obtained with the change 𝑞 → −𝑞. Therefore, this second solution
will be denoted as 𝜂−𝑞 and it can be verified that the Wronskian
associated to these two functions is

𝑊 𝑞 = 𝜂𝑞(𝑥) 𝜂 ′
−𝑞(𝑥) − 𝜂

′
𝑞(𝑥) 𝜂−𝑞(𝑥) = −2𝑖𝑞(𝑞2 + 1)(𝑞2 + 4), (20)

where the prime in (20) stands for the derivative with respect to
the variable 𝑥.
As a final remark in this section, let us note that from (18) it
follows that the continuous spectrum in frequencies begins for
𝑞 = 0, 𝜔𝑐0 = 2, that is to say, that the longitudinal discrete
spectrum will necessarily be contained in the interval [0, 2].

• Orthogonal eigenmodes. The number of possible shape modes
depends on the value of the parameter 𝜅 that appears in the
differential equation corresponding to the second component of
(15), where the differential operator 22 appears. More precisely,
there exists a number 𝑛𝑚𝑎𝑥 ≥ 0 that is given by the largest integer
that verifies the following inequality [47]

𝜅 > 𝑛𝑚𝑎𝑥(𝑛𝑚𝑎𝑥 + 1)∕2, (21)

and which determines the number of discrete eigenmodes (𝑛𝑚𝑎𝑥+
1) corresponding to this Pöschl-Teller type equation. The eigen-
frequencies corresponding to these modes are determined by the
expression

𝜔̂𝑛 =
√

(2𝑛 + 1)𝜌 − 𝑛2 − 𝑛 − 5
2 , 𝑛 = 0, 1,… , 𝑛𝑚𝑎𝑥, (22)

where 𝜌 =
√

2𝜅 + 1
4 . Notice that the above relationship is telling

us something extremely important: that the kink is unstable when
𝜅 < 3, since in that case it happens that 𝜔̂2

0 < 0. Therefore, in the
following we will focus exclusively on values of 𝜅 > 3.
The associated eigenfunctions to these discrete modes (22) are
[47]

𝐹𝜔̂𝑛 (𝑥) =
(

0
𝜂𝐷,𝑛(𝑥)

)

, 𝑛 = 0, 1,… , 𝑛𝑚𝑎𝑥, (23)

with

𝜂𝐷,𝑛(𝑥) = (sech 𝑥) 𝜌−𝑛−
1
2

× 2𝐹1
(

−𝑛, 2𝜌 − 𝑛; 𝜌 − 𝑛 + 1∕2; 1 − tanh 𝑥
2

)

,

being 2𝐹1(𝑎, 𝑏; 𝑐; 𝑧) the well known hypergeometric function. Us-
ing the following relation (see [51])

2𝐹1
(

−𝑛, 𝑛 + 2𝜆, 𝜆 + 1∕2, 1 − 𝑥
2

)

= 𝑛!
(2𝜆)𝑛

×
⌊𝑛∕2⌋
∑

𝑚=0
(−1)𝑚

(𝜆)𝑛−𝑚
𝑚!(𝑛 − 2 𝑚)!

(2𝑥)𝑛−2𝑚, (24)

where (𝜆)𝑛 = 𝛤 (𝜆 + 𝑛)∕𝛤 (𝜆) represents the Pochhammer symbol
and ⌊𝑥⌋ denotes the integer part of 𝑥, the orthogonal eigenmodes
(23) can be written as

𝜂𝐷,𝑛(𝑥) = 𝜂𝐷,𝑛(𝑥) = (sech 𝑥) 𝜌−𝑛−
1
2

𝑛!
(2𝜌 − 2𝑛)𝑛

×
⌊𝑛∕2⌋
∑

𝑚=0
(−1)𝑚

(𝜌 − 𝑛)𝑛−𝑚
𝑚!(𝑛 − 2 𝑚)!

(2 tanh 𝑥)𝑛−2𝑚. (25)

Note that the orthogonal modes 𝜂𝐷,𝑛(𝑥) with even or odd 𝑛 are
even and odd functions, respectively.
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On the other hand, the orthogonal continuous spectrum is com-
posed of the following frequencies

𝜔̂𝑐𝑞 =
√

𝑞2 + 2𝜅 − 2, 𝑞 ≥ 0, (26)

being the corresponding eigenfunctions

𝐹√𝑞2+2𝜅−2 (𝑥) =
(

0
𝜂𝑞(𝑥)

)

(27)

with

𝜂𝑞(𝑥) = 2𝐹1
(1
2
− 𝜌, 1

2
+ 𝜌; 1 − 𝑖𝑞; 1 − tanh 𝑥

2

)

𝑒𝑖𝑞𝑥.

Similar to what happens in the longitudinal case, a second linearly
independent solution is obtained by changing 𝑞 → −𝑞, so that the
Wronskian for these two eigenfunctions can be written in this case
as

𝑊𝑞 = 𝜂𝑞(𝑥) 𝜂 ′
−𝑞(𝑥) − 𝜂

′
𝑞(𝑥) 𝜂−𝑞(𝑥) = −2𝑖𝑞. (28)

Note that from (26) it follows that the continuous frequency
spectrum begins for 𝑞 = 0, that is, given a value of 𝜅 > 3, the
discrete orthogonal spectrum will necessarily be contained in the
interval [0,

√

2𝜅 − 2].

3. Interaction between vibrational modes: Perturbative approach

It has been shown in some nonlinear models that when we initially
excite a shape mode, this mode couples with the rest of the discrete
eigenmodes of the system, causing the emission of radiation [24]. The
reason of this phenomenon is the nonlinearity associated with the
generalized Klein–Gordon equations that dictate the behavior of the
physical system. An example of this can be found in the 𝜙4 model,
n which, when the shape mode associated with this theory is initially
riggered, radiation is found with twice the frequency of the vibrational
ode.

As we mentioned before, in the present work we are going to
tudy how the kink (10) evolves when an orthogonal shape mode is
nitially excited. The situation in which only the non-zero frequency
ongitudinal eigenmode is excited reduces the analysis to the study of a
ne-component 𝜙4 model, and this has been extensively investigated by
everal authors [44–46]. In light of all this, if the initial configuration
akes the form

̃(𝑥, 𝑡) = 𝐾(𝑥) + 𝑎0 sin(𝜔̂𝑛𝑡)𝐹𝜔̂𝑛 (𝑥), (29)

where 𝑎0 is a small parameter and 𝜔̂𝑛 is one of the possible values
given in (22), hopefully at least some of the other modes will be also
triggered. Note that (29) is similar to (12), only now we are not looking
for complex but real solutions.

In this section we will address this situation and to do so we will use
the perturbative approach that Manton and Merabet first introduced
in [46]. In other words, the following expansion is assumed for field
components:

𝜙(𝑥, 𝑡) = 𝜙𝐾 (𝑥) + 𝑎(𝑡) 𝜂𝐷(𝑥) + 𝜂(𝑥, 𝑡), (30)
𝜓(𝑥, 𝑡) =

∑

𝑝
𝑎𝑝(𝑡) 𝜂𝐷,𝑝(𝑥) + 𝜂(𝑥, 𝑡), (31)

where 𝜂𝐷, 𝜂𝐷,𝑝 and 𝜙𝐾 (𝑥) are defined in Eqs. (17), (25) and (10).
he time dependent functions 𝑎(𝑡) and 𝑎𝑝(𝑡) describe the evolution of

the amplitudes corresponding to each shape mode (longitudinal or
transversal), the sum going from 𝑝 = 0 to 𝑝 = 𝑛, where 𝑛 is the largest
natural number for which the condition (21) is satisfied for a specific
value of the coupling constant 𝜅. By construction, 𝑎0 is the small
parameter in our perturbation approach. Furthermore, the functions
𝜂(𝑥, 𝑡) and 𝜂(𝑥, 𝑡) are the space and time dependent functions that will
ictate the behavior of the radiation found when 𝑥 → ∞. For the sake

of simplicity, the dependency of the functions mentioned above will
4

be omitted in subsequent calculations. Therefore, if we now plug (30)–
(31) into the field Eqs. (3) and (4) find for the first and second field
components, respectively,

(𝑎𝑡𝑡 + 𝜔
2 𝑎 ) 𝜂𝐷 − 𝜂𝑥𝑥 + 𝜂𝑡𝑡 + 2 𝜂3 + 6 𝑎 𝜂2 𝜂𝐷 + 6 𝑎2 𝜂 𝜂2𝐷 + 2 𝑎3 𝜂3𝐷 (32)

+6 𝜂2 𝜙𝐾 + 12 𝑎 𝜂 𝜂𝐷 𝜙𝐾
+6 𝑎2 𝜂2𝐷 𝜙𝐾 + 6 𝜂 𝜙2

𝐾 − 2 𝜂 + 2 𝜅
(

𝜙𝐾 + 𝑎 𝜂𝐷 + 𝜂
)

×
(

∑

𝑝,𝑟
𝑎𝑝 𝑎𝑟 𝜂𝐷,𝑝 𝜂𝐷,𝑟 + 2

∑

𝑝
𝑎𝑝 𝜂𝐷,𝑝 𝜂 + 𝜂2

)

= 0,

𝑝

(

(𝑎𝑝)𝑡𝑡 + 𝜔̂2
𝑝 𝑎𝑝

)

𝜂𝐷,𝑝 + 𝜂𝑡𝑡 − 𝜂𝑥𝑥 + 2
∑

𝑝,𝑟,𝑠
𝑎𝑝 𝑎𝑟 𝑎𝑠 𝜂𝐷,𝑝 𝜂𝐷,𝑟 𝜂𝐷,𝑠 (33)

+6
∑

𝑝,𝑟
𝑎𝑝 𝑎𝑟 𝜂𝐷,𝑝 𝜂𝐷,𝑟 𝜂

6
∑

𝑝
𝑎𝑝 𝜂𝐷,𝑝 𝜂

2 + 2𝜂3 − 2𝜂 + 2𝜅 𝜂 𝜙2
𝐾 + 2𝜅

(

∑

𝑝
𝑎𝑝 𝜂𝐷,𝑝 + 𝜂

)

×
(

𝜂2 + 2𝑎 𝜂𝐷 𝜂 + 𝑎
2 𝜂2𝐷 + 2𝜂 𝜙𝐾 + 2𝑎 𝜂𝐷 𝜙𝐾

)

= 0,

here 𝜔 =
√

3 and 𝜔̂𝑝 is given by (22). By physical reasons, all the
functions 𝜂(𝑥, 𝑡) and 𝑎(𝑡) (with a bar or with a hat on top) are small
quantities. Then, the terms 𝜂2, 𝜂3, 𝜂2𝑎, 𝑎3. . . can be neglected in the
ormulas (32) and (33), which leads us to the following truncated
xpansion for the field component equations:

𝑎𝑡𝑡 + 𝜔
2 𝑎) 𝜂𝐷 + 𝜂𝑡𝑡 − 𝜂𝑥𝑥 − 2𝜂 + 6 𝜂 𝜙2

𝐾 + 6𝑎2 𝜂2𝐷 𝜙𝐾

+2𝜅 𝜙𝐾
(

∑

𝑝
𝑎𝑝𝜂𝐷,𝑝

)2
≈ 0, (34)

∑

𝑝

(

(𝑎𝑝)𝑡𝑡 + 𝜔̂2
𝑝 𝑎𝑝

)

𝜂𝐷,𝑝 + 𝜂𝑡𝑡 − 𝜂𝑥𝑥 − 2𝜂 + 2𝜅 𝜂 𝜙2
𝐾

+4𝜅 𝑎 𝜂𝐷 𝜙𝐾
∑

𝑝
𝑎𝑝 𝜂𝐷,𝑝 ≈ 0. (35)

f we now project the formula (34) onto the longitudinal shape mode
𝜂𝐷(𝑥), we find the following relation:

𝑎𝑡𝑡 + 𝜔
2 𝑎

)

𝐶 + 6 𝑎2 𝑉 +
∑

𝑝,𝑟
𝑎𝑝 𝑎𝑟 𝐵𝑝𝑟 = 0, (36)

here 𝐶 = 2∕3, 𝑉 = 𝜋∕16 and

𝑝̂𝑟 = 2𝜅 ∫

∞

−∞
𝜂𝐷(𝑥) 𝜙𝐾 (𝑥) 𝜂𝐷,𝑝(𝑥) 𝜂𝐷,𝑟(𝑥) 𝑑𝑥. (37)

ote that given the parities of the functions in the integrand of (37), if
+ 𝑟 is an odd number, then 𝐵𝑝𝑟 = 0.

Similarly, we can project the relation (35) onto 𝜂𝐷,𝑚, which leads to

(𝑎𝑚)𝑡𝑡 + 𝜔̂2
𝑚 𝑎𝑚

)

𝐶𝑚 + 2
∑

𝑝
𝑎 𝑎𝑝 𝐵𝑝𝑚 = 0, (38)

= 0, 1,… 𝑛, where

𝑚̂ = ∫

∞

−∞
𝜂2𝐷,𝑚(𝑥) 𝑑𝑥. (39)

hen necessary, the numbers 𝐵𝑝𝑟 in (37) and 𝐶𝑚 in (39) should be eval-
ated numerically, since the presence of the functions 𝜂𝐷,𝑛 in the cor-
esponding integrals makes it impossible to evaluate them analytically.

The expressions (36) and (38) form a system of 𝑛 + 1 ordinary
onlinear differential equations that must be determined according to
he shape modes that are initially triggered (the initial conditions).
lugging (36) and (38) into (34) and (35), we find

𝜂𝑡𝑡 − 𝜂𝑥𝑥 + (6𝜙2
𝐾 − 2)𝜂 = 𝑎2

(

−6 𝜂2𝐷 𝜙𝐾 + 6𝑉
𝐶

𝜂𝐷
)

+
∑

𝑝,𝑟
𝑎𝑝 𝑎𝑟

(𝐵𝑝𝑟
𝐶𝐷

𝜂𝐷 − 2 𝜅 𝜙𝐾 𝜂𝐷,𝑝 𝜂𝐷,𝑟
)

(40)

𝜂𝑡𝑡 − 𝜂𝑥𝑥 + (2𝜅 𝜙2
𝐾 − 2)𝜂 = 2 𝑎

(

∑

𝑝,𝑟

𝑎𝑟 𝐵𝑝𝑟 𝜂𝐷,𝑟
𝐶𝑝

− 2𝜅
∑

𝑝
𝜂𝐷 𝜙𝐾 𝑎𝑝 𝜂𝐷,𝑝

)

(41)
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for the first and second components. These will be the key equations
that we need to analyze next.

3.1. Evolution of the system when only an orthogonal shape mode is initially
activated

Next, we want to study how the systems evolves in case we ex-
clusively trigger the 𝑗th orthogonal shape mode at 𝑡 = 0. It can be
seen from (36)–(38) that this excitation also activates the rest of the
shape modes, but their corresponding amplitudes will be much smaller.
From this reasoning and from the differential equation (38), it is logical
to assume that the amplitude associated with the 𝑗th mode can be
approximated as

𝑎𝑗 (𝑡) ≈ 𝑎0 sin(𝜔̂𝑗 𝑡), (42)

where 𝜔̂𝑗 is fixed and is one of the possible values given in (22). If
we now plug (42) into (36), we neglect terms of the form 𝑎2 and 𝑎𝑝 𝑎𝑟
with 𝑝, 𝑟 ≠ 𝑗 (because they are of order (𝑎40)) and then we solve the
resulting differential equation taking into account the initial conditions

𝑎𝑡(0) = 𝑎(0) = 0, 𝑎𝑚(0) = 𝑎𝑚(0)𝑡 = 0 with 𝑚 ≠ 𝑗, (43)

hen it turns out that the evolution of 𝑎(𝑡) can be described as

𝑎(𝑡) ≈
𝑎20 𝐵𝑗𝑗

(

4𝜔̂2
𝑗 − 𝜔

2 + 𝜔2 cos(2𝜔̂𝑗 𝑡) − 4𝜔̂2
𝑗 cos(𝜔𝑡)

)

2𝐶 𝜔2
(

𝜔2 − 4𝜔̂2
𝑗

) . (44)

he initial conditions (43) have been taken because only the 𝑗th mode
s activated and none of the others.

On the other hand, the rest of the amplitudes 𝑎𝑚 can be estimated
by solving the differential equations (38), neglecting in them the terms
𝑎 𝑎𝑝, with 𝑝 ≠ 𝑗, with the initial conditions (43), which leads to

𝑎𝑚(𝑡) = 𝑎𝜔̂𝑗 sin(𝜔̂𝑗 𝑡) + 𝑎3𝜔̂𝑗 sin(3𝜔̂𝑗 𝑡) + 𝑎𝜔̂𝑚 sin(𝜔̂𝑚𝑡) + 𝑎𝜔̂𝑗+𝜔 sin((𝜔̂𝑗 + 𝜔)𝑡)

+ 𝑎𝜔̂𝑗−𝜔 sin((𝜔̂𝑗 − 𝜔)𝑡), (45)

where the amplitudes associated with each of the frequencies that
appear in the expression (45) are

𝑎𝜔̂𝑗 =
𝑎30 𝐵𝑗𝑚 𝐵𝑗𝑗

(

3𝜔2 − 8𝜔̂2
𝑗

)

2𝐶 𝐶𝑚
(

𝜔̂2
𝑗 − 𝜔̂2

𝑚

)

𝜔2
(

4𝜔̂2
𝑗 − 𝜔

2
) ,

𝑎3𝜔̂𝑗 =
−𝑎30 𝐵𝑗𝑚 𝐵𝑗𝑗

2𝐶 𝐶𝑚
(

9𝜔̂2
𝑗 − 𝜔̂2

𝑚

)(

4𝜔̂2
𝑗 − 𝜔

2
) , (46)

𝑎𝜔̂𝑚 =
−4𝑎30 𝐵𝑗𝑚 𝐵𝑗𝑗 𝜔̂

3
𝑗

(

3𝜔̂2
𝑗 + 5𝜔̂2

𝑗 − 3𝜔2
)

𝐶 𝐶𝑚 𝜔̂𝑚
(

9𝜔̂4
𝑗 − 10𝜔̂2

𝑗 𝜔̂2
𝑚 + 𝜔̂4

𝑚

)

(

𝜔̂4
𝑗 +

(

𝜔̂2
𝑚 − 𝜔2

)2
− 2𝜔̂2

𝑗

(

𝜔̂2
𝑚 + 𝜔2

)

) ,

(47)

̂𝜔̂𝑗+𝜔 =
−2𝑎30 𝐵𝑗𝑚 𝐵𝑗𝑗 𝜔̂

2
𝑗

𝐶 𝐶𝑚 𝜔
2(𝜔̂𝑗 − 𝜔̂𝑚 + 𝜔)(𝜔̂𝑗 + 𝜔̂𝑚 + 𝜔)(𝜔2 − 4𝜔̂2

𝑗 )
,

𝑎𝜔̂𝑗−𝜔 =
−2𝑎30 𝐵𝑗𝑚 𝐵𝑗𝑗 𝜔̂

2
𝑗

𝐶𝐶𝑚𝜔
2(𝜔2 − 4𝜔̂2

𝑗 )(𝜔̂
2
𝑗 − 𝜔̂2

𝑚 − 2𝜔̂𝑗𝜔 + 𝜔2)
. (48)

From these formulas and from the parity of the shape modes, it can
be shown that 𝑎𝑚 is zero when we consider shape modes with different
parities. This is because the integrand of (37) is odd when 𝑗+𝑚 is not an
even number. This phenomenon will be studied in detail in Section 4.4,
where we will compare these results with those obtained by numerical
simulations.

When we substitute (46)–(48) into (45), the resulting amplitudes
lead to terms of order (𝑎40) in (40)–(41), which will be ignored because
we are only considering quantities up to the order (𝑎30). In other words,
the differential equations (40) and (41) can be approximated up to the
order indicated by the following ones

𝜂𝑡𝑡 − 𝜂𝑥𝑥 + (6𝜙2
𝐾 − 2)𝜂 = 𝑎2𝑗

[

𝐵𝑗𝑗 𝜂𝐷 − 2𝜅𝜙𝐾𝜂2𝐷,𝑗

]

, (49)
5

𝐶𝐷
𝜂𝑡𝑡 − 𝜂𝑥𝑥 + (2𝜅𝜙2
𝐾 − 2)𝜂 = 2𝑎𝑎𝑗

[

𝐵𝑗𝑗
𝐶𝑗

𝜂𝐷,𝑗 − 2𝜅𝜂𝐷𝜙𝐾𝜂𝐷,𝑗

]

. (50)

aking into account that from (42)

𝑎2𝑗 (𝑡) =
𝑎20
2

(

1 − cos(2𝜔̂𝑗 𝑡)
)

, (51)

and that the time-independent part of (51) causes a time-independent
response of 𝜂 that carries zero energy, then it is possible to rewrite (50)
s

𝜂𝑡𝑡 − 𝜂𝑥𝑥 +
(

6𝜙2
𝐾 − 2

)

𝜂 = 𝑓 (𝑥) 𝑒𝑖2𝜔̂𝑗 𝑡, (52)

where

𝑓 (𝑥) = −
𝑎20
2

(

𝐵𝑗𝑗
𝐶𝐷

𝜂𝐷 − 2𝜅 𝜙𝐾 𝜂2𝐷,𝑗

)

. (53)

It is important to clarify that, to simplify the subsequent calculations as
much as possible, we have taken imaginary exponentials in (52) instead
of sines or cosines. In fact, this does not affect the final analytical result
at all since the relevant results can be retrieved simply by taking the
real part of the final result. On the other hand, from (42) and (44) it can
be obtained that Eq. (54) is given in Box I. Clearly, in the expression we
have just found, four relevant frequencies naturally appear, which are

𝜔1 = 𝜔̂𝑗 , 𝜔2 = 3𝜔̂𝑗 , 𝜔3 = 𝜔̂𝑗 + 𝜔, and 𝜔4 = |𝜔̂𝑗 − 𝜔|. (55)

Following the same procedure used with the equation of the first field
component 𝜂, the formula (50) can be rewritten as

𝜂𝑡𝑡 − 𝜂𝑥𝑥 +
(

2𝜅 𝜙2
𝐾 − 2

)

𝜂 =
4
∑

𝓁=1
𝑔𝓁(𝑥) 𝑒𝑖𝜔𝓁 𝑡, (56)

here

1(𝑥) =
𝑎30 𝐵𝑗𝑗

(

3𝜔2 − 8𝜔̂2
𝑗

)

2𝐶 𝜔2
(

4𝜔̂2
𝑗 − 𝜔

2
)

(

𝐵𝑗𝑗
𝐶𝑗

𝜂𝐷,𝑗 − 2𝜅 𝜂𝐷 𝜙𝐾 𝜂𝐷,𝑗

)

,

𝑔2(𝑥) =
−𝑎30 𝐵𝑗𝑗

2𝐶
(

4𝜔̂2
𝑗 − 𝜔

2
)

(

𝐵𝑗𝑗
𝐶𝑗

𝜂𝐷,𝑗 − 2𝜅 𝜂𝐷 𝜙𝐾 𝜂𝐷,𝑗

)

,

𝑔3(𝑥) = 𝑔4(𝑥) =
2𝑎30 𝐵𝑗𝑗 𝜔̂

2
𝑗

𝐶 𝜔2
(

4𝜔̂2
𝑗 − 𝜔

2
)

(

𝐵𝑗𝑗
𝐶𝑗

𝜂𝐷,𝑗 − 2𝜅 𝜂𝐷 𝜙𝐾 𝜂𝐷,𝑗

)

.

Under these circumstances, (52) and (56) can be solved if we separate
the spatial and temporal part of the two 𝜂(𝑥, 𝑡)-functions as follows

𝜂(𝑥, 𝑡) = 𝜂2𝜔̂𝑗 (𝑥) 𝑒
𝑖 2𝜔̂𝑗 𝑡, 𝜂(𝑥, 𝑡) =

4
∑

𝓁=1
𝜂𝜔𝓁 (𝑥) 𝑒

𝑖𝜔𝓁 𝑡, (57)

hich will lead to the non-homogeneous linear ordinary differential
quations (𝓁 = 1, 2, 3, 4):

𝜂′′2𝜔̂𝑗 (𝑥) +
(

6𝜙2
𝐾 − 2 − 4𝜔̂2

𝑗

)

𝜂2𝜔̂𝑗 (𝑥) = 𝑓 (𝑥), (58)

−𝜂′′𝜔𝓁 (𝑥) +
(

2𝜅 𝜙2
𝐾 − 2 − 𝜔2

𝓁

)

𝜂𝜔𝓁 (𝑥) = 𝑔𝓁(𝑥), (59)

f we now take into account the dispersion relations for a longitudinal
hannel (18) of frequency 2𝜔̂𝑗 and the four orthogonal modes (26),
hich are the 𝜔𝓁 given in (55),

̄ =
√

4𝜔̂2
𝑗 − 4, 𝑞𝓁 =

√

𝜔2
𝓁 + 2 − 2𝜅, (60)

as well as the homogeneous solutions of (58) and (59), which corre-
spond to the expressions (19) and (27), then the solutions to the inho-
mogeneous equations (58)–(59) are given by the following functions:

𝜂2𝜔̂𝑗 = −
𝜂−𝑞(𝑥)

𝑊 𝑞
∫

𝑥

−∞
𝜂𝑞(𝑦) 𝑓 (𝑦) 𝑑𝑦

−
𝜂𝑞(𝑥)

∫

∞
𝜂−𝑞(𝑦) 𝑓 (𝑦) 𝑑𝑦, (61)
𝑊 𝑞 𝑥
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𝑎(𝑡) 𝑎𝑗 (𝑡) =
𝑎30 𝐵𝑗𝑗

[

4𝜔̂2
𝑗
(

sin ((𝜔̂𝑗 − 𝜔)𝑡) + sin ((𝜔̂𝑗 + 𝜔)𝑡)
)

+
(

3𝜔2 − 8𝜔̂2
𝑗

)

sin(𝜔̂𝑗 𝑡) − 𝜔
2 sin(3𝜔̂𝑗 𝑡)

]

4𝐶 𝜔2
(

4𝜔̂2
𝑗 − 𝜔

2
) . (54)

Box I.
𝜂𝜔𝓁 = −
𝜂−𝑞𝓁 (𝑥)

𝑊𝑞𝓁
∫

𝑥

−∞
𝜂𝑞𝓁 (𝑦) 𝑔𝓁(𝑦) 𝑑𝑦

−
𝜂𝑞𝓁 (𝑥)

𝑊𝑞𝓁
∫

∞

𝑥
𝜂−𝑞𝓁 (𝑦) 𝑔𝓁(𝑦) 𝑑𝑦, (62)

where𝑊 𝑞 and𝑊𝑞𝓁 are given by (20) and (28). The asymptotic behavior
of (61) and (62) is

𝜂2𝜔̂𝑗
𝑥→∞
←←←←←←←←←←←←←←←←←←←←←→

𝑖
(

∫ ∞
−∞ 𝜂𝑞(𝑦)𝑓 (𝑦)𝑑𝑦

)

2(𝑞 + 𝑖)(𝑞 + 2𝑖)
𝑒−𝑖𝑞𝑥, (63)

𝜂𝜔𝓁
𝑥→∞
←←←←←←←←←←←←←←←←←←←←←→

(

∫ ∞
−∞ 𝜂𝑞𝓁 (𝑦)𝑔𝓁(𝑦)𝑑𝑦

)

2𝑖𝑞𝓁
𝑒−𝑖𝑞𝓁𝑥, (64)

which provides us with the amplitudes of the radiation that travels in
the longitudinal and orthogonal channels respectively. Unfortunately,
the functions (63) and (64) cannot be calculated analytically since the
integrals that are present in these formulas involve mixed hypergeomet-
ric and hyperbolic functions. Note that it can be seen that the amount of
radiation propagated in the longitudinal channel is going to be greater
than that emitted in the orthogonal channel because the term (63) is
proportional to 𝑎20, while the term (64) is proportional to 𝑎30, being 𝑎0
a small parameter.

Now that the possible radiation frequencies are known, we have to
find out which of them are capable of producing radiation. In fact,
for this to happen both 2𝜔̂𝑗 and 𝜔𝓁 in (55) have to lie within the
continuous vibration spectra of the components of the first and second
fields, respectively [24]. In other words, 𝑞 and 𝑞𝓁 must both be positive
real quantities. This can be verified from (63) and (64), since, if the
aforementioned dispersion relations were imaginary, then this would
lead to divergences in the solutions (61)–(62) when we are far from
the center of the kink.

Below we are going to graphically illustrate part of the analytical
results that we have obtained so far, to help us better understand the
solutions to the problem that we are analyzing. Thus, Fig. 2 shows the
eigenfrequencies found in Section 2 for the longitudinal fluctuations of
11 in (15), from which we can infer that if we initially activate only
𝜂𝐷,0, then we can only find radiation with frequency 2𝜔̂0 in the regime
𝜅 > 6 for the longitudinal channel, since for 𝜅 < 6 it happens that
2𝜔̂0 < 𝜔

𝑐
0. For higher modes, the frequencies 2𝜔̂𝑛 are always embedded

in the continuous part of the spectrum 22.
The two graphs in Fig. 3 show the spectrum of the orthogonal

operator 22, in addition to the frequencies 𝜔1,…𝜔4 defined in (55). As
we have already said, only the frequencies embedded in the continuous
spectrum will be able to produce radiation. Following this reasoning,
as we can see in the second of the drawings in Fig. 3, the frequencies
|𝜔̂𝑖 − 𝜔| are not embedded in the continuous part of the orthogonal
channel spectrum, which implies that no radiation associated with
these frequencies will be found. On the other hand, from the first of the
drawings in Fig. 3 it can be inferred that 3𝜔̂0 will not produce radiation
in the second field component, although this frequency is ‘‘almost’’
embedded in the continuous part of the spectrum around 𝜅 = 10. Also
note that 3𝜔̂0 coincides with 𝜔̂4 for 𝜅 > 10. The rest of the frequencies
3𝜔̂𝑖 are part of the radiation spectrum, which implies that radiation
associated with these frequencies can be detected. On the other hand,
the frequencies 𝜔𝑖+𝜔 (except for 𝜔0+𝜔) are contained in the continuous
spectrum only for a range of values of the coupling constant 𝜅. For
6

Fig. 2. Longitudinal eigenfrequencies of the operator 11 in (15) as a function of
the coupling constant 𝜅. The black dashed lines are the values of 𝜅 for which a new
orthogonal mode arises in the spectrum of 22. The purple lines represent the lowest
frequencies that can be excited by the coupling with the orthogonal fluctuations, which
can be realized as radiation when plunged into the continuous spectrum (blue area).

example, it can be shown that 𝜔̂1 + 𝜔 > 𝜔̂𝑐0 when 3 < 𝜅 < 14.14 and
𝜔̂2 + 𝜔 > 𝜔̂𝑐0 when 3 < 𝜅 < 24.93.

Next we focus on obtaining the radiation amplitudes associated with
each frequency as a function of the coupling constant 𝜅, depending
on which orthogonal mode is initially activated. For this we must use
(63)–(64), which must necessarily be evaluated numerically, showing
the results in Figs. 4–6. More specifically, the real part of the result
obtained in (63) must be taken for the longitudinal channel amplitudes
and the imaginary part of the result found in (64) for the orthogonal
channel amplitudes.

In Fig. 4 we show the behavior of longitudinal radiation amplitudes
when the first five orthogonal modes are activated separately. As we
can see, as 𝜅 grows, the radiation amplitudes get smaller, which can
be explained by the fact that higher frequencies are more difficult to
trigger, and as 𝜅 grows, the gap between 2𝜔̂𝑖 and the threshold 𝜔𝑐0 also
increases. Furthermore, it can be seen that the radiation emitted when
we excite 𝜂𝐷,0 is much bigger than when we trigger higher shape modes.
In addition to all this, it is important to point out that, for large values
of 𝜅, the amplitudes associated with the higher modes are smaller
than those corresponding to the first modes. For example, for 𝜅 > 20,
𝑎2𝜔̂0 > 𝑎2𝜔̂1 > 𝑎2𝜔̂2 > 𝑎2𝜔̂3 > 𝑎2𝜔̂4 . Another notable phenomenon is that
the radiation associated with the frequency 2𝜔̂0 begins when 𝜅 = 6.
As mentioned above, this is because when 𝜅 < 6 the aforementioned
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Fig. 3. On the left is part of the spectrum of the operator 22 that involves the orthogonal fluctuations as a function of the coupling constant 𝜅. The graph on the right shows
a zoom of the aforementioned spectrum near the threshold value 𝜔̂𝑐0. The black dashed vertical lines are the values of 𝜅 for which a new orthogonal shape mode arises. The red
and purple dotted lines represent the lowest frequencies that can be excited by coupling with longitudinal fluctuations, which can be realized as radiation when immersed in the
continuous spectrum (red area).
Fig. 4. Radiation amplitudes associated with the frequencies 2𝜔̂0 ,…2𝜔̂4 in the longi-
tudinal channel. The vertical dashed lines indicate the values of 𝜅 for which a new
shape mode arises in the spectrum of 22.

Fig. 5. Radiation amplitudes associated with the frequencies 𝜔+ 𝜔̂𝑗 (𝑗 = 1,… , 4) in the
orthogonal channel. The dashed lines indicate the values of 𝜅 for which a new shape
mode arises in the spectrum of 22 and for which a radiation term disappears.
7

Fig. 6. Radiation amplitudes associated with the frequencies 3𝜔̂1 ,…3𝜔̂4 in the orthog-
onal channel. The dashed lines indicate the values of 𝜅 for which a new shape mode
arises in the spectrum of 22.

frequency is not embedded in the continuous part of the spectrum of
the longitudinal channel (see Fig. 2).

On the other hand, in Fig. 5 we can see the graphs corresponding to
the amplitudes of the orthogonal radiation emitted in 𝜔+𝜔̂𝑗 , 𝑗 = 1,… , 4,
as a function of 𝜅. In this case, these frequencies only emit radiation
in a certain range of values of 𝜅. In other words, the coupling between
𝜂𝐷,𝑗 and 𝜂𝐷 only produces radiation at 𝜔 + 𝜔̂𝑗 for a value of 𝜅 that
is greater than the minimum value for which the orthogonal shape
mode arises and less than the critical value for which this frequency
no longer belongs to the continuous part of the spectrum of the second
channel. Note also that the amplitude of the radiation diverges near the
value of 𝜅 where there is a resonance between 𝜔+ 𝜔̂𝑖 and the threshold
value of 𝜔̂𝑐 . These resonance structures must be addressed by other
analytical methods due to the fact that these limits are outside the range
of validity where our perturbative approach works well. Furthermore,
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𝑥

Fig. 7. Vibration amplitudes (blue curve) associated with 𝜂𝐷,1 (first drawing) and 𝜂𝐷,2 (second drawing) as a function of 𝜅 when the second and third shape modes are initially
activated. The red dashed line corresponds to the analytical hypothesis (42).
i
I
t

the first orthogonal shape mode cannot trigger radiation in the second
field component because this frequency is always below the continuous
spectrum.

Finally, Fig. 6 contains the graphs of the amplitudes corresponding
to the radiation emitted at frequencies 3𝜔̂1,…3𝜔̂4. Note that, as in
Fig. 4, for large values of 𝜅 the amplitudes associated with the higher
modes are smaller that those corresponding to the first shape modes. In
fact, in this case the radiation amplitudes are much smaller than in the
previous cases. This phenomenon can be explained taking into account
that the higher frequencies are more difficult to excite, as can be seen in
Figs. 2 and 3: the frequencies 3𝜔̂𝑗 are much larger than 2𝜔̂𝑗 and 𝜔̂𝑗 +𝜔.
Note also that the orthogonal channel radiation terms are proportional
to 𝑎30, making them much smaller than the radiation propagated in the
longitudinal channel, which is proportional to 𝑎20.

In the next section we will compare all the analytical results that
we have just developed with those obtained through numerical simu-
lations.

4. Numerical analysis

Once we have developed the perturbative method for the problem
we are analyzing in the preceding section, it now seems reasonable to
compare the results obtained there with those that arise when the field
Eqs. (3)–(4) are solved numerically. To carry out these simulations,
the aforementioned nonlinear partial differential equations have been
discretized using an explicit fourth-order finite difference algorithm
implemented with fourth-order Mur boundary conditions [23] in the
spatial interval 𝑥 ∈ (−100, 100) for a time 0 < 𝑡 < 1200. The initial
configuration is determined by (29), that is, the same one used in
the perturbation approach developed in Section 3. Specifically, the
simulations have been run for initial configurations for which one of
the first three orthogonal eigenmodes has been excited and for various
initial amplitudes. To study the radiation emitted by the wobbling
kink and its internal vibration, the Fast Fourier Transform algorithm
has been implemented at several points on the real axis to obtain the
spectral data. This analysis has been carried out at points far from both
the center of the kink (𝑥𝐵) and the points where the shape modes have
their maxima. For 𝜂 the maximum is

𝑀 = ln(1 +
√

2), (65)

and for the first three orthogonal modes 𝜂𝐷,0, 𝜂𝐷,1 and 𝜂𝐷,2 the maxima
are, respectively,

𝑥𝑀0 = 𝑥0 = 0, (66)

𝑥𝑀1 = arctanh

(
√

2
√

8𝜅 + 1 − 1

)

, (67)

𝑥𝑀2 = 1 arccosh

(

−5 + 4𝜅 +
√

1 + 8𝜅
√

)

, (68)
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2 4(2 + 𝜅 − 1 + 8𝜅)
For ease of presentation, this section will be organized as follows:
in Section 4.1 we will check whether the assumption of a constant
amplitude associated with the excited orthogonal shape mode is true in
the perturbative regime. In Section 4.2 we will discuss how the initially
triggered shape mode couples with longitudinal vibration mode. In
Section 4.3 the radiation emitted by the kink along the longitudinal
and orthogonal channels will be analyzed. In Section 4.4 a study of
the coupling between orthogonal modes will be addressed. Finally, in
Section 4.5 we will present an analytical explanation of the energy
loss of the first orthogonal shape mode when the initial amplitude is
increased.

4.1. Hypothesis validation (first order in 𝑎0)

In Section 2 it was assumed that, when an orthogonal mode is
activated, its associated amplitude remains essentially constant (42).
In Fig. 7 it can be seen that this hypothesis agrees quite well with the
numerical results for various typical values, specifically for 𝜂𝐷,1 (first
drawing) and 𝜂𝐷,2 (second drawing) with 𝑎0 ≈ (0.1).

However, in Fig. 8 it can be seen that this hypothesis works fine for
amplitudes of order 𝑎0 ≈ (0.01) for 𝜂𝐷,0, but fails when considering
the simulations with 𝑎0 ≈ (0.1). Indeed, a large decrease in the initial
amplitude can be observed for 𝜅 > 6, which is the regime in which
the kink is capable of emitting radiation with frequency 2𝜔̂0. This
phenomenon can be explained if we take into account that for large
values of 𝑡 part of the vibration energy is dissipated in the form of
radiation. In fact, the amplitude of the radiation emitted when 𝜂𝐷,0 is
excited is much larger than when higher shape modes are activated (see
Fig. 2). This is also the reason why this decay is much smaller when we
consider the simulations performed for 𝜂𝐷,1 and 𝜂𝐷,2 (see Fig. 7). Since
the radiation emitted when we consider 𝜂𝐷,1 is greater than that emitted
when we consider 𝜂𝐷,2, then the observed decrease in 𝑎0 in this last case
will be less than for the second shape mode (see Fig. 7). A decay law
for this amplitude will be discussed in Section 4.5 taking into account
the radiation emitted by the wobbling kink. In addition to all that has
been mentioned above, analyzing Figs. 2 and 8, an additional decrease
in the values of 𝑎0 can be observed for 𝜅 ≈ 5.15, which is the value for
which 2𝜔̂0 = 𝜔.

4.2. Amplitude of the longitudinal shape mode (second order in 𝑎0)

In Fig. 9 it can be seen that the analytical estimate made in Section 2
s fully consistent with the numerical simulations we have developed.
t is worth mentioning that in the first drawing of Fig. 9 it is possible
o observe a resonance for the value 𝜅 = 165

32 ≈ 5.15, which coincides
with the decrease in the amplitude of the shape mode observed in
the previous section, specifically in the first drawing of Fig. 7 and in
Fig. 8. This means that a large amount of energy is transferred from
the shape mode to the longitudinal mode for this particular value of
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Fig. 8. Vibration amplitudes associated with 𝜂𝐷,0 as a function of 𝜅, for 𝑎0 = 0.01, 0.1 and 0.2.
Fig. 9. Vibration amplitudes (blue curves) of the longitudinal mode with frequency 𝜔 in (44) when 𝜂𝐷,0 (first drawing), 𝜂𝐷,1 (second drawing) and 𝜂𝐷,2 (third drawing) are triggered,
always with 𝑎0 = 0.01. The red dashed lines correspond to the analytical estimate.
the coupling constant, where it happens that 2𝜔̂0 = 𝜔. In fact, we will
ee in Section 4.4 that part of this energy is also transferred to 𝜂𝐷,2
hen 𝜅 = 6.

It can also be seen that, for large values of 𝜅, when considering
igher shape modes, the amplitude of the longitudinal shape mode
ecomes smaller and smaller. Another remarkable phenomenon is that,
or 𝜅 ≫ 1, the amplitude of the shape mode in (44) can be approxi-
ated as

𝑎𝜔 ≈
𝑎20 𝐵𝑗𝑗 =

𝑎20 𝐵𝑗𝑗 . (69)
9

2𝐶 𝜔2 4
4.3. Radiation amplitudes (second–third order in 𝑎0)

In Section 3 we show that the kink is capable of emitting radiation
when we trigger at least one of its shape modes. In this section we will
compare the radiation amplitudes obtained by numerical simulations
with the theoretical predictions for the longitudinal and orthogonal
channels separately. Firstly we will focus on studying the behavior of
longitudinal radiation. Note that in the first drawing of Fig. 10 it can
be seen that the excited kink cannot emit radiation with a frequency
2𝜔̂0 when 𝜅 < 6. This phenomenon is due to the fact that the frequency
2𝜔̂ is only embedded into the continuous spectrum of the longitudinal
0
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Fig. 10. Radiation amplitudes (blue curves) emitted at the frequency 2𝜔̂𝑗 by the kink when we trigger 𝜂𝐷,0 (first drawing), 𝜂𝐷,1 (second drawing) and 𝜂𝐷,2 (third drawing). The
ed dotted lines represent the analytical prediction (63).
Fig. 11. Radiation amplitudes (blue curve) emitted at frequency 𝜔̂𝑗 + 𝜔 by the kink when we trigger the orthogonal shape modes 𝜂𝐷,1 (first drawing) and 𝜂𝐷,2 (second drawing).
The red dotted line represents the analytical prediction of formula (64).
mode when 𝜅 > 6 (see Fig. 2). On the other hand, since 2𝜔̂1 and 2𝜔̂2 are
always included in the continuous spectrum, radiation associated with
these frequencies will always be found, as can be seen in the second
and third drawings of Fig. 10, in which it can also be seen that the
numerical results coincide very well with the analytical ones. Note also
that the highest radiation amplitude is the one associated with 𝜂𝐷,0 and
that, when considering higher shape modes, the radiation amplitudes
corresponding to the frequency 2𝜔̂𝑗 become smaller, as predicted in
Section 3.

The behavior of orthogonal radiation is shown in Fig. 11. From the
simulations performed for 𝜂𝐷,1, shown in the first drawing of Fig. 11,
it can be seen that no radiation is found in the orthogonal channel
for 𝜅 > 14.14 at frequency 𝜔̂1 + 𝜔. In this range, the aforementioned
requency is less than the threshold value of 𝜔̂𝑐0. It can also be observed

the existence of a resonance close to this particular value of 𝜅, which
grees with the result obtained with Eq. (64). Furthermore, on the
econd drawing of Fig. 11 it can be observed that a similar phenomenon
ccurs for the simulation performed with 𝜂𝐷,2: the kink stops emitting
adiation in the range 𝜅 > 24.93, which agrees with the analytical
rediction made in Section 3. Finally, it is worth mentioning that no
adiation was found for 𝜔̂0 + 𝜔 because this frequency is less than 𝜔̂𝑐0.

The graphs corresponding to the radiation emitted at 𝜔 = 3𝜔̂𝑗 will
not be shown, since from Fig. 6 it can be seen that these magnitudes
are too small, which makes it difficult to observe them adequately
from the data extracted from numerical simulations. This fact can
10
be explained because higher frequencies are more difficult to excite
and higher nonlinearities end up exciting frequencies close to the
continuous frequency threshold.

4.4. Amplitude of other orthogonal shape modes (third order in 𝑎0)

In Section 3 it was found that exciting a certain orthogonal mode
also activates all other orthogonal modes that have the same parity.
This means that if, for example, 𝜂𝐷,0 is excited, then 𝜂𝐷,2, 𝜂𝐷,4, 𝜂𝐷,6,…
will have a non-zero amplitude. In fact, the analytical expression that
describes this event is given by the formula (47). In this section we will
analyze some examples of this phenomenon.

In Fig. 12 the theoretical (red curves) and numerical (blue curves)
results obtained for the amplitudes associated with 𝜂𝐷,2, 𝜂𝐷,3 and 𝜂𝐷,0,
as a function of the coupling constant 𝜅, are shown together. It is
obvious that, depending on the case, the similarity between both types
of results is better or worse. It is important to point out that several
divergences appear in the graphs, which are due to different resonances
between the frequencies involved in the calculation carried out to
obtain the behavior of these amplitudes. For example, in the first
drawing in Fig. 12 there is a divergence at 𝜅 = 6 that can be explained
by the fact that, for this specific value of the coupling constant, there
is a resonance between 𝜔̂2 and 3𝜔̂0, as can be seen on the left side of
Fig. 3.
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Fig. 12. Numerical vibration amplitudes (blue curves) associated with excitation of the shape modes 𝜂𝐷,2 (first drawing), 𝜂𝐷,3 (second drawing) and 𝜂𝐷,0 (third drawing) when
𝜂𝐷,0, 𝜂𝐷,1 and 𝜂𝐷,2 were initially excited, respectively. The red dashed lines correspond to the analytical prediction (47).
b

On the other hand, in the second of the graphs in Fig. 12 it is

possible to identify the amplitude associated with 𝜂𝐷,3 when 𝜂𝐷,1 is
triggered. This amplitude has been plotted for 𝜅 > 10, which is the
range where this orthogonal shape mode arises. In this case we can
notice the presence of a divergence at 𝜅 ≈ 22.02, which is due to a
resonance between 𝜔̂3 and 𝜔̂1 + 𝜔. Finally, in the third drawing of
Fig. 12 it can be seen that we cannot appreciate any type of coupling
between frequencies, but it can be verified that there is a divergence at
𝜅 = 3, which is the value for which 𝜔̂0 = 0.

4.5. Decay law for the orthogonal mode amplitude

In Section 4.1 it was shown that if we set 𝜂𝐷,0 with 𝑎0 ≈ (0.01),
then 𝑎0 remains constant, as assumed in (42). However, this is not true
when considering higher values of the initial amplitude and the 𝜅 > 6
regime. In this section, this energy loss will be quantified taking into
account the radiation emitted by the wobbling kink for this specific
case.

Next we will show that a decay law can be calculated analytically
using reasoning similar to that used in [24,46]. In Section 3 we assumed
that if we initially trigger 𝜂𝐷,0, its corresponding amplitude can be
approximated as

(𝑎0)𝑡𝑡 + 𝜔̂2
0 𝑎0 ≈ 0, (70)

which implies that the first orthogonal shape mode behaves as a
harmonic oscillator at each point on the real axis. Thus, the energy
density can be written as

 = 1
2
𝜔̂2
0 𝑎

2
0 𝜂

2
0 . (71)

If we now integrate (71) over the real axis, the total energy stored in
this vibration mode will be

𝐸 = ∫

∞

−∞
 𝑑𝑥 = 1

2
𝜔̂2
0 𝑎

2
0 𝐶0, (72)

where 𝐶0 is defined in (39).
On the other hand, the total average power emitted in a period by

the plane wave 𝜂 = 𝐴 sin(𝜔𝑡 − 𝑞𝑥 + 𝛿) in both parts of the real axis is
⟨𝑃 ⟩ = 𝑑𝐸 = −𝐴2 𝜔𝑞. For this mode there is only one radiation term for
11

𝑑𝑡
𝜅 > 6, its frequency being 2𝜔̂0. If we rewrite the amplitude described
y (63) as

𝐴2𝜔̂0 = 𝑎20 𝐴
′
2𝜔̂0

(73)

then, the radiated power emitted by the wobbling kink is

⟨𝑃 ⟩ = 𝑑𝐸
𝑑𝑡

= −(𝑎20 𝐴
′
2𝜔̂0

)2 (2 𝜔̂0) 𝑞, (74)

where 𝑞 =
√

4 𝜔̂2
0 − 4. Taking into account the Eqs. (72) and (74), we

arrive at the differential equation

1
2
𝜔̂2
0 𝐶0

𝑑𝑎20(𝑡)
𝑑𝑡

≈ −2𝜔̂0 𝐴
′2
2𝜔̂0

𝑞 𝑎40(𝑡), (75)

whose solution is

𝑎0(𝑡) ≈
𝑎0(0)

√

√

√

√

√

√
1 + 𝑡

⎛

⎜

⎜

⎝

4 𝑞 𝑎0(0)2 𝐴
′2
2𝜔̂0

𝐶0 𝜔̂0

⎞

⎟

⎟

⎠

. (76)

For 𝜅 > 6, 𝑎0(0) = 0.2 and 800 < 𝑡 < 1000, (76) predicts that
𝑎0 ≈ 0.05 − 0.04, which is the same range of values obtained through
numerical simulations in Section 4.1 and is represented in the second
drawing of Fig. 8. A completely similar calculation can be done for
higher modes, but in these cases the radiation amplitudes are much
smaller than for 𝜂𝐷,0, which implies that the decay in 𝑎0(𝑡) will be
almost insignificant.

5. Concluding remarks

Kink solutions in the 𝜙4 model have been widely used in the litera-
ture to explain numerous natural phenomena whose origin is based on
the presence of nonlinear terms in the model that describes the physical
system. This model implies only a scalar field that can describe a given
physical quantity. In this work we propose the study of a more general
system that involves two scalar fields. The proposed system is a natural
generalization of the 𝜙4 model with two copies of its potential coupled
with a cross term of the type 𝜅𝜙2𝜓2. This model, like the 𝜙4 model,
has kink solutions, which can now be perturbed by both longitudinal

and orthogonal fluctuations, giving rise to new types of wobblers. It
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is important to study the evolution of these new solutions (which can
appear spontaneously in any physical system through phase transitions
or a thermal bath) since they can critically affect the dynamics of the
system and give rise to new behaviors.

Throughout this paper, we have studied in detail the behavior of a
wobbling kink and how the excited eigenmode couples with the rest of
the shape modes in the context of the aforementioned two-component
scalar field theory. For this case, it was found that the shape mode
structure depends on the value of the coupling constant between both
field components. In addition to this, we also found that the wobbler
emits radiation with frequency 2𝜔̂𝑗 in the longitudinal channel, and
with frequencies 3𝜔̂𝑗 and 𝜔̂𝑗 + 𝜔 in the orthogonal channel, where
𝜔̂𝑗 and 𝜔 are the frequencies associated with the orthogonal shape

ode and longitudinal mode triggered. This differs from what is known
or the 𝜙4 model, where the wobbling kinks only have one radiation
erm that emits with frequency 2𝜔. The value of these amplitudes also
epends on the coupling constant 𝜅, a parameter that also determines
hether a frequency is embedded in the continuous spectrum and,

herefore, whether the kink is capable of emitting radiation with that
requency.

We can see a clear example of this when 𝜂𝐷,0 is activated since in
his case, if 𝜅 < 6, there is no frequency radiation 2𝜔̂0, in contrast
o what happens when higher orthogonal modes are excited. Another
xample can be found when analyzing the frequencies 𝜔 + 𝜔̂𝑗 , since
hese terms are only included in the continuous part of the spectrum of
he orthogonal channel for a range of values of 𝜅.

In addition to what has already been mentioned, the coupling
echanism between shape modes has also been studied, which allowed
s to find that the triggered shape mode also couples with shape modes
hat have the same parity and not only with the longitudinal one. We
ould also observe some divergences in both shape mode amplitudes
nd radiation amplitudes, due to resonances between frequencies in the
ibrational spectrum of the small second-order kink fluctuation.

Another notable phenomenon that appears among the results of this
ork is the decay in the wobbling amplitude due to the loss of energy

n the form of radiation. This energy loss was of great importance
hen the first orthogonal mode was studied, since when this mode

s triggered the emitted radiation is much greater than when higher
igenmodes are considered.

As a future line of research that serves as a natural continuation of
his work, we consider the possibility of using the techniques presented
ere to study the behavior of vortices in the abelian Higgs model that
ave been triggered by one of its excited states, something that may be
hysically very relevant, given the ubiquity of this type of systems in
arious physical applications. Work in this direction is in progress.
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