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ABSTRACT The Internet of Things (IoT) is evolving, driven by the increasing demand for bandwidth.
A key focus is on minimizing communication delays. This paper introduces a new solution called Predictive
Dynamic Bandwidth Allocation (PDBA), using adaptive predictive algorithms in the IoT context. The
approach involves predicting resource needs and network conditions, allowing for efficient bandwidth
allocation. The PDBA framework uses advanced predictive algorithms to foresee bandwidth requirements
for IoT devices at specific intervals, contributing to low communication latency—crucial for responsive
IoT applications.To handle dynamic changes in the IoT environment, like device connectivity fluctuations
during sleep mode transitions, our framework incorporates a dynamic perceptual algorithm inspired
by reinforcement learning principles. This real-time adaptation mitigates the impact of environmental
fluctuations, ensuring consistently low latency. Simulations across various IoT scenarios demonstrate the
PDBA framework’s effectiveness. The adaptive predictive algorithm significantly improves latency by nearly
10%, reduces packet loss to 6.8%, and increases throughput to 94.2% compared to traditional methods,
with notably lower computing times of 0.69 seconds. These results underscore PDBA’s potential to enhance
Quality of Service (QoS) in IoT networks. The article provides a comprehensive examination of the PDBA
framework’s components, its seamless integration into the IoT environment, and its substantial role in
optimizing communication performance within IoT networks.

INDEX TERMS IoT networks, bandwidth allocation, communication latency, predictive dynamic bandwidth
allocation (PDBA), adaptive predictive algorithms.

I. INTRODUCTION
The number of Internet of Things (IoT) devices is growing
super fast and changing how we use technology. In 2020,
there were about 30 billion of these connected devices all over
the world, which was a really big deal in the tech world [1].
This means that more and more devices, like smart gadgets,
are talking to each other and becoming a bigger part of our
daily lives. Looking forward, it looks like this trend will keep
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going, and these IoT things will become an even bigger part
of how everything is connected in our world.

This surge has engendered substantial alterations across
industries, urban environments, and the fabric of our daily
lives. Beneath this remarkable growth, however, lies a
complex challenge. IoT devices, with their diverse func-
tionalities, impose substantial demands on existing network
infrastructure. The traditionnal approach of expanding band-
width may not suffice to address the imminent surge in the
number of devices. Looking forward, projections suggest
that by 2050, the number of connected devices will soar
to an astounding 50 billion, presenting an unprecedented
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scenario [2]. This exponential growth requires careful consid-
eration of efficient bandwidth allocation within our current
network architecture. Service providers are continuously
devoted to increasing network capacity and improving service
quality. The pursuit of guaranteed bandwidth necessitates the
development of efficient bandwidth management techniques.
When bandwidth limitations become a concern, the solution
does not merely lie in augmenting bandwidth resources,
as this approach lacks long-term sustainability. In light of
these challenges, the development of innovative bandwidth
management techniques becomes of utmost importance.
Simultaneously, the effective utilization of resources stands
as a critical domain within IoT network research. To optimize
resource usage, a strategy is employed when an IoT device
remains idle for extended periods - It be switched to a
sleep or doze mode as described in [3] and [4]. During the
sleep mode, both the transmitter and receiver components are
deactivated. This approach, particularly prevalent in Fiber-
to-the-Home (FTTH) mode [5], significantly impact the IoT
system environment. This transition to sleep mode introduces
a variable environment, which adversely affect certain band-
width allocation schemes that rely on fixed conditions,such as
certain predictive schemes [6], [7]. These predictive schemes
utilize offline-trained predictors based on historical data from
a stable online environment to forecast bandwidth allocation.
Nevertheless, alterations in the online environment result
in significant predictive inaccuracies. To mitigate delays
and bolster algorithm robustness, there arises a pressing
need for predictive algorithms capable of adapting to
shifting environmental conditions. In pursuit of this objective,
we introduce a dynamic perception layer within the predictive
model, drawing inspiration from reinforcement learning prin-
ciples [8]. This perception layer continuallymonitors changes
in the surrounding environment, dynamically adjusting the
model’s predictive outcomes to enable adaptive corrections.
Consequently, this approach diminishes predictive errors
stemming from environmental shifts, thereby enhancing the
overall resilience of the predictive algorithm.

In this article, our comprehensive approach seamlessly
blends data collection and utilization with dynamic adapta-
tion. It all begins as IoT devices transmit data and requests to
the IoT Gateway via REPORT messages, where each device
is meticulously assigned to dedicated ports. These ports
diligently record vital information from incoming REPORT
messages during successive polling cycles, forming the
foundation for detailed usage pattern tracking. Continuous
monitoring by each port on the IoT Gateway and insightful
analysis of REPORT message content keep us informed. But
we don’t stop there. Our architecture goes a step further,
introducing dynamic data exchange with a cloud-based
server. In this exchange, the Gateway shares not just upload
and download patterns but also crucial data like BW req and
clustering details (G1, G2, . . . , Gm), derived from observed
analogous usage patterns among IoT devices. What truly sets
us apart is the direct integration of a perception layer within
the IoT Gateway, acting as a keen observer of environmental

changes. This real-time adaptation enhances the Gateway’s
ability to detect and respond to shifts. This profound
integration has far-reaching implications for the PDBA
process, enabling the Gateway to proactively anticipate shifts
impacting bandwidth requirements. Harnessing insights from
the perception layer, the PDBA mechanism expertly adjusts
bandwidth allocation, aligning it with predictions based on
perceived changes. In essence, we’ve eliminated the need for
offline training of predictive models. Instead, we empower
them to dynamically adapt, learning from their environment
through interaction. These models, guided by environmental
feedback rewards, autonomously select the most fitting
strategy. What’s unique about our approach is that we don’t
solely rely on historical usage patterns for prediction. Instead,
we employ a combination of advanced techniques, leveraging
the principles discussed in [9], which includes clustering
for grouping IoT devices and other undisclosed methods to
obtain on-demand bandwidth predictions for each cluster
category. This strategic adaptation results in precise and
dynamic bandwidth allocation, which greatly enhances the
quality of service for IoT devices.Our method strategically
adjusts bymodulating the amplitude ofREQBW , which stands
for the predicted on-demand bandwidth requirement for each
group of IoT devices, with the reciprocal of the system’s
time delay serving as a pivotal reward metric. Manipulating
this delay enables us to pinpoint the optimal strategy in
any given environment. The efficacy of our predictive
model based DBA method in reducing delays is firmly
substantiated through rigorous simulation experiments and
in-depth analysis, underscoring its capability to deliver low-
latency performance. With this groundbreaking approach,
we stride confidently into the future of IoT bandwidth
management, fostering efficient, responsive, and low-latency
communication among IoT devices.

Our paper is organized as follows: Section II refers to
the previous research. The Proposed Model For Facilitat-
ing Predictive Dynamic Bandwidth Allocation (PDBA) in
Section III. Section IV includes the Performance evaluation.
Finally, the conclusions and future work are provided in
Section V.

II. RELATED WORK
In this section, we delve into the extensive body of related
work, exploring a variety of methodologies and approaches
aimed at tackling the intricate challenges associated with
dynamic bandwidth allocation in the context of the Internet of
Things (IoT). A substantial corpus of research, as highlighted
in [10], has harnessed machine learning and statistical
regression techniques to adapt strategies for dynamically
assigning frequency and bandwidth resources. The fusion of
clustering and learning techniques, similar to the approach
outlined in [9], has played a crucial role in tailoring
these strategies to efficiently manage bandwidth in IoT
environments. While numerous algorithms for dynamic
bandwidth allocation find application in internet settings,
such as DDA and DFA, it is essential to note that these
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algorithms primarily emphasize factors like throughput and
delay, often overlooking the critical dimension of bandwidth
planning [11]. Exploring clustering techniques, notably
K-pattern clustering as mentioned in [12], has unveiled
their effectiveness in categorizing and characterizing user
activity patterns. Artificial neural networks are frequently
enlisted to enhance insights in this context. Nevertheless, the
scalability of these approaches in large IoT networks, where
computational bandwidth utilization is a concern, remains a
challenge, potentially leading to suboptimal outcomes due to
the similarity of related activities among IoT nodes. In an
alternative approach, the work presented in [13] introduces
the DUP-TRMA methods. These methods are formulated
to allocate bandwidth based on user priority using lower
bound logic and the throughput maximum resource allocation
(TRMA) scheme. Remarkably, DUP-TRMA outperforms
traditional RPA methods by 4%, underscoring its potential
in adapting to evolving IoT trends. To address the imperative
need for dynamic resource allocation, authors have proposed
the BAMSDN model in [14]. This innovative system lever-
ages software-defined networking for dynamic bandwidth
allocation. Empirical results underscore the effectiveness and
flexibility of BAMSDN in accommodating the ever-changing
demands of IoT ecosystems. Efforts aimed at reducing energy
consumption and minimizing end-to-end packet delay have
led to the development of the DEE DBA system, as presented
in [3]. Comparative studies reveal that the DEE DBA
scheme significantly reduces energy consumption compared
to alternative approaches. However, this efficiency gain is
accompanied by an increase in overhead and bandwidth
consumption due to safeguard time requirements. The appli-
cation of artificial neural networks (ANN) to calculate net-
work latency for various IoT applications has been explored,
with particular challenges arising in measuring bandwidth in
homogeneous device environments. Dynamic frequency and
bandwidth assignment (DFBAs), often deployed in small cell
networks, are found to be less suitable for heterogeneously
linked IoT devices [15]. Finally, in the context of future
access networks, deep learning-based solutions for dynamic
bandwidth allocation have been proposed in [16]. These
endeavors signify significant strides toward enhancing the
efficiency of bandwidth management within the dynamic
IoT landscape. Collectively, these diverse approaches and
insights from related work contribute to the ongoing pursuit
of optimizing bandwidth allocation within the dynamic
landscape of IoT applications.

III. PROPOSED MODEL FOR FACILITATING PREDICTIVE
DYNAMIC BANDWIDTH ALLOCATION (PDBA)
Efficient bandwidth management within an IoT network
hinges significantly on the Gateway. This pivotal router
periodically generates cloud-based reports, providing critical
insights into bandwidth utilization and congestion. Addi-
tionally, each port on the Gateway meticulously records
usage patterns from interconnected IoT devices, ensuring

seamless data exchange with a cloud server. The analysis of
these patterns yields invaluable information that steers the
bandwidth allocation process. In our innovative architecture,
we don’t just rely on the Gateway’s traditional functionalities;
we introduce a groundbreaking approach by seamlessly inte-
grating a perception layer into the IoTGateway. This strategic
augmentation empowers the Gateway to dynamically respond
to environmental shifts and fine-tune bandwidth allocation
for optimal efficiency. At the core of our system lies the
Predictive Dynamic Bandwidth Allocation (PDBA) frame-
work. This intelligent system, seamlessly embedded within
the Gateway, harnesses both cloud-based bandwidth statistics
and real-time bandwidth patterns recorded by individual
ports. This dual-pronged approach equips the Gateway to
dynamically and optimally allocate bandwidth resources,
resulting in enhanced communication and data exchange
among IoT devices.

A. PDBA FOR HETEROGENEOUS IOT DEVICES
The PredictiveDynamic BandwidthAllocation (PDBA) algo-
rithm emerges as an innovative strategy that transcends the
simplistic notion of merely adding more bandwidth. Notably,
there is a deficiency in existing dynamic bandwidth allocation
techniques designed to handle the scale of IoT devices
effectively. Efficient bandwidth management mandates the
implementation of optimization methods rooted in machine
learning approaches. These methods autonomously monitor
and discern usage patterns, grouping them into clusters,
thereby contributing to the effective allocation of resources.

Figure 1 presents the communication architecture involv-
ing IoT devices, an IoT gateway, and the internet (server
cloud). The figure encompasses three main components: IoT
Devices, represented as distinct entities engaged in packet
exchange with the IoT gateway, each device depicted with
symbols reflecting its nature and purpose; Links Between IoT
Devices and IoT Gateway, featuring two lines (Link 1 and
Link 2) symbolizing communication channels, with distinct
colors assigned to packets sent and received, facilitating
clarity in discerning the direction of packet flow; and
Communication Between IoT Gateway and the Internet
(Server Cloud), denoting the IoT gateway’s connection to
the internet for external communication, illustrated with
symbols and lines to emphasize bidirectional data flow
between the IoT gateway and the external server. The process
commences with IoT devices transmitting data and requests
via REPORTmessages to the IoTGateway. Subsequently, the
IoT Gateway governs the allocation of specific bandwidth
to individual IoT devices through the issuance of GATE
messages. Each IoT device on the Gateway side is intricately
linked to a dedicated port, wherein critical information
sourced from received REPORT messages is diligently
logged during consecutive polling cycles. A pivotal aspect
of our architectural design revolves around the continuous
monitoring of usage patterns by each port on the IoTGateway.
Through meticulous scrutiny of the content within REPORT
messages, the Gateway captures indispensable insights,
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FIGURE 1. Enable IoT networks to facilitate low-latency applications.

including the bandwidth demand (REQBW ) emanating from
individual devices. However, a significant challenge arises
within the framework of limited-service DBA algorithms,
centering on the precise estimation of bandwidth demand
(ODEMBW ). In this approach, the IoT gateway strives to
predict ODEMBW by utilizing the requested bandwidth
(REQBW ) information obtained from REPORT messages.
Traditionally, in this prediction process, various statistical
techniques such as constant credit and linear credit [17],
arithmetic averaging [18], exponential smoothing [19], and
Bayesian estimation [20] have been employed to estimate
ODEMBW . Subsequently, the IoT gateway assigns band-
width, typically min {ODEMBW ,MAXBW }, to IoT devices
during the ensuing polling cycle, where MAXBW represents
the maximum allocatable bandwidth determined by the IoT
gateway.

B. DECISION-MAKING MODEL
The precise determination of ODEMBW holds primordial
significance, given that inaccuracies in bandwidth predictions
lead to suboptimal outcomes and adverse consequences.
Achieving accuracy in estimating ODEMBW involves con-
sidering various network factors, such as packet length
statistics, network traffic load, and overall network config-
uration. Traditional mathematical or analytical approaches to
calculate ODEMBW often face complexities that block their
effectiveness. Conceptually, ODEMBW is divided into two
bandwidth components, as illustrated by Equation (1):

ODEMBW = REQBW + λTPOLL (βLmin + (1 − β)Lmax)

(1)

Here,ODEMBW represents overall bandwidth, encompass-
ing two essential components. The first, REQBW , signifies
explicitly requested bandwidth obtained from IoT devices via
the REPORTmessage, measured in bits per second (bps). The
second component,λTPOLL (βLmin + (1 − β)Lmax) denotes
predicted bandwidth. In this expression:

• λ is the arrival rate, representing the rate at which new
requests enter the system in requests per second (not
indicative of probability).

• TPOLL is the polling cycle duration, measured in
seconds.

• β is a coefficient (unitless).

• Lmin is the minimum packet length, measured in bits.
• Lmax is the maximum packet length, measured in bits.

Multiplying these terms together results in units of bits
per second (bps), representing the expected data transfer
rate. This dual-component model, ODEMBW , integrates both
explicit demand from devices and predicted requirements,
providing a comprehensive approach to dynamic bandwidth
allocation.

We introduce a dynamic perceptual algorithm designed to
enhance the resilience of the PDBA algorithm, particularly
in the context of ever-evolving IoT gateway environments
and the dynamic nature of data exchanges encompassing both
upload and download activities. This innovative approach is
inspired by reinforcement learning, enabling it to adaptively
refine the results of the predictive algorithm. By promptly
responding to shifts in the environment, this perceptual
algorithm effectively reduces potential predictive errors
arising from changes in the IoT gateway surroundings,
thus contributing to an improved and dependable bandwidth
allocation process.

Furthermore, our introduced Predictive Dynamic Band-
width Allocation (PDBA) algorithm rises to the challenge
posed by the constantly changing IoT gateway environment.
In an ever-evolving IoT landscape characterized by factors
such as varying numbers of connected IoT Devices and their
transitions between active and sleep modes, the dynamic
perceptual algorithm within PDBA leverages the principles
of reinforcement learning to dynamically adjust the outcomes
of the predictive algorithm. This pioneering approach aims to
minimize predictive errors caused by environmental changes,
thereby mitigating their impact on achieving low latency and
further enhancing the resilience of the PDBA algorithm in
real-world IoT scenarios.

C. BANDWIDTH ALLOCATION GROUPS
The Spectral Clustering planning approach utilizes unsuper-
vised learning to group devices sharing similar bandwidth
usage patterns, resulting in the creation of bandwidth alloca-
tion clusters labeled as G = G1,G2, . . . ,Gm. By conducting
a comprehensive analysis of bandwidth utilization patterns
over a specific timeframe, this method identifies common
patterns and structures among the devices. These clusters are
formed based on device similarities, taking into consideration
factors such as application types and other relevant criteria.
This strategic clustering not only enhances the efficiency
of resource allocation but also promotes an organized
and effective bandwidth management strategy across the
network’s nodes.

1) JOINING TREE CLUSTERING LINKAGE RULES — NEAREST
NEIGHBORS
In this method, we determine the similarity between two
IoT devices, denoted as i and j, based on their respective
bandwidth usage patterns. Let Ui and Uj represent the
bandwidth utilization of devices i and j, respectively. The
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linkage rule for clustering devices i and j together for content
receiving is defined as:

Bmean(Gi,Gj) = |Ui − Uj| (2)

Bmean calculates the absolute difference between the band-
width utilization of devices i and j. If this difference is
below a certain threshold, it indicates that devices i and j
have similar bandwidth usage patterns, allowing them to be
grouped together in a cluster.

2) JOINING TREE CLUSTERING LINKAGE RULES — FURTHEST
NEIGHBORS
In this method, we assess the similarity between devices i and
j based on their continuous bandwidth usage patterns. The
linkage rule for this method is defined as:

Bmax(Gi,Gj) = max
p∈Gi,p′∈Gj

|p− p′
| (3)

Bmax calculates the maximum distance between any pair
of devices in clusters Gi and Gj.If this distance is small,
indicating continuous bandwidth usage patterns between
devices i and j, they be joined together in a cluster.

3) CLUSTER FORMATION BASED ON APPLICATION NATURE
AND BANDWIDTH USAGE
This approach involves forming clusters based on the
application nature and bandwidth usage of devices or clusters.
We have four different processes for measuring the usage
pattern between clusters:

• Bmean: The combination of clusters is merged if the
means or centroids of their bandwidth utilization ranges
are close:

Bmean(Gi,Gj) = |mean(Ui) − mean(Uj)| (4)

• Bavg: The combination of clusters is merged based on
the average bandwidth utilization of devices in each
cluster [21]:

Bavg(Gi,Gj) =
|Gi| · |Gj|∑

p∈Gi
∑

p′∈Gj |p− p′|
(5)

• Bmax: Same as Method 2.2, calculating the maximum
distance between any pair of devices in each cluster.

• Bmin: The combination of clusters ismerged based on the
minimum distance between any pair of devices in each
cluster:

Bmax(Gi,Gj) = max
p∈Gi,p′∈Gj

|p− p′
| (6)

Through these linkage rules, the clusters are efficiently
merged until their size reduces to k, and the combination of
clusters with the least bandwidth usage pattern between them
is chosen.

Figure 2 illustrates how the network model and clustering
methodology contribute to efficient IoT bandwidth manage-
ment and resource allocation, thereby facilitating seamless
communication and content sharing among IoT devices.

FIGURE 2. Clustering methodology contributes to efficient IoT bandwidth
management and resource allocation.

4) BANDWIDTH ALLOCATION APPROACH
We propose a bandwidth allocation approach that ensures
measurable bandwidth assurance for IoT devices while
effectivelymanaging idle bandwidth within the network. This
approach dynamically assigns varying bandwidth to devices
based on their priorities. The bandwidth allocation be either
statically set according to the cluster category or adapted
dynamically.

Our categorization includes [22]:

• Uninterrupted Bandwidth: Allocated to critical appli-
cations like healthcare, Industrial IoT, and surveillance
missions, where a zero bandwidth tolerance level is
crucial.

• Guaranteed Bandwidth: Allocated to smart home
applications and e-governance, addressing scenarios
where the bandwidth usage level is medium.

• On-Demand Bandwidth: Allocated to devices such as
wearables and smart sports kits, catering to scenarios
where the bandwidth usage level is low. This flexible
allocation meets the dynamic needs of such devices in
real-world applications.

D. PREDICTIVE MODELING AND PERCEPTION LAYER
At the core of our proposed system design, as depicted
in Figure 3, resides an innovative predictive model aimed
at enhancing the capabilities of our IoT network. The
fundamental concept of this model involves the integration
of a strategically positioned perception layer immediately
following the predictive model’s output layer.

Prior to delving into the intricacies of the perception
layer, a critical preliminary step involves harnessing the
potential of device clustering. Through a rigorous analysis of
bandwidth usage over a predefined time frame, we leverage
the capabilities of an unsupervised learning technique known
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as the Spectral Clustering approach illustrated in subsection
B. This technique adeptly groups IoT devices that exhibit
similar bandwidth usage patterns into allocation clusters,
denoted as G = G1,G2, . . . ,Gm. These clusters form the
bedrock for efficient resource allocation and management.

Shifting our focus to the perception layer, it functions as a
vigilant observer, finely attuned to environmental dynamics.
The perception layer dynamically refines output results in
response to shifts in the surrounding conditions. It operates
in a manner similar to a sophisticated data processing and
storage unit seamlessly integrated within the IoT gateway.

In practical terms, the perception layer employs a dynamic
adjustment mechanism to scale the predictive model’s output
using a prediction coefficient derived from the clustering
results. During periods of network stability, the coefficient
remains constant at 1. However, when environmental changes
are detected, the perception layer intervenes to recalibrate
the prediction coefficient, drawing insights from the sys-
tem’s delay feedback. This empowers the perception layer
to autonomously determine the most suitable coefficient,
thereby enhancing the network’s adaptability and overall
performance.

A noteworthy aspect of the perception layer’s decision-
making process is its autonomy from historical data. Instead
of relying on past information, its actions are guided
by a pivotal criterion linked to the system’s feedback
regarding potential time delays. This approach liberates the
perception layer from the constraints of conventional offline
training paradigms, enabling it to make real-time decisions
autonomously.

E. DYNAMIC PERCEPTION LAYER
To solve the challenge of environmental changes affecting the
predictive model, we are inspired by reinforcement learning
principles. To this end, we introduce a perception layer within
the predictive model’s output layer to sense and respond to
environmental shifts actively. This autonomous layer enables
us to optimize the predictive model dynamically, thereby
achieving an adaptive predictive algorithm. For modeling the
IoT network architecture, we adopt a graph representation
denoted as G = (N ,H ), where N signifies the set of
nodes within the network, and H represents the bandwidth
allocation range. The network is structured into clusters, each
led by a cluster head, denoted as c ∈ C , and every cluster head
is associated with a group of devices referred to asHc. Nodes
within the network are categorized into three types: Intensive
Appliance Nodes (In), Home Appliance Nodes (Hn), and
Common Appliance Nodes (Cn). Each node is represented
in (In,Hn,Cn), where n = 1, . . . ,N . Furthermore, each
connection within the network is linked to one of three
bandwidth allocation ranges: Bhn(high), Bmn(medium), and
Bln(low) [23].

1) SET OF STATES
The concept of a state set, referred to as S, plays a pivotal
role in providing a fundamental representation of various

configurations within the Internet of Things (IoT) network.
Each state within this set captures a unique momentary
snapshot of the network’s conditions, encompassing critical
data elements like bandwidth utilization, traffic patterns, and
resource availability. This assemblage of states is collectively
denoted as S, and within it, each specific state si is
distinguished by an associated nodeNi,identified by the index
i. The depiction of each state node Ni be articulated as
follows:

Ni = {BUi,TPi,ARi} (7)

where BUi denotes the bandwidth utilization in state si, TPi
represents the prevalent traffic patterns within state si, and
ARi corresponds to the available resources under state si.

Furthermore, in the context of the network environment,
each node n is uniquely associated with a corresponding goal
state nt within the set H :

n ∈ H , n 7→ nt ∈ H (8)

Indentation labeling establishes a direct link between each
node n and its specific goal state nt , facilitating a compre-
hensive representation of the network’s status aligned with
the identified goal states in the realm of Predictive Dynamic
Bandwidth Allocation.

2) SET OF ACTIONS
Within the action space denoted as A, a diverse range
of potential bandwidth allocation plans is encompassed.
Symbolically, A is represented as B(R) ∈ B, where B(R) =

[c1, c2, . . . , cn], where nis the number of strategies. For each
strategy ci, define the utility value zi as a linear combination
of features associated with the action:

zi = θ1f1 (ci) + θ2f2 (ci) + . . . + θk fk (ci) (9)

Here,f1 (ci) , f2 (ci) , . . . , fk (ci) are feature functions captur-
ing relevant information about the action ci,and θ1, θ2, . . . , θk
are associated weights reflecting the importance of each
feature. To ensure that the probabilities sum to 1, define the
probability of selecting strategy ci using a softmax function:

P (ci) =
ezi∑n
j=1 e

zj
(10)

This probabilistic approach ensures that the probability of
choosing each strategy is influenced by its desirability as
indicated by the utility value zi. The softmax function
normalizes the utilities, producing a probability distribution
over the action space A. These utility values and their
associated weights be learned or adjusted over time through
training or updating processes. The probabilistic action
selection mechanism allows the agent to adaptively choose
bandwidth allocation plans based on real-time feedback and
changing conditions within the IoT network.
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FIGURE 3. Proposed predictive model.

3) TRANSITION FUNCTION
The transition function δ : S × A × S → [0, 1] defines
how the system undergoes changes from one state to another
based on the selected action. Within the context of dynamic
bandwidth allocation, this function captures the dynamic
nature of network state transitions driven by the chosen
bandwidth allocation strategies.

Transition Probabilities: Let Paij denote the probability
of transitioning from state si to state sj when action
a is executed. These probabilities are influenced by the
interaction between the current state, the chosen action, and
the resulting subsequent state. They provide insights into how
network configuration evolves as a result of applying various
bandwidth allocation strategies. The transition function and
transition probabilities are represented as:

δ
(
si, a, sj

)
= Paij = P (ci) (11)

Here:
δ(si, a, sj) indicates the transition probability from state

si to state sj when action a is taken. Paij quantifies the
transition probability of moving from state si to state
sj due to the execution of action a. These transition
probabilities are fundamental in understanding how network
state evolves over time in response to different bandwidth
allocation strategies. They reflect the impact of various
actions on state transitions and play a crucial role in the
decision-making process of dynamic bandwidth allocation
systems.

4) REWARD FUNCTION
Central to the effectiveness of our approach is the reward
function, a key element that evaluates the quality of allocation
decisions made by the agent. This function measures the
attractiveness and success of a selected allocation strategy,
guiding the agent’s learning process over time.

The reward function at each time step t is defined as
follows [24]:

rt (st = s, at = a) =

∑
s′∈S

P(s′ | s, a)rt (s′, a) (12)

The symbols st , at , S, P(s′ | s, a), and rt (s′, a) respectively
stand for the following elements: the current state of the
IoT network environment, the selected allocation strategy or
action, the set encompassing possible states that the network
may traverse into, the probability of transitioning from state
s to state s′ when action a is taken, and the immediate reward
linked to making the transition to state s′ while executing
action a.

5) DECISION POLICY
In our procedural approach, the agent takes actions denoted
as at in a sequential manner. Simultaneously, the environment
provides a reward, rt (st , at ), which depends on the current
state st and the chosen action at , thereby reflecting the
contextual situation. Subsequently, the agent transitions to
the next state, st+1, under the guidance of a specific
policy denoted as π . This policy dictates how the transition
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from state st to st+1 is executed through action at . This
ongoing interaction process shapes the evolution of the allo-
cation strategy, generating sequences of sample paths such
as (s0, a0, r0), (s1, a1, r1), (s2, a2, r2), and so forth. These
sequences effectively illustrate the dynamic decision-making
of the agent and keep a record of the unfolding outcomes
resulting from its actions.

The iterative process culminates in the policy vector π =

(π1, π2, . . .), where each constituent policy corresponds to
specific states. The overarching objective of this bandwidth
management framework is to determine an optimal pol-
icy vector that effectively facilitates dynamic bandwidth
allocation in IoT contexts. This is particularly relevant
when prioritizing reliability under constrained bandwidth
conditions is of paramount importance.

A pivotal element of this paradigm involves calculating
the expected maximum sum of rewards over time t . This
computation is succinctly expressed as [24]:

π∗
= argmax

a∈A

[
rt (st , at ) +

∑
s′∈S ′

Pt (s′ | s, a)VI−1−t (s′)

]
(13)

In this equation, π∗ denotes the optimal policy, A
represents the set of feasible actions, rt (st , at ) indicates the
immediate reward for state st and action at , S ′ encompasses
potential next states, Pt (s′ | s, a) encapsulates the transition
probability from state s to state s′ upon taking action a at time
t , and VI−1−t (s′) characterizes the value function evaluating
cumulative rewards from time t to horizon I − 1.
The process of determining the optimal value function

Vi+1, which designates the best state, unfolds iteratively
through phases as follows [24]:

Vi+1(s) = argmax
a∈A

[
ri−1−t (st , at ) +

∑
s0

P(s0|s, a)Vi(s0)

]
(14)

A pivotal element within the reinforcement learning
algorithm is the state-action value function, represented as
Q(x, a). This function measures the total reward associated
with taking action a from state x. The agent depends on this
function to inform its choice of the next strategy, denoted as
π :

Q(ODEMBW , β) = r + γ · Q(ODEM ′
BW , β ′)

+ (1 − λ) · Q(ODEMBW , β) (15)

The outlined algorithm underscores the significance of the
Q function in shaping action and strategy choices. In the
context of this proposed approach, the Q function updates
through the following mechanism:

Q(ODEMBW , β) = Q(ODEMBW , β) + λ(r

+ γ · Q(ODEM ′
BW , β ′)

− Q(ODEMBW , β)) (16)

Algorithm 1 Predictive Dynamic Bandwidth Alloca-
tion (PDBA) Algorithm With SARSA
Input: Characteristic data, IoT device states, environmental
conditions
Output: Bandwidth allocation for IoT devices
1: if Characteristic data is not ready then
2: BWG(i, j+ 1) = min{BWR(i, j+ 1),MaxBW}

3: else
4: ODEMBW(i, j+ 1) =

REQBW + λTPOLL (βSmin + (1 − β)Smax)
5: if The environment has changed then
6: delay =

Td
Ps

7: Fv =
1

delay
8: Perception layer selects β value according to global Fv
9: Update the last selection value according to Fv
10: ODEMBW(i, j+ 1) = ODEMBW(i, j+ 1) × β
11: else
12: Retain current ODEMBW(i, j+ 1)
13: end if
14: BWG(i, j+ 1) =

min{BWR(i, j+ 1) + ODEMBW(i, j+ 1),MaxBW}

15: end if
16: tstart(i, j+1) = min{LocalTime+

RTT
2 +Tp, tsche+ RTT

2 +Tp}

17: tend(i, j+ 1) = tstart(i, j+ 1) +
BWG(i,j+1)
RPON + Tg

18: tsche = tend(i, j+ 1)
19: IoT Gateway sends GATE frame to IoT device i with

BWG(i, j+ 1), IDi, and tstart
20: Update characteristic data based on current network status
21: Compute optimal value function Vi+1(s) using Equation (12)
22: Compute state-action value function Q(ODEMBW, β) using

Equation (13)
23: Choose next action based on π∗(s) and Q(ODEMBW, β)
24: Update Q-value using SARSA update rule:
25: Q(ODEMBW, β) = Q(ODEMBW, β) +

λ
(
r + γ · Q(ODEM ′

BW, β ′) − Q(ODEMBW, β)
)

Here, ODEMBW stands for the anticipated bandwidth
demand, while β denotes the predictive coefficient, which
is adjusted based on the predictive model’s output. The
reward r is inversely proportional to the system feedback
delay, where lower delays result in higher rewards. The
selection of the next action strategy directly impacts the
forthcoming predictive coefficient for the current ODEMBW .
More precisely, the modified coefficient β ′ is chosen to
maximize the Q function:

β ′
= argmax

β
Q(ODEMBW , :) (17)

In essence, the coefficient β that maximizes the Q
function is chosen to fine-tune ODEMbeta. As shown in
Algorithm 1!, this iterative process gradually accumulates the
most favorable coefficients under the current state, indicative
of minimized delays over time.

F. ALGORITHMIC COMPLEXITY ANALYSIS
Understanding the efficiency of an algorithm is crucial for
evaluating its practical feasibility. We employ algorithmic
complexity analysis, commonly expressed using Big O
notation (O()), to illuminate the computational demands
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of our Predictive Dynamic Bandwidth Allocation (PDBA)
Algorithm with SARSA (Algorithm 1). Big O notation
provides an upper bound on the growth rate of an algorithm
concerning its input size, aiding in comprehending its
scalability and efficiency.

Breaking down the algorithm into individual components,
we find that initialization, condition checks, bandwidth
allocation computations, and timestamp updates exhibit
constant time complexity, denoted as O(1). These operations
involve basic arithmetic and conditionals, ensuring their
performance remains consistent regardless of input size.

In the realm of dynamic programming and reinforcement
learning, specifically in computing optimal and state-action
value functions (Equations 12 and 13), the complexity
becomes O(N), where N is the number of states or
actions. The SARSA update rule, involving basic arithmetic
operations, maintains a constant time complexity of O(1).

Combining these components, the overall algorithmic
complexity is a function of the dominant factors. Given
that the dynamic programming and reinforcement learning
steps contribute significantly, the overall complexity is likely
dominated by O(N), where N represents the number of
states or actions. This analysis provides insights into how
the algorithm scales with increasing computational demands,
guiding its applicability in real-world scenarios.

IV. PERFORMANCE EVALUATION
In this section, we conduct a comprehensive evaluation
of the effectiveness of our Predictive Dynamic Bandwidth
Allocation (PDBA) model. Our primary goal is to scrutinize
how well the PDBA model performs under varying IoT
device scenarios, simulating real-world IoT environments.
This evaluation is crucial for understanding the model’s
adaptability and its ability to deliver optimal performance.

A. EXPERIMENT SETUP
1) TOPOLOGY AND APPLICATIONS
Our simulation leverages the ns3 tool to emulate a star
topology featuring 61 IoT devices arranged in a star layout
around a central gateway. Each IoT device establishes
individual point-to-point links with the gateway, and an
additional point-to-point link connects the gateway to a cloud
node. The communication protocol is implicitly set based on
the configuration of the point-to-point links, adhering to the
IEEE 802.15.4 standard commonly used in low-rate wireless
personal area networks (LR-WPANs) and IoT scenarios.
For testing purposes, each IoT device hosts a simple Echo
application with an Echo server installed on all IoT devices,
and Echo clients configured to communicate with the cloud
node.

2) SIMULATING DIFFERENT SITUATIONS
We created various scenarios to see how our system
responded:

TABLE 1. Table of terms.

• Varying Network Loads: Our simulations encompass
scenarios representing fluctuating network loads, mir-
roring realistic conditions where the number of active
IoT devices changes dynamically.

• Dynamic Bandwidth RequirementsWe evaluate the effi-
cacy of our Predictive Dynamic Bandwidth Allocation
(PDBA) model in scenarios with diverse bandwidth
demands. This includes situations where IoT devices
may require varying levels of bandwidth for their
applications.

• Topological Changes The study explores scenarios
involving alterations in network topology, simulating
changes in the physical layout of IoT devices and their
connections.

• Latency-Sensitive Applications: We consider scenarios
where IoT applications are latency-sensitive, requiring
quick and efficient data transmission. This helps assess
how well the PDBA model caters to applications with
stringent latency requirements.

• Packet Loss Sensitivity: The simulations include sce-
narios where minimizing packet loss is critical, partic-
ularly relevant for applications where data integrity is
paramount.

• Heterogeneous Device Environments:We examine sce-
narios with a mix of IoT devices with varying
capabilities and communication requirements, reflecting
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FIGURE 4. NetAnim visualisation.

the heterogeneity often found in real-world IoT deploy-
ments.

• Resource-Constrained Environments:The PDBA model
is evaluated in scenarios where resources, such as band-
width, are limited. This is essential for understanding
the model’s performance in resource-constrained IoT
environments.

The simulation duration spans 1000 seconds, providing an
extended timeframe for observing network behaviors.

3) VISUALIZING, MEASURING, AND RESULTS
DOCUMENTATION
To gain a comprehensive understanding of our simulated
network, we employed the NetAnim module in ns3, creating
visual representations that illustrated Figure 4 the evolving
network topology and node movements throughout the sim-
ulation. Simultaneously, we meticulously measured critical
performance aspects such as data transmission speed, data
loss rates, and overall network efficiency.

To ensure transparency and facilitate in-depth analysis, all
information collected during the simulation, including the
experiment setup details and performance metrics, is meticu-
lously documented in a dedicated text file. This systematic
approach enables us to conduct thorough evaluations and
draw meaningful insights from the results.

B. PERFORMANCE METRICS AND MODEL ADAPTABILITY
Our evaluation criteria focus on key metrics related to
bandwidth supply, consumption, latency, packet lost, and
throughput. By measuring these metrics under diverse
IoT device quantities, we gain valuable insights into how
our model responds to varying network loads and com-
plexities.We compare the performance of three bandwidth
allocation methods: PSA (The Priority Scheduling Algo-
rithm, DBA (Dynamic Bandwidth Allocation), and our
proposed approach PDBA (Predictive Dynamic Bandwidth

Allocation).Throughout our experiments, we uphold several
crucial parameters to maintain consistency and reliability.
The historical polling cycles (k) for characteristic data remain
constant at 30. Furthermore, the parameters of the perception
algorithm, referred to as γ and λ, are fixed at 0.85 and
0.01, respectively. The correction coefficient (β), which
plays a pivotal role in refining the model’s output, spans
a range from 0.5 to 1.5, with an increment of 0.01. The
perception model autonomously selects appropriate values
from within this range, thereby enhancing the model’s
adaptability. Notably, when employing ODEMBW as the
state, we implement adjustments to expedite the convergence
of the perceptual layer. Specifically, we apply a modulus
operation to ODEMBW , dividing it by 100, followed by a
multiplication to preserve diversity while compacting the
range of state values. This modification is strategically
employed to ensure the perceptual layer’s responsiveness in
dynamic environments. Through this meticulous evaluation
process, we aim to demonstrate the robustness and efficiency
of our PDBAmodel, reaffirming its capability to provide low-
latency, high-quality services in the ever-evolving landscape
of IoT.

C. RESULTS AND DISCUSSION
The results, as presented in Figures 5 and 6, reveal themodel’s
efficacy across different bandwidth supply levels.

In Figure 5 provide a detailed examination of bandwidth
supply and consumption (in Mbps) across a range of
bandwidth levels, specifically 10, 20, 30, 40, and 50 Mbps.
In the context of the Priority Scheduling Algorithm (PSA),
bandwidth supply consistently hovers near 9.6 Mbps for
the 10 Mbps bandwidth level and gradually increases
to 48 Mbps for the 50 Mbps level. Meanwhile, Dynamic
Bandwidth Allocation (DBA) shows a similar trend with
bandwidth supply starting at 8.6 Mbps and reaching 46 Mbps
across the same bandwidth levels. However, it’s crucial to
note that both PSA and DBA demonstrate a pattern of
relatively high bandwidth consumption compared to supply.
Conversely, our proposed Predictive Dynamic Bandwidth
Allocation (PDBA) model shines in this evaluation, offering
a noticeably lower bandwidth supply and consumption
across the bandwidth spectrum. For instance, at the 10
Mbps level, PDBA provides 7.6 Mbps of bandwidth supply,
which incrementally increases to 39 Mbps at the 50 Mbps
level. These results underline PDBA’s capacity to efficiently
allocate bandwidth, potentially leading to enhanced Quality
of Service (QoS) in dynamic IoT environments. These
findings not only affirm PDBA’s adaptability but also
underscore its promise in real-world applications, warranting
further exploration, and parameter fine-tuning to unlock its
full potential.

In Figure 6, we provide a detailed analysis of latency
(delay) in milliseconds (ms) associated with different band-
width supply scenarios. The table presents latency data
for our proposed Predictive Dynamic Bandwidth Allocation
(PDBA) model, the Priority Scheduling Algorithm (PSA),
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FIGURE 5. Bandwidth consumption vs. Bandwidth supply for different
methods.

FIGURE 6. Delay vs. Bandwidth supply for different methods.

and Dynamic Bandwidth Allocation (DBA) methods across
a range of bandwidth supply levels, including 10 Mbps,
20 Mbps, 30 Mbps, 40 Mbps, and 50 Mbps. Notably, PDBA
consistently outperforms PSA and DBA, with latency values
as follows: 58 ms, 48 ms, 44 ms, 39 ms, and 34 ms for
bandwidth supplies of 10Mbps, 20Mbps, 30Mbps, 40Mbps,
and 50 Mbps, respectively. In contrast, PSA and DBA exhibit
higher latency values across all bandwidth supply levels,
with PDBA showcasing a substantial reduction in network
delay.

In Figure 7, we provide a detailed overview of the
relationship between Bandwidth Supply in Mbps and Packet
Loss in % for three different bandwidth allocation algo-
rithms: the Priority Scheduling Algorithm (PSA), Dynamic
Bandwidth Allocation (DBA), and our proposed Predictive
Dynamic Bandwidth Allocation (PDBA) model. As the
bandwidth supply increases from 10 Mbps to 50 Mbps,
we observe varying levels of packet loss for each algorithm.
PSA exhibits the highest packet loss across all bandwidth
levels, ranging from 43% at 10 Mbps to 21% at 50 Mbps.

FIGURE 7. Packet lost percentage vs. Bandwidth supply for different
methods.

DBA demonstrates improved performance, with packet loss
decreasing from 32% to 14% as bandwidth supply increases.
Notably, our PDBAmodel consistently outperforms the other
two algorithms, showcasing significantly lower packet loss,
which ranges from 9% at 10 Mbps to an impressive 4%
at 50 Mbps. These results underscore the effectiveness of
our PDBA model in minimizing packet loss and enhancing
the quality of service across a spectrum of bandwidth supply
scenarios

Figure 8 provides a comprehensive analysis of Bandwidth
Supply inMbps versus Throughput (Success Rate) in percent-
age for three distinct bandwidth allocation algorithms: the
Priority Scheduling Algorithm (PSA), Dynamic Bandwidth
Allocation (DBA), and our innovative Predictive Dynamic
Bandwidth Allocation (PDBA) model. As the bandwidth
supply escalates from 10 Mbps to 50 Mbps, we observe
varying levels of throughput performance across the algo-
rithms. PSA exhibits the lowest throughput, with success
rates ranging from 62% at 10 Mbps to 81% at 50 Mbps.
DBA demonstrates improved performance, with throughput
increasing from 72% to 88% as bandwidth supply rises. Our
PDBA model consistently outperforms both PSA and DBA,
showcasing impressive success rates that range from 93%
at 10Mbps to an outstanding 97% at 50Mbps. These findings
underscore the efficacy of our PDBA model in ensuring
high throughput and reliable data transmission, making it a
compelling choice for bandwidth allocation in dynamic IoT
environments.

Investigating the computing time required by various
bandwidth allocation methods is vital in evaluating their
practical feasibility. We present the computing time data
for two distinct computing environments: Computer 1 and
Computer 2, each showcasing the performance of three
bandwidth allocation methods - the Priority Scheduling
Algorithm (PSA), Dynamic Bandwidth Allocation (DBA),
and our innovative PredictiveDynamicBandwidthAllocation
(PDBA) model.
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FIGURE 8. Throughput percentage vs. Bandwidth supply for different
methods.

FIGURE 9. Mean computing time vs. Load for different methods
computer (1).

For Computer 1 Figure 9, we observed that PSA had the
highest computing time, with values ranging from 1 second at
lower bandwidth to 1.7 seconds at higher bandwidth. In con-
trast, DBA showed relatively lower computing times, varying
from 0.98 seconds to 1.6 seconds across different bandwidth
levels. Remarkably, our PDBA model outperformed both
PSA and DBA, exhibiting significantly lower computing
times, which ranged from 0.56 seconds to 0.86 seconds.

On Computer 2 Figure 10, the computing time results
followed a similar trend. PSA exhibited higher computing
times, starting from 0.85 seconds at lower bandwidth and
gradually increasing to 1.26 seconds at higher bandwidth.
DBA demonstrated relatively lower computing times, with
values ranging from 0.8 seconds to 1.25 seconds. Once again,
our PDBA model excelled by showcasing remarkably lower
computing times, spanning from 0.45 seconds to 0.8 seconds.

These computing time results emphasize the efficiency of
our PDBA model in delivering rapid bandwidth allocation,
making it a favorable choice for real-time IoT applications,
where timely data transmission is paramount.

FIGURE 10. Mean computing time vs. Load for different methods
computer (2).

FIGURE 11. Predictive performance.

The predictive model’s forecasting capabilities are
employed to assess the functionality of the perceptual
layer. Figure 11 illustrates the predictive performance of
the adaptive predictive algorithm. While there are still
some errors in the prediction process, the forecasted values
generated by the adaptive predictive algorithm closely
approximate the target values, surpassing the accuracy of the
original predictive algorithm.

From those Figures,our comprehensive evaluation of the
Predictive Dynamic Bandwidth Allocation (PDBA) model
across various performance metrics has yielded promising
results. PDBA consistently outperformed traditional Priority
Scheduling Algorithm (PSA) and Dynamic Bandwidth
Allocation (DBA) methods, demonstrating its robustness and
adaptability in dynamic IoT environments. Notably, PDBA
exhibited lower latency, reduced packet loss, and higher
throughput, indicating its ability to enhance the quality
of service in IoT networks. The bandwidth supply and
consumption analysis revealed PDBA’s efficiency in resource
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TABLE 2. Comparison of PDBA and Offline Cooperative Algorithm (OCA)
with MCC values.

allocation, minimizing wastage and ensuring optimal uti-
lization. Moreover, PDBA showcased remarkable computing
time advantages, making it a practical choice for resource-
constrained scenarios.

The table 2 compares the Predictive Dynamic Bandwidth
Allocation (PDBA) and the Offline Cooperative Algorithm
(OCA) [25] across various attributes, incorporating Monte
Carlo Control (MCC) [22] values. PDBA demonstrates
a response time of 60ms, outperforming both MCC and
OCA, which have response times of 50ms and 80ms,
respectively. In terms of availability, PDBA maintains a rate
of 90%, slightly lower than MCC’s 98% but significantly
higher than OCA’s 85%. PDBA achieves a throughput of
1300packets/s, falling between MCC’s 1500packets/s and
OCA’s 1000packets/s.

The success rate for PDBA is 83%, positioning it between
the higher success rate of MCC (93%) and the lower rate
of OCA (76%). PDBA exhibits a reliability of 73%, lower
than MCC’s 95% but higher than OCA’s 65%. Notably,
PDBA achieves a lower latency, which is the main objective
of our approach, at 62ms compared to MCC (70ms) and
OCA (85ms). In terms of compliance, both PDBA and MCC
adhere to standards at 87%, while OCA lags slightly behind
at 80%. Adhering to best practices, PDBA and MCC score
92%, whereas OCA achieves a slightly lower score of 89%.
Overall, PDBA showcases favorable performance metrics in
comparison to both MCC and OCA across a spectrum of key
attributes.

V. CONCLUSION AND FUTURE WORK
In this research endeavor, we have unveiled the innovative
Predictive Dynamic Bandwidth Allocation (PDBA) algo-
rithm, representing a paradigm shift in the realm of efficient
IoT device bandwidth management. Our approach is a
multifaceted one, involving the strategic clustering of IoT
devices based on their unique bandwidth utilization patterns,
coupled with an in-depth statistical analysis of bandwidth
consumption within the cloud infrastructure.The outcomes
of our extensive experimentation speak volumes about
the prowess of PDBA, demonstrating its superiority over
incumbent methods like PSA and DBA across a spectrum of
critical Quality of Service (QoS) parameters. These include
the attainment of ideal bandwidth utilization, remarkably

low latency levels (as low as 34 ms), minimal packet
loss (a mere 4%), and a substantial increase in throughput
(an impressive 97%). Notably, PDBA’s performance shines
brightest in challenging scenarios marked by limited avail-
able bandwidth. The results gleaned from our simulations,
set within the dynamic IoT network landscape, underscore
PDBA’s unmatched capacity to boost throughput and uphold
uninterrupted bandwidth availability, even when bandwidth
resources are constrained. As we peer into the future, our
research trajectory sets its sights on the development of an
autonomous bandwidth allocation system. This system will
be designed to intelligently allocate unused bandwidth to
critical, on-demand IoT devices, with specific applications in
pivotal domains such as healthcare and industrial automation.
Through these ongoing efforts, we aim to continue pushing
the boundaries of IoT network efficiency and Quality of
Service, ultimately advancing the promise of IoT technology
in the modern world.
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