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Abstract

In this paper we study the well-posedness, regularity, and asymptotic behavior of the solutions to the
abstract pseudo-parabolic equation ∂α

t u(t) = Au(t)+B∂β
t u(t)+ f(t), where A,B are closed linear operators

in a Banach space, and ∂γ
t u denotes the Caputo or Riemann–Liouville fractional derivative of order γ > 0.

1 Introduction

Consider the prototype pseudo–parabolic equation

∂tu(x, t)− ε∆∂tu(x, t)−∆u(x, t) = f(u(x, t)), (x, t) ∈ Ω× [0, T ], (1)

along with suitable initial and boundary conditions, where Ω ⊂ Rn, n = 1, 2, or 3, ε > 0, and ∂t stands for the
time derivative of order one.

The equation (1) arises in several fields of science and engineering. In fact in the earlier work [7] the
authors describe how this kind of equations may be used in the study of some materials for which two different
temperatures apply (the conductive and thermodynamic ones). The equation (1) is also related to the analysis of
unidirectional propagation of nonlinear, dispersive, long waves [4] where f(u) = up, 1 < p < +∞, and n = 1, 2;
the aggregation of population [22]; the analysis of nonstationary processes for semi–conductors in presence of
sources and a constant homogeneous external electric field [16]; two–phase immiscible flow in porous media with
dynamic capillary pressure [1, 2]; electrical conduction in heterogeneous media [3]; or image texture recognition
[30].

In the last few years some generalizations of (1) have been studied whose main novelty might be the use
of fractional calculus both, in the time and the spatial setting. In fact, in [14] and [27] a fractional Laplacian
(−∆)α, α > 0, replaces the classical one acting both on u(x, t) and some functional of u(x, t) respectively,
and the well–posedness and asymptotic behavior of its solutions is studied. In [6, 8, 11, 24, 31] the study
is extended to semi–linear pseudo–parabolic equations also involving a fractional Laplacian. In [28, 29] two
different powers of the Laplacian acting separately on u(x, t) and ∂tu(x, t) are considered, and in [18, 23] time
fractional derivatives are introduced in the format

∂α
t u(x, t) + µ(−∆)s1∂α

t u(x, t) + (−∆)s2u(x, t) = f(u(x, t)), (2)

where 0 < s1 ̸= s2 < 1, 0 < α < 1, and f stands for a locally Lipchitz function. In [5, 17, 20, 21] second order
elliptical operators are considered instead of the Laplacian itself, even within the framework of time fractional
derivatives.
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We here address the generalization of such a fractional linear pseudo–parabolic problems by considering an
abstract approach in the framework of complex Banach spaces and the format

∂α
t u(t) = Au(t) +B∂β

t u(t) + f(t), t > 0, (3)

where A,B stand for two linear operators (might be unbounded) defined in D(A),D(B) ⊂ X respectively, X
is a complex Banach space, and ∂α

t , ∂
β
t denote time fractional derivatives of order α,β > 0 respectively, whose

precise definition is discussed below. We keep this notation throughout the paper even if α and β are integers, in
that case time derivatives stand for the classical integer derivatives. Convenient initial data for (3) will be also
discussed below. In the framework of fractional calculus and related to the existence of solutions to differential
equations of fractional order let us mention the recent paper [12] where the nonlinear case is also considered.

Our first contribution consists of stating conditions on α,β, A, and B for the well–posedness of (3). Moreover,
since one of the main issues when time fractional derivatives are involved is the time regularity at t = 0+ we
also study the regularity of its solutions as t → 0+. The present study is then completed with the asymptotic
behavior of the solutions as t → +∞.

The paper organizes as follows. In Section 2 we give the notation, definitions and precise formulation of the
problem. Here we introduce a family Eγ(t) : X → X, t ≥ 0, of evolution operators whose Laplace transform
L(Eγ)(z), verifies L(Eγ)(z) = zγ(zα − A − zβB)−1. This family allows us to write the solution of (3) as a
variation of parameters formula. Section 3 is devoted to the case A = B in (3) where we study the well–
posedness, the regularity, and asymptotic behavior of the solutions to (3) in terms of the properties of Eγ(t).
In Section 4 we carry out the same analysis now in the case A ̸= B, here under suitable but general conditions
on the operators A and B.

2 Notation and problem formulation

Let X be a complex Banach space. Recall that a linear operator A is θ–sectorial, 0 < θ < π/2, if there exist
M > 0, and w ∈ R, such that

∥(A− λI)−1∥ ≤ M

|λ− w| , λ /∈ w + Sθ = {w + z : z ∈ Sθ}, (4)

where
Sθ := {z ∈ C : |arg(−z)| < θ}, (5)

I is the identity operator, and (A− λI)−1 stands for the resolvent operator of A defined in their resolvent set
ϱ(A) (see [13] Ch. 2 and [19] Ch. 2).

Related to the fractional derivative of order α ≥ 0 of g(t), ∂α
t g(t), here we focus on two of the most commonly

used in practical instances: The Caputo and the Riemann–Liouville ones. Even though the results shown in
the present paper actually coincide for both choices, and there are hardly any differences in the corresponding
proofs, some differences arise related to the initial data. For the sake of the convenience of readers recall that
the Riemann–Liouville type derivative of order α ≥ 0, with n− 1 ≤ α < n, n ∈ Z+, and g ∈ L1(0,+∞), reads

∂α
t g(t) := ∂n

t (In−α
t g(t)), t ≥ 0, (6)

where Iβ
t stands for the fractional integral of order β > 0 in the Riemann–Liouville sense, and defines, for

g ∈ L1(0,+∞), as the convolution integral

Iβ
t g(t) :=

∫ t

0

(t− s)β−1

Γ(β)
g(s) ds, t ≥ 0. (7)

On the other hand, the fractional derivative of g(t) in the Caputo’s sense is defined by

c∂
α
t g(t) := In−α

t (∂n
t g(t)), t ≥ 0. (8)
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In order to simplify the notation and without no confusion we denote Iβ
t = ∂−β

t . See e.g. [26, 15] and references
therein for a deeper study on fractional calculus.

Now we are in a position to state the problem which is the main purpose of our study. Let A,B be two
linear operators in X, D(A),D(B) ⊂ X, and let α,β be two positive constants such that

1 ≤ α < 2, and 0 < β ≤ α. (9)

In this paper we consider 1 ≤ α < 2 since this case extends the classical parabolic or pseudo–parabolic equations
(α = 1, β = 0, B = 0, and α = β = 1 respectively) arising in many practical instances to the fractional
framework. The case 0 < α < 1 concerns to sub–diffusion problems and it is worthy of a slightly different
analysis to be done in future works.

Consider the linear fractional pseudo–parabolic equation

∂α
t u(t) = Au(t) +B∂β

t u(t) + f(t), t > 0, (10)

along with suitable initial conditions. Operators A and B are not necessary dense in X, but since we are
implicitly assuming that both resolvent sets, that is for A and B, are not empty this implies that both operators
are closed (see Ch. 2, in [25]). Those initial conditions depend on the definition of fractional derivative one opts
for, and this point deserves a short discussion.

Let us consider the definition (6) and take the Laplace transform in (10), in fact for the left–hand side term
we have

L(∂α
t u)(z) = zαU(z)− z ∂α−2

t u(t)
∣∣
t↓0+ − ∂α−1

t u(t)
∣∣
t↓0+ ,

where U(z) := L(u)(z). Analogously, the Laplace transform of the fractional derivative in the right–hand side
of (10), taking from apart the operator B, leads to

L(∂β
t u)(z) = zβU(z)− ∂β−1

t u(t)
∣∣∣
t↓0+

, if 0 < β ≤ 1,

and

L(∂β
t u)(z) = zβU(z)− z ∂β−2

t u(t)
∣∣∣
t↓0+

− ∂β−1
t u(t)

∣∣∣
t↓0+

, if 1 < β ≤ α.

In view of the above suitable initial conditions consist of the existence of

uα−2
0 = ∂α−2

t u(t)
∣∣
t↓0+ , uα−1

0 = ∂α−1
t u(t)

∣∣
t↓0+ ∈ X, (11)

and the existence of
uβ−1
0 = ∂β−1

t u(t)
∣∣∣
t↓0+

∈ D(B), if 0 < β ≤ 1, (12)

or
uβ−2
0 = ∂β−2

t u(t)
∣∣∣
t↓0+

, uβ−1
0 = ∂β−1

t u(t)
∣∣∣
t↓0+

,∈ D(B), if 1 < β ≤ α. (13)

Such conditions have by far not physical meaning, and in addition lead to solutions that may not be defined at
t = 0.

On the contrary if one consider the fractional derivatives in Caputo’s sense (8), then the Laplace transforms
of (10) reads

L(c∂α
t u)(z) = zαU(z)− zα−1u(0)− zα−2∂tu(0), (14)

and taking again from apart the operator B,

L(c∂β
t u)(z) = zβU(z)− zβ−1u(0), if 0 < β ≤ 1, (15)
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or
L(c∂β

t u)(z) = zβU(z)− zβ−1u(0)− zβ−2∂tu(0), if 1 < β ≤ α. (16)

In this case one may naturally consider the following assumptions on the initial conditions: Both u(0) = u0 and
∂tu(t)|t=0 = u1

0 exist and

u0 ∈ D(B),

{
u1
0 ∈ X, if 0 < β ≤ 1,

u1
0 ∈ D(B), if 1 < β ≤ α.

(17)

Observe that initial conditions have now a precise physical meaning since they are given in terms of u and
its first derivative at t = 0, and moreover they provide solutions well defined at t = 0. Is for that we henceforth
adopt the definition (8) of fractional derivative. In fact denote

U0(z) = zα−1u0 + zα−2u1
0 − zβ−1Bu0, if 0 < β ≤ 1, (18)

or
U0(z) = zα−1u0 + zα−2u1

0 − zβ−1Bu0 − zβ−2Bu1
0, if 1 < β ≤ α, (19)

According to (18) and (19), and denoting F (z) = L(f)(z), the equation (10) may be written in the domain
of the Laplace transform as

(zα −A− zβB)U(z) = U0(z) + F (z), (20)

from where we have, in case of existing the operator (zα −A− zβB)−1

U(z) = (zα −A− zβB)−1(U0(z) + F (z)). (21)

Therefore, if the inverse Laplace transform of the operator (zα −A− zβB)−1 exists, then we have

u(t) = (Eα−1(t)− Eβ−1(t)B)u0 + Eα−2(t)u
1
0 +

∫ t

0
E0(t− s)f(s) ds, t > 0, if 0 < β ≤ 1, (22)

and

u(t) =
(
Eα−1(t)−Eβ−1(t)B

)
u0+(Eα−2(t)− Eβ−2(t)B)u1

0+

∫ t

0
E0(t−s)f(s) ds, t > 0, if 1 < β ≤ α. (23)

In (22) and (23) {Eγ(t)}t≥0, for γ ≤ α − 1, stands for a strongly continuous family of linear and bounded
operators Eγ(t) : X → X, t ≥ 0, such that t +→ Eγ(t)v belongs to L1

loc([0,+∞)) with Eγ(0) = I, and where in
fact, Eγ(t) comes given by the inversion Laplace transform formula or Bromwich integral

Eγ(t) :=
1

2πi

∫

Γ
eztzγ(zα −A− zβB)−1 dz, (24)

for a suitable complex path Γ. The existence of such family of operators means the well–posedness of the
problem according to (Ch. II, Sect. 6, in [25]). The family of operators {Eγ(t)}t≥0 might be extended for γ in
a larger range of values, however for our purposes it is enough to consider γ ≤ α− 1.

If not regularity at all is assumed for u0 and u1
0, then (22) and (23) are be adopted as the mild solutions of

(10), for 0 < β ≤ 1 and 1 < β ≤ α respectively. Moreover, whether suitable regularity on the initial data is
assumed, the solution (22) and (23) are understood as the genuine solution of (10) and (17).

In the following sections we state conditions for the existence of mild solutions for (10), that is for the
existence of (24) to be meaningful, in both cases A = B and A ̸= B. Moreover suitable regularity conditions
related to the initial data are stated in both cases in order to get genuine solutions of (10).

Before going to the following sections of the paper let us recall a known result which will be used repeatedly
throughout the paper (see for instance [10, Lemma 6.1]):
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Lemma 1. Let H(z) be a complex function, analytic outside a sector w + Sθ, 0 < θ < π/2, w ∈ R, and such
that there exist γ ∈ R and M > 0 satisfying

|H(z)| ≤ M |z|−γ , z /∈ w + Sθ. (25)

Therefore there exists a complex path Γ surrounding w + Sθ, and connecting −i∞ and +i∞ with increasing
imaginary part, such that the inverse Laplace transform writes as

h(t) =
1

2πi

∫

Γ
eztH(z) dz, t > 0, (26)

and C > 0, independent on t, such that

|h(t)| ≤ Ctγ−1 ewt, t > 0. (27)

Observe that, if γ > 0, then h(t) turns out to be locally integrable. However, if γ ≤ 0, then those convolutions
where h(t) stands for its convolution kernel

∫ t

0
h(t− s)g(s) ds, t > 0,

will be interpreted as the k–th (integer) derivative

∂k
t

(∫ t

0
h̃(t− s)g(s) ds

)
, t > 0,

where h̃(t) stands for the inverse Laplace transform of z−kH(z), for γ + k > 0, as long as g(t) is k–times
continuously differentiable.

For the sake of the simplicity of presentation, and without lost of generality, from now on we assume that
f(t) = 0. Besides observe that if α = β = 1, and A = B, then the equation (10) matches the classical linear
pseudo–parabolic equations, and if in addition B = 0, then (10) matches the classical fractional parabolic
equations.

3 Only one operator: A = B.

The first part of the paper is devoted to those equations (10) where only one operator is involved. In that way
let A be a θ–sectorial operator, D(A) ⊂ X, 0 < θ < π/2, and w ∈ R, and assume that A = B.

3.1 Well–posedness

The first result we address in this paper concerns the well–posedness of the initial value problem (10) and (17).
For the sake of the simplicity of the presentation in this section we assume that w = 0. This assumption does
not mean a loss of generality since in the case of w ̸= 0 no relevant differences arise in the final result, and no
additional difficulties in the proof.

Theorem 1. Let A be a linear and θ–sectorial, 0 < θ < π/2, and α,β positive constants satisfying (9). If

θ <
π(2− α+ β)

2
, (28)

then the initial value problem (10) and (17) is well–posed.
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Proof. First of all notice that according to (22) –(24), now with A = B, the proof of the well–posedness consists
of the existence of the resolvents

zγ

1 + zβ

(
zα

1 + zβ
−A

)−1

, γ ≤ α− 1, (29)

in a convenient domain, and the convergence of the integral (24) for a suitable complex path Γ. These facts are
directly related to the sectorial property of A and in particular to the behavior of zα/(1 + zβ) respect to the
sector Sθ associated to A. In this regard note that the left–hand side term zγ/(1 + zβ) in (29) does not affect
the result, and therefore is avoided hereafter in the proof.

Denote z = ρ eiϕ, ρ ≥ 0, and π/2 < ϕ < π. Observe that

arg

(
zα

1 + zβ

)
= arctan

(
sin(αϕ) + ρβ sin((α− β)ϕ)

cos(αϕ) + ρβ cos((α− β)ϕ)

)
, (30)

where the arctan(x) ∈ (π/2, 3π/2) in case of α−β ≥ 1. If not so, that is if α−β < 1 then there is not restrictions
on θ, since in that case π(2− α+ β)/2 ≥ 2π/2. Asymptotically we have

arg

(
zα

1 + zβ

)
→ (α− β)ϕ, as ρ → +∞. (31)

Henceforth, since ϕ > π/2, if π(α−β)/2 < π−θ or equivalently if (28) satisfies, then one can set ϕ satisfying
π(α− β)/2 < (α− β)ϕ < π − θ, and R0 > 0, such that zα/(1 + zβ) does not belong to Sθ, for ρ ≥ R0.

Now, we are in a position to define a suitable complex Γ for the existence of the evolution operator (24). In
fact let ϕ be belonging to (π/2,π) such that π(α− β)/2 < (α− β)ϕ < π − θ, define Γ = Γ1 ∪ Γ2 where

Γ1 := {z ∈ C : z = ρ eiϕ, ρ ≥ R0},
Γ2 := {z ∈ C : z = R0 eiσ,−ϕ ≤ σ ≤ ϕ},

(32)

positively oriented, that is with increasing imaginary part. The complex path (32) keeps out of Sθ, and the
complex integral is certainly convergent. Therefore the representation (24) of the evolution operator Eγ(t) is
meaningful, as well as the mild solution (22) and (23).

3.2 Regularity

We here study the regularity of the solution of (10) and (17) as t → 0+. To this end we first show a result
concerning to the behavior of the evolution operator (24) as t → 0+, and which will be the key to state the
regularity and the asymptotic behavior of the solution.

Notice that the value w involved in the sectoriallity of A actually does not affect the regularity of the solution
and the corresponding result is shown, for the shortness of the presentation, only for w = 0. On the contrary,
the asymptotic behavior shows differences depending on w, that is whether w ≥ 0 or w < 0.

This is why the following result is stated both for w ≥ 0, then for w < 0.

Theorem 2. Let α,β be two positive constants satisfying (9). Moreover let {Eγ(t)}t≥0 be the family of evolution
operators defined in (24), for γ ≤ α− 1.

Therefore there exists C > 0, independent on t, such that for t > 0,

∥Eγ(t)∥ ≤

⎧
⎪⎨

⎪⎩

C ewttα−γ−1, if w ≥ 0,

Cmin

{
tβ−γ−1

|w| , tα−γ−1

}
, if w < 0.

(33)
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If in addition ζ ∈ D(A), then there exist an operator R(t) and C > 0, independent on t as well, such that
for t > 0,

Eγ(t)ζ =
tα−γ−1

Γ(α− γ)
ζ +R(t)Aζ, (34)

where

∥R(t)∥ ≤

⎧
⎪⎨

⎪⎩

C ewtt2α−γ−β−1, if w ≥ 0,

Cmin

{
tα−γ−1

|w| , t2α−γ−β−1

}
, if w < 0.

(35)

Proof. First of all, according to the definition of Γ in the proof of the Theorem 1, let Γw+ be the complex path
surrounding the sector w + Sθ defined by Γw+ := (w+ + Γ1) ∪ (w+ + Γ2) where w+ + Γj := {w+ + z : z ∈ Γj},
j = 1, 2, and w+ = max{0, w}. Assume also that Γw+ is defined with R0 large enough. Therefore the evolution
operator Eγ(t) writes

Eγ(t) =
1

2πi

∫

Γw+

ezt
zγ

1 + zβ

(
zα

1 + zβ
−A

)−1

dz, t > 0. (36)

Notice that, since the integrand could not be longer extended to the left hand side complex plane, the
integral is only admitted over Γw+ . This will imply that in this analysis the exponential growth shown if w > 0
has not the counterpart exponential decay if w < 0.

According to the sectorial property of A, we have that

∥∥∥∥∥
zγ

1 + zβ

(
zα

1 + zβ
−A

)−1
∥∥∥∥∥ ≤

M

∣∣∣∣
zγ

1 + zβ

∣∣∣∣
∣∣∣∣

zα

1 + zβ
− w

∣∣∣∣
≤ CM

|z|α−γ
, (37)

for a C > 0 independent on t. This means that Eγ(t) stands for a functional whose Laplace transform is
bounded by CM/|z|α−γ , z ∈ Γw+ . Therefore, by (25)–(27) in Lemma 1, there exists C > 0, independent on t,
such that

∥Eγ(t)∥ ≤ C etw+tα−γ−1, t > 0.

This bound applies for any w ∈ R, in particular if w < 0 the operator A may though merely as with w = 0. If
w < 0 a slightly different analysis must be done. In fact, straightforwardly one has from (37) that

M

∣∣∣∣
zγ

1 + zβ

∣∣∣∣
∣∣∣∣

zα

1 + zβ
− w

∣∣∣∣
≤ M

∣∣∣∣
zγ

1 + zβ

∣∣∣∣
1

|w| sin(θ) ≤ M/ sin(θ)

|w||z|β−γ
,

therefore, for w < 0 we have also the bound

∥Eγ(t)∥ ≤ C

|w| t
β−γ−1, t > 0,

and the first statement of the theorem follows.

7

comma



By going a step forward the evolution operator Eγ(t) admits the following expression, for ζ ∈ D(A),

Eγ(t)ζ =
1

2πi

∫

Γw+

ezt
zγ

1 + zβ

(
zα

1 + zβ
−A

)−1

ζ dz

=
1

2πi

∫

Γw+

ezt
1

zα−γ

zα

1 + zβ

(
zα

1 + zβ
−A

)−1

ζ dz

=
1

2πi

∫

Γw+

ezt
1

zα−γ

{
I +

(
zα

1 + zβ
−A

)−1

A

}
ζ dz

= R0(t)ζ +R(t)Aζ,

where

R0(t) :=
1

2πi

∫

Γw+

ezt
1

zα−γ
I dz, and R(t) :=

1

2πi

∫

Γw+

ezt
1

zα−γ

(
zα

1 + zβ
−A

)−1

dz. (38)

Note that R0(t) may be written as

R0(t) =
tα−γ−1

Γ(α− γ)
I, t > 0, (39)

and by the sectorial property of A, and since R0 is assumed to be large enough, there exists C > 0 such that
∥∥∥∥∥

1

zα−γ

(
zα

1 + zβ
−A

)−1
∥∥∥∥∥ ≤ M

|1 + zβ |
|z|2α−γ

≤ CM

|z|2α−γ−β
, z ∈ Γw+ . (40)

Therefore R(t) stands for the inverse Laplace transform of a function depending on z bounded by |z|−(2α−γ−β),
for z ∈ Γw+ . Once again, from (25)–(27) it follows that,

∥R(t)Aζ∥ ≤ CM∥Aζ∥ etw+t2α−γ−β−1, t > 0, (41)

for ζ ∈ D(A). Once again, for w < 0, the analysis above may be applied here to have

∥∥∥∥∥
1

zα−γ

(
zα

1 + zβ
−A

)−1
∥∥∥∥∥ ≤ M

1

|z|α−γ
∣∣∣∣

zα

1 + zβ
− w

∣∣∣∣
≤ CM/ sin(θ)

|w||z|α−γ
, z ∈ Γw+ , (42)

and consequently

∥R(t)∥ ≤ C

|w| t
α−γ−1, t > 0. (43)

In that manner the proof of the theorem concludes.

In view of (22) and (23), the regularity of the solution is achieved by applying Theorem 2 with some
particular values of γ, and suitable regularity conditions for u0 and u1

0. All these cases are collected in following
corollary. Notice that since the regularity of the solutions is not actually affected by w, for the shortness of the
presentation we only show the results for w = 0. The results for w ̸= 0 straightforwardly might achieved.

Corollary 3. Let α,β be two positive constants satisfying (9), and let {Eγ(t)}t≥0 be the family of evolution
operators defined in (24), for γ ≤ α− 1, and w = 0.

Therefore,

8



1. If ζ ∈ D(A), then we have the following,

Eα−1(t)ζ − Eβ−1(t)Aζ = ζ + E−1(t)Aζ, t ≥ 0. (44)

∂t
{
Eα−1(t)ζ − Eβ−1(t)Aζ

}∣∣
t=0

= 0. (45)

Eα−2(t)ζ − Eβ−2(t)Aζ = tζ + E−2(t)Aζ, t ≥ 0. (46)

∂t
{
Eα−2(t)ζ − Eβ−2(t)Aζ

}∣∣
t=0

= ζ. (47)

Eα−2(t)ζ = tζ +R(t)Aζ, R(t) = O(tα−β+1),

∂tEα−2(t)ζ = ζ +R(t)Aζ, R(t) = O(tα−β),

}
t → 0+. (48)

2. If ζ ∈ D(A2), then we have the following,

Eα−1(t)ζ − Eβ−1(t)Aζ = ζ +
tα

Γ(α+ 1)
Aζ +R(t)A2ζ, t ≥ 0, R(t) = O(t2α−β), t → 0+. (49)

Eα−2(t)ζ − Eβ−2(t)Aζ = tζ +
tα+1

Γ(α+ 2)
Aζ +R(t)A2ζ, t ≥ 0, R(t) = O(t2α−β+1), t → 0+. (50)

Eα−2(t)ζ = tζ +R1(t)Aζ +R2(t)A
2ζ, R1(t) = O(tα−β+1), R2(t) = O(t2(α−β)+1), t → 0+. (51)

Proof. In order to prove (44) recall that the operators Eγ(t) admit the integral representation (24) along a
suitable complex path Γ, in fact we adopt again the path Γ = Γ0 according the notation in the proof of
Theorem 2, here again for R0 > 0 large enough. Therefore we have

Eα−1(t)ζ − Eβ−1(t)Aζ

=
1

2πi

∫

Γ
ezt

zα−1

1 + zβ

(
zα

1 + zβ
−A

)−1

ζ dz − 1

2πi

∫

Γ
ezt

zβ−1

1 + zβ

(
zα

1 + zβ
−A

)−1

Aζ dz

= ζ +
1

2πi

∫

Γ
ezt

1

z

(
zα

1 + zβ
−A

)−1

Aζ dz − 1

2πi

∫

Γ
ezt

zβ−1

1 + zβ

(
zα

1 + zβ
−A

)−1

Aζ dz

= ζ +
1

2πi

∫

Γ
ezt

(
1

z
− zβ−1

1 + zβ

)(
zα

1 + zβ
−A

)−1

Aζ dz

= ζ +
1

2πi

∫

Γ
ezt

z−1

1 + zβ

(
zα

1 + zβ
−A

)−1

Aζ dz

= ζ + E−1(t)Aζ dz.

So the statement (44) follows, and in a similar manner the proof of (46) follows as well.
On the other hand, once observed that

∂t
{
Eα−1(t)ζ − Eβ−1(t)Aζ

}
=

1

2πi

∫

Γ
ezt

1

1 + zβ

(
zα

1 + zβ
−A

)−1

Aζ dz = E0(t)Aζ dz, t ≥ 0,

Theorem 2, now with γ = 0, leads to
∥E0(t)∥ ≤ Ctα−1, t > 0,

accordingly to (45). Likewise the proof of (47) is done.
The proof of (49) in based on the fact that, according to Theorem 2 and (44), if ζ ∈ D(A2) the operator

E−1(t) admits the following expression

E−1(t)ζ =
1

2πi

∫

Γ
ezt

1

zα+1

zα

1 + zβ

(
zα

1 + zβ
−A

)−1

Aζ dz =
tα

Γ(α+ 1)
Aζ +R(t)A2ζ,
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where

R(t) =
1

2πi

∫

Γ
ezt

1

zα+1

(
zα

1 + zβ
−A

)−1

dz, t > 0.

Here, we have that ∥∥∥∥∥
1

zα+1

(
zα

1 + zβ
−A

)−1
∥∥∥∥∥ ≤ CM

|z|2α−β+1
, z ∈ Γ, (52)

and therefore
∥R(t)∥ ≤ Ct2α−β , t > 0. (53)

In that manner the proof of (49) concludes. The proof of (50) follows the same steps as with E−1(t), now
E−2(t).

Finally proofs of (48) and (51) follow similar steps and by the shortness of the paper are omitted.

Theorem 4. Let α,β be two positive constants satisfying (9). Moreover let u(t) be the mild solution (22) and
(23) of the initial value problem (10) and (17), for 0 < β ≤ 1, and 1 < β ≤ α respectively. If u0, u0

1 ∈ D(A),
then u(t) is a genuine solution of (10) and (17) such that

u(0) = u0, ∂tu(0) = u1
0,

and satisfies that,

1. For 1 < β ≤ α,
u(t) = u0 + tu1

0 + E−1(t)Au0 + E−2(t)Au1
0, t > 0,

and if moreover u0, u1
0 ∈ D(A2), then

u(t) = u0 + tu1
0 +

tα

Γ(α+ 1)
Au0 +

tα+1

Γ(α+ 1)
Au1

0 +R1(t)A
2u0 +R2(t)A

2u1
0,

where there exists C > 0, independent on t, such that

∥R1(t)∥ ≤ Ct2α−β , and ∥R2(t)∥ ≤ Ct2α−β+1, t > 0.

2. For 0 < β ≤ 1, there exists C > 0 such that

u(t) = u0 + tu1
0 + E−1(t)Au0 +R(t)Au1

0, where ∥R(t)∥ ≤ Ctα−β+1, t > 0,

and if moreover u0, u1
0 ∈ D(A2), then

u(t) = u0 + tu1
0 +

tα

Γ(α+ 1)
Au0 +R1(t)Au1

0 +R2(t)A
2u0 +R3(t)A

2u1
0,

where
∥R1(t)∥ ≤ Ctα−β+1, ∥R2(t)∥ ≤ Ct2α−β , and ∥R3(t)∥ ≤ Ct2(α−β)+1, t > 0.

The proof of Theorem 4 is a straightforward consequence of Corollary 3.
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3.3 Asymptotic behavior

Throughout this section we show the behavior of the solution of (10) and (17) as t → +∞. In this section the
coefficient w plays an important role, henceforth we here consider any w ∈ R instead of merely w = 0.

Theorem 5. Let α,β be two positive constants satisfying (9), u0, u0
1 ∈ D(A), and u(t) the solution of the initial

value problem (10) and (17).
Therefore there exists C > 0 such that

1. If 1 < β ≤ α, then

∥u(t)∥ ≤

⎧
⎪⎨

⎪⎩

C ewttα−β+1, w ≥ 0,

Ct

|w| , w < 0,
as t → +∞. (54)

2. If 0 < β ≤ 1, then

∥u(t)∥ ≤

⎧
⎪⎨

⎪⎩

C ewttmax{α−β,1}, w ≥ 0,

Ctmax{β−α+1,0}

|w| , w < 0,
as t → +∞. (55)

Proof. Let us consider the expressions (22) and (23) of the solution u(t) of (10) and (17), for 0 < β ≤ 1, and
1 < β ≤ α respectively.

First of all notice that one might consider the expressions of u(t) provided by Theorem 4 instead of (23)
and (22), however no more accurate bounds can be achieved. Therefore consider two cases, 1 < β ≤ α and
0 < β ≤ 1 as follows:

1. Let β be a positive constant such that 1 < β ≤ α. According to (23) and (33), for w ≥ 0, we have

∥Eα−1(t)∥ ≤ C ewt, ∥Eβ−1(t)∥ ≤ C ewttα−β , ∥Eα−2(t)∥ ≤ C ewtt, ∥Eβ−2(t)∥ ≤ C ewttα−β+1, (56)

for t > 0. The first statement of (54) then follows. On the other hand, if w < 0, then and according again to
(33) we have

∥Eα−1(t)∥ ≤ C

|w|tα−β
, ∥Eβ−1(t)∥ ≤ C

|w| , ∥Eα−2(t)∥ ≤ Ctβ−α+1

|w| , ∥Eβ−2(t)∥ ≤ Ct

|w| , (57)

for t > 0. Since β − α+ 1 ≤ 1 the second statement of (54) follows as well.
2. Let β be a positive constant such that 0 < β ≤ 1. In this case we only have to take into account the first

third terms in (56), so that the dominant terms are

∥Eβ−1(t)∥ ≤ C ewttα−β , ∥Eα−2(t)∥ ≤ C ewtt, t > 0.

Therefore we have the first statement of (55). On the same manner if w < 0, then the last term in (57) does
not affect the bound, and according one more time to (33) we have that the dominant terms are

∥Eβ−1(t)∥ ≤ C

|w| , ∥Eα−2(t)∥ ≤ Ctβ−α+1

|w| , t > 0.

So, since β − α+ 1 ≥ 0 is not always satisfies, the proof of the second statement of (55) follows, and the proof
of the theorem concludes.

Theorem 5 deserves some comment, in particular note that if B = 0, β = 0, and u1
0 = 0, that is if one has

the classical parabolic fractional integral equation u(t) = u0 + ∂−α
t Au(t), then the asymptotic behavior shown

above perfectly matches the one provided in [9].
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4 Two operators: A ̸= B

Despite the results shown in this section turn out to be fairly similar to the ones in the case A = B, two different
operators A ̸= B are now involved and the proofs are slightly different. This is why the proofs below are shown.

4.1 Well–posedness

In this section we consider two different linear operators A and B, D(A),D(B) ⊂ X.
Let us recall a definition that will prove useful hereafter: Given two linear operators A,B : X → X, the

operator A is called B–bounded if D(A) ⊆ D(B), and there exists b > 0 such that

∥Aζ∥ ≤ b∥Bζ∥, ζ ∈ D(A). (58)

In that case b is so–called the B–bound of A, if b := inf{a > 0 : ∥Aζ∥ ≤ a∥Bζ∥, ζ ∈ D(A)}.
Once again assume that w = 0 since as in Section 3 no relevant differences arise if w ̸= 0. Now we have the

following result.

Theorem 6. Assume that A and B commute. Let B be a linear θB–sectorial operator, 0 ≤ θB < π/2, such
that

θB <
π(2− α+ β)

2
, (59)

MB is the associated sectorial bound, and let A : D(A) ⊂ X → X be a linear B–bounded operator with B–bound
b > 0. Moreover let α,β be positive constants satisfying (9). Then the problem (10) and (17) is well–posed.

Proof. Similarly to the proof of Theorem 1, the term zγ in (24) does not affect the result, therefore we concentrate
in the term (zα −A− zβB)−1.

First of all observe that the operator in (20) may be written as

(zα −A− zβB)−1 = z−β(I − z−βA(zα−β −B)−1)−1(zα−β −B)−1. (60)

Now the proof consists of the existence of the resolvent (zα−β−B)−1 and the operator (I−A(zα−zβB)−1)−1

in a convenient domain, and then existence of a complex path Γ to be the integral (24) convergent.
Since the argument of arg(zα−β) = (α − β) arg(z) the condition on θ is straightforward by following the

same step as in Theorem 1. Moreover, the complex path Γ surrounding SθB defined in that theorem may be
used here as well. Having in mind all these facts there holds

∥(zα − zβB)−1∥ =
1

|z|β ∥(z
α−β −B)−1∥ ≤ MB

|z|α , z /∈ SθB . (61)

As A and B commute we have that if x ∈ D(A), then A(zα − zβB)−1x = zα
∑∞

j=0(z
β−αB)jAx, that is,

(zα − zβB)−1x ∈ D(A). Observe that it is implicitly assumed that Range(A) ⊂ D((zα − zβB)−1).
Therefore by the B–boundness of A we have, for x ∈ D(A), and z /∈ SθB , that

∥A(zα − zβB)−1x∥ ≤ b∥B(zα − zβB)−1x∥ ≤ b(1 +MB)

|z|β ∥x∥. (62)

Let R0 be a positive constant large enough, in fact so that R0 > (b(1 +MB))
1/β , and set z /∈ SθB . In that

12
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case ∥A(zα − zβB)−1∥ < 1 and in view of (60) we have

∥(zα −A− zβB)−1∥ =

∥∥∥∥∥∥

⎛

⎝
+∞∑

j=0

(A(zα − zβB)−1)j

⎞

⎠ (zα − zβB)−1

∥∥∥∥∥∥

≤
+∞∑

j=0

(
b(1 +MB)

|z|β

)j MB

|z|α

≤ 1

1− b(1 +MB)

|z|β

MB

|z|α

=
MB

Rβ
0 − b(1 +MB)

1

|z|α−β
.

Therefore the operator (zα −A− zβB)−1 is bounded.
Accordingly, since β ≤ α, Γ keeps out of SθB (with R0 large enough), and the operator (zα −A− zβB)−1 is

bounded, for z ∈ Γ and then the expression (24) of the evolution operator Eγ(t) is meaningful. Consequently
the mild solutions (22) exists, that is the problem (10) and (17) is well–posed, and the proof concludes.

4.2 Regularity

Let A,B be two linear operators such that B is θB–sectorial, 0 < θB < π/2, with sectorial bound MB > 0, and
A of type B–bounded with B–bound b > 0.

As in Section 3.2 we first show a result concerning to the behavior of the evolution operator (24) as t → 0+.
The regularity of the genuine solution then follows, depending again on the regularity of the initial data.

Theorem 7. Let α,β be two positive constants satisfying (9). Moreover let {Eγ(t)}t≥0 be the family of evolution
operators defined in (24), for γ ≤ α− 1.

Therefore, there exists C > 0, independent on t, such that, for t > 0,

∥Eγ(t)∥ ≤

⎧
⎪⎨

⎪⎩

C ewttα−γ−1, if w ≥ 0,

Cmin

{
tβ−γ−1

|w| , tα−γ−1

}
, if w < 0.

(63)

If ζ ∈ D(A), then there exist an operator R(t), and C > 0 independent on t, such that,

Eγ(t)ζ =
tα−γ−1

Γ(α− γ)
ζ + Eγ−α(t)Aζ + Eγ−α+β(t)Bζ, t > 0. (64)

And if ζ ∈ D(B), but ζ /∈ D(A), then

Eγ(t)ζ = R(t)ζ + Eγ−α+β(t)Bζ, t > 0, (65)

where
∥R(t)∥ ≤ C ew+ttα−γ−1, t > 0. (66)

Proof. Let Γw+ be once again the complex path surrounding the sector w + Sθ defined by Γw+ := (w+ + Γ1) ∪
(w+ + Γ2) where w+ + Γj := {w+ + z : z ∈ Γj}, w+ = max{0, wB}, and Γj is defined according to that in
Theorem 1, for j = 1, 2. Assume again that Γw+ is defined with R0 large enough. Therefore the evolution
operator Eγ(t) writes

Eγ(t) =
1

2πi

∫

Γw+

eztzγ(zα −A− zβB)−1 dz, t > 0. (67)

13
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As in Theorem 6 let us write the evolution operator Eγ(t) as

Eγ(t) =
1

2πi

∫

Γw+

eztzγ(I −A(zα − zβB)−1)−1(zα − zβB)−1 dz, t > 0.

On the one hand,

∥(zα − zβB)−1∥ =
1

|z|β ∥(z
α−β −B)−1∥ ≤ MB

|zα − zβw| , z /∈ w + SθB . (68)

Since A and B commute, we have that if x ∈ D(A), then (zα − zβB)−1x ∈ D(A). Therefore if R0 is large

enough, in fact R0 > (b(1 + 2MB))
1/β , so that

|z|α−β

|zα−β − w| ≤ 2, z ∈ Γw+ ,

then according to (68) we have, for x ∈ D(A), that

∥A(zα − zβB)−1x∥ ≤ b∥B(zα − zβB)−1x∥ ≤ b(1 + 2MB)

|z|β ∥x∥, z /∈ w + SθB . (69)

Therefore, following the ideas of the proof of Theorem 6, if z ∈ Γw+ , then

∥zγ(zα −A− zβB)−1∥ =

∥∥∥∥∥∥
zγ

⎛

⎝
+∞∑

j=0

(A(zα − zβB)−1)j

⎞

⎠ (zα − zβB)−1

∥∥∥∥∥∥
≤ MB

|z|β − b(1 + 2MB)

|z|γ+β

|zα − zβw| .

Once again, for z ∈ Γw+ , there exists C > 0 such that

MB

|z|β − b(1 + 2MB)

|z|γ+β

|zα − zβw| ≤
C

|z|α−γ
,

that is the Laplace transform of Eγ(t) is bounded by C/|z|α−γ , z ∈ Γw+ . Accordingly there exists C > 0 such
that

∥Eγ(t)∥ ≤ C ew+ttα−γ−1, t > 0.

However, if w < 0, then we have a slightly different bound,

|zα−β − w| ≥ |w| sin(θB), z ∈ Γw+ ,

therefore there exists C > 0 such that

MB

|z|β − b(1 +MB)

|z|γ+β

|zα − zβw| ≤
MB

|z|β − b(1 +MB)

|z|γ

|w| sin(θB)
≤ C

|w||z|β−γ
,

and (63) then follows.
Assume that ζ ∈ D(A). Therefore we have

Eγ(t)ζ =
1

2πi

∫

Γw+

eztzγ−α
(
I + (A+ zβB)(zα −A− zβB)−1

)
ζ dz

=
tα−γ−1

Γ(α− γ)
ζ +

1

2πi

∫

Γw+

eztzγ−α(zα −A− zβB)−1Aζ dz

+
1

2πi

∫

Γw+

eztzγ−α+β(zα −A− zβB)−1Bζ dz,
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and (64) follows as well.
If ζ ∈ D(B) but ζ /∈ D(A), then the last term in (64) remains, and only the first ones change. In particular

that term writes as

R(t) =
1

2πi

∫

Γw+

eztzγ−α(I +A(zα −A− zβB)−1)ζ dz

=
1

2πi

∫

Γw+

eztzγ−α(zα − zβB)(zα −A− zβB)−1ζ dz

=
1

2πi

∫

Γw+

eztzγ−α(I −A(zα − zβB)−1)−1ζ dz.

Repeating again the arguments, straightforwardly follows that the operator (I−A(zα−zβB)−1)−1, for z ∈ Γw+ ,
is merely bounded. Moreover since there exits C > 0 such that the Laplace transform of R(t) is bounded by
C|z|γ−α, we have

∥R(t)∥ ≤ C ew+ttα−γ−1, t > 0.

The case w < 0 does not allow to achieve different bounds, therefore the proof of the theorem ends.

The following corollary collects those particular cases of Theorem 7 required for the regularity of the solution
of (10) according the regularity of the initial data.

Corollary 8. Let α,β be two positive constants satisfying (9), and let {Eγ(t)}t≥0 be the family of evolution
operators defined in (24), for γ ≤ α− 1. Therefore,

1. If ζ ∈ D(A), then we have the following,

Eα−1(t)ζ − Eβ−1Bζ = ζ + E−1(t)Aζ, t > 0. (70)

Eα−2(t)ζ − Eβ−2Bζ = tζ + E−2(t)Aζ, t > 0. (71)

∂t {Eα−1(t)ζ − Eβ−1Bζ} |t=0 = 0. (72)

∂t {Eα−2(t)ζ − Eβ−2Bζ} |t=0 = ζ. (73)

Eα−2(t)ζ = tζ + E−2(t)Aζ + Eβ−2(t)Bζ,

∂tEα−2(t)ζ = E−1(t)Aζ + Eβ−1(t)Bζ.

}
t > 0. (74)

2. If ζ ∈ D(A2), then we have the following,

Eα−1(t)ζ − Eβ−1(t)Bζ = ζ +
tα

Γ(α+ 1)
Aζ + E−α−1(t)A

2ζ + Eβ−α−1(t)BAζ, t > 0. (75)

Eα−2(t)ζ − Eβ−2(t)Bζ = tζ +
tα+1

Γ(α+ 2)
Aζ + E−α−2(t)A

2ζ + Eβ−α−2(t)BAζ, t > 0. (76)

If in addition Bζ ∈ D(A), then

Eα−2(t)ζ = tζ +
tα+1

Γ(α+ 2)
A2ζ +

tα−β+1

Γ(α− β + 2)
Bζ

+E−α−2(t)A
2ζ + Eβ−α−2(t)(BA+AB)ζ + E2β−α−2(t)B

2ζ. (77)

The case ζ ∈ D(B)\D(A) := {x ∈ D(B) : x ̸∈ D(A)}, may be straightforwardly derived but for the shortness
of the paper is omitted.

15



Proof. First of all consider the representation (24) of the operators Eγ(t) for R0 > 0 large enough, where the
path Γ = Γ1 ∪ Γ2 with Γ1 and Γ2 given by (32). Secondly notice that if we apply directly Theorem 7 some key
cancelations are not revealed, therefore we make use in this proof of the expression of the evolution operators.

In particular if ζ ∈ D(A), then we have that

Eα−1(t)ζ =
1

2πi

∫

Γ
etz

1

z
(I + (A+ zβB)(zα −A− zβA)−1)ζ dz

= ζ +
1

2πi

∫

Γ
etz

1

z
(zα −A− zβA)−1)Aζ dz +

1

2πi

∫

Γ
etzzβ−1(zα −A− zβA)−1)Bζ dz

= ζ + E−1(t)Aζ + Eβ−1(t)Bζ,

and (70) follows. In the same manner, the proof of (71) may be done, and the proof of (72)–(74) follows easily
from (70) and (71) and (64) by repeating the same arguments.

Since ζ ∈ D(A2), and D(A) ⊂ D(B), we have that A2ζ and BAζ are meaningful. Therefore the proof of
(75) follows this steps

Eα−1(t)ζ = ζ +
1

2πi

∫

Γ
etz

1

zα+1

(
I + (A+ zβB)(zα −A− zβB)−1

)
Aζ dz

+
1

2πi

∫

Γ
etz

1

zα−β+1

(
I + (A+ zβB)(zα −A− zβB)−1

)
Bζ dz

= ζ +
tα

Γ(α+ 1)
Aζ +

tα−β

Γ(α− β + 1)
Bζ

+E−α−1(t)A
2ζ + Eα−β−1(t)(BA+AB)ζ + E2β−α−1(t)B

2ζ.

Analogously,

Eβ−1(t)Bζ =
1

2πi

∫

Γ
etz

1

zα−β+1

(
I + (A+ zβB)(zα −A− zβB)−1

)
Bζ dz

=
tα−β

Γ(α− β + 1)
Bζ + Eβ−α−1(t)ABζ + E2β−α−1(t)B

2ζ.

By subtracting both expressions the statement follows.
The proof of (76) and (77) follows the same steps, and so the proof straightforwardly ends.

The proof of the next result follows from Corollary 8.

Theorem 9. Let α,β be two positive constants satisfying (9). Moreover let u(t) be the mild solution (22) and
(23) of the initial value problem (10) and (17), for 1 < β ≤ α and 0 < β ≤ 1, respectively. If u0, u0

1 ∈ D(A),
then u(t) is a genuine solution of (10) and (17) such that

u(0) = u0, ∂tu(0) = u1
0,

and satisfies that,

1. For 1 < β ≤ α,
u(t) = u0 + tu1

0 + E−1(t)Au0 + E−2(t)Au1
0, t > 0,

and if moreover u0, u1
0 ∈ D(A2), then

u(t) = u0 + tu1
0 +

tα

Γ(α+ 1)
Au0 +

tα+1

Γ(α+ 1)
Au1

0

+E−α−1(t)A
2u0 + Eβ−α−1(t)BAu0 + E−α−2(t)A

2u1
0 + Eβ−α−2(t)BAu1

0, t > 0.
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2. For 0 < β ≤ 1,
u(t) = u0 + tu1

0 + E−1(t)Au0 + E−2(t)Au1
0 + Eβ−2(t)Bu1

0,

and if moreover u0, u1
0 ∈ D(A2), and Bu1

0 ∈ D(A), then

u(t) = u0 + tu1
0 +

tα

Γ(α+ 1)
Au0 +

tα+1

Γ(α+ 2)
Au1

0 +
tα−β+1

Γ(α− β + 2)
Bu1

0

+E−α−1(t)A
2u0 + Eβ−α−1(t)BAu0 + E−α−2(t)A

2u1
0

+E−β−α−2(t)(BA+AB)u1
0 + E2β−α−2B

2u1
0,

for t > 0.

4.3 Asymptotic behavior

The asymptotic behavior in the case of A ̸= B, under the assumptions stated at the beginning of the section
for both, perfectly fits the one in the case A = B, that is there is hardly any difference, both if u0, u1

0 ∈ D(A),
and even if u0, u1

0 ∈ D(B)\D(A). Therefore the Theorem 5 is perfectly valid here, the proof straightforwardly
follows, and this is why both are omitted.
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