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Abstract
Diffusive Kerr-type interfaces separating media that differ only in their diffusion strength are
studied within the Helmholtz framework. We obtain an analytical expression for a soliton
effective nonlinear refractive index that takes into account diffusion. A discontinuity in this
coefficient makes a soliton undergo external refraction after entering a second medium with a
higher diffusion strength. Our theory also predicts total internal reflection and giant Goos–
Hänchen shifts when the diffusion is higher in the first medium. Numerical simulations are used
to test the validity of the model, showing excellent agreement with theoretical predictions.

Keywords: nonlinear interfaces, Snellʼs law, diffusive Kerr-type media

1. Introduction

Interfaces constitute one of the most appealing subjects within
the field of nonlinear optics. Initially studied for boundaries
separating local media, they have been revisited in the case of
nonlocal media where nonlocality has revealed substantial
changes in relation to their local counterparts. Such is the case
of diffusive Kerr-type interfaces [1] where the diffusion of
carriers was demonstrated to enhance the formation of non-
linear surface waves [2, 3] or to modify the local response of
the interface [4] within the particle-like approach [5]. More
recently, the interface between thermal media [6, 7] has been
shown to accommodate surface waves [8] or surface dipoles
and vortices [9]. Planar boundaries that confine a strongly
thermal medium have been also proposed for controlling
soliton trajectories within the sample [10]. As regards
nematicons [11], the ease of implementation of nonlinear
interfaces within a nematic crystal cell [12] has permitted the
experimental study of tunable nematicon reflection or
refraction [12], non-specular reflection [13], giant Goos–
Hänchen shifts [14] or even anomalous (negative) refraction
[15]. Based on these studies, nematic crystal valves have been
proposed as candidates for optical switching devices [16–18].

While analytic models have changed in order to describe
the variety of nonlocal responses, the paraxial approximation
assumed in the propagation equations has remained in most
works. This issue was already considered in the case of highly
nonlocal media [19, 20] and solutions were later reported for

two nonparaxial contexts, i.e. narrow beams in relation of its
wavelength, which demand a vector treatment of the problem
[21, 22], and scenarios of on-axis nonparaxiality where the
beam undergoes rapid changes in its envelope [23]. We are,
however, interested in the nonparaxiality of angular character
that arises when the soliton envelope changes on propagating
off-axis. This type of nonparaxiality is intrinsic to the optics
of interfaces and it must be included in the analysis.

The literature on interfaces separating nonlocal media
also reveals that the numerical work plays an essential role in
order to describe soliton behavior at interfaces [10, 12]. The
complexity of the propagation models for nonlocal media
leads to the absence of analytic results explicitly connecting
the strength of the nonlocality with soliton refraction prop-
erties at the interface.

This work tries to overcome these two issues for the case
of interfaces separating diffusive Kerr-type media that only
differ on the strength of carrier diffusion, i.e. diffusion step
nonlocal interfaces. First, our approach is developed within
the Helmholtz theory, thus removing the angular restrictions
associated to the paraxial approximation. Second, we provide
analytic results which capture the relationship between angles
of refraction and the nonlocal properties of the adjoining
media. Our analysis reveals that diffusion step nonlocal
interfaces accommodate, in principle, an unexpected soliton
refraction, in the sense that external (internal) refraction is
obtained when the diffusion strength is higher (lower) in the
second medium.
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The paper presents, in section 2, a brief review of the
existing Helmholtz theory, which is essential to contextualize
this work. The study of nonlocal interfaces is developed in
section 3 where the connection between angles and non-
locality, the existence of critical angles or the formation of
giant Goos–Hänchen shifts are analytically predicted and
numerically tested. Conclusions are summarized in section 5.

2. The Helmholtz framework

The Helmholtz theory [24–26] has overcome the limitations
of paraxial analyses [27] when it comes to addressing the
evolution of broad beams that propagate at arbitrary angles.
This framework is based on the nonlinear Helmholtz (NLH)
[28] equation, which is fully equivalent to the corresponding
2D Helmholtz equation and represents a generalization of the
nonlinear Schrödinger [29, 30] equation. Initially presented
for Kerr-focusing media, the theory has been successfully
developed for other types of nonlinear media, such as Kerr
defocusing [31], cubic-quintic [32, 33], power-law [34] or
saturable [35] materials. In all these works, the properties of
Helmholtz solitons have been properly addressed and essen-
tial corrections to their paraxial counterparts have been
highlighted. More recently, this Helmholtz treatment has been
applied to the study of nonlocal media where nonlocality
arises from the diffusion of carriers [36].

The type of nonparaxiality addressed in the NLH is of
angular type, which turns it into an excellent tool to deal with
problems of an inherent angular content. Such is the case of
soliton collisions [37] and, basically, interfaces, which have
deserved our attention during recent years. The preservation
of the complete angular content of the problem has been
summarized in a compact Snell’s law [38], which addresses
the reflection and refraction of not only bright [39–41], but
black [42] and gray [43] solitons. The analysis has been
recently extended to the case of nonlocal interfaces where
novel properties, such as its dual switching behavior, have
been found whenever local and nonlocal mismatches are
properly combined [44].

The equation that rules the Helmholtz analysis of such
interfaces was presented in [44] and reads as follows:
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u is the complex envelope of a propagating TE electro-
magnetic field [45], x = x w21 2

0 and ζ=z/LD are the
normalized transverse and longitudinal coordinates, respec-
tively, being w0 the beam width of a reference Gaussian beam
and =L kw 2D 0

2 the diffraction length. k = k w1 2
0
2 is the

nonparaxiality parameter that accounts for the soliton width in
relation to the optical wavelength [25, 26], while D =
- n n1 02

2
01
2 and α=α2/α1 are the local linear and nonlinear

mismatching parameters, respectively [38]. H(ξ) is the Hea-
viside function that addresses the first (H(ξ)=0 if ξ<0) or

the second (H(ξ)=1 if ξ�0) medium. As regards the
nonlocal contribution, d01 and d02 are the normalized diffu-
sion coefficients in each medium [36, 44], while fnl is the
nonlocal contribution to the refractive index [36]:
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Table 1 provides an overview of previous Helmholtz
works on Kerr-like local and nonlocal interfaces.

Table 1 reveals that the study of interfaces has so far been
incomplete, lacking a previous analysis of diffusion step
nonlocal interfaces. Previous paraxial studies on diffusive
Kerr-type interfaces have always considered a linear mis-
match (D ¹ 0) [2, 4], which essentially veils the effect of
nonlocality on soliton behavior at the interface.

The analysis we perform in this work is based on the
formalism presented in [44], which, in turn, builds upon
previous results of [36]. In [44], however, this general
formalism is used exclusively for studying the dual switching
behavior that arises under a specific combination of changes
in the local and nonlocal contributions to the refractive index
across the interface. In this paper, in contrast, we address the
effects observed under a perfect match of the terms con-
tributing to the nonlinear refractive index that have a local
character and, therefore, an interface mismatch affected only
by diffusion. In this type of diffusion step nonlocal interfaces
we find new and relevant effects. We determine how the
change of the diffusion parameter across the interface alone
rules the refraction properties of solitons passing over the
interface. In particular, we discover internal refraction beha-
vior when the first medium has a larger diffusion strength.
This, in principle, unexpected effect is analyzed in detail and
explained using the theory of [44]. As is normally the case in
nonlinear interfaces with internal refraction, our analysis
confirms the observation of the giant Goos–Hänchen shift.
We want to stress that the existence of this effect due to a
discontinuity on the nonlocality alone is far from trivial. Also,
as opposed to other nonlinear scenarios [38, 43], diffusion
step nonlocal interfaces lack a full transparency condition.

3. Diffusion step nonlocal interfaces

The analysis of diffusion step nonlocal interfaces is based on
approximating the response of the diffusive Kerr medium by a

Table 1. Particularizations of (1) to address different Helmholtz
scenarios.

Δ=0, α=1 aD ¹ ¹0, 1

=d 0i0 local media [25, 26, 28] local interfaces
[38, 42, 43]

d01=d02 nonlocal media [36] —

¹d d01 02 diffusion step nonlocal
interfaces

nonlocal interfaces [44]
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cubic-quintic model [44]:
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where τ and ν are the effective cubic and quintic parameters,
respectively. They are plotted, for η0=2, in figure 1 as a
function of d0. ν is associated to the peak reduction in the
nonlinear response of the soliton fnl. τ and ν together are
responsible for the spatial broadening of the soliton nonlinear
response in the diffusive Kerr medium. In the local case
(d0=0), one has the Kerr response without any sort of
corrections, i.e. τ=1 and ν=0.

Imposing the phase continuity across the interface to the
cubic-quintic soliton solutions that result from the former
approximation, we conclude that Helmholtz solitons at dif-
fusion step nonlocal interfaces are ruled by:

( )g q q=cos cos , 4i t

where θi and θt are the angles of incidence and refraction
defined in relation to the interface, respectively, and γ is a
nonlinear correction term that reads as follows:
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where subscripts i=1, 2 refer to the first and second med-
ium, respectively. s n t=i i 1

2 displays a slower variation as
the diffusion strength grows, compared to νi since τ1�1 and
τ1 also increases with the diffusion coefficient. The Helm-
holtz term kh2 0

2 in (5) reveals that the angular deflection at the
interface is intrinsically nonparaxial. In the paraxial limit,
when one works with very broad beams in relation to the
wavelength (k  0) of low intensity ( kh 2 00

2 ), one has
g  1, and no changes in the soliton angle of propagation
could be found at the interface. This can explain the absence
of paraxial works on this type of interface.

Soliton evolution at diffusion step nonlocal interfaces is
basically ruled by the sign and magnitude of -d d01 02. The
soliton can undergo external (internal) refraction if <d d01 02

( >d d01 02) and the higher the difference between the non-
local responses of the two media, the larger the deflection on
the soliton direction of propagation. This can be observed in

figure 2(a), which displays the contours of γ as a function of
the strength of the diffusion in each medium. The straight line
represents the curve γ=1 and establishes the transition from
internal to external refraction. Since this curve is obtained
only if d01=d02, we conclude that, in contrast to other
interface configurations [38], an intensity driven total trans-
parency condition cannot be set in a step nonlocal interface.

By making γ=n1/n2, one obtains the definition of a
soliton effective nonlinear refractive index in each medium
that only depends on the diffusion strength. Values for n1 and
n2 can be obtained from figures 1(a) and (b), so that for a
nonlocal medium with d01=0.2, for instance, one has
τ1=1.471 8 and σ1=−0.077, thus giving n1 = 1.008. The
corresponding counterparts for a local (d02=0) medium are
τ2=1 and σ2=0, being n2=1.006. We have assumed in
the calculations that the Helmholtz term is kh =2 0.020

2 .
The validity of our analytical findings is tested with the

full numerical integration of the evolution equations given by
(1) and (2) when Δ = 0 and α = 1. This is carried out using
the nonlinear beam propagation method (NBPM) [46], which
is particularly well suited for addressing the problem of
solitons propagating at arbitrary angles impinging on inter-
faces whose relative differences between their refractive
indexes are small. Exact Helmholtz soliton solutions in the
first medium at ζ0=0 and ζ1=Δζ are used as initial con-
ditions in the algorithm, while the new propagation conditions
found at the interfaces act as a small perturbation. The
reliability of the NBPM has been tested with the numerical
integration of the corresponding 2D time-domain Maxwell
equations based on the transmission line method [45] and a
detailed assessment of its accuracy and applicability condi-
tions has been presented in [47].

A set of simulations has been performed for different
values of k d, i0 and η0. Figure 2(b) displays with points θt as a
function of θi for the case of κ=2.5×10−3 and η0=2
when different values of d0i are used. In order to focus on the
effect of nonlocality on the angle of refraction, we have
always imposed =d 0i0 in one of the two media, thus
working with nonlocal-local or local-nonlocal interfaces.
Only low angles of incidence and refraction are displayed

Figure 1. Evolution of the cubic (a) and quintic (b) parameters with the diffusion strength. In both cases, the Helmholtz soliton amplitude
is η0=2.
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because we restrict the analysis to the small d0i weakly
nonlocal regime where the effective nonlinear indexes are
also small. Solid lines correspond to the prediction displayed
in (4) and (5) for the same values used in simulations.

In [44], figure 4(d) shows a soliton undergoing internal
refraction at an interface with Δ=−0.000 1, α=0.87,
d01=0 and d02=0.2. The soliton amplitude is 2 and the
angle of incidence is 1 degree. The red line of figure 2(b)
shows that this soliton undergoes just the opposite behavior
(external refraction) at a diffusion step nonlocal interface
when the same nonlocal parameters are used. This divergence
in the interface response lies on the different working regimes
we assume in [44] and this work. In [44], local and nonlocal
contributions are of the same order of magnitude, so that the
role of the diffusion is limited to counteract the local mis-
match by adding a quadratic dependence on soliton intensity.
This contribution is essential to induce the dual switching
behavior of the interface reported in [44]. In this work,
however, by assuming Δ=0 and α=1 we ensure that the
working regime is only ruled by the nonlocal contribution, so
that we are able to isolate the impact of diffusion on the
interface and, in turn, reveal the effects reported in this work.

The contour plots of figures 3(a) and (b) correspond to
the green and red series of figure 2(b), respectively, when
q = 3i . Figure 3(a) shows that the soliton undergoes internal
refraction when the diffusion is higher in the first medium.

The explanation for this, in principle, contradictory result lies
in the spatial broadening of the soliton refractive index
response fnl [44] in a diffusive Kerr medium, which represents
a barrier to soliton propagation whenever d01>d02. The same
reason explains the opposite behavior shown in figure 3(b),
where the soliton undergoes external refraction after entering a
second medium with a higher diffusion strength. This effect
has not been addressed in our previous works [38, 43] where
the magnitude of the local linear and nonlinear mismatch
would mask a hypothetical nonlocal response like this.
Figure 3(c) captures the peak amplitude of the two solitons
displayed in figures 3(a) and (b). As the red (blue) line shows,
soliton amplitude increases (decreases) when the diffusion
strength of the second medium is lower (higher). Taking into
account the preservation of the power flow across the interface,
one can thus infer the subsequent changes in soliton width.

3.1. Critical angle

The absence of data points in figure 2(b) for small angles of
incidence when >d d01 02 suggests that critical angles can be
found when the diffusion is higher in the first medium. An
example is shown in the contour plot of figure 4(a), which
illustrates soliton behavior for the same set of parameters used
in figure 3(a) when the angle of incidence is not q = 3i ,
but q = 1.7i .

Figure 2. Contours of γ as a function of d01 and d02 (a). θt as a function of θi at a diffusion step nonlocal interface for different values of d01
and d02 (b).

Figure 3. Soliton undergoing internal (a) or external (b) refraction when d01>d02 or d01<d02, respectively, when θi=3°. Evolution of the
soliton peak amplitude for the case of internal (red) and external (blue) refraction.
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Making θt=0 in (4), we obtain an expression for the
critical angle θc:
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which is a particularization of the result of [44] forΔ=0 and
α=1. Equation (6) can be rewritten for a nonlocal-local
interface (d02=0) as:
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Equation (7) is plotted in figure 4(b) with solid lines as a
function of d01 when two different values of κ are used. The
larger the difference between adjoining diffusion coefficients,
the higher the value of the critical angle. Points in figure 4(b)
correspond to the numerical results extracted from the inte-
gration of (1) and (2).

Figure 4(b) also shows that the interface impact on
soliton evolution is enhanced as the nonparaxiality parameter
κ increases. Although soliton propagation in diffusive Kerr-
type media has been demonstrated to depend on its width
[48], such dependency has not been addressed before in the
case of interfaces where the beam width is missing in the
analysis [4]. Our Helmholtz treatment can capture this effect
through κ.

3.2. Giant Goos–Hänchen shifts

Nonlinear interfaces can accommodate giant Goos–Hänchen
shifts (GHSs) in a great variety of interface configurations
separating not only local [5, 40, 49–53], but highly [14] and
weakly [54] nonlocal media. Since GHSs arise when the
angle of incidence approaches the critical angle, we show in
this work that GHSs can appear when the diffusion is higher
in the first medium.

Equation (7) provides the combination of soliton inten-
sity (through kh2 0

2) and nonlocal response (through σ1 and τ1)
where GHSs are prone to appear. One just needs to work in
the vicinity of θc, so that this phenomenon can be obtained.

Figure 5(a) shows a soliton undergoing a giant GHS ζ0 for a
nonlocal-local interface when the soliton amplitude is η0=2
and propagates at an angle of q = 2.6353i . This value of θi
has been chosen just below the predicted critical angle, which
is q = 2.73c .

Figure 5(b) shows in blue the numerical calculation of
the GHS based on the integration of (1) and (2) for the same
interface, while the red vertical line represents the value of θc
given by (7). The giant GHS grows exponentially as θi
approaches qc, thus showing the accuracy of our analytical
results to predict this phenomenon at diffusion step nonlocal
interfaces.

The analysis presented in this work applies only to the
2D case. Even though the evolution equations (1) and (2) can
be directly extended to 3D, the analytical results, like Snell’s
law, have been derived from the 2D exact soliton solutions.
These analytical results cannot be continued to the 3D case,
since no corresponding exact solutions have been found in a
3D model. However, the extension of the NBPM to two
transverse dimensions [46] can provide us with the angular
content that is missing in the paraxial study of interfaces
separating not only diffusive Kerr media, but materials
exhibiting a cubic-quintic response [55–57].

A realistic configuration for engineering a nonlocal step
interface could rely on the ability of effectively tailoring the
linear and nonlinear refractive indexes of different types of
glasses via doping, for example [58]. Therefore, a possible
route to implement such an interface could be to use a glass
that is linear and nonlinear index matched (Δ=0 and α=1)
to a second medium with a thermal nonlocal nonlinearity.
This second medium could be a lead glass [59], polymer [60],
or solution [61], and the first glass could have either a non-
local or local response, the latter case providing a local-
nonlocal step interface.

4. Sensitivity to interface parameters

Throughout this work, we have presented the effects found
at diffusion step nonlocal interfaces. In this section, how-
ever, we consider D ¹ 0 and a ¹ 1 in order to explore the

Figure 4. Soliton undergoing internal reflection (a). Critical angle as a function of d01 for two different values of κ (b).
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interface behavior under small changes of the local mis-
match parameters. This analysis can be carried out by the
definition of:

⎡
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which collects the contribution of a linear part Δ and an
intensity-dependent term (through kh2 0

2), which includes the
Kerr and nonlocal mismatches. Equation (8) can easily
address the type of refraction based solely on the sign of δ.
External (internal) refraction is found when δ<0 (δ>0).
Of course, δ=0 represents the absence of deflection, i.e. the
total transparency condition.

The analysis of the system response to small changes of the
interface parameters must first consider the limitations inherent to
working within the framework of the Helmholtz theory [25, 26]
where a weakly nonlocal regime [36, 48] is assumed. For
example, when a fundamental soliton (η0=1) with k = ´2.5

-10 3impinges a nonlocal diffusion step interface with d01=0.2
and d02=0.0, one obtains δ=9×10−5. Such a value of δ is
responsible for the slight internal refraction that the soliton
undergoes in figure 6(a).

We now alter the diffusion step nonlocal interface of
figure 6(a) by changing significantly the local mismatchesΔ and
α, so that one works in a regime where the nonlocal contribution
is completely masked by the local one. In figure 6(b), the con-
dition [( ) ( )] kh at t h s asD - + -2 1 2 30

2
2 1 0

2
1 2 is

satisfied and, instead of internal refraction, the linear mismatch is
high enough to induce internal reflection. The scenario shown in
figure 6(c) is, however, dominated by α, which not only leads to
external refraction, but reduces significantly the soliton width.
This regime would correspond to the one described in the upper
right corner of table 1.

A different regime is found for [( )/kh at tD ~ - +2 10
2

2 1

( )]/h s as-2 30
2

1 2 , which is precisely the scenario addressed in
[44] (see the bottom right corner of table 1). The role of diffu-
sion here is limited to counteract the local mismatch by adding a
quadratic dependence on soliton intensity, so that small varia-
tions on the intensity can alter the interface response. This can be
seen in figure 7(a) that plots (8) as a function of soliton ampl-
itude η0 and where all interface parameters are properly chosen
to induce, in this case, changes in the kind of refraction. The
labels in figure 7(a) correspond to the soliton evolution in
figures 7(b)–(d), respectively, where refraction (internal or
external) is ruled by the sign of δ.

Nevertheless, the analysis of diffusion step nonlocal
interfaces performed in this work can be carried out whenever
local mismatches are much smaller than the nonlocal one.
This condition, for the case of α=1, is found whenever

[( ) ( )] kh t t h s sD - + -2 1 2 30
2

2 1 0
2

1 2 , revealing that
the smallness of Δ must always be considered in relation to
the Helmholtz term kh2 0

2. By assumingΔ=0 and α=1, we
ensure that this condition is always met and the interface
behavior is exclusively ruled by the diffusion of carriers.

Figure 5. Soliton undergoing a giant GHS (a). Evolution of the GHS as a function of θi (b).

Figure 6. Soliton undergoing internal refraction at a diffusion step nonlocal interface (a). Total internal reflection (b) or external refraction
(c) are achieved when Δ=0.000 5 and α=1.25, respectively.
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5. Conclusions

This work has studied soliton evolution at diffusion step
nonlocal interfaces within the framework of the Helmholtz
theory. Following the guidelines of our previous works on
interfaces, we have presented an analytical result that pre-
dicts how a soliton undergoes external (internal) refraction
when the nonlocal response is higher (lower) in the second
medium. With regards to total internal reflection, critical
angles and giant GHSs have been found whenever the dif-
fusion strength is higher in the first medium. The role of
numerical simulations has been essential to contrast the
validity of our model.
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