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Abstract: The vitamin D receptor (VDR), a member of the nuclear receptor superfamily of transcrip-
tional regulators, is crucial to calcitriol signalling. VDR is regulated by genetic and environmental
factors and it is hypothesised that the response to vitamin D supplementation could be modulated
by genetic variants in the VDR gene. The best studied polymorphisms in the VDR gene are Apal
(rs7975232), BsmI (rs1544410), Taql (rs731236) and Fokl (rs10735810). We conducted a systematic re-
view and meta-analysis to evaluate the response to vitamin D supplementation according to the BsmI,
TaqI, ApaI and FokI polymorphisms. We included studies that analysed the relationship between
the response to vitamin D supplementation and the genotypic distribution of these polymorphisms.
We included eight studies that enrolled 1038 subjects. The results showed no significant association
with the BsmI and ApaI polymorphisms (p = 0.081 and p = 0.63) and that the variant allele (Tt+tt)
of the TaqI polymorphism and the FF genotype of the FokI variant were associated with a better
response to vitamin D supplementation (p = 0.02 and p < 0.001). In conclusion, the TaqI and FokI
polymorphisms could play a role in the modulation of the response to vitamin D supplementation, as
they are associated with a better response to supplementation.

Keywords: vitamin D receptor; VDR; vitamin D; polymorphisms; TaqI; FokI; vitamin D supplementation

1. Introduction

The vitamin D receptor (VDR), a member of the nuclear receptor superfamily of
transcriptional regulators, plays a crucial role in calcitriol or 1-alfa,25-dihidroxicolecalciferol
(1α,25(OH)2D) signalling. VDR is activated by binding with 1α,25(OH)2D, which forms
a heterodimer with the retinoid X receptor (RXR). The 1α,25(OH)2D-VDR-RXR complex
migrates to the nucleus to regulate the transcription of genes involved in vitamin D effects
including phosphorous and calcium metabolism, cell proliferation and the control of innate
and adaptive immunity [1–3].

The VDR gene is located on chromosome 12 (12q13.11) and more than 900 allelic
variants in the VDR locus have been reported. The best studied VDR gene polymorphisms
are Apal (rs7975232), BsmI (rs1544410), Taql (rs731236) and Fokl (rs10735810). ApaI, TaqI
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and BsmI are silent genetic variants that increase mRNA stability. The FokI polymorphism
is located on exon 2 and results in a protein shortened by three amino acids [4–6]. These ge-
netic variants have been associated with a predisposition to chronic diseases such as type 2
diabetes, cancer, autoimmune diseases, cardiovascular alterations, rheumatic arthritis and
metabolic bone diseases [7–10].

VDR regulation is determined by genetic and environmental factors [11]. The principal
environmental factors associated with VDR regulation are diet, exposure to sunlight,
infections and pollution [12–15]. It has been postulated that these environmental factors
could modify vitamin D levels which regulate the receptor. The mechanism is not clearly
understood but it is hypothesised that it may be through epigenetic mechanisms [16].
Other factors involved in VDR regulation are the intake of the vitamin D precursor and
the production and activity of the ligand. Genetic factors could modulate the influence
of environmental factors on VDR regulation [11]. In this scenario, it has been reported
that the response to vitamin D supplementation differs widely between individuals and
one hypothesis is that genetic variants in the VDR gene are important in the response
to vitamin D supplementation. The polymorphisms in the VDR gene could modify the
VDR activity and therefore could be the explanation for the different response to vitamin
D supplementation [4–6,17]. Various authors have examined how genetic variants in the
VDR gene are associated with the response to vitamin D supplementation, and the many
genetic association studies show contradictory results [18–21]. Therefore, our objective
was to conduct a systematic review and meta-analysis to evaluate the response to vitamin
D supplementation according to the BsmI, TaqI, ApaI and FokI polymorphisms in the
VDR gene.

2. Material and Methods
2.1. Inclusion Criteria and Search Strategy

To analyse the influence of VDR genetic variants on the response to vitamin D sup-
plementation, studies including serum vitamin D levels before and after supplementation
according to the genetic distribution of the BsmI, TaqI, ApaI and FokI VDR polymorphisms
were considered eligible for inclusion.

This systematic review and meta-analysis were performed in accordance with the
PRISMA guidelines [22] (Supplementary Material Table S1). We included studies evaluating
the response to vitamin D supplementation according to genetic variants in the VDR gene.
To identify eligible studies, we conducted a computer-based search in the PubMed, Web of
Science, Scopus and Embase electronic databases up to November 2021. Potentially relevant
articles were searched for using the following terms in combination with Medical Subject
Headings (MeSH) terms and text words: “Vitamin D receptor”, “VDR”, “BsmI”, “TaqI”,
“ApaI”, “FokI”, “polymorphism”, “mutations”, “variants”, “cholecalciferol”, “vitamin
D”, “supplementation” and “vitamin D supplementation”. No language restrictions were
applied. The references of selected articles were scanned to identify additional relevant
articles. The MedLine option “related articles” and review articles on the topic were also
used to supplement the search.

2.2. Data Extraction

Bibliographic research and data extraction were conducted independently by three
investigators (RUM, DDLR and JMFG). Differences were resolved by consensus with
the senior author (JLPC). We extracted the authors names, the publication year, demo-
graphic information (age and sex), the follow-up time after vitamin D supplementation
and serum vitamin D levels before and after supplementation according to the VDR
gene polymorphisms.

2.3. Statistical Analysis

Independent meta-analyses were carried out to compare baseline and post-supplementation
serum vitamin D levels according to the genetic distribution of the VDR polymorphisms
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included. Sub-analyses by age and sex were also carried out. Meta-analysis was only
carried out when ≥3 studies were available. We analysed all polymorphisms under a
dominant model for the minor alleles.

As previously described [23–25], meta-analyses were carried out using RevMan 5.0
software [26]. The difference between baseline and post-supplementation status and their
95% confidence interval (CI) were estimated for each study. Random-effects model was
used to calculate the p-values (DerSimonian and Laird method). A p-value < 0.05 was
considered statistically significant. To analyse the heterogeneity of the studies we applied
Cochran’s Q-statistic (p < 0.10 indicated heterogeneity across studies). Inconsistency in the
meta-analysis was estimated using the I2 statistic and this represented the percentage of the
observed between-study variability due to heterogeneity. The following cut-off points were
applied: (I2 = 0–25%, no heterogeneity; I2 = 25–50%, moderate heterogeneity; I2 = 50–75%,
large heterogeneity; I2 = 75–100%, extreme heterogeneity). To assess publication bias,
Begger’s funnel plot was examined based on visual inspection. Asymmetry suggested
publication bias. Finally, sensitivity analyses to examine the effect of excluding individual
studies were carried out.

3. Results
3.1. Identification and Selection of Relevant Studies

Figure 1 shows the flow chart of the studies selected for inclusion in the meta-analysis.
We initially identified 215 candidate articles for inclusion. After removing duplicates, the
abstracts of 131 articles were reviewed and 103 were excluded. Thus, a total of 28 full text
studies were assessed for eligibility. Of these, 20 articles were excluded because they did not
contain the necessary information to carry out the meta-analysis (Supplementary Material
Table S2). Therefore, eight studies that fulfilled the inclusion criteria were finally included
in the meta-analysis [20,27–33]. The response to vitamin D supplementation according to
the BsmI polymorphism in the VDR gene was analysed in six studies [20,27–30,32]. Five
studies analysed the vitamin D response according to the genotypic distribution of the TaqI
genetic variant [27–30,32]. The influence of the ApaI polymorphism was studied in four
articles [27,29,30,32]. Finally, the influence of the FokI polymorphism in the response to
vitamin D supplementation was analysed in five studies [27,29–31,33].
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3.2. Study Characteristics

The studies included in the meta-analysis enrolled 1038 subjects. Detailed demo-
graphic characteristics are shown in Table 1. The mean age of the subjects included
was 36.1 (10.2) years with a range of 10 to 78 years. Two studies included subjects
aged <18 years [28,33] and one study only specified that subjects were aged >18 years [27].
There was a higher prevalence of women than men (77.8% vs. 8.6%). One article did
not report the sex of the subjects [31]. The mean follow-up time after vitamin D supple-
mentation was 7.4 (4.9) months. Baseline and post-supplementation serum vitamin D
levels according to the BsmI, TaqI, ApaI and FokI polymorphisms in the VDR gene are
summarized in Table 2. In the case of BsmI polymorphism, two studies associated the
variant genotype with better response to vitamin D supplementation [27,30], two studies
with worse response [20,32] and two studies did not show statistically significant associa-
tion [28,29]. Five studies statistically associated the variant genotype of TaqI polymorphism
with response to vitamin D supplementation [27–30,32]. Two studies associated the geno-
typic distribution of ApaI polymorphism with the response to supplementation [29,32].
For the FokI polymorphism, four articles showed association with response to vitamin D
supplementation [27,30,31,33]. All studies used genomic DNA extracted from nucleated
peripheral blood cells, and genotyping was performed using polymerase chain reaction-
restriction fragment length polymorphism (PCR-RFLP).

Table 1. Characteristics of the studies included in the meta-analysis.

Authors, Year N
Age

[Years (SD)]
Gender [n (%)]

Country Vitamin D
Dose

Follow-Up
TimeWomen Men

Graafmans et al., 1997 81 78 (5) 81 (100%) 0 (0%) Netherlands 400 IU/24 h 12 months

Arabi et al., 2009 167 10 to 17 167 (100%) 0 (0%) Lebanon 1100 IU/24 h 12 months

Neyestani et al., 2013 140 29 to 67 - - Iran 1000 IU/24 h 3 months

Sanwalka et al., 2015 102 11.2 (0.5) 102 (100%) 0 (0%) India 333 IU/24 h 12 months

Al-Daghri et al., 2017 199 >18 114 (57.2%) 90 (42.8%) Saudi Arabia 2000 IU/24 h 12 months

Mohseni et al., 2018 26 47.7 (8.0) 26 (100%) 0 (0%) Iran 7000 IU/24 h 2 months

Pérez-Alonso
et al., 2019 142 55 (4) 142 (100%) 0 (0%) Spain 800 IU/24 h 3 months

Kazemian et al., 2020 176 48.6 (8.7) 176 (100%) 0 (0%) Iran 4000 IU/24 h 3 months

SD: standard deviation, IU: international units.

3.3. Meta-Analysis of the Association between Gene Variants in the VDR Gene and the Response to
Vitamin D Supplementation

The results of the meta-analysis are shown in Figure 2. The results showed that
the BsmI genetic variant was not significantly associated with the response to vitamin D
supplementation (p = 0.81, Figure 2A). In the case of the TaqI polymorphism, the variant
allele (Tt+tt genotype) was significantly associated with a better response to vitamin
D supplementation (p = 0.02, Figure 2B). There was no significant association between
the ApaI variant and the response to vitamin D supplementation (p = 0.63, Figure 2C).
Finally, subjects carrying the FF genotype of the FokI polymorphism in the VDR gene
responded better to vitamin D supplementation than subjects with the variant allele (Ff+ff)
(p < 0.001, Figure 2D).

When a meta-analysis includes fewer than 10 articles, the power of the test for funnel
plot asymmetry is too low to distinguish the probability of real asymmetry [34]. Even so, we
examined publication bias by visual inspection using Begger’s funnel plot (Supplementary
Material Figure S1) and it appeared to be symmetrical, although there was some uncertainty
regarding the degree of symmetry.

The results were not modified by excluding articles that included only subjects
aged <18 years or only analysing articles including females. Sub-analyses on the basis
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of ethnicity could not be carried out because the selected articles did not include this
information. After sensitivity analysis, the exclusion of individual studies did not alter
the results.

Table 2. Baseline and post-supplementation vitamin D levels according to the BsmI, TaqI, ApaI and
FokI polymorphisms in the vitamin D receptor (VDR) gene.

Authors,
Year

Vitamin D Levels BEFORE Supplementation, ng/mL [Mean (SD)] Vitamin D Levels AFTER Supplementation, ng/mL [Mean (SD)]

rs1544410
(BsmI)

rs731236
(TaqI)

rs7975232
(ApaI)

rs10735810
(FokI)

rs1544410
(BsmI) rs731236 (TaqI) rs7975232

(ApaI)
rs10735810

(FokI)

BB Bd+dd TT Tt+tt AA Aa+aa FF Ff+ff BB Bd+dd TT Tt+tt AA Aa+aa FF Ff+ff

Graafmans
et al., 1997

26
(7.5)

29.2
(8.5) - - - - - - 30.1

(10.1)
25.75
(14.8) - - - - - -

Arabi
et al., 2009

14.3
(9.4)

14.25
(7.9)

14.0
(8.5)

13.9
(7.7) - - - - 27.64

(14.5)
26.11
(12.3)

23.39
(15.6)

29.64
(15.5) - - - -

Neyestani
et al., 2013 - - - - - - 38.1

(21.5)
37.9

(16.7) - - - - - - 73.6
(25)

65
(24.3)

Sanwalka
et al., 2015 - - - - - - 27.77

(3.1)
22.8

(2.04) - - - - - - 61.72
(6.2)

47.02
(8.9)

Al-Daghri
et al., 2017

31.1
(14)

34
(11.1)

31.9
(12.7)

33.8
(11.6)

35.1
(9.5)

33.3
(12.4)

33
(12.4)

34.8
(11.1)

50.1
(14.7)

55.6
(17.3)

51.2
(13.6)

55.4
(17.8)

56.2
(13.3)

54
(18.2)

57.4
(17.3)

47.9
(13.8)

Mohseni
et al., 2018

9.0
(1.4)

12.75
(1.4)

16.5
(4.6)

12.2
(1.5)

13.6
(1.3)

13.6
(2.7)

13.0
(1.0)

11.2
(1.4)

11.0
(1.4)

16.7
(4.3)

11.5
(1.2)

14.6
(1.5)

14.8
(3.2)

14.6
(3.1)

28.0
(12)

15.3
(3.1)

Pérez-
Alonso

et al., 2019

21
(10)

24.5
(9)

25
(9)

23
(9.5)

23
(10) 24 (9) - - 28 (9) 30.5

(10) 31 (8) 30 (9) 29
(9.5)

31.1
(9.5) - -

Kazemian
et al., 2020

30.2
(11.4)

41.7
(16.9)

31.8
(10.4)

37.4
(11.3)

40.9
(14.2)

31.35
(11.4)

34.4
(12.4)

30.8
(9.4)

99.3
(34)

131.2
(29)

105.3
(31.5)

118.9
(29.4)

111
(21.4)

98.3
(23)

114.9
(34)

107.8
(23)

SD: standard deviation.
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Figure 2. Meta-analysis of the association between gene variants in the vitamin D receptor (VDR) gene
and the response to vitamin D supplementation. (A) Association between the BsmI polymorphism
and the response to vitamin D supplementation. Test for overall effect: Z = 0.24 (p = 0.81). Test for
heterogeneity: χ2 = 6.31 (p < 0.001), I2 = 9.4%. (B) Association between the TaqI polymorphism
and the response to vitamin D supplementation. Test for overall effect: Z = 2.30 (p = 0.02). Test for
heterogeneity: χ2 = 19.47 (p < 0.001), I2 = 10%. (C) Association between the ApaI polymorphism
and the response to vitamin D supplementation. Test for overall effect: Z = 0.48 (p = 0.63). Test for
heterogeneity: χ2 = 1.24 (p = 0.004), I2 = 7.7%. (D) Association between the FokI polymorphism
and the response to vitamin D supplementation. Test for overall effect: Z = 9.39 (p < 0.001). Test for
heterogeneity: χ2 = 2.47 (p = 0.04), I2 = 5.9%.

4. Discussion

The relationship between genetic variants in the VDR gene and the response to vitamin
D supplementation remains unclear. Thus, we carried out a systematic review and meta-
analysis to evaluate the response to supplementation according to the genotype distribution
of the BsmI, TaqI, ApaI and FokI polymorphisms in the VDR gene. The results showed
that the variant allele of the TaqI polymorphism and the FF genotype of the FokI variant
were associated with a better response to vitamin D supplementation. The BsmI and ApaI
polymorphisms were not associated with the response to vitamin D supplementation.

Calcitriol signalling is crucial in bone metabolism as it is involved in calcium absorp-
tion, parathormone secretion and, therefore, bone resorption and cellular differentiation.
Vitamin D deficiency has been associated with bone metabolism alterations [35–37]. There-
fore, vitamin D intake as a preventive nutritional treatment of osteoporosis plays an
important role in improving health status [38,39], but the efficacy of supplementation varies
widely between subjects [18–20]. One explanatory hypothesis is that genetic variants in
VDR could modulate the response to vitamin D supplementation. Our results showed
that carrying the variant allele of the TaqI polymorphism was associated with a better
response to vitamin D supplementation. TaqI is a silent polymorphism located in the
3´ VDR gene region and has been associated with an increase in mRNA stability [4–6].
A previous meta-analysis associated the TaqI genetic variant with the risk of bone frac-
ture [10]. This may be in line with our results, as the TaqI polymorphism may modify the
response to vitamin D supplementation and thus could modify the risk of bone fracture.
However, other factors besides vitamin D levels are involved in the susceptibility to bone
fracture [40]. Our meta-analysis also associated the FF genotype of the FokI polymorphism
with a better response to vitamin D supplementation. The FokI polymorphism is located
on exon 2 and the F allele has been associated with the translation of a more active pro-
tein [17]. The greater activity of VDR could be associated with a better response to vitamin
D supplementation. In addition, the F allele of the FokI genetic variant has also been
associated with better calcium absorption, higher bone mineral density and a reduced risk
of vertebral bone fractures [41–44]. Therefore, it seems clear that the F allele of the FokI
polymorphism is associated with greater VDR activity, improving the response to vitamin
D and calcium supplementation and being associated with the risk of bone fracture. Finally,
we also performed sub analysis by age and sex due to it having been reported that vitamin
D metabolism is affected by these factors [45,46]. Our results were not modified when
analysing according to age and gender. In this sense, we hypothesise that differences in
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vitamin D absorption caused by sex and age are probably more notable in subjects with the
same genotype, and as our sample is very heterogeneous we do not observe differences.

This study had some limitations. Firstly, a general limitation of meta-analyses of ge-
netic association studies—contradictory results and heterogeneity in the studies included—is
quite common and reflects the true genetic heterogeneity of the different samples or hidden
stratification of the population. Only a small number of studies were eligible for inclusion
in our study and there was a lack of information in some, so they could not be included
in the meta-analysis. Furthermore, several of the studies had low sample sizes with wide
variations. Finally, the exposure to sunlight is one of the environmental factors which is
crucial in VDR regulation [11]. Thus, it could have been interesting to analyse the results
obtained as a function of sunlight exposure, but this could not be done because only one in-
cluded paper reported this information [32]. Even with these limitations, this meta-analysis
contributes significantly to our understanding the crucial role of VDR gene polymorphisms
in the modulation of the vitamin D supplementation response.

5. Conclusions

In conclusion, this meta-analysis advances our current understating of how VDR gene
polymorphisms influence the response to vitamin D supplementation, providing moderate
evidence that the variant allele of the TaqI polymorphism and the FF genotype of the FokI
genetic variant were associated with a better response to vitamin D supplementation. Fur-
ther research with a homogeneous design should be carried out to improve understanding
of the role of VDR gene polymorphisms in the modulation of the response to vitamin D
supplementation, and its possible clinical value.

Supplementary Materials: The following supporting information can be downloaded at: https:
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