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The disparity between the masses of the two components in a binary liquid system can

lead to the appearance of a peculiar phenomenon named “fast sound”, which was identi-

fied for the first time in Li4Pb several decades ago, and later observed in other Li based

alloys. However, the exact characteristics and nature of this phenomenon and the reasons

behind its appearance have not totally been identified yet. In this work we analyze the lon-

gitudinal and transverse current correlation functions of UO2, Li4Pb, and Li0.17Pb0.83, as

obtained from ab initio molecular dynamics simulations. We find that fast sound appears

to occur in the two former systems but not in the latter. Additionally we discuss some of

the properties of the liquid mixtures that may be related to the appearance (or absence) of

the phenomenon, such as the composition, the polyhedral structure of the melt, and the

type of bonding in the system.
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I. INTRODUCTION

The understanding of the dynamic properties of liquids has been steadily increasing during the

last decades thanks to experimental achievements that have improved the accuracy in the mea-

surements, and also to molecular dynamics simulation techniques, which have adapted to the ever

evolving computing power available, making them more and more realistic in the description of

interatomic interactions. In particular, first principles molecular dynamics (FPMD) based on den-

sity functional theory (DFT)1 represents nowadays one of the most accurate simulation methods

available. Additionally, theoretical approaches have also played a substantial role in the field of

atomic dynamics of liquids,2–7 allowing the analysis and interpretation of experiments and simula-

tions in terms of models and/or theories applicable in the different dynamic regimes characterized

by different ranges of wavelengths and times probed.

In the long wavelength and long time regime the liquid behaves as a quasicontinuum and hy-

drodynamic theory is applicable. This leads to linearly dispersing and quadratically attenuating

propagating longitudinal modes, corresponding to sound waves, and relaxing non-propagating

modes, related to thermal diffusion and, in the case of binary systems, interdiffusion. Transverse

excitations on the other hand decay only through viscous relaxation.

As the wavelength decreases the atomic nature of the liquid becomes relevant and other non-

hydrodynamic (also called kinetic) modes become apparent (structural relaxation, viscoelasticity,

possible heat waves, transverse waves, optical waves in binary systems, etc.) and interact with the

hydrodynamic ones. This leads, among other effects, to a variation of the initially linear dispersion

of the sound modes. In particular, the interaction of sound with structural relaxation leads to the

so called positive sound dispersion, i.e., an increase in the phase velocity of the sound waves from

the adiabatic speed of sound, cs, towards the so called elastic, or high frequency, sound velocity,

c∞. This viscoelastic effect, that can be modulated by the interaction with thermal modes (either

reinforcing it or counteracting it), is well understood,8 and is ubiquitous in all liquid systems,

either single-component (like Ar),8 or molecular (like water)9 or binary (like Na-K).10

There are however some specific features in the dynamics of binary liquids that are not so

well understood and deserve further study. For instance, a longitudinal propagating mode of high

energy has been recently detected in FPMD simulations of a molten salt,11 whose frequency co-

incides with that of a transverse propagating mode. At present no theoretical scheme can explain

such a “transverse-like” longitudinal mode.
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Another feature, specific of binary systems with a large mass disparity between their com-

ponents, is the appearance, in some cases, of the so called fast sound phenomenon, which was

discovered in MD simulations of Li4Pb,12 and later observed in neutron scattering experiments

of Li4Pb and Li4Tl.13 The term refers to the existence of high frequency propagating excitations,

observable in the dynamics of the light component, with a roughly constant phase velocity, sim-

ilar to that of a liquid made up exclusively by the light component in the same thermodynamic

state, which is much higher than the hydrodynamic speed of sound of the alloy. The name fast

sound comes from the interpretation that assigns an acoustic character to these propagating exci-

tations, but this interpretation has been challenged in other studies14–16 where an optical character

is proposed for these excitations, at least in the case of Li based alloys.

Such a fast propagating longitudinal mode has also been found in theoretical studies of low

density mixtures of gases with disparate masses according to the revised Enskog theory.17 This

fast mode could in principle be observed experimentally as an extended shoulder in light scattering

experiments if both gases have a similar polarizability.18

However, apart from a large mass ratio between components, there is at present no clear un-

derstanding of the particular properties of a multi-component system that are responsible for the

appearance of fast sound. For instance, it is not known if Li-Pb alloys at other concentrations

different from Li4Pb, which obviously share the same mass ratio, display also fast sound.

It is somewhat remarkable that most of the high density liquid alloys where fast sound has

been observed, either experimentally, like Li4Pb and Li4Tl,13 or in simulations, like Li0.7Bi0.3,19

are in fact Li based alloys. Obviously, the fact that Li has the smallest mass among metallic

elements, and can be readily alloyed with heavy ones, is one of the reasons for the study of such

systems. However, it is also interesting to note that all of these alloys show some degree of charge

transfer from Li to the other component in the concentration region where fast sound was observed,

as evinced by electrical resistivity measurements,20,21 spin lattice relaxation studies,22 or Knight

shift experiments.23 This fact may indicate that the type of bonding in the alloy (with partial charge

transfer, but not fully ionic) could play some role in the appearance of fast sound.

Another interesting characteristic that has been recently observed in liquid Li4Pb is the per-

sistence of a polyhedral structure in the liquid,24 somehow similar to that already present in the

solid at nearby compositions.25 Since the static structure directly affects the dynamic properties

of liquids in the kinetic regime, it could also be argued whether such type of real-space atomic

arrangement can have some influence on the appearance of fast sound.
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In order to answer these questions, at least partially, we have reanalyzed previous FPMD simu-

lations of Li4Pb and Li0.17Pb0.83,24 which share the mass ratio but differ in the composition and in

the bonding type, the latter being a purely metallic alloy. Additionally we have performed FPMD

simulations of molten UO2 and analyzed the corresponding results for the dynamic properties.

Molten oxides usually display a polyhedral networked structure26 and some degree of ionicity in

their bonding. The mass ratio between components in UO2 is also quite large (mU/mO ≈ 15 as

compared to mPb/mLi ≈ 30). Note that UO2 is a binary system (made up of U and O atoms) in

which the heavy component, i.e. U, is minoritary, which is another point in common with Li4Pb.

According to the phase diagram,27 at the temperature selected for the study (3200 K) the range

of compositions where the liquid is the stable thermodynamic phase spans roughly from 55 to

70 atomic percent of O. We have selected the stoichiometric composition due to the existence of

x-ray diffraction experiments at this composition28 that can be used to assess the validity of the

simulations performed. Therefore molten UO2 is expected to share some of the characteristics of

liquid Li4Pb, possibly displaying also fast sound. Note that there has been no previous report of

fast sound in molten oxides.

A final remark to mention is that both Li0.17Pb0.83, which corresponds to the Pb-rich lithium

lead eutectic (LLE) composition, and UO2 are important liquids in technological terms. The

former is a candidate for its use as blanket in future tokamak fusion reactors such as DEMO, and

the latter as it concerns the behaviour of the afterproducts of a core melt in case of loss of coolant

type of accidents in nuclear fission reactors. Apart from their basic properties, their behaviour is

most interesting when there are other elements dissolved in them, like tritium and helium in the

case of the liquid LLE alloy, and Zr and other elements from the zircalloy cladding of the fuel, or

atoms from the structural elements of the reactor, in the case of UO2.

Studies of such systems with additional atomic species, especially at dilute concentrations,

through FPMD is likely unfeasible beacause of the computational demands of this type of sim-

ulations. Therefore the construction of effective potentials looks in principle unavoidable. In

this context the present results will be useful as benchmarks against which the validity of those

effective potentials should be compared.
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TABLE I. Input data for the systems studied in this work. ρ is the total ionic number density and T is

the temperature. N denotes the number of particles in the simulation sample, L is the side of the cubic

simulation box, and Nc is the number of equilibrium configurations, with ∆t denoting the time-step.

LLE [24] Li4Pb [24] UO2

N 247 330 186

ρ (Å−3) 0.0325 0.0436 0.0593

T (K) 775 1075 3200

L (Å) 19.661 19.634 14.639

code PARSEC PARSEC VASP

Nc 28000 21000 20000

∆t (fs) 4 4 4.5

II. COMPUTATIONAL METHOD

The FPMD simulations performed for Li-Pb alloys24 were carried out using the PARSEC

code,29 that uses a real space representation of the single-particle orbitals and the electronic den-

sity, and norm-conserving pseudopotentials for the description of the interactions between ions and

valence electrons. The simulations of molten UO2 have been carried out using the planewave based

VASP code.30 The ion-electron interactions were described in this case using PAW potentials.31

The VASP code also provides the possibility to go beyond DFT in the study of some systems,

by including additional terms that may be important in particular situations. One such type of

approach is DFT+U (where a Hubbard-like term is added to the hamiltonian), which is often

important in the study of crystalline oxides where electronic correlation and crystal-field symmetry

play a very important role.

In fact solid UO2 is one such system, where including the Hubbard term is essential to get

a good description of the structure below 30 K. The strength of the Hubbard term is given by a

parameter U , and the previous studies have suggested a value between 3 and 5 eV for the f -orbitals

of uranium (with an optimum value around 4 eV), and 0 eV (i.e. no application of the Hubbard-like

term) for the oxygen atom, in order to obtain the correct description of the properties of crystalline

UO2 (see [32] and references therein). In the molten state, however, no crystalline symmetry is

present, and therefore including a Hubbard term may not be necessary.
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FIG. 1. Experimental and simulated total structure factors for liquid Li0.17Pb0.83 (left panel), Li4Pb (central

panel) and UO2 (right panel). Symbols are experimental results (neutron diffraction in the case of Li-Pb

alloys33 and x-ray diffraction in the case of UO2 [28]) and lines are FPMD results, with the Li-Pb ones

taken from [24].
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FIG. 2. Normalized Bhatia-Thornton concentration-concentration structure factor of molten UO2. The inset

shows the long wavelength behaviour together with a fit to a quadratic function.

In fact we have performed some calculations at the DFT+U level, with U = 3.96 eV, leading to

results in poor agreement with some experimental data, such as the adiabatic speed of sound, which

is highly overestimated. Consequently we consider below the results obtained from simulations at

the DFT level, which appear as more reliable than the DFT+U case in the molten state.

Table I shows the details of the different FPMD simulations performed for the 3 systems that

we are considering here. The simulation samples, which include a total of N particles, are enclosed
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in a cubic box of side L consistent with the experimental density, which is periodically repeated. In

the case of the UO2 simulations we used the PAW potentials provided with the VASP distribution,

which consider 6 and 14 valence electrons for O and U atoms respectively, and taken the cutoffs in

the planewave expansions suggested by the developers of the potentials. After adequate thermal-

ization, a number of Nc equilibrium configurations, separated by a time-step ∆t, were generated

and later used to analyze the properties of the sytems.

III. STRUCTURAL PROPERTIES

FPMD simulations are, as discussed above, highly precise, but nevertheless the accuracy should

always be checked by comparing the obtained results against experimentally available data. In liq-

uids the first magnitude to consider is the experimentally measured static structure factors, shown

in figure 1. In the case of Li-Pb alloys, neutron scattering experiments were performed by Ruppers-

berg and coworkers33 and it was already observed in [24] that the PARSEC simulations accounted

very well for the measured total structure factor, Sn(q), at all the concentrations considered. In the

case of molten UO2 the magnitude experimentally available is the Faber-Ziman total x-ray struc-

ture factor, aX(q).28 We have computed this function from the FPMD generated configurations,

observing a nice agreement with the experimental data. The main peak of the structure factor is

located at qp = 2.35, 1.60, and 1.98 Å−1 for the LLE, Li4Pb and UO2 systems respectively.

In the particular case of Li4Pb, due to the values of the neutron scattering lengths of the iso-

topes, 7Li and natural Pb, used in the experiments,33 the total neutron weighted structure factor

essentially coincides with the normalized Bhatia-Thornton concentration-concentration structure

factor, Scc(q)/(c1c2), where ci denotes the molar concentration of species i, and consequently the

central panel of figure 1 is also showing this function. In fact this is an interesting magnitude, since

in the long wavelegth limit it pictures the coordinating tendencies of the mixtures, with a value

smaller than 1 indicating heterocoordinating tendencies. In figure 2 we show the FPMD results

for Scc(q)/(c1c2) in UO2. The inset highlights the low q behaviour and reveals that the system

has a very strong compound forming tendency. Moreover, the results indicate that the bonding is

not completely ionic, since in this case Scc(q) would vanish quadratically as q→ 0. The shape of

Scc(q)/(c1c2) is in fact very similar to the one corresponding to Li4Pb (see the central panel of

figure 1) suggesting a similar type of chemical ordering. There are other magnitudes, in particular

related to dynamic properties, that behave in a different way for ionic and non-ionic systems.34
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FIG. 3. Pair correlation functions, gi j(r), for liquid Li0.17Pb0.83 (left panel), Li4Pb (central panel) and UO2

(right panel). The continuous line corresponds to the like component of the minoritary species, dashed lines

are the cross pair correlation functions, and dash-dotted lines denote the like component of the majoritary

species.

These will be commented in the following sections, but we anticipate here that all of them indicate

that the bonding is not fully ionic in UO2.

The partial pair correlation functions gi j(r) are plotted in figure 3 for the three systems con-

sidered here. Looking at the correlation functions related to the minoritary component, we see in

the three cases a small first peak followed by a higher second peak for the like component (i.e.

gLiLi(r) in the LLE alloy, gPbPb(r) in Li4Pb, and gUU(r) in UO2), but the similarity between the

functions for Li4Pb and UO2 is certainly striking. The cross terms have also a similar shape, while

the like pair correlation function for the majoritary component is the one where more differences

are observed.

Computing the average number of neighbours in the first spherical coordination shell around a

minoritary component atom we obtain nLiLi = 0.8 and nLiPb = 9.2 in the LLE alloy, nPbPb = 0.3

and nPbLi = 10.9 in Li4Pb, and nUU = 0.3 and nUO = 5.9 in UO2.

Taking into account the very small values of the like minoritary component number of neigh-

bours, the fact that some crystalline solids can be described in terms of interconnected polyhedra,

and that the structure of liquid Li4Pb can also be described in the same terms,24 we have proceeded

to analyse whether the structure of UO2 and the LLE alloy can also be described that way.

In order to do so, for each configuration of the simulations we have selected an atom of the

minority type, found the nearest unlike neighbours, i.e. those at a distance shorter than the position

of the minimum of r2g12(r), and constructed the convex hull of that set of atoms. Then we have
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Li4Pb UO2

FIG. 4. Snapshots showing some polyhedra in Li4Pb (left) and UO2 (right). Red balls are Pb and U atoms,

blue balls represent Li and O atoms. The pictures have been obtained using the Open VIsualization Tool

(ovito) [36].

checked if any of the other atoms of the minority type are found within this convex hull. If none

can be found, this means that the original selected atom has a polyhedron of unlike neighbours

surrounding it. The procedure is then repeated for each atom of the minority type. If none of

them has like atoms within the convex hull of the unlike neighbors, then the structure can indeed

be described as an interconnecting polyhedral arrangement. The check is then repeated for all the

configurations generated by the simulations.

The magnitude that tests the location of a point with respect to a convex polyhedron is the

distance between them, which is positive/negative if the point is outside/inside the polyhedron.

We have followed a simplified version of the Gilbert-Johnson-Keerthi algorithm35 to obtain just

the sign of the distance.

In the case of UO2 we have found that the polyhedral structure applies perfectly. The most

abundant polyhedra, around 40 % of the total, are formed by 6 oxygen atoms (UO6 polyhedra,

mostly distorted octahedra) although there are also UO5 and UO7 polyhedra with abundances

around 20-25 % each, and smaller and larger polyhedra with minor abundances. We also remind

that in Li4Pb the most abundant polyhedra were PbLi11, with other polyhedra also present ranging

from PbLi7 to PbLi15 [24]. The tests for the liquid LLE alloy revealed that in 700 configurations

(out of 28000 considered) there were Li atoms within the convex hull of the Pb neighbours of a

different Li atom. This amounts roughly to a 2.5 % of the configurations, which is significantly

different from zero. Therefore we cannot consider the structure as a polyhedral one, and note that

this is also consistent with the fact that nLiLi was near 1, meaning that on average one Li atom is a

near neighbour of a different Li atom.

In figure 4 we show a snapshot of the simulation for Li4Pb and UO2 where three polyhedra are
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displayed.

IV. COLLECTIVE DYNAMICS

We have investigated the spectra of the longitudinal and transverse current correlation func-

tions, which for an isotropic system depend on the wavevector module q≡|~q | and the frequency

ω .

Whereas in a one-component system only one microscopic current (and density) can be defined

in terms of the velocities and positions of the particles, in the case of binary systems several

different sets of two microscopic currents (and densities) can be defined, and correspondingly three

types of current correlation functions (and density correlation functions). The Ashcroft-Langreth

(A-L) or component-wise set, and the Bhatia-Thornton (B-T) or number-concentration set, are

quite standard in the study of binary liquids.37 Additionally, the mass-composition (M-X)38,39 set

has also been considered. We will use a somewhat different normalization of the functions that

highlights the matrix form of the magnitudes, so for completeness we describe them in detail

in the next subsection. Then we report results for the spectra of the longitudinal and transverse

correlation functions corresponding to the mass-composition set as compared with those of the

component-wise set, and consider their dispersion relations.

A. Definitions

Consider a binary system of N atoms composed of N1 atoms of mass m1 and N2 atoms of mass

m2 > m1, with N = N1 +N2. The (molar) concentrations are c1 = N1/N and c2 = N2/N, with

c1 + c2 = 1. We define the average mass m = c1m1 + c2m2, and the mass concentrations (which

from now on will be called compositions) x1 = c1m1/m and x2 = c2m2/m, with x1 + x2 = 1. We

finally define two additional magnitudes δm = (m1−m2)/m, and y = c1c2/(x1x2) = m2/(m1m2).

The component-wise, or A-L, or partial currents are


~j1(~q, t) = 1√

N1

N1
∑

l1=1
~vl1(t)exp[−i~q ·~rl1(t)]

~j2(~q, t) = 1√
N2

N2
∑

l2=1
~vl2(t)exp[−i~q ·~rl2(t)] ,

(1)
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where~rl and ~vl denote the position and velocity of particle l, and the indexes l1 and l2 run over

particles of type 1 and 2 respectively.

From these two functions one can define the number-concentration, or B-T normalized currents

as

 ~jN
~jc√
c1c2

=

 √c1
√

c2
√

c2 −
√

c1

 ~j1
~j2

 . (2)

Explicitly, we have

~jN(~q, t) =
1√
N

N

∑
l=1

~vl(t)exp[−i~q ·~rl(t)] (3)

where l now runs over all of the particles of the system. Likewise, in the limit~q= 0 the normalized

concentration current reduces to

~jc(0, t)√
c1c2

=

√
N1N2

N

(
1

N1

N1

∑
l1=1

~vl1(t)−
1

N2

N2

∑
l2=1

~vl2(t)

)
(4)

and is therefore proportional to the relative velocity of the centers of mass of particles of different

type. Consequently, the normalized concentration current is related to interdiffusion processes in

the hydrodynamic regime, and also to waves of optical character at other values of q.

The third set of currents is the M-X set. It is defined by

 ~jm
~jx√
x1x2

= X M

 ~j1
~j2

 , (5)

where the matrices X and M are

X =

 √x1
√

x2
√

x2 −
√

x1

 , M =

√m1
m 0

0
√

m2
m

 . (6)

Obviously, this set can also be obtained from the B-T one, the relation being ~jm
~jx√
x1x2

=

 1 δm
√

c1c2

0 1/
√

y


 ~jN

~jc√
c1c2

 , (7)

where it is observed that the composition current is proportional to the concentration current and

therefore both represent the same dynamic property.
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All the microscopic currents just defined can be decomposed into their longitudinal and trans-

verse components, parallel and perpendicular to the wavevector~q respectively.

jL
α(~q, t) =~uq ·~jα(~q, t) (8)

~j T
α (~q, t) = ~jα(~q, t)− jL

α(~q, t)~uq , (9)

where~uq =~q/q, is a unit vector along~q, and α can be any of {1,2,N,c,m,x}.

From these sets of collective microscopic functions, the matrices of longitudinal and transverse

current correlation functions are defined as

C L(q, t) =

CL
αα(q, t) CL

αβ
(q, t)

CL
βα

(q, t) CL
ββ

(q, t)

=

〈 jL
α(~q, t)

jL
β
(~q, t)

( jL∗
α (~q,0) jL∗

β
(~q,0)

)〉
, (10)

with the asterisk denoting complex conjugation, and

C T (q, t) =

CT
αα(q, t) CT

αβ
(q, t)

CT
βα

(q, t) CT
ββ

(q, t)

=

1
2

〈 ~j T
α (~q, t)

~j T
β
(~q, t)

 ·( ~j T∗
α (~q,0) ~j T∗

β
(~q,0)

)〉
. (11)

In the previous equations, the averages are taken over time origins and over wavevectors with the

same module. Their Fourier Transforms into the frequency domain are the corresponding matrices

of longitudinal and transverse current spectra, C L(q,ω) and C T (q,ω).

Note that in fact all the matrices are symmetric, i.e. Cαβ =Cβα . In the case of the A-L set the

correlation functions are then C11, C12 and C22. In the case of the B-T set they are CNN, CNc/
√

c1c2

and Ccc/(c1c2). And in the case of the M-X set they are Cmm, Cmx/
√

x1x2 and Cxx/(x1x2).

Any correlation function from a given set is a linear combination of the three correlation func-

tions of any other set. For instance,

Cmm = α
11
mmC11 +α

12
mmC12 +α

22
mmC22 ,
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TABLE II. Mass and concentration parameters and coefficients relating the A-L functions to the M-X ones

and viceversa.

LLE Li4Pb UO2

c1 0.17 0.80 2/3

c2 0.83 0.20 1/3

m1 (u) 6.94 6.94 16.000

m2 (u) 207.2 207.2 238.029

m (u) 173.156 46.992 90.0097

x1 0.0068 0.118148 0.118506

x2 0.9932 0.881852 0.881494

α11
mm 0.000273082 0.0174486 0.0210654

α12
mm 0.0360304 0.520944 0.443195

α22
mm 1.18846 3.88832 2.3311

α11
mx 0.00329703 0.0476701 0.0574527

α12
mx 0.216012 0.616277 0.523123

α22
mx -0.098436 -1.42323 -0.854713

α11
xx 0.0398064 0.130236 0.156693

α12
xx -0.0360304 -0.520944 -0.443195

α22
xx 0.00815312 0.520944 0.313387

αmm
11 0.17 0.8 0.666667

αmx
11 4.10496 4.37124 3.63646

αxx
11 24.7804 5.97118 4.95894

αmm
12 0.375633 0.4 0.471405

αmx
12 4.50405 0.9464 1.11284

αxx
12 -0.375633 -0.4 -0.471405

αmm
22 0.83 0.2 0.333333

αmx
22 -0.137492 -0.146411 -0.244438

αxx
22 0.00569402 0.0267954 0.0448125
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and similar expressions for the functions Cmx/
√

x1x2 and Cxx/(x1x2). Also, we have

C11 = α
mm
11 Cmm +α

mx
11

Cmx√
x1x2

+α
xx
11

Cxx

x1x2
,

and similar expressions for C12 and C22. The α
i j
k` coefficients are easily obtained in terms of the el-

ements of matrices X and M . In table II we list the values of the concentrations, masses, average

mass, compositions and coefficients to obtain the M-X functions from the A-L ones and viceversa,

for the three systems considered. In the three cases the heavy component has the largest compo-

sition (x2 > x1), even when it is minoritary in terms of molar concentrations (c2 < c1). Curiously

the compositions for Li4Pb and UO2 are practically identical. Note that Cmm is dominated by the

heavy partial, C22, with a coefficient α22
mm at least 100 times larger than the one corresponding to

light component, α11
mm, and 5 times larger than the coefficient of the cross term, α12

mm.

Clearly, all the sets convey the same information. However, their behaviour can be different in

different dynamic regimes, and shed some light about which are the fundamental physical mecha-

nisms that rule the dynamic properties of the system in those regimes.

For instance, in the limit of large q, which samples small real-space regions, particles will

not practically feel the presence of the other ones, and therefore the dynamic properties will be

determined by the single-particle behaviour, and in particular a component-wise description will

be optimal. In the other limit, where q is small and consequently large real-space regions are

sampled, the hydrodynamic theory is applicable, which deals basically with the balance of mass,

momentum and energy, and therefore the M-X set is the most adequate to describe the dynamics of

the system. In fact the behaviour of the M-X correlation functions in this regime (except for very

short times) must obey the predictions of the hydrodynamic theory. Finally if one is interested in

the dynamics of topological magnitudes, valuable information is obtained from the B-T set, where

the N current considers all the atoms at the same level without taking into account their chemical

species.

Note that the partial (A-L) densities ρ1 and ρ2 are obtained by dropping the velocities in the

respective sums of equation 1. The corresponding B-T (ρN and ρc/
√

c1c2) and M-X (ρm and

ρx/
√

x1x2) densities are defined through the same matrices of equations 2 and 5, respectively.

The density correlation functions (partial intermediate scattering functions) are then obtained in a

similar way as in equation 10, and their Fourier Transform into the frequency domain define the

corresponding partial dynamic structure factors.

The behaviour of the M-X and B-T density correlation functions and dynamic structure factors
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in binary mixtures in the hydrodynamic limit was considered by Cohen, Sutherland and Deutch38

and Bhatia, Thornton and March.39 The set of variables that define hydrodynamics (the hydrody-

namic variables) are the mass density ρm, the composition density ρx, the mass current ~jm and the

energy density. As a consequence of the linearized hydrodynamics equations, three hydrodynamic

modes appear in the M-X density correlation functions, and consequently in the corresponding

longitudinal currents, namely, two relaxing modes associated to thermal diffusion and interdiffu-

sion, and a sound propagation mode, which appears in the mm correlation functions but not in

the xx ones. Decoupled from these, a viscous shear relaxation mode appears in the transverse mm

current correlation function.

In actual calculations of the correlation functions in MD simulations, additional non-hydrodynamic

modes are routinely present, such as structural relaxation modes, shear waves, or optic like lon-

gitudinal and transverse modes. Sometimes such modes appear only for q larger than a critical

value, but other modes can still be present for q→ 0. In this case their amplitude must vanish

at least quadratically for small q, and the corresponding damping rates take a non-zero value in

this limit. In the particular case of ionic systems charge neutrality imposes important constraints

that modify some of these rules. In particular, optical modes show a non-zero weight at small

wavevectors and contribute to the xx density correlation functions with an oscillating term which

is absent in non-ionic systems.34 In fact we have found no indication of such a term in any of the
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three systems studied, pointing again to a non-ionic character of UO2 in particular.

B. Longitudinal and transverse currents

We discuss below separately the longitudinal and transverse current correlation spectra for the

three systems studied.

1. UO2

We plot in figure 5 the FPMD longitudinal current spectra of UO2 at several wavevectors. The

CL
11(q,ω) functions (1 ≡ O) have been scaled by α11

xx and the CL
mm(q,ω) by αmm

22 (see table II) so

as to plot all the functions in the same scale. For q = qmin = 0.43 Å−1 we observe that the M-X

functions have a single peak, whereas the A-L functions (in particular CL
OO) display a two-mode

structure with a peak at the same position as that of CL
xx and a shoulder near the position of the

peak of CL
mm. We can therefore conclude that for such a wavevector the dynamics is determined

by the M-X variables, while the partial functions come as a combination of the latter.

Note that even if the dynamics is determined by the hydrodynamic variables this does not

mean that this wavevector is in the hydrodynamic regime, since the high-frequency peak of CL
xx

shows up very clearly and corresponds to an optical mode, which as commented above vanishes

quadratically with q in the hydrodynamic regime.

The situation is exactly opposite for the two largest wavevectors shown in figure 5, where it is

now the A-L set that shows a single peak while the M-X set (in particular CL
xx) shows a double-

mode structure with a peak at the same position as that of CL
OO and a shoulder or another peak at

the position of CL
UU.

This means that as q increases the dynamics of the system evolves from being driven by the

M-X variables to being determined by the partial (A-L) variables. The situation at q = 0.61 Å−1

is intermediate, so that this wavevector stands at the transition region between the two types of

dynamics.

These results generalize those obtained by Bryk and coworkers14,15 when they analyzed results

of classical molecular dynamics simulations for the dynamic structure factors of Li4Pb and Li4Tl,

using the generalized collective modes (GCM) approach. They found that the frequencies of the

modes obtained with a large set of dynamic variables could be reproduced in the low q region by

16
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a GCM analysis involving only the hydrodynamic variables, while for larger q the mode frequen-

cies were well reproduced by the GCM results obtained by considering only the partial dynamic

variables, so that a transition from M-X driven to partial dynamics applies as q increases. Our data

shows that the transition is not only observed in the mode frequencies, but in the whole shape of

the correlation functions.

Figure 6 displays the transverse current correlation spectra for several values of q (note that

they are not the same as those in figure 5). The qualitative behaviour is similar to that of the

longitudinal current spectra with a crossover from M-X driven dynamics at small q values (the A-

L partials, in particular the O-O partial, show a double mode structure) to A-L dictated dynamics

at larger q, where the M-X functions, in particular, the CT
xx, display a two-mode shape. There is a

quantitative difference concerning the wavevector region where this transition takes place. In the

case of the transverse dynamics this occurs for higher q values than for the longitudinal dynamics,

being located around 0.9−1.0 Å−1 as compared to 0.5−0.6 Å−1 in the longitudinal case.

Additionally the propagation gap for shear waves can also be observed in figure 6, as CT
mm

does not show a finite frequency maximum at the lowest wavevector q = qmin, whereas it does for

higher q.
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2. Li4Pb

The longitudinal and transverse current correlation spectra corresponding to liquid Li4Pb are

shown in figures 7 and 8 respectively. The general behaviour of both spectra is very similar to that

of UO2, i.e., for small q the dynamics of the system is dictated by the MX set, and after a transition

region it turns to be component-wise dominated for higher wavevectors.

The main difference between Li4Pb and UO2 is quantitative, since the crossover region is now

located at smaller wavevectors. In the longitudinal case the smallest q value (0.32 Å−1) is already

in the transition region, since CL
xx(q,ω) shows a small shoulder at low frequencies. The lack of

low frequency peaks or shoulders in CL
LiLi(q,ω) at q = 0.55 Å−1 shows that this wavevector is

already in the AL-dominated region. In the case of transverse currents the crossover region is

located around q = 0.6− 0.7 Å−1, to be compared with the 0.9− 1.0 Å−1 range in the case of
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FIG. 10. Same as figure 9 but for transverse current correlation spectra.

UO2. Note also that the crossover region for transverse currents occurs at higher wavevectors than

the one corresponding to longitudinal dynamics, in the same way as it happened in UO2.

The fact that the transition from MX to AL driven dynamics occurs at lower q-values in Li4Pb

than in UO2 is directly related to the larger mass ratio in the former, which hinders low frequency

oscillations of the light atoms due to the higher value of their natural frequencies as compared to

those of the heavy ones.

3. Li0.17Pb0.83

The case of the liquid LLE, as compared to the other two systems considered here, is extremely

simple, because as one observes in table II the mass-mass functions are basically equivalent to

the Pb-Pb ones (α22
mm overwhelmingly dominates over α11

mm and α12
mm), and the Li-Li functions are

basically equivalent to the composition-composition ones (αxx
11 is also dominating). This means

that MX and AL dynamics are basically one and the same. Note also that the composition of Pb

in this system is very close to 1, so that from the mass-composition point of view the liquid LLE
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FIG. 11. Longitudinal (open symbols) and transverse (filled symbols) dispersion relations of the mm and

xx currents for the three systems studied. Left panel: UO2. Central panel: Li4Pb. Right panel: LLE.

Circles denote mm frequencies and triangles denote xx frequencies. Up triangles correspond to the high

frequency peak of the xx spectra, ωLO
xx (q) and ωTO

xx (q), whereas down triangles correspond to the second, low

frequency, peak of these functions, ωL`
xx (q) and ωT`

xx (q), when they exist (and are non-zero). Dashed lines in

the upper figures are guides to the eye, that show a common extrapolation limit to q = 0 for the longitudinal

and transverse high frequency peaks. The dotted lines in the upper figures are plaussible extrapolations

of the longitudinal high energy dispersion towards q = 0 according to a (fast) sound-like behaviour. The

bottom graphs display the low frequency region, so as to highlight the behaviour of the mm frequencies,

ωL
mm(q) and ωT

mm(q) (note that in the case of Li4Pb the mm frequencies have not been included in the upper

graph in order not to overcrowd it). The dashed lines in these lower graphs represent the linear dispersion

corresponding to hydrodynamic sound with the experimental adiabatic sound velocities. The solid line is a

fit to equation 12 corresponding to a viscoelastic model for shear waves (see text).

is very dilute in Li.

Figures 9 and 10 show the longitudinal and transverse current correlation spectra for two val-

ues of q, where, as mentioned previously, we observe single peaks in the MX functions for any

wavevector, and the only feature worth mentioning is the propagation gap at small q for transverse

waves.
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C. Dispersion relations

Figure 11 shows the dispersion relations associated to longitudinal and transverse mass-mass

and composition-composition currents for the three systems studied. These graphs condense a lot

of information about the collective dynamics of the systems, as we detail below.

The left panel shows the dispersion relations corresponding to UO2. The upper graph shows

the whole frequency range, while in the lower graph the frequency range covered corresponds

to the excitations of the mm currents. The behaviour of these mm frequencies (ωL
mm and ωT

mm)

is quite similar to the dispersion relations shown in one-component systems. The longitudinal

excitations correspond to sound waves and their dispersion tends towards the hydrodynamic linear

one (ωL
mm(q) = csq) as q goes to zero. The agreement with the experimental adiabatic sound

velocity, cexp
s = 1800 m/s,40 is very good. For increasing q a typical positive dispersion is observed,

followed by a maximum around half the position of the main peak in the structure factor, qp, and

a minimum around this wavevector. The transverse excitations correspond to shear waves. These

only appear after a finite propagation gap, since liquids show a viscous, not elastic, behaviour at

the scales sampled for small q. Near the edge of the propagation gap the frequencies of shear

waves are well described by a viscoelastic model, with

ω
T
mm(q) = φT

√
q2−q2

c . (12)

This equation stems from the assumption of a Maxwell relaxation time in the transverse dynamics,

that relates in the long wavelength limit the shear viscosity and the high frequency shear modulus

of the liquid. Taking this to the equations that govern the transverse dynamics and imposing the

existence of maxima in the transverse current spectrum leads to equation 12 (see, for instance,

reference [4]). The parameters represent the minimum wavevector where shear waves appear, qc,

and the slope of the parabola, φT , for q somewhat larger than qc. In the case of UO2 the values of

these parameters are qc = 0.340 Å−1 and φT = 730 m/s. Due to its derivation equation 12 ceases

to be valid for increasing values of q as is readily seen in figure 11.

The behaviour of the xx dispersion relations is more interesting. First of all one can observe the

existence of high frequency optic like excitations, both longitudinal (ωLO
xx ) and transverse (ωTO

xx ) in

the whole q range. For small q these are the only peaks existing in Cxx, indicating as commented

above that the dynamics of the system is ruled by the MX set. Moreover, in the limit q→ 0

the longitudinal and transverse optic frequencies can well be extrapolated to a common value,
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ωLO
xx (q→ 0) = ωTO

xx (q→ 0), as suggested by the dashed lines in the graph. This is the correct

behavior for non-ionic mixtures, as is the case of UO2 at the DFT level. On the contrary, if the

system were ionic then there would be a gap between the longitudinal optic and transverse optic

frequencies at q = 0.

For higher q the Cxx functions develop the second, low frequency peak, ωL`
xx(q) and ωT `

xx (q), that

is located near the mm peak, whose ultimate origin is the dynamics of the heavy component, in

this case U. The appearance of a second branch in the dispersion relation of the xx currents serves

therefore to signal the transition to the wavevector region of component-wise dictated dynamics.

Note that ωT `
xx (q) can in some cases be located at ω = 0 (see figure 6). Such values have not been

represented in figure 11.

The central panel displays the dispersion relations corresponding to Li4Pb. Almost everything

said about UO2 can be repeated for Li4Pb. The sound dispersion does not show a clear positive

dispersion, but is in good agreement with the experimental sound velocity of 2000 m/s.41 The

propagation gap for shear waves, as obtained by the fit to the viscoelastic model is qc = 0.283 Å−1,

and the slope of the parabola is φT = 557 m/s. The longitudinal and transverse optic frequencies

can be extrapolated to a common value for q→ 0, and the second branches of low frequency

excitations of the xx currents, driven by the dynamics of Pb atoms, appear at lower wavevectors

than in UO2, as we had already indicated above.

The right panel corresponds to the liquid LLE alloy. In this case the behaviour is very simple,

with well separated mm and optical xx frequencies, no LO-TO gap, and no second branches for

the xx excitations due to the practical identity between MX and AL dynamics in this system.

The sound dispersion shows an excellent agreement with the experimental sound velocity of 1720

m/s,42 displaying no positive dispersion, and shear waves start propagating at qc = 0.554 Å−1,

with φT = 523 m/s.

D. Fast sound?

Observation of the behaviour in the LLE alloy of the high frequency branch of the longitudinal

and transverse dispersion relations (that correspond to the xx terms) gives direct evidence of its

optical character. Even though oscillations with these frequencies appear in CL
11, which is basically

equivalent to CL
xx for this system, it cannot be claimed that these excitations are sound waves of

high frequency supported by the light component only, i.e., they do not qualify as fast sound.
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Basically because these excitations are not dispersive, since the frequency does not change with q,

at small wavevectors.

The situation for Li4Pb is different. Even though the transverse high frequency branch is still

non-dispersive for small q, this is not the case for the high frequency longitudinal branch. The

latter can be extrapolated towards q = 0 so as to match the transverse branch, as shown by the

dashed lines in figure 11, which is the correct behaviour in non-ionic systems. But if one focuses

exclusively on ωL
xx, without considering also the transverse counterpart, it looks also reasonable

to extrapolate the data towards q = 0 using a straight line that goes through the origin, that is,

using the behaviour of a sound wave of high velocity, as shown by the dotted line in the figure.

And therefore call it fast sound. The key factor here is that the longitudinal xx branch is strongly

dispersing, as opposed to its behaviour in the LLE alloy.

In the case of UO2 the situation is similar to Li4Pb. The longitudinal high frequency branch

is also strongly dispersive, and compatible with a sound-like behaviour (see dotted line in the

graph) if one assumes some degree of positive dispersion. And therefore UO2 could also qualify

as a system where fast sound can be observed. We rather consider instead that the extrapolation

suggested by the dashed line in figure 11 has more physical sense, taking also into account the

behaviour of the transverse high frequency branch.

It is interesting to note that the dispersive/non-dispersive character of the longitudinal xx high

frequency branch is already present at the level of the frequency moments of the corresponding

currents, as observed in figure 12. These are defined as

ω
L (2)
xx (q) =

∫
∞

−∞
dω ω2CL

xx(q,ω)∫
∞

−∞
dω CL

xx(q,ω)
(13)

and can be interpreted as “bare” elastic-like frequencies which get renormalized through the inter-

actions with other modes, leading to the final dispersion relations. In the case of the Li4Pb alloy,

we observe that the renormalization in fact enhances the dispersive character of the xx branch,

which is not the case for the LLE alloy or UO2, where it amounts to a basically constant shift in

the frequencies.

The question posed in the introduction about which factors enhance the possibility of observ-

ing fast sound in an alloy, could therefore be better reformulated as “which factors are mostly

responsible for the existence of a strongly dispersing longitudinal xx high frequency branch in the

dynamics of an alloy?” Obviously, by studying only three systems it is not possible to provide a

definite answer, but we can signal some points.
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First, the large mass ratio between the components is a necessary condition, but clearly it is

not sufficient, since the LLE alloy has the same mass ratio as Li4Pb and their behaviour is totally

opposite.

Second, the heavy element is minoritary in terms of molar concentration in both Li4Pb and

UO2, and also in those other Li based alloys where fast sound was observed. Note however that in

terms of composition (mass concentration) U and Pb are majoritary in UO2 and Li4Pb respectively,

although not as overwhelmingly mass majoritary as Pb in the LLE.

Third, a common feature in liquid Li4Pb and molten UO2 not shared by the liquid LLE alloy

is the polyhedral structure. Even though the polyhedra in the two systems are very different in the

number of vertices, this type of structure could have some influence on the dynamics.

Fourth, both in liquid Li4Pb and in molten UO2 the bonding is dictated by some charge transfer,

although not complete (i.e. not leading to an ionic bond). The strengths of the bonds are certainly

different, as reflected by the large difference in the melting temperatures, but their character is

similar. On the other hand the liquid LLE is a purely metallic system. As mentioned in the

introduction other Li based alloys where fast sound has been observed also share this same partial

charge transfer.

We therefore consider that it would be interesting to study if those other systems that display

fast sound also show a polyhedral structure so as to clarify if this feature is really relevant. Other

systems of interest would be Li-Pb alloys with cLi > 0.8, where Pb continues to be minoritary, but

the amount of charge transfer must certainly decrease since pure Li is metallic. At such composi-
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tions it will therefore be interesting to make a full analysis, including the possible existence of a

polyhedral structure and the form of the high frequency longitudinal xx dispersion relation.

As a final comment, the fact that the minimum wavevector attainable in these simulations is

not really very small leads to a situation where extrapolation of the dispersion relations towards

q = 0 is not totally comfortable. The minimum wavevector is dictated by the size of the simulation

sample, and decreasing qmin substantially requires an increase in the number of particles so high

that it renders the FPMD simulations unfeasible. As an alternative, recently developed techniques,

such as neural network potentials,43,44 can be used to obtain the atomic forces and the energy in

terms of the atomic positions in a fraction of the time needed for a DFT calculation. And if the

neural networks are well trained with data provided by FPMD simulations then the accuracy of

energies and forces will be at the same level as the DFT one. The good accuracy together with

the fast computation will enable the simulation of much larger samples, thus allowing to reach

smaller wavevectors, and increasing the confidence in the extrapolations towards zero. Moreover,

simulations can be extended for a longer time so as to obtain better statistics for the properties

studied. Also, it will turn feasible the study of the temperature and/or pressure variation of the

properties of the systems, and include further atomic species in the simulations, which is at present

prohibitively expensive using first principles calculations.

V. CONCLUSIONS

We have analyzed the behaviour of collective excitations corresponding to the mass-composition

set of dynamic variables for three binary systems where the components have disparate masses.

We have observed a transition from mass-composition driven dynamics at small q to component-

wise dynamics for larger wavevectors in the two systems where the heavy component is minoritary

(UO2 and Li4Pb). This transition occurs at larger wavevectors for transverse dynamics than for

longitudinal dynamics, and for systems with smaller mass ratio (UO2) than for systems with a

larger one (Li4Pb). This transition is reflected in the dispersion relations through the appearance

above the transition q-range of low frequency branches for the xx magnitudes in addition to the

high frequency branches that exist at any q.

We have also observed that the high frequency longitudinal xx frequencies show in the case

of Li4Pb and UO2 a strongly dispersive character that can be confused with the behaviour of

an acoustic fast sound mode. However, taking into account also the transverse high frequency
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dispersion branch, an extrapolation towards a finite non-zero frequency at q = 0 coincident with

that of the transverse branch seems more physically appealing, and is consistent with the behaviour

of optic excitations in non-ionic systems. Moreover, in the liquid LLE alloy there is no doubt that

the high frequency xx branches are optic in character, since they are non-dispersive and tend to a

common non-zero value at q = 0.

We have analyzed which characteristic features are common in the systems that appear to show

fast sound and are absent in the LLE alloy, and can therefore be considered as candidates for

enhancing the possible appearance of a dispersive longitudinal xx dispersion relation. We have

identified both a common polyhedral structure and a common type of bonding characterized by

some amount of charge transfer as opposed to a purely metallic bonding. Other common feature

(apart from the large mass ratio between the components) is the fact that the heavy element is

minoritary in molar terms. Additional studies for other systems are suggested in order to clarify

the possible relationship between these characteristics and the appearance of fast sound.

Approaches alternative to FPMD, such as DFT-trained neural networks, are suggested as a

means to explore smaller wavevectors and obtain clearer evidence of the nature of the high fre-

quency longitudinal xx dispersion in systems where it is strongly dispersive, and additionally allow

to study the temperature/pressure variation of the properties of the systems.
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