
Received January 21, 2021, accepted February 7, 2021, date of publication March 2, 2021, date of current version March 15, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3063628

Operators for Data Redistribution: Applications
to the STL Library and RayTracing Algorithm
ANA MORETON-FERNANDEZ1, YURI TORRES DE LA SIERRA2,
ARTURO GONZALEZ-ESCRIBANO 2, AND DIEGO R. LLANOS 2, (Senior Member, IEEE)
1Satlantis, University Science Park, 48940 Bilbao, Spain
2Departamento de Informática, Universidad de Valladolid, E.T.S. Ingeniería Informática, Campus Miguel Delibes s/n, 47011 Valladolid, Spain

Corresponding author: Arturo Gonzalez-Escribano (arturo@infor.uva.es)

This work was supported in part by the Spanish Ministerio de Economía, Industria y Competitividad and by the European Regional
Development Fund (ERDF) program of the European Union, PCAS Project, under Grant TIN2017-88614-R, in part by the Junta de
Castilla y Leon - FEDER Grants, PROPHET and PROPHET-2 Projects under Grant VA082P17 and Grant VA226P20, in part by the
Salvador de Madariaga/Fulbright Scholar Grant PRX17/00674, and in part by the HPC-Europa3 supported by the European Commission
H2020 Research & Innovation under Grant GA #730897.

ABSTRACT In distributed-memory systems, data redistributions are operations that change the ownership
and location of a selected subset of a data structure at runtime. They allow the improvement of the
performance of parallel algorithmswhich operate on changing or partial domains, aiming to create a balanced
workload among the active processes. To manually redistribute data is a cumbersome and error-prone task.
In this paper, we present a method based on four combinable operators to redistribute partial domains
selected by the programmer at runtime in an efficient and simple way. They abstract to the programmer
the data-redistribution implementation details, such as the new mapping, relocation, and communication of
the selected data. We also present the application of the proposed operators to a RayTracing application
and to a significant part of STL (C++ Standard Template Library). Our experimental results show that our
approach automatically generates a good load balance, which leads to performance improvements for generic
data-distribution policies. It does not introduce significant performance overheads compared with tailored
data redistributions directly programmed using MPI (Message Passing Interface), while it greatly reduces
the code development effort.

INDEX TERMS Parallel programming, distributed memory, data redistributions, RayTracing, STL library.

I. INTRODUCTION
The message-passing paradigm is a programming method
for distributed-memory systems that leads to highly efficient
programs in terms of performance. However, the programmer
still has to deal with many decisions which are not related
to the parallel algorithms, but to implementation issues, such
as partition and locality vs. synchronization/communication
costs, scheduling details, etc.

Many distributed-memory programs use static-scheduling
approaches, where bulk pieces of data structures are mapped
to a fixed number of processes, aiming to maintain locality
during several computation and data communication stages.
The program uses data-partition policies to map bulk parts of
a given data structure to a set of distributed processes. These
policies determine the ownership of each data element, and

The associate editor coordinating the review of this manuscript and

approving it for publication was Asad Waqar Malik .

each process has a different part of the data structure allocated
in its memory space.

Many parallel algorithms and programs need to dynam-
ically change the subset of data elements on which they
work across different computation stages or iterations. Exam-
ples include adaptive grid computations (see e.g. [1], [2]),
image tracking algorithms [3], or simulations of N-body
interactions with hierarchical or recursive partitions [4]. In
these situations, data redistribution is needed. Given a data
structure already distributed across processes with different
memory spaces, a data-redistribution operator applies the
same or another data-distribution policy to a selected subset
of the data structure domain, relocating only the selected data
elements. Data redistributions also allow the improvement
of performance by creating a balanced workload among the
active processes.

Data redistributions have been widely studied, mainly in
the context of data-parallel languages and parallel compilers,
such as in High Performance Fortran [5], [6]. The algorithms

VOLUME 9, 2021 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 38557

https://orcid.org/0000-0003-1309-9321
https://orcid.org/0000-0001-6240-9109
https://orcid.org/0000-0003-3804-997X


A. Moreton-Fernandez et al.: Operators for Data Redistribution: Applications to the STL Library and RayTracing Algorithm

developed in this context are dependent on specific data
partition policies, chosen at compile time, and they are in
general designed to derive homogeneous sizes for dense data.
However, there are still challenges to solve, such as how to
generalize their application and combination at runtime in
dynamically evolving applications.

The manual programming of data-redistribution tech-
niques, or the adaptation of known ones to a specific prob-
lem, is a complicated and error-prone task. The programmer
has to take into account many details, such as the partition
policy used to initially distribute the data among the pro-
cesses, the partition policy to be used after redistribution,
the mechanism used to select the data to be relocated, the
number of active processes, the number of array dimensions,
the memory layouts, etc. The final code needs to be tailored
to the specific problem, to the data-distribution policies and
to the chosen data-redistribution algorithm. Different options
for homogeneous or heterogeneous partitions should also
be taken into account. Some decisions may even depend
on run-time information, such as the execution platform
features.

In this paper, we present a common framework to apply
and combine four operators to efficiently redistribute selected
data at runtime, making the data partition, relocation, and data
movement transparent to the programmer. These operators
are applied on an array already divided across distributed
processes, and the result is another array containing all or part
of the original array elements relocated across the available
processes. The elements to be redistributed may be selected
by bounding boxes of the array domains, or by masks to
select sparse data. The data can be selectively mapped to
one or more arrays, and the redistributions can be reversed
to remap data to their original locations after a computation.
These operators can be freely combined, even in a recur-
sive algorithm. The implementation core uses only mapping
information obtained at run-time, and does not depend on the
particular distribution policies chosen. It supports both homo-
geneous and heterogeneous partitions with different arbitrary
domain sizes per process.

We implement the four operators as an extension of an
MPI-based library, named Hitmap [7]. Hitmap provides sev-
eral features which simplify the data selection on an index
domain, and the construction of reusable communication
patterns. To show the applicability of our proposal, in this
paper, we also present and test the RayTracing algorithm [8],
[9], and a significant part of the C++ STL library [10],
programmed using the proposed library implementation.

In summary, our main contributions are the following:
• A model for data redistributions at runtime on
distributed-memory systems, including recursive or
irregular-array-based algorithms, based on an abstract,
generic method that applies and combines four operators
that do not depend on the chosen partition policies.

• A model for data redistributions at runtime on
distributed-memory systems, including recursive or
irregular algorithms, based on an abstract and generic

method that applies and combines four operators that do
not depend on the chosen partition policies.

• The implementation of this framework and operators in
an MPI-based library, also including a generic run-time
core functionality and new supporting communication
structures.

• The application of the operators in a real-world appli-
cation (RayTracing), and in fifty two algorithms of the
C++ STL library, also known as STL, which is the
foundation for many other complex algorithms.

The results of an experimental study, using the STL rou-
tines and the RayTracing algorithm, show that our proposal
achieves a good performance and scalability, while the pro-
gramming effort is greatly reduced compared to program-
ming directly with MPI.

The rest of the paper is organized as follows: Section 2 dis-
cusses some related work. Section 3 shows two motivat-
ing examples. Section 4 presents Hitmap, the library that
we used to implement our proposal. Section 5 shows the
implementation of the proposed operations using Hitmap.
Section 6 shows an experimental evaluation. Finally,
Section 7 presents the conclusions and future work.

II. RELATED WORK
In distributed-memory programming, there are two main
design approaches: The first one is to statically divide the
work in as many parts as cooperating processors; and the sec-
ond one is to create a set of tasks that are dynamically
assigned to the available workers. Our work focuses on the
first approach, that is, static-scheduled distributed SPMDpro-
grams. Data-redistribution techniques for load balance have
been studied in the context of data-parallel languages and par-
allel compilers, such as High Performance Fortran [5], [6].
However, the algorithms developed in this context are depen-
dent on specific data partition policies, fixed at compile time,
and in general designed to derive homogeneous sizes for
dense arrays. Instead of relying on compile-time solutions,
our work offers a data redistribution approach based on the
use of four combinable operators to generate load balance
when needed at runtime. In our work, the partition policies
are functional parameters received by the operators and used
at runtime to calculate the redistribution. Our system sup-
ports homogeneous and heterogeneous policies, and a mix
of combinable techniques that support both dense and sparse
selections.

Regarding task-based parallelism, many task-based paral-
lel programming languages and models have arisen [11]–[14]
for both shared- and distributed-memory systems, with the
goal of abstracting to the programmer decisions about load-
balancing, granularity, etc. All these programming models
based on task parallelism generate performance penalties,
especially in distributed-memory systems. For example, these
penalties may be generated by task creation and destruction,
the management of distributed queues, or the synchroniza-
tion and load balancing mechanisms. In task-based data-flow

38558 VOLUME 9, 2021



A. Moreton-Fernandez et al.: Operators for Data Redistribution: Applications to the STL Library and RayTracing Algorithm

approaches, such as the distributed-memory extension for
FastFlow [15], task construction implies a data partition and a
dynamic task control that leads to a balanced load. However,
this dynamic scheduling prevents the exploitation of affinities
and data locality across tasks. Some of these problems can
be alleviated by using runtime data redistribution instead,
by transferring data ownership on demand without launching
additional tasks.

Regarding existent tools that include some form of data
redistribution, there are many works that provide external
libraries which provide distributed data structures with a
global view. One example is DASH [16], [17], a realiza-
tion of the PGAS (partitioned global address space) model
in the form of a C++ template library. In PGAS lan-
guages, access to remote elements is possible, but assuming a
higher latency cost. PGAS languages in general benefit from
explicit data-redistribution techniques to automatically group
communications and reduce remote access latencies. Some
PGAS languages provide a limited set of data-redistribution
operations which are again based on specific homogeneous
data-partition techniques. Our work generalizes this kind of
data-redistribution operations, supporting both homogeneous
and heterogeneous domains and targeting a wider range of
applications.

Our work uses the STL library as an example to show the
flexibility of our approach. The STL library has been one of
the most parallelized and studied libraries in the literature.
For example, the work in [18] presents an implementation
for multicore architectures of the STL library using Cilk++.
Works such as [19], [20] developed parallel versions of this
library for shared- and distributed-memory systems using
OpenMP andMPI respectively. These approaches only paral-
lelize some selected functions of this librarywith independent
and tailored solutions. Our work efficiently implements a
wider range of STL routines with our generic framework,
systematically applying our four operators. This also allows
the transparent redistribution of data across consecutive calls
to different STL routines.

III. MOTIVATING EXAMPLES
Data redistributions help to improve performance when the
computation is performed in an unbalanced way according to
an initial data distribution. Their use is convenient when the
overhead produced by the communications needed to perform
the data redistribution is expected to be less than the potential
performance gain obtained by a better load balance. There are
also algorithms based on recursive, divide & conquer, or sim-
ilar paradigms, for example QuickSort, which always imply
dynamic subselections of array structures. Thus, data redis-
tributions are necessary when these algorithms are applied on
previously-distributed arrays.

This section presents some motivating examples to
show the complications of programming them in a plain
message-passing model, and the advantages of having meth-
ods that systematically encapsulate low-level decisions,
using partition policies as functional parameters. Our first

FIGURE 1. Motivating example 1: Data redistribution of a selected range
of elements in a 1-dimensional array.

example implements a simple redistribution that works on
1-dimensional arrays. It uses classical block-partition policies
that produce homogeneous sizes, and we assume sizes which
are perfect multiples of the number of processes. The second
example discusses some issues associated to arrays with two
or more dimensions. Finally, we discuss the complications
associated to different partition policies or different partition
sizes on each process.

We focus the discussion on a message-passing or dis-
tributed SPMD (single-program-multiple-data) programming
model. In this model, the processes have disjoint memory
spaces, and they communicate data exclusively by explicit
message-passing operations. Data from one process need to
be communicated and copied into the local memory space of
other processes that want to access them.

A. SIMPLE REDISTRIBUTION ON 1D-ARRAYS
Our first motivating approach is a data redistribution of a
selected range of elements in a 1-dimensional array namedM
(see Figure 1). This situation arises in real applications, such
as simulations of computational fluid dynamics. The idea
is to recalculate only values in a significant neighborhood
surrounding a particular element, for example to refine the
results around a point of the array that experiments a sudden
and significant change, without recalculating the values of the
whole array. In our example, this neighborhood includes half
of the elements of the array.

In this figure, we have an original array M partitioned
across four processors. It is necessary to remap 50% of the
elements evenly to the four processes. Different shades repre-
sent elements mapped to different processes. The figure aims
to show the different possible situations that can arise. In our
example, the data in the local subdomain of process 0 should
not be redistributed; processes 1 and 3 should redistribute part
of the data in their local subdomains; and process 2 should
redistribute all of the data in its local subdomain. As it is
shown in the figure, processes 2 and 3 should detect which
part of their local subdomains correspond to subdomains
mapped to different processes in the output structure. They
need to split their data into two or three different Send()
operations directed to different processes, or to themselves,
in order to copy the data in the correct position of the new
data structure. For example, processor 2 should move part
of its data to the start of the local part of the new allocated
structure, filling up the rest of it with data coming from

VOLUME 9, 2021 38559



A. Moreton-Fernandez et al.: Operators for Data Redistribution: Applications to the STL Library and RayTracing Algorithm

FIGURE 2. Simplified distributed message-passing algorithm to perform
the data redistribution depicted in Figure 1.

processor 3. All processes receive an even part of the selected
data, but different sized subranges of its portion may come
from different processes (see processors 0 and 2), implying
different Recv() operations.

A simplified parallel algorithm of our first motivating
example, using a message-passing approach, is presented in
Figure 2. This algorithm starts with an array of an arbitrary
base type A<type>, distributed in even parts across the avail-
able processes. Each processor initializes its local part in
parallel. Then, only half of the elements, centered around a
given position pos are selected to be updated. The output
will be the distributed array M_out containing the updated
elements. For simplicity, in this example, we assume that size
and size/2 are divisible by P, and that the data were originally
mapped assigning size/P elements with contiguous indexes
to each process.

For a 1-dimensional array with contiguous blocks of
indexes, all these Send() and Recv() communications can
be programmed with a single MPI collective operation,
MPI_Alltoallv(). Displacements and element counts,

FIGURE 3. The same algorithm of Figure 2, programmed using the
proposed ArrayRemapRange() operator.

for both Send() and Recv() operations, may be different for
each processor pair and should be calculated for each process
by local and remote range intersections. For code clarity,
to keep generality, and to avoid using extra data structures
to store counts and displacements, the algorithm is presented
using classical point-to-point Send/Recv operations.

The stages of the algorithm are marked in the figure with
comments starting with two star symbols. In stage 1, each
process initializes its local part of the input vector, which is
defined by the index of the first element assigned to the local
process, named local.begin, and the index of the last one,
named local.end . The type Range represents a contiguous
subdomain of indexes expressed as a pair of natural numbers
〈begin, end〉. In stage 2, the program calculates the size of
the neighborhood and the range of elements that should be
updated (first, last). Stage 3 redistributes the selected range
of elements to be updated in a balanced output array, evenly
distributed, among the available processes. Each process
calculates which part of its original local range of indexes
should bemoved to another process, and which parts it should
receive. Point-to-point communications are issued to do the
data movements. Finally, in stage 4, each process updates the
local part of its new data structure.

The data redistribution (stage 3) could be skipped, but it
is desirable to balance the computational load. For example,
if we try to redistribute one tenth of a vector of 16 000 ele-
ments with P = 4, but without balancing the data redistribu-
tion, the computation of the 1 600 elements will be performed
by only one or at most two processes, not exploiting all the
available nodes. Balancing the load, 400 of these elements
will be assigned to each one of the 4 processors.

Figure 3 shows an alternative implementation that
uses one of the operators proposed in this work,
ArrayRemapRange(), which performs a transparent data
redistribution operation, while the rest of the code uses two
mapping functions of type L(id, size,P) that returns the range
of indexes to be mapped to process id . Both the operator
and the mapping functions will be described in depth in the

38560 VOLUME 9, 2021



A. Moreton-Fernandez et al.: Operators for Data Redistribution: Applications to the STL Library and RayTracing Algorithm

FIGURE 4. Motivating example 2: Data redistribution of a selected range
of elements in a 2-dimensional array, mapped to 3× 4 processors.
Numbers inside the shaded boxes indicate to/from which processor the
information is transferred.

following section. As it is shown in Figure 3, the program-
ming effort is highly reduced with respect to the message-
passing implementation shown in Figure 2. The programmer
does not have to deal with all the necessary communications
details to balance the computational load. Moreover, this
operator works for generic array sizes, while the complexity
of the original message-passing code will increase even more
if we simply decide to consider sizes of arrays and selections
which are not divisible by the number of processes.

B. REDISTRIBUTION ON 2D-ARRAYS
For this second example, we consider a problem in two
dimensions. The processes are organized in a mesh, and the
original array is mapped to them using non-overlapping rect-
angular shapes of indexes, as shown in Figure 4. The selected
range of the input matrix elements to be redistributed is
determined by an arbitrary 2-dimensional point indicating the
left-top corner, and a 2-dimensional span (height and length).
This scheme can be used, for example, in image processing
algorithms that do object tracking. For simplicity, we again
consider only sizes that always lead to exact divisions when
the partitions are applied.

In this case, some processes should send 2-dimensional
subranges of data to different processes. In most cases, the
2-dimensional subranges select a vertical stripe of rows,
instead of full rows (all the subranges in the example present
this situation). Thus, the selected bands of different rows
are not contiguous in memory. This redistribution cannot
be directly solved with a single collective communication
primitive. The algorithm depicted in Figure 5 shows a simple
approach in which one Send/Recv operation is calculated
and issued for each piece of a row. See lines 47–50, and
57–60 of the code. However, this scheme leads to multiple
communications between the same pair of processes. This
may derive in poor communication efficiency, especially
when there is only one or there are very few elements selected
on each row. A slightly more complicated but better alter-
native is to traverse the selected domain or rows calculating
the local-memory locations of each row band. The sender can
pack the pieces of memory in a buffer before doing a single
Send() operation. The receiver receives a single message and
calculates the local-memory locations of each row band to
unpack the portions. Libraries such as MPI provide methods

FIGURE 5. Simplified distributed message-passing algorithm to perform
the 2D data redistribution depicted in Figure 4.

to pack/unpack contiguous pieces of data elements in a buffer
that can be directly communicated. Another approach is to
calculate custom derived data-types for the communication
across each pair of processes.

Nevertheless, there are situations where the rows can
be contiguous in memory in the sender or the receiver.
In Figure 4, consider for example the square pieces of data
that are moved from process 2 to 1, or from process 6 to 5.
In the sender, the row stripes are non-contiguous in memory,
but in the receiver, the data completely fills the local part

VOLUME 9, 2021 38561



A. Moreton-Fernandez et al.: Operators for Data Redistribution: Applications to the STL Library and RayTracing Algorithm

FIGURE 6. The same algorithm of Figure 5, programmed using the
proposed ArrayRemapRange() operator.

of the target data structure. Thus, these row pieces will be
contiguous in the receiver local memory. Traversing the rows
doing a partial unpacking for each row is less efficient than
a single contiguous unmarshalled operation. The code should
take into account these situations by adding conditionals with
different behaviors. The number of situations in which data
are or are not contiguous across different dimensions are
countless.

More complicated situations that lead to more complex
codes also appear when the partition policies are different,
or when one of them is non-homogeneous. Different policies
are used when dealing with different computational power
on heterogeneous systems, or in cases where part of the data
needs more computational operations than the rest. All these
changes need to be reflected in the code, and in the marshal-
ing/unmarshalling procedures. The amount of possibilities is
huge, and the codes which are tailored and highly-efficient
for one situation are not the most appropriate for
others.

Figure 6 shows an alternative implementation that again
uses our ArrayRemapRange() operator, which performs
a transparent data redistribution operation, and the two map-
ping functions of type L(id, size,P), which returns the range
of indexes to be mapped to process id . It is important to
highlight (a) that this implementation is very similar to the
1-dimensional case depicted in Figure 3; (b) that the pro-
gramming effort has been even more reduced with respect to
the message-passing version; and (c) that our operators work
again with generic array sizes and ranges.

IV. HITMAP IN A NUTSHELL
The new operators have been implemented using
Hitmap [7], [21], an MPI-based library with many features

FIGURE 7. Hitmap library functionalities [22].

that are particularly appropriate for our proposal. In this
section, we briefly describe the Hitmap features that allow us
to implement the operators described in the previous section.

Hitmap is a library designed for hierarchical tiling and
mapping of dense and sparse arrays. Hitmap is based on a
distributed SPMD programming model, using abstractions
to declare data structures with a global view. It automates
the partition, mapping, and communication of tile and tile
hierarchies, while still delivering good performance.

In Hitmap, data-layout and load-balancing techniques are
independent modules that belong to a plug-in system. The
techniques are invoked from the code and applied at runtime
when needed, using internal information of the target-system
topology to distribute the data [22]. The programmer does
not need to reason in terms of the number of physical pro-
cessors. Instead, it uses highly abstract communication pat-
terns for the distributed tiles at any grain level. Thus, cod-
ing and debugging operations with entire data structures are
easy.

The Hitmap library supports functionalities to: (1) Gener-
ate a virtual topology structure; (2) map the data grids to the
different processors with chosen load-balancoing techniques;
(3) automatically determine inactive processors at any stage
of the computation; (4) identify the neighbor processors to
use in communications; and (5) build communication patterns
to be reused across algorithm iterations. These functionalities
are organized in three different categories: Tiling, Mapping,
and Communications. These categories are represented in
Figure 7.

Hitmap defines several concepts towrite parallel programs.
A shape represents the domain of the data used in the program
while a tile is the entity that keeps the actual elements. The
tiles are created using the shapes. In Hitmap, a topology
describes the structure of the available processes. A layout is
the entity that distributes the shapes onto a topology, dividing
the domain for each element of the topology. The concept
of communication represents data transmission between two
or more processes. Finally, a pattern groups together several
communications.

We describe now in more detail the Hitmap objects and
their usage. The proposed operators are built on top of these
objects. An example of a simple Hitmap program is shown
in Figure 8. A HitShape object represents a subspace of
domain indexes defined as an n-dimensional rectangular par-
allelotope. The limits on each dimension are represented with
a HitSig object, containing the range limits (begin, end),

38562 VOLUME 9, 2021



A. Moreton-Fernandez et al.: Operators for Data Redistribution: Applications to the STL Library and RayTracing Algorithm

FIGURE 8. Example of a simple Hitmap program that creates an array
distributed by contiguous blocks, and shifts data blocks once across
processes. The local block is sent to the next process and the remote
block from the previous process substitutes the local one.

and an optional stride. Multidimensional indexes, ranges, and
domains can be expressed using these abstractions.

A HitTile maps actual data elements to the index subspace
defined by a shape. New internally allocated tiles use a con-
tiguous block of memory to store data. Subsequent hierar-
chical subselections of a tile reference data of the ancestor
tile, using the signature information to locate and access data
efficiently. Tile subselections may also be allocated to their
own memory space.
HitTopology and HitLayout abstract classes are interfaces

for two different plug-in systems. These plug-in modules are
selected by the name of their constructor method. Topology
plug-ins implement simple functionalities to arrange physi-
cal processors in virtual topologies, with their own rules to
build neighborhood relationships. Layout plug-ins implement
methods to distribute a domain shape across the processors
of a virtual topology. The resulting Layout object contains
information about the local part of the domain, neighbor-
hood relationships, and methods to locate the remote sub-
domains. HitLayout objects can also be used to represent
the T functions used in the ArrayDivide and ArrayMerge
operators.

Finally, HitComm and HitPattern objects represent infor-
mation to synchronize or communicate data tiles among
processes. The class provides multiple constructor methods
to build different communication schemes based on point-
to-point or collective communications. The library is built
on top of the MPI communication library for portability
across different architectures. Hitmap internally exploits MPI
techniques that increase performance, such as MPI derived
data-types and asynchronous communications.

V. IMPLEMENTATION OF THE OPERATORS USING
HITMAP
In this section, we present the extensions developed inHitmap
to support the proposed framework for the four operators.

A. SUPPORTING DATA REDISTRIBUTIONS AT HITMAP
RUNTIME LEVEL
We need to provide Hitmap with the necessary features to
develop the four operators. We introduce a new function
named localRange(Tile, Shape). It receives a distributed tile
structure, and a selection range in global coordinates. It
returns a hit_shape object representing the part of the input
range that is allocated in the local process. For example,
in Figure 9, the function localRange(M, [2:10]) returns, for
the process 0, the shape that selects its last two local elements,
and for process 2, the shape that contains its first three local
elements.

We also develop in Hitmap a generic redistribution com-
munication pattern constructor (hit_patRedistribute()), which
is the core of the redistribution operators. It receives two
already distributed arrays (which in Hitmap contain a refer-
ence to their respective layout functions L and L ′, originally
used to distribute their domains). The constructor simply tra-
verses the process-identifiers spacewith two loops. In the first
loop, we compute the intersections of the result of applying
L at the local process, with the result of applying L ′ at each
remote process, to calculate the data indexes to be sent. In the
sameway, the second loop computes the inverse intersections,
applying L ′ at the local process, and L at each remote process,
to calculate the data to be received. The representation of
multi-dimensional domains is always done in terms of Hit-
Shapes. The loops traverse the process identifiers cyclically,
starting at the local identifier plus 1; (myRank + 1) mod P.
This generates a skewed communication scheme, that helps
to reduce communication saturation bottlenecks in specific
processes. The library internally analyzes the dimensions and
memory layout registered in the meta-information of the tiles,
and builds hierarchical derived data-types to allow the MPI
implementation to perform marshalling/unmarshalling oper-
ations with the minimum number of contiguous data blocks.

We implemented the four operators as C macro-functions
in the Hitmap library. For the rest of the section, we represent
ranges by HitShape objects, independently of the number of
dimensions, and data structures by HitTile objects.

B. ArrayRemapRange()
The function prototype of this operator is:

ArrayRemapRange(tileIn, tileOut,
rangeIn, rangeOut, baseType);

where tileIn is the data structure to be redistributed; tileOut is
the output data structure with the selected data; rangeIn is the
range of data to be selected in tileIn; rangeOut is the range
that will contain the data in tileOut after the redistribution;
and baseType is the name of the native or structured type.

VOLUME 9, 2021 38563



A. Moreton-Fernandez et al.: Operators for Data Redistribution: Applications to the STL Library and RayTracing Algorithm

FIGURE 9. Data redistribution performed by the ArrayRemapRange
operator. In this case the call to the operator is
M_out = ArrayRemapRange(M, 〈2, 10〉, L).

This operator is used as the baseline in the development of
the rest of the operators, so we also describe its internal code,
shown in Figure 10. It first declares the necessary variables.
In the cases where the input array has been modified by
the programmer, including in the parts of the local domain
overlapped parts with other remote domains (such as halos
in Stencil computations), the operator reproduces the same
halos in the output array, by comparing the allocated domain
with the domain assigned by the mapping function (step 2).
The data moving to the halos is not included in the operator,
as it depends on the program stage in which the operator is
invoked.

After that, the program calculates and selects, from the
input array, the part of the selection range which is in the
local process (step 3). The last step creates and executes
the pattern containing the necessary communications. The
mapping functions used in the redistribution are those used to
create the data structures. They are represented by HitLayout
objects, and are kept as meta-data in its own HitTile data
structure.

C. ArrayRemapMask()
The function prototype of this operator is:

ArrayRemapMask(tileIn, tileOut, maskIn,
baseType);

where tileIn is the data structure to be redistributed; tileOut
is the output data structure with the selected data; maskIn
is the mask with the indexes of the data structure to be
selected in tileIn; and baseType is the base type of the data
structure.

Internally, this function code selects, for each process,
the data elements whose mask value is 1 in the local process.
In this case, to select the data, we generate a loop that tra-
verses the local domain, analyzing the mask to identify the
selected elements. It copies contiguously the selected data
elements in an auxiliary array with contiguous memory. After
that, a communication reduction is performed to share the
information about the number of elements to be copied for
each process. Finally, the redistribution is performed using
ranges, as in the first operator.

D. ArrayDivide()
The function prototype of this operator is:

ArrayDivide(grouping, tileIn, tileOut,
maskIn, baseType);

FIGURE 10. Internal code of the ArrayRemapRange operator along with
some auxiliary macro functions.

where grouping is a HitLayout object representing the
T function (recall the operator definition), which contains the
information of the number of natural values in themask; tileIn
is the data structure to be redistributed; tileOut is the output
data structure with the selected data; maskIn is the mask with
the indexes of the data structure to be selected in tileIn; and
baseType is the base type of the data structure.
The internal code creates a collection of arrays, where

each array stores the elements that belong to the same array,
using the same methodology as the ArrayRemapMask oper-
ator. However, this operator also stores the global index
domain of the original array in the meta-data of the data
structures. This last feature enables the use of theArrayMerge
operator.

E. ArrayMerge()
The function prototype of this operator is:

ArrayMerge(grouping, tilesIn, tileOut,
baseType);

where grouping is the HitLayout object representing the T
function, that contains the information of how to concatenate
the collection of input arrays; tilesIn is the collection of
arrays to be concatenated; tileOut is the output array; and
baseType is the base type of the data structure. The internal
code of this operator calls the Hitmap redistribution function
for each input array, relocating the data in their corresponding
ranges of the single output array. The ranges are calculated
using the meta-data with the information about the index
space on the original array, which was set by the ArrayDivide
operator.

38564 VOLUME 9, 2021



A. Moreton-Fernandez et al.: Operators for Data Redistribution: Applications to the STL Library and RayTracing Algorithm

TABLE 1. Summary of the implemented STL routines for one dimensional numeric arrays, for distributed-memory systems, using the new four operators.

VI. EXPERIMENTAL EVALUATION
We conducted several experimental studies to verify the effi-
ciency of the new codes that use the proposed operators,
in terms of runtime execution and development effort.

A. EXPERIMENTAL PLATFORM AND SETUP
For the performance studies, we executed the experiments
in CETA. This is a hybrid cluster that belongs to CIEMAT
and the Spanish government. The cluster nodes are connected
by Infiniband technology, and each one has two Intel Xeon
5520 CPUs at 2.27 GHz, with 4 cores each. Using 16 nodes
of the cluster, we exploit up to 128 computational units.
We have compiled the codes with the GCC v4.8.3 compiler,
using the optimization flag -O3. We used mpich3 v3.1.3 as
MPI implementation. We executed all the experiments ten
times, registering the average total execution times. We used
a static mapping policy, associating one MPI process to each
processing element. For all the routines and examples tested,
we always used a mapping policy of contiguous balanced
blocks, because of the homogeneous execution platform.

For the development effort comparison, we used four clas-
sical development effort metrics: COCOMO lines of code,
the number of tokens, McCabe’s cyclomatic complexity [23],
and the Halstead development effort [24]. The number of
tokens detected by the programming-language parser mea-
sures the code volume of C/C++ programs better than the
number of code lines. McCabe’s cyclomatic complexity is a
quantitative measure of the number of linearly independent
paths through a program’s source code. Finally, Halstead’s
development-effort metric is also a quantitative measure
based on the number of operators and operands in the source
code. They are related to the mental activity needed by a
programmer to develop the code, and to the amount of test
cases needed to check the program correctness. Low cyclo-
matic complexity and Halstead’s development effort indicate
codes which are simpler to develop and debug. These met-
rics are typically used in the assessment of software design
complexity.

B. APPLYING THE OPERATORS: CASE STUDIES
In order to validate our approach, we implement the following
case studies using the operators:

• STL Benchmarks: The STL Library is a well-known
supporting tool for developers [25] that includes many
useful algorithms. During the last few years, manyworks
have presented parallel versions of this library [19],
[20], [26], as well as new parallel programming models
that support the development or use of this library in
parallel [18].
We implement the routines summarized in Tab. 1 using
the operators. However, in this paper, we only show the
results of four specific routines. They cover the different
kinds of data redistribution that, together, can support all
the other implemented STL algorithms. The representa-
tive results can be extrapolated to the other STL routines
tested. The routines we choose are:
– for_each: This example updates a range of ele-

ments of an array. The program performs N oper-
ations for each element on the selected range
of the array, N being the array size. We use
the ArrayRemapRange operator. This kind of data
redistribution appears in most of the algorithms in
the STL.

– find: This routine searches the first position in a
range of an array that fits with a specified condi-
tion. It applies a function to each element before
a global reduction. This example also uses a data
redistribution that remaps a selected range of a dis-
tributed array. It is another example of the use of
the ArrayRemapRange operator, but continued with
a conditional and a reduction communication.

– unique_copy: This example copies the elements
of a range of an array to a second array, skipping
the consecutive duplicates. The size of the second
data structure contains the elements copied from the
first data structure. We use the ArrayRemapMask
operator to only select data elements that have to be
copied. Each process fills its assigned part of the
mask prior to the operator invocation, comparing
each element with its neighbor. In the experimental
study, we initialize 20% of the contiguous data ele-
ments with the same value. Thus, all these elements
except the first one are eliminated in the output
array.

VOLUME 9, 2021 38565



A. Moreton-Fernandez et al.: Operators for Data Redistribution: Applications to the STL Library and RayTracing Algorithm

FIGURE 11. Consecutive applications of the RayTracing algorithm on a moving sphere.

– quickSort: This example sorts the elements of
an array. To implement this algorithm in a
distributed-memory system, it is necessary to per-
form a sequence of recursive data redistributions.
We use the ArrayDivide and ArrayMerge operators
to divide andmerge the pivoted arrays at each recur-
sion level.

• RayTracing Algorithm: RayTracing is a technique to
develop an image from a 3D scene by trajectories
of light rays through pixels in a view plane [8], [9].
This technique produces a very high degree of photo-
realism. However, its high computational cost makes
its use prohibitive in real-time applications. RayTrac-
ing is an embarrassingly-parallel application, where a
scene-dependent workload partition could achieve huge
improvements on performance.
We use a sequence of applications of the RayTracing
algorithm on an object in movement. Figure 11 shows
the behavior of the study case. In the figure, the scene is
a sphere, where a shadow of this sphere is printed in each
step. In the first stage (Initial distribution), the image is
distributed among the active processes (16 in the figure)
using a 2D irregular partition policy by blocks based on
the computational power of the execution machines. For
this first distribution, there is no knowledge of the scene,
so the whole image is distributed. As we observe in the
example image, there are only four processes initially
involved in computing the RayTracing on the sphere.
The computation window is detected at each moment,
and a data redistribution is performed in order to balance
the workload, as we can see in the First and Last move-
ments of Figure 11. In order to avoid a data redistribution
at each movement, the computation window is bigger
than the sphere. Thus, the data redistribution is only
performed when the moving object arrives close to the
boundaries.
For this application, we develop a code based on the
sequential code of [27]. Our case study scene has a
sphere with a size of one eighth of the image size, andwe
execute a number of movements equal to a tenth of the
image size in a diagonal direction, as in the image. As
for data redistributions, in our implementation, we use
the ArrayRemapRange operator, selecting a 2D domain.

Using the current scene and parameters, the program
needs to perform 6 redistributions. In this experimental
study, we use a mapping policy of contiguous balanced
blocks, because of the homogeneous execution platform.

C. IMPACT OF REDISTRIBUTING WORKLOAD ON
PERFORMANCE
In this section, we present a performance study of a
distributed-memory system to show the positive effect of the
data redistributions on several applications, in a similar way
to [9], [28].

First, we test the for_each routine on an array of 106

elements. It is an example that easily allows the exploration
of the effects on performance related to the variation of the
amount of load redistributed, and its location on the original
domain. We design the experiments to study the impact of
two parameters in the data-redistribution operations of this
application:

1) The amount of data selected from the original array
where the routine is applied. We perform the experi-
mentation selecting 20, 50 and 80% of the data in the
whole vector.

2) The place in the original array where the range of data
is selected. Data redistributions can have a different
performance in function of the number of processes
actually involved in the communications. Thus, we per-
form the experimentation selecting the data in three
ways: (1) Selecting a range of data chosen from the
beginning of the array (Left), (2) selecting the data
chosen at the end of the array (Right), and (3) selecting
a range of data chosen, with the center of the selected
range at the middle point of the whole array (Center).

Figure 12 shows the performance obtained for the different
versions and parameters of the for_each routine in CETA.We
have tested four kinds of code, using different range selec-
tions. The first type is a Hitmap implementation that does not
include data redistributions (named Hitmap No Redist in the
plots). In this version, each process works with the originally
mapped data in the selected range (if any). The second is
a Hitmap implementation that redistributes the data in the
selected range across all the processes to balance the com-
putational load using the operators (named Hitmap Redist

38566 VOLUME 9, 2021



A. Moreton-Fernandez et al.: Operators for Data Redistribution: Applications to the STL Library and RayTracing Algorithm

FIGURE 12. Performance scalability results (in seconds) for the for_each algorithm in CETA, the distributed-memory system (logarithmic scale).
size = 1 000 000.

in the plots). The comparison of these two versions shows
the performance improvement of using data redistributions.
Two pure-MPI versions, one without redistributions and the
other with manually-implemented redistributions, have also
been tested. The latter contains a tailored redistribution code
specifically designed for 1-dimensional arrays and for the
block data-partition policy. In both cases, the pure-MPI ver-
sions behave in a similar way to their Hitmap counterparts,
with an overhead of less than 2% in both cases. All imple-
mentations use the same sequential functions and semantic
structure, so we only see the performance penalty or gain that
comes from using our data-redistribution operators, which is
the focus of our study.

We can also observe the impact of the load balance
obtained with the data redistributions. When the data selec-
tion is 80% of the whole array, redistributing the data does not
have a big performance impact. However, when the amount of
data selection is low (20% or 50%), the performance obtained
by the load-balanced codes is significantly better than in the
codes which do not use it.

Our operators redistribute the data that need computation,
avoiding idle processors and creating load balance. They
alleviate the extra communication costs in most of the cases,

without adding significant code development effort, as will
be shown in the next section.

D. USING THE STL LIBRARY TO ANALYZE THE FOUR
OPERATORS
The previous section shows the advantages of the data redis-
tributions. Now we focus on analyzing the behavior of the
different kinds of operators presented in this paper, by com-
paring our proposal with MPI in terms of both execution
time and development effort, for the chosen STL routines,
covering the different kinds of data redistributions.

In Table 2 we show several development effort measures,
comparing the described STL routines, coded in Hitmap with
the new operators (Hitmap Redist), or coded directly in MPI
(MPI Redist). For the QuickSort, we use the implementation
presented in [29], [30] as the baseline. We can see that
using the operators, the measures for the chosen metrics are
highly reduced. This indicates a clear simplification of the
programmability for the developer.

Table 3 shows the execution times obtained for the STL
study cases (the for_each routine has already been studied in
the previous section). We show the results when the routines
are executed with 128 MPI processes in CETA. We observe

VOLUME 9, 2021 38567



A. Moreton-Fernandez et al.: Operators for Data Redistribution: Applications to the STL Library and RayTracing Algorithm

TABLE 2. Measures of development effort for the STL study cases, comparing our proposal with MPI.

FIGURE 13. Performance scalability results (in seconds) for the RayTracing algorithm in CETA with
different image sizes (logarithmic scale).

TABLE 3. Measures (in milliseconds) of performance for the STL study
cases comparing our proposal with MPI using 128 MPI processes (the
for_each routine results were discussed in Sect. VI-C).

that the performance obtained by our approach is similar to
MPI. These examples have a very low computational load.
Thus, the main advantage of redistributing the data structures
comes from keeping them distributed among several nodes,
instead of reducing the computation time.

E. EVALUATING THE USE OF THE PROPOSAL ON A
REAL-WORLD APPLICATION: RayTracing ALGORITHM
In this study, we focus on the impact of the data redistri-
bution, in terms of both performance and the development
effort using the proposed operators. We used a 2D real-world
application, the RayTracing algorithm.

In this case we have tested three codes. The first is an orig-
inal MPI reference code (that we call MPI No Redist). There
is no selection of interest area or redistribution. Each process
traverses, on each iteration, the whole assigned subdomain.
The second is a Hitmap code, also with no selection of interest
area or data redistributions (Hitmap No Redist). The third is

TABLE 4. Measures of development effort for the RayTracing algorithm,
comparing our proposal with MPI.

a Hitmap code, where data redistributions are applied using
the approach presented in this paper (Hitmap Redist). The
comparison of these codes shows the little extra development
effort needed to introduce data redistributions which imple-
ment a sliding window technique using our proposal, and the
performance advantage of the whole transformation. We do
not include anMPI Redist version in this case study. Tomanu-
ally develop with MPI, a two-dimensional data redistribution
using a sliding window is a complex task that involves an
important development effort, and we believe it would not
return new insights.

Table 4 shows the development effort measures of the
studied codes. We observe that, using the operators, the
development effort needed to transform the code by imple-
menting a data redistribution on a sliding window, is slightly
increased when compared to theHitmap No Redist code (with
no sliding window and data redistributions), but lower than
the MPI No Redist reference code (again with no sliding
window and data redistributions).

38568 VOLUME 9, 2021



A. Moreton-Fernandez et al.: Operators for Data Redistribution: Applications to the STL Library and RayTracing Algorithm

Regarding performance (Figure 13), the Hitmap Redist
code that uses the new operators greatly improves theHitmap
No Redist version, also showing a good scalability. The
Hitmap No Redist shows a similar performance to the MPI
No Redist code (not shown in Figure 13), with less than a 2%
overhead.

While the complexity introduced by the sliding window
mechanism and data redistribution usingHitmapRedist is still
comparable to developing the MPI No Redist code, the per-
formance obtained is much better. Our operators abstract
to the programmer all the data-redistribution implementa-
tion issues related to the data partition, data ownership,
and data communication. Moreover, despite the potential
overhead derived from dealing with distributed data in an
abstract way, our approach produces a good scalability, and
a negligible penalty performance compared with the MPI
implementations.

VII. CONCLUSION AND FUTURE WORK
This paper presents a framework with four array data redistri-
bution operators to efficiently implement distributed-memory
algorithms, making the data partition, relocation and data
movement transparent to the programmer. Our proposed
solution based on these operators provides programming
abstractions to manage data redistributions. We also present
the application of the operators in a real-world application
(RayTracing), and in many algorithms of the C++ STL
library.

With our proposal, the programmer does not need to
deal with data-redistribution implementation issues that are
not related with the algorithms, but are key in terms of
performance. Experimental results show that our proposal
achieves the same performance as optimized MPI codes
with tailored data redistribution solutions hard-wired into
the code, while the programming effort is greatly reduced.
The software used in this study, including the Opera-
tors library and the case-study programs, are available at
https://trasgo.infor.uva.es/sdm_downloads/operadores/.

This proposal introduces a powerful tool to exploit data
redistribution on a higher abstraction level. Future work
includes the use of these operators and framework as a
lower-level layer for parallel-code generating tools or paral-
lelizing compilers. These tools could derive from sequential
or high-level parallel code the most appropriate data par-
tition policies and data selection details to efficiently map
computations to complex platforms, as well as providing
the foundation to use redistribution operators in general to
program the communication structures of whole complex
applications.

ACKNOWLEDGMENT
The authors have used the computing facilities of
Extremadura Research Centre for Advanced Technologies
(CETA-CIEMAT), funded by the European Regional Devel-
opment Fund (ERDF). CETA-CIEMAT belongs to CIEMAT
and the Government of Spain.

REFERENCES
[1] F. Nobile, L. Tamellini, F. Tesei, and R. Tempone, ‘‘An adaptive sparse

grid algorithm for elliptic PDEs with lognormal diffusion coefficient,’’
in Sparse Grids and Applications—Stuttgart 2014. Cham, Switzerland:
Springer, 2016, pp. 191–220.

[2] M. Mirzadeh, A. Guittet, C. Burstedde, and F. Gibou, ‘‘Parallel level-
set methods on adaptive tree-based grids,’’ J. Comput. Phys., vol. 322,
pp. 345–364, Oct. 2016.

[3] Y. Yang, J. Yang, L. Liu, and N. Wu, ‘‘High-speed target tracking system
based on a hierarchical parallel vision processor and gray-level LBP algo-
rithm,’’ IEEE Trans. Syst., Man, Cybern., Syst., vol. 47, no. 6, pp. 950–964,
Jun. 2017.

[4] F. Kong, R. H. Stogner, D. R. Gaston, J. W. Peterson, C. J. Permann,
A. E. Slaughter, and R. C. Martineau, ‘‘A general-purpose hierarchical
mesh partitioning method with node balancing strategies for large-scale
numerical simulations,’’ in Proc. IEEE/ACM 9th Workshop Latest Adv.
Scalable Algorithms Large-Scale Syst. (scalA), Nov. 2018, pp. 65–72.

[5] M. Guo and I. Nakata, ‘‘A framework for efficient data redistribution
on distributed memory multicomputers,’’ J. Supercomput., vol. 20, no. 3,
pp. 243–265, Nov. 2001.

[6] J.-W. Huang and C.-P. Chu, ‘‘An efficient communication scheduling
method for the processor mapping technique applied data redistribution,’’
J. Supercomput., vol. 37, no. 3, pp. 297–318, Sep. 2006.

[7] A. Gonzalez-Escribano, Y. Torres, J. Fresno, and D. R. Llanos, ‘‘An exten-
sible system for multilevel automatic data partition and mapping,’’ IEEE
Trans. Parallel Distrib. Syst., vol. 25, no. 5, pp. 1145–1154,May 2014, doi:
10.1109/TPDS.2013.83.

[8] S. Kadir and T. Khan, ‘‘Parallel ray tracing using MPI and OpenMP:
Introduction to high performance computing,’’ Rep., Semantic Scholar,
2008.

[9] S. A. Kadir and T. Khan, ‘‘Parallel ray tracing using MPI: A dynamic load-
balancing approach,’’ Rep., Semantic Scholar, 2009.

[10] A. Stepanov and M. Lee, ‘‘The standard template library,’’ HP Lab.,
Palo Alto, CA, USA, Tech. Rep. 95-11(R.1), 1995.

[11] R. Barik, Y. Yan, Y. Zhao, V. Sarkar, Z. Budimlic, V. Cavè, S. Chatterjee,
Y. Guo, D. Peixotto, R. Raman, J. Shirako, and S. Taşrlar, ‘‘The habanero
multicore software research project,’’ in Proc. 24th ACM SIGPLAN
Conf. Companion Object Oriented Program. Syst. Lang. Appl., 2009,
pp. 735–736.

[12] P. Charles, C. Grothoff, V. Saraswat, C. Donawa, A. Kielstra, K. Ebcioglu,
C. Von Praun, and V. Sarkar, ‘‘X10: An object-oriented approach to non-
uniform cluster computing,’’ ACM SIGPLAN Notices, vol. 40, no. 10,
pp. 519–538, 2005.

[13] S. Chatterjee, S. Tasirlar, Z. Budimlic, V. Cavé, M. Chabbi, M. Grossman,
V. Sarkar, and Y. Yan, ‘‘Integrating asynchronous task parallelism with
MPI,’’ in Proc. IEEE 27th Int. Symp. Parallel Distrib. Process. (IPDPS),
May 2013, pp. 712–725.

[14] V. Kumar, Y. Zheng, V. Cavé, Z. Budimlić, and V. Sarkar,
‘‘HabaneroUPC++: A compiler-free PGAS library,’’ in Proc. 8th
Int. Conf. Partitioned Global Address Space Program. Models, 2014, p. 5.

[15] M. Aldinucci, S. Campa, M. Danelutto, P. Kilpatrick, and M. Torquati,
‘‘Targeting distributed systems in fastflow,’’ in Proc. 18th Int. Conf. Euro-
Par Parallel Process., Rhodes Island, Greece. Berlin, Germany: Springer-
Verlag, 2012, pp. 47–56.

[16] K. Fürlinger, C. Glass, J. Gracia, A. Knüpfer, J. Tao, D. Hünich, K. Idrees,
M. Maiterth, Y. Mhedheb, and H. Zhou, ‘‘DASH: Data structures and
algorithms with support for hierarchical locality,’’ in Proc. 20th Int. Conf.
Euro-Par Parallel Process., Porto, Portugal. Cham, Switzerland: Springer,
2014, pp. 542–552.

[17] T. Fuchs and K. Fürlinger, ‘‘A multi-dimensional distributed array abstrac-
tion for PGAS,’’ in Proc. IEEE 18th Int. Conf. High Perform. Comput.
Commun.; IEEE 14th Int. Conf. Smart City; IEEE 2nd Int. Conf. Data Sci.
Syst. (HPCC/SmartCity/DSS), Dec. 2016, pp. 1061–1068.

[18] Z. Szugyi, M. Török, and N. Pataki, ‘‘Towards a multicore C++ stan-
dard template library,’’ in Proc. Workshop Gener. Technol. (WGT), 2011,
pp. 38–48.

[19] T. J. Sheffler, ‘‘A portable MPI-based parallel vector template
library,’’ Res. Inst. Adv. Comput. Sci., Mountain View, CA, USA,
Tech. Rep. RIACS-TR-95.04, 1995.

[20] J. Singler, P. Sanders, and F. Putze, ‘‘MCSTL: Themulti-core standard tem-
plate library,’’ inProc. 13th Int. Euro-Par Conf. Euro-Par Parallel Process.,
Rennes, France. Berlin, Germany: Springer-Verlag, 2007, pp. 682–694.

VOLUME 9, 2021 38569

http://dx.doi.org/10.1109/TPDS.2013.83


A. Moreton-Fernandez et al.: Operators for Data Redistribution: Applications to the STL Library and RayTracing Algorithm

[21] J. Fresno, A. Gonzalez-Escribano, and D. R. Llanos, ‘‘Extending a hierar-
chical tiling arrays library to support sparse data partitioning,’’ J. Super-
comput., vol. 64, no. 1, pp. 59–68, Apr. 2013.

[22] J. F. Bausela, ‘‘Supporting general data structures and execution models
in runtime environments,’’ Ph.D. dissertation, Dept. Informática, Univ. de
Valladolid, Valladolid, Spain, 2015.

[23] T. J. McCabe, ‘‘A complexity measure,’’ IEEE Trans. Softw. Eng.,
vol. SE-4, no. 4, pp. 308–320, Dec. 1976.

[24] M. H. Halstead,Elements of Software Science, vol. 7. NewYork, NY, USA:
Elsevier, 1977.

[25] J. Singler and B. Konsik, ‘‘The GNU libstdc++ parallel mode: Software
engineering considerations,’’ in Proc. 1st Int. Workshop Multicore Softw.
Eng., 2008, pp. 15–22.

[26] L. Frias and J. Singler, ‘‘Parallelization of bulk operations for STL dictio-
naries,’’ in Euro-Par 2007 Workshops: Parallel Processing. Berlin, Ger-
many: Springer-Verlag, 2007, pp. 49–58.

[27] (2011). RayTrace Code. Accessed: Aug. 22, 2016. [Online]. Available:
http://www.purplealienplanet.com/node/20

[28] M. H. Willebeek-LeMair and A. P. Reeves, ‘‘Strategies for dynamic load
balancing on highly parallel computers,’’ IEEE Trans. Parallel Distrib.
Syst., vol. 4, no. 9, pp. 979–993, Sep. 1993.

[29] B. Wagar, ‘‘Hyperquicksort: A fast sorting algorithm for hypercubes,’’ in
Proc. Hypercube Multiprocessors, vol. 1987, 1987, pp. 292–299.

[30] Rochester Institute of Technology. (2003).MPI Implementation of Hyper-
quicksort. Accessed: Aug. 22, 2016. [Online]. Available: https://www.cs.
rit.edu/usr/local/pub/ncs/parallel/mpi/hqs.c

ANA MORETON-FERNANDEZ graduated in
electronic engineering from the University of Val-
ladolid, Spain, in 2013. She received the M.S.
degree in research for information and communi-
cation technologies and the Ph.D. degree in com-
puter science from the University of Valladolid,
in 2017.

She hasworkedwithRenault as aMotor-Control
Engineer, from 2017 to 2018, and MAHLE ebike-
motion as a Firmware Engineer, from 2018 to

2020. She is currently the Leader of the Software Team, Satlantis, working
in embedded and ground-station software for operating high-resolution cam-
eras in satellites. Her research interests include parallel and heterogeneous
computing, and firmware and electronics for embedded computing.

YURI TORRES DE LA SIERRA received the
B.S. degree in computer science and engineering,
the M.S. degree in information communications,
and the Ph.D. degree in computer science from the
University of Valladolid, Spain, in 2009, 2010, and
2014, respectively.

From 2014 to 2017, he was an Associate Pro-
fessor with Isabel I University, Burgos, Spain.
He is currently an Assistant Professor of computer
science with the Universidad de Valladolid. His

research interests include parallel and distributed computing, parallel pro-
gramming models, and embedded computing.

ARTURO GONZALEZ-ESCRIBANO received the
M.S. and Ph.D. degrees in computer science from
the University of Valladolid, Spain, in 1996 and
2003, respectively.

Since 2008, he has been an Associate Professor
of computer science with the Universidad de Val-
ladolid. He has participated in more than 100 sci-
entific papers in journals and conferences. He has
been a principal researcher of national funded
projects, lead several research contracts with enter-

prises, and participated in the committee of several international conferences.
His research interests include parallel and distributed computing, parallel
programming models, portability in heterogeneous systems, and embedded
computing.

DIEGO R. LLANOS (Senior Member, IEEE)
received the M.S. and Ph.D. degrees in com-
puter science from the University of Valladolid,
Spain, in 1996 and 2000, respectively. He has
co-founded RDNest, a company that transfers to
market research results in the field of Internet of
Things and high-performance computing. He is
currently a Full Professor of computer architecture
with the Universidad de Valladolid. His research
interests include parallel and distributed comput-

ing, automatic parallelization of sequential code, and embedded computing.
He is a Senior Member of ACM. He was a recipient of the Spanish Govern-
ment’s National Award for Academic Excellence.

38570 VOLUME 9, 2021


