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a b s t r a c t 

Background and Objective: Inadvertent retained surgical gauzes are an infrequent medical error but can 

have devastating consequences in the patient health and in the surgeon professional reputation. This 

problem seems easily preventable implementing standardized protocols for counting but due to human 

errors it still persists in surgery. The omnipresence of gauzes, their small size, and their similar appear- 

ance with tissues when they are soaked in blood make this error eradication really complex. In order to 

reduce the risk of accidental retention of surgical sponges in laparoscopy operations, in this paper we 

present an image processing system that tracks the gauzes on the video captured by the endoscope. 

Methods: The proposed image processing application detects the presence of gauzes in the video im- 

ages using texture analysis techniques. The process starts dividing the video frames into square blocks 

and each of these blocks is analyzed to determine whether it is similar to the gauze pattern. The video 

processing algorithm has been tested in a laparoscopic simulator under different conditions: with clean, 

slightly stained and soaked in blood gauzes as well as against different biological background tissues. 

Several methods, including different Local Binary Patterns (LBP) techniques and a convolutional neural 

network (CNN), have been analyzed in order to achieve a reliable detection in real time. 

Results: The proposed LBP algorithm classifies the individual blocks in the image with 98% precision and 

94% sensitivity which is sufficient to make a robust detection of any gauze that appears in the endoscopic 

video even if it is stained or soaked in blood. The results provided by the CNN are superior with 100% 

precision and 97% sensitivity, but due to the high computational demand, real-time video processing is 

not attainable in this case with standard hardware. 

Conclusions: The algorithm presented in this paper is a valuable tool to avoid the retention of surgi- 

cal gauzes not only because of its reliability but also because it processes the video transparently and 

unattended, without the need for additional manipulation of special equipment in the operating room. 

© 2020 The Authors. Published by Elsevier B.V. 

This is an open access article under the CC BY-NC-ND license. 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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. Introduction 

Inadvertent retained surgical gauzes are a medical error that

ccurs rarely but can cause very serious complications in the pa-

ient due to the formation of gossypibomas (from the Latin Gossyp-

um , cotton and the suffix - boma : tumor). Gossypibomas are diffi-

ult to diagnose and cause infections, sepsis, intestinal obstructions
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nd visceral perforations [32] , even leading to death in 2% of cases

8] . The increasing number of recent reports in the literature im-

lies that gossypibomas still remain as an important problem to be

olved. 

There is a risk of accidental retention of surgical objects in all

ypes of surgery. However, the data show that abdominal surgery

s where this malpractice occurs most often (1 in every 10 0 0 to

500 operations) [8] . Among the objects accidentally retained, sur-

ical gauze is the most frequent item [4,18,34,36] , with an inci-

ence of approximately one retained gauze per 20 0 0 operations.

urgical gauzes are easily masked between the tissues and organs

hen soaked in blood and other fluids, especially when operating

n the abdominal cavity. Unfortunately, it is precisely the gauzes
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that cause the more severe reaction in the organism among all the

retained foreign objects. 

There are many possible causes for this type of error. These in-

clude the inadequate organization in the operating room, the pres-

sure in emergency operations, distractions that occur especially in

very long operations and changes in procedure [4,8,12,36] . 

Standard protocols to prevent the retention of surgical items are

customary in all hospitals. The procedure usually consists of two

nurses counting all surgical instruments and articles used in the

operation at the beginning and at the end of it [8] . This method,

which may seem to be unquestionably reliable, is not completely

trustworthy due to human errors [35] . Some studies show that 88%

of retained foreign objects have occurred after the count was re-

ported as correct [8] . Many authors, therefore, have justified the

research aimed at developing new technologies to reliably monitor

gauze and eradicate gossypibomas [4,31,35] . 

When gauze accounting is not balanced, the missing gauze

must be located taking radiography and then exposing the pa-

tient to X-radiation and longer-term anesthesia. Although the ban-

dages include some kind of opaque X-ray marking to allow de-

tection on X-rays, they are not infallible either. It is estimated

that the rate of intraoperative detection on simple X-rays is only

67% [4] . 

Fortunately, new technologies are being introduced in recent

years to avoid relying solely on manual counting. A first improve-

ment is the use of barcode surgical sponges [9] . The barcode is

integrated into each gauze and is different in each of them. Using

a handheld reader, the control is carried out by reading the code

of each gauze that enters and exits the patient’s body. In the event

of a failure at the end of the procedure, it can even be established

which gauze has disappeared. The reader is able to record codes

even on blood-stained sponges. However, the use of this system

introduces new technical difficulties that slow down the counting

process by approximately 3 minutes. 

Some operating theatres have experimented with more sophis-

ticated devices than barcodes readers such as radiofrequency sys-

tems. This technology is capable of reading RFID tags with a

unique identification number that have been attached to the sur-

gical gauze. The presence of a forgotten gauze can be detected by

passing a portable handheld antenna in front of the surgical field

when the operation is finished [35] . Another system presented in

[15] to minimize the intervention of health personnel in the gauze

count, incorporates three antennas: one for the initial check-up,

another installed in the wastebasket and another fixed antenna

that scans the patient. The authors claim that the sensitivity and

precision of this type of device is 100% and allows a great saving of

operating time, 28 minutes in each surgical procedure. However, a

recent study [36] where 319 retained surgical sponges where con-

sidered reports 5 cases where, although sponge detection technol-

ogy was noted to be available in the setting, it was not used. It is

crucial not only that the gauze detection device is reliable, but also

that this is convenient and easy to operate. 

Another system for gauze detection is presented in [7] . In

this case it is an image processing algorithm that includes a LBP

descriptor with two different patterns to deal with illumination

changes. The application only reaches a sensitivity of 42.95% and

the authors recognize that their technique is too intensive to be

run in a real-time detection system. 

In this paper, we propose the tracking of surgical gauze by sim-

ply processing the video signal from the endoscope. The gauze de-

tection is carried out in real time and without the need to incorpo-

rate any additional equipment or adding any type of marker to the

gauze. The advantage is that healthcare personnel do not have to

operate new equipment such as barcode readers or RFID antennas

to track the gauze. The tracking is done in a transparent and totally

unattended manner on the video, that is continuously acquired for
he visualization of the scene, without requiring additional atten-

ion from the surgeon or his assistants. 

The application aims to account for the surgical gauzes inside

he patient’s body using basically the video images from the en-

oscope. Each incoming gauze is detected by the image processing

rogram that tracks it while it is present within the visual field

f the endoscope. If the gauze disappears when is completely im-

ersed in blood or behind any of the patient’s organs or tissues,

his fact causes the activation of a warning icon at the bottom of

he monitor. A mark is also set at that time on the slider of the

ideo being recorded. However, if the loss of the gauze in the im-

ge is due to its extraction by the surgeon for disposal, a subse-

uent activation of an external sensor installed in the wastebasket

ill cancel the alarm just triggered. 

It is necessary to emphasize that this application does not ex-

mpt the health personnel from counting. Nevertheless, the activa-

ion of the alarm when the automatic system reveals any inconsis-

ency will lead them to be especially cautious. If gauze accounting

s effectively not balanced, the application can also be of great help

n speeding up the location of lost surgical sponges using the dis-

ppearance marks on the video. 

The future incorporation of some optical technique for 3D re-

onstruction in computer-assisted laparoscopic surgery [22] , such

s Simultaneous Localization and Mapping (SLAM) [5] , will make

t possible to obtain the position of the gauze when it disappears,

ithout using additional devices. This will make the gauze recov-

ry process faster, more reliable and even suitable to be conducted

y a robotic assistant [19] . 

The rest of the paper is organized as follows. Next section

resents the methodology. It introduces a review of the texture

nalysis technique LBP ( Local Binary Patterns ) and several variants

hat have been analyzed for the detection of surgical gauzes in-

luding also a CNN approach. Section 3 gives a summary of exper-

mentation and Section 4 discusses the results obtained with the

ifferent approaches on clean, stained and blood-soaked gauzes. Fi-

ally, the conclusions of the work are presented. 

. Methodology 

Our application for the detection of gauze is based on the pro-

essing of video from the endoscope. Each frame of the video is

nalyzed looking for areas that present a texture similar to that of

he gauze. Texture is a very popular feature in image processing,

specially in the medical field, where a multitude of approaches

ave been used. One of the most powerful and computationally ef-

cient technique for texture analysis is Local Binary Patterns (LBP)

25] . 

.1. Local binary patterns 

The LBP operator assigns a value to each pixel of the image

btained by comparing the gray level of the pixel with its eight

eighbors. If the neighbor’s value is greater than or equal to that

f the pixel, then a 1 is set in the pattern or a 0 otherwise (see

ig. 1 a). The binary pattern generated is transformed into a dec-

mal value that is assigned to the central pixel. The histogram of

he resulting image is used as a texture descriptor of the image

21] . 

The LBP can be extended to deal with circular neighborhoods

f different sizes [26] (see Fig. 1 b). The notation (P,R) specifies a

eighbourhood with P evenly sampled points on a circle of radius

f R . Then, if the grey level of an arbitrary pixel ( x c ,y c ) is g c and

 p is the grey value of the P sampled points in a circular neighbor-
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Fig. 1. (a) Example of LBP computing at a pixel. b) Different neighborhoods can be considered in LBP varying the radius R and the number P of evenly spaced neighbors on 

the circumference of radius R . 
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ood of radius R around point ( x c ,y c ): 

B P P,R ( x c , y c ) = 

P−1 ∑ 

p=0 

s ( g p − g c ) 2 

p (1) 

here s ( g p − g c ) denotes de sign of the difference, being

 ( g p − g c ) = 1 if the difference is positive or null and 0 if not . 

An invariant rotation version of the LBP is presented in [28] ,

hich is especially useful for our application where the texture of

he gauze can appear at any angle. The rotation invariant version of

he LBP maps all cyclic permutations of a binary LBP code onto the

ame rotation-invariant pattern, decreasing the number of codes

onsiderably. 

The number of codes can be reduced even more because many

f the binary patterns appear only rarely in the images. Mäenpää

t al. [20] presented a new version of LPB, called uniform LBP,

hich considered only those patterns that are frequently found

n texture images and that are characterized by two transitions at

ost in the bits of their binary code. The reduction in the number

f codes, using only P + 1 uniform patterns, provides a statistical

nalysis more stable. 

Since the presentation of these first LBP operators, numerous

ariants have been suggested for the classification of textures. The

ollowing are only the most appropriate approaches to our applica-

ion. An exhaustive review of local binary features for texture clas-

ification can be found in [16] . 
Fig. 2. The texture of the gauze is very changeable depending on the distance to th
Heikkila et al [14] introduced the centre-symmetric local binary

attern (CS-LBP) where, instead of comparing each pixel in the

eighbourhood with the central pixel, they compare centre sym-

etric pairs of pixels thus generating a much shorter 16 features

istogram. Later, in order to improve the noise robustness of the

perator LBP, Tan [38] proposed the Local Ternary Pattern (LTP). As

he name suggests, the neighbouring pixels are encoded with three

alues: 1 if the grey level difference with the central pixel is above

 pre-set threshold, 0 if the absolute value of this difference is be-

ow the threshold and -1 if it is the central pixel that exceeds the

eighbour’s grey level by at least the threshold value. 

.2. Contrast and texture patterns 

The LBP methods presented in the previous section show good

otation robustness and are even resistant to slight variations in

cene lighting. However, under real conditions, the texture of the

auze can change considerably depending on the distance to the

ndoscope, the presence of folds or if it is soaked in blood. In addi-

ion to local patterns, some form of contrast analysis of the image

egions must be included to address this highly variable pattern of

he gauze ( Fig. 2 ). 

Texture can be understood as a two-dimensional feature charac-

erized by two orthogonal properties: pattern, which is the spatial

tructure, and contrast, which is the strength of that pattern. Pat-
e endoscope, the presence of folds or if it is soaked in blood or other fluids. 
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Fig. 3. Experimental setup. In this image a video with of a clean gauze is being 

acquired with the Storz Telecam endoscope inside the laparoscopic simulator. 
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tern information is independent of the gray level but contrast is

not. These two features complement each other in a very practical

way. 

The contrast can be measured in a circular neighborhood

through variance [26] : 

A R P,R ( x c , y c ) = 

1 

P 

P−1 ∑ 

p=0 

( g p − μ) 
2 (2)

where μ is the neighborhood average calculated as follows: 

μ = 

1 

P 

P−1 ∑ 

p=0 

g p (3)

In our previous work [23] , several implementations of the gauze

detection algorithm using the variance were analyzed. The exper-

iments showed that incorporating local contrast into texture anal-

ysis improved both precision and sensitivity of the detection, spe-

cially in the case of soaked gauzes. 

As VAR P,R has continuous values, it is necessary to quantize it.

The distribution of the variance can be calculated on all the model

images and, in order to achieve the best resolution in quantization,

then compute the threshold values that partition the distribution

in N = 16 intervals with equal number of entries [26] . These values

will be subsequently used to quantify the variance of the test im-

ages. 

The variance can be combined into the LBP histogram by using

it as weights for LBP. This approach, named LBP variance (LBPV),

was introduced by [10] and allow to simplify the computation of a

joint LBP and variance distribution. However, in next section we

will see that this technique does not provide as satisfactory re-

sults as if the LBP and contrast analysis are carried out separately

and then combined by a logical OR. We have called this operator

LBP|VAR and it reveals that the inclusion of variance information

must be adapted to the specific task [33] . 

Another approach that incorporates information on contrast

was presented by Guo et al [11] . In its Complete LBP (CLBP) model,

in addition to using the original LBP, they introduce two new oper-

ators: CLBP_M, which measures the variance of the magnitude and

CLBP_C, which establishes the difference of the central pixel with

respect to the average grey level of the entire image. By combin-

ing the histograms provided by these three operators, they achieve

a significant improvement in texture classification. Based on the

CLBP model, Zhao et al [39] suggested a new variant for rotation

invariant classification, the Complete Local Binary Count (CLBC), an

algorithm that discard the structural information of the CLBP op-

erator. CLBC counts the number of values 1 in the neighbouring

binary sets instead of encoding them. CLBP and CLBC operators are

analysed for gauze detection in Section 3 . 

2.3. Dissimilarity measure 

In order to find the areas in the image that show a texture sim-

ilar to that of a gauze, the image will be divided in square blocks

of the same size ( Fig. 5 ) and each block will be analyzed individu-

ally. Comparing the similarity between the distribution histograms

of the model with those of the block, it will be determined if a

gauze is present in that block or not. 

In this paper, we utilized the chi-square distance to quantify the

dissimilarity between two normalized histograms: 

D ( B, M ) = 

n ∑ 

i =1 

( B i − M i ) 
2 

( B i + M i ) 
(4)

where n is the number of bins, Mi is a value of a bin in the model

histogram and Bi is the value of the same bin in the block his-

togram. 
In case of LBP|VAR algorithm, two similarity measures are

herefore established between the block and the model. The first

ne corresponds to the comparison of the LBP histograms and the

econd one to the variance histograms. The operator LBP|VAR that

ategorizes a block as gauze when either the LBP histogram or

he VAR histogram is sufficiently similar to that of the model has

roved to be an effective strategy to classify a block. 

. Material and experimentation 

The 720 × 576 video images used in this study were obtained

ith a STORZ TELECAM [37] One-Chip Camera Head 20212030,

olor system PAL with integrated focal Zoom Lens, f = 25 – 50

m (2x), with an image sensor of ½" CCD and 752 (H) x 582 (V)

ixels per chip (PAL) equipped with Hopkins telescope 0 °, 10 mm,

1 cm. 

The test images used in experimentation do not come from la-

aroscopic surgery operations on real patients. The scenes have

een generated in a laparoscopic simulator using animal internal

rgans in order to recreate scenarios similar to those that appear

n real operations ( Fig. 3 ). 

This experimental scenario has allowed us to test the algorithm

nder the different circumstances in which surgical gauzes can ap-

ear in this type of operations: clean, slightly stained or soaked in

lood or other internal fluids as well as against different biological

ackground tissues. 

There are several strategies and parameters that influence the

etection results: the potential use of color information, the size of

he blocks into which the image is divided, the number of neigh-

ors in the operators, the neighborhood radius and last but not

east, the performance of the different LBP approaches in gauze

etection. The following subsections present an analysis of the im-

act of these strategies and parameters on the detection results. 
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Table 1 

Dimensionality and AUC-ROC for different colour methods. Homologous grey level variants clearly outperform the 

colour methods in the detection of surgical gauzes. 

Abbreviation Variant No. of Features AUC ROC 

LBP Local Binary Patterns Grey scale [25] 256 0.940 

LBP-RGB Independent colour components. RGB colour space [2] 768 0.861 

LBP-HSV Independent colour components. HSV colour space 768 0.636 

LBP-Lab Independent colour components. Lab colour space 768 0.495 

LBP-YCbCr Independent colour components. YCbCr colour space 768 0.617 

LBPriu Rotation invariant and uniform in grey scale [20] 10 0.957 

LBPriu-RGB Indep. Colour comp. Rotation invar. and uniform. RGB space 30 0.874 

LBPriu-HSV Indep. Colour comp. Rotation invar. and uniform. HSV space 30 0.699 

LBPriu-Lab Indep. Colour comp. Rotation invar. and uniform. Lab space 30 0.761 

LBPriu-YCbCr Indep. Colour comp. Rotation invar. and uniform. YCbCr space 30 0.760 

OCLBP-RGB Opponent colour LBP. RGB colour space [30] 1.536 0.617 

OCLBP –HSV Opponent colour LBP. HSV colour space 1.536 0.657 

OCLBP –Lab Opponent colour LBP. Lab colour space 1.536 0.651 

OCLBP -YCbCr Opponent colour LBP. YCbCr colour space 1.536 0.694 

Fig. 4. ROC curves for the LBP, rotation invariant uniform (LBPriu) and opponent colour (OCLBP) variants. 
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.1. Color information 

Some experiments evaluating the LBP texture features using

olour have been conducted. Colour features have been computed

onsidering not only each colour component of the images inde-

endently but also tested using the Opponent Colour LBP model

OCLBP) [30] . The first approach generates the LBP histogram con-

atenating the histogram from each colour components while the

econd provides the spatial distribution between the different

olour components representing the colour texture from 6 LBP his-

ograms. Both experiments have been carried out using different

paces (RGB, YCbCr, HSV and Lab) trying to find the representation

he most suited for our application. 

We have computed the area under the curve (AUC) of receiver

perating characteristics (ROC) curve to compare the classification

erformance of the different colour models with the grey level

nes. AUC measures the quality of model predictions, regardless

f which classification threshold is chosen. The higher the AUC,

he better the model is at distinguishing between gauze and back-

round. 

The results, shown in Table 1 and Fig. 4 , reveal that colour mod-

ls perform visibly below the grey levels models. These models,

ertainly powerful when discriminating regions with stable colour

extures, have not been shown to be advantageous in the detection

or two reasons. Firstly, due to the unpredictable colour appearance

f gauzes; although initially these items are perfectly white, they

dopt very dissimilar tonalities depending on the fluid in which

hey are impregnated and the amount of liquid they absorb. The

econd reason is due to the unstable illumination inside the pa-

ient body. Colour texture operators in steady illumination condi-

1

ions are more powerful than operators based only on grey level,

ut fail when illumination varies [29] . 

.2. Size of image blocks 

Fig. 5 displays the results for different block sizes, using a LBP

perator with a neighborhood P8-R1. The tests show that very

mall blocks do not give the best results and significantly increase

he number of false positives. This is because the area being ana-

yzed is statistically less stable for smaller regions. 

On the other hand, for larger block sizes, the analysis areas are

ignificant, but detection is subject to the fact that the gauze oc-

upy a major part of the block, which is difficult when the block

ize is increased excessively. In the last image of Fig. 5 the blocks

re only partially filled by the texture of the gauze, which causes

ailures in detection. Eventually, a block size of 100 × 100 pixels

as been chosen as a compromise between these two facts. 

.3. Number of neighbors and radius of the neighborhood 

Several rotation invariant uniform ( LBPriu) operators have been

mplemented using three different neighborhood sizes P (8, 12 and

6) and three different radii R (1,2 and 3). The influence of the

umber of neighbors and the radius on the detection results is

resented in two graphs ( Fig. 6 ). For the analysis of the radius

 Fig. 6 a), the average precision and sensitivity have been computed

sing three neighborhoods with different values P (8, 12 and 16)

or each of the three radii. Analogously for the analysis of the num-

er of neighbors. These tests were carried out using a block size of

00 × 100 pixels. 
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Fig. 5. Influence of block size. Blocks detected correctly as gauze (true positives) appear in green, erroneously classified as background (false negatives) in yellow and, wrongly 

detected as gauze (false positives) in red. 

Fig. 6. Influence of radius and number of neighbors in precision and sensitivity. 
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Fig. 6 a shows that as the radius increases, both precision and

sensitivity decrease. The effect is more noticeable in sensitivity.

A similar trend can be perceived when the number of neighbors

varies ( Fig. 6 b). As the number of neighbors increases, precision

and sensitivity decrease. In the latter case, although the sensitiv-

ity increases slightly when we change from 12 to 16 neighbors,

the difference is minimal and a descending trend can be assumed.

Thus the experiments allow to conclude that the highest values of

precision and sensitivity are achieved with a unit radius neighbor-

hood and 8 neighbors. 

3.4. LBP variants 

Several LBP variants have been programmed (see Table 2 ) and

the performance of each method has been evaluated by quanti-

fying the AUC-ROC. For this analysis, we used blocks 100 × 100

extracted from images, 4891 blocks classified as background and

1782 blocks of gauze in different circumstances (clean, stained and

soaked) (link to dataset) . 75% of these blocks have been used to
btain the pattern histogram and the remaining 25% has been re-

erved for the test with which we have obtained the ROC curves. 

The variants with the best performance are those that somehow

ncorporate information about contrast. The CLBC proposed by [39] ,

lthough it contains this type of information, did not provide good

esults, probably because the structural information, that seems to

e important for the classification, is discarded in this model. 

The multi-resolution approach [26] using 8 neighbours and two

ifferent radii, R = 1 and R = 2, doubles the computational cost and

oes not offer any improvement with respect to the unit radius ap-

roach. The most interesting variants after this study are LBP|VAR

nd CLBP (see Table 2 ). Next section shows that both provide sat-

sfactory results in gauze detection with a low computational load.

.5. Convolutional neural network approach 

In recent years, deep Convolutional Neural Networks (CNN)

ave provided spectacular results in many fields of machine vi-

ion including texture classification. They have also shown excel-
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Table 2 

Dimensionality and AUC-ROC for the different LBP grey level methods. 

Abbreviation Variant No. of Features AUC ROC 

LBP Local Binary Patterns in grey scale [25] 256 0.940 

LBPriu Rotation invariant and uniform in grey scale [20] 10 0.957 

LBP|VAR8,1 + 8,2 Multiresolution LBPriu and variance (8,1) and (8,2) [26] 20 0.957 

VAR Variance distribution [26] 16 0.954 

LBP|VAR Local Binary Pattern or Variance [23] 26 0.965 

LBPV Local Binary Pattern Variance [10] 10 0.945 

CS-LBP Center-Symmetric Local Binary Patterns [14] 16 0.921 

LTP Local Ternary Pattern [38] 512 0.943 

CLBP Completed Local Binary Pattern [11] 30 0.974 

CLBC Completed Local Binary Count [39] 32 0.941 
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Table 3 

Precision and sensitivity obtained by the LBPriu and LBP|VAR versions. 

LBPriu LBP|VAR 

Image content Precision Sensitivity Precision Sensitivity 

Clean gauze 1.00 0.81 1.00 0.88 

Stained gauze 0.96 0.72 0.95 0.85 

Soaked gauze 0.86 0.53 0.90 0.87 

Overall 0.96 0.72 0.96 0.86 
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l

ent discrimination performance, especially under very changing

cquisition conditions where they have proved to be superior to

and-crafted descriptors [1,17] . 

Among CNN, ResNet models [13] appear as one of the best

pproaches for texture analysis in realistic conditions [1] . The

esNet50 model presents a good tradeoff between inference time

nd accuracy among a wide variety of models analyzed in terms of

nference time, accuracy and power consumption [3] . 

In order to contrast the experimental results of our LBP model

ith a CNN approach, a ResNet50 model has been trained for our

auze detection application using the PyTorch framework. Since

he size of our dataset is limited, we have used a pre-trained

odel to obtain reliable results. In order to enable the current pre-

rained model to be able to classify our two classes, background

nd gauze, the final layer of the model has been changed by the

ollowing set of sequential layers. Firstly, it has been connected to

 linear layer with 256 outputs that is followed by a ReLU and

ropout layers and finally a 256 × 2 lineal layer, with the two

utputs corresponding to the classes to be identified. The nega-

ive loss likelihood function was used to determine the loss and

he selected optimizer was the Adam optimizer. 

Our dataset (link to dataset) consists of 4891 images of back-

round and 1782 of gauze. We have used, for each class, 10 0 0 im-

ges for training, 300 images for validation and the rest for test-

ng, all of them randomly selected. The training process consisted

n 25 epochs which has been analyzed in terms of loss and ac-

uracy, choosing the model that offered the highest accuracy ratio

nd lower loss. 

. Results 

Our gauze detection algorithms classify each of the blocks into

hich the image has been divided as gauze or background. They

arry out this task based on the similarity between the image

locks and the gauze model pattern. As this classification is not

aultless, among the true positives ( tp ) and true negatives, there

ill appear false negatives ( fn ) and false positives ( fp ). The preci-

ion and sensitivity, also called recall, can be used to quantify the

erformance of the algorithm: 

precision = 

t p 

t p + f p 
(5) 

ensit i v it y = 

t p 

t p + f n 

(6)

The percentages of precision and sensitivity shown in the fol-

owing subsections correspond to the average of 110 simulated la-

aroscopic images that can be divided into three groups: images

ontaining clean or almost clean gauzes (47 images), images with

auzes stained with blood (31 images), images with gauzes totally

oaked in blood (28 images) and images where no gauze is present

4 images). (Link to the suite of test images) 
In order to obtain a ground truth, the blocks in the suite of 110

est images have been manually segmented marking those blocks

n which the gauze occupies at least 75% of the block. The compar-

son of the ground truth segmentation with the results provided by

he algorithm permit to stablish the number of true positives, false

egatives and false positives and quantify the precision and recall

n the classification of individual blocks. 

.1. LBP|VAR operator 

To better quantify the performance of the developed algorithm,

 first version, only based on the LBPriu operator, was executed

ithout any analysis of variance. The results, broken down accord-

ng to the content of the images, are presented in Table 3 (More

etailed tables can be accessed in the following links: table LBPriu,

able LPB|VAR). These results show that the technique based only

n LPB is not reliable for the detection of the gauze in this practi-

al application. 

LBP have good detection capacity when the texture appears

learly in the image as in the case of clean or slightly stained

auzes. When gauzes are soaked or the image is blurred by the

ovement of the endoscope, the characteristic texture of the gauze

isappears and the algorithm lose its detection capacity. In these

ituations, where the LBP operator fails due to the loss of the lo-

al spatial pattern, the VAR operator complements the recognition.

ncorporating variance into the analysis algorithm permits a con-

iderable increase in sensitivity, especially in the cases of soaked

auzes and when images are blurred ( Fig. 7 ). 

.2. Completed LBP (CLBP) operator 

The results provided by the completed LBP variant (CLBP)

11] are significantly better than those achieved with the basic LBP

perator ( Table 4 ). This is due to the fact that the CLBP algorithm

ntroduces, besides the sign differences between neighbours and

entral pixel, the magnitude differences of each pattern with the

entral grey level of the patterns. 

The CLBP variant improves the precision and sensitivity of the

BP|VAR algorithm but this one seems more robust to image blur-

ing ( Figs. 7 b and 8 c). Unfortunately, both of them suffer from a

ack of detection in saturated image areas. 
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Fig. 7. The LBPriu operator could not detect any block in images a) and c) . It usually fails in blurred images and in the detection of soaked gauzes due to the loss of the 

gauze spatial microstructure. b) and d) Results of LPB|VAR operator in the same images. In these situations, the variance operator is crucial in the gauze recognition task. 

(The results obtained on all the images can be accessed in the following links: results LBPriu and results LBP|VAR). 

Fig. 8. CLBP Results. True positives are marked in green, false positives in red and the false negatives in yellow. The detection of CLBP on a) stained and b) soaked gauzes is 

nearly perfect but it fails in c) blurred and d) saturated areas of the images d) Highly textured tissues in the background can also generate false positives (in red). (Link to 

all the CLBP results on the test suite). 
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Fig. 9. ResNet50 provides better results on any type of image but it also fails in blurred images and saturated areas. (Link to all the results using ResNet50 on the test suite). 

Table 4 

Precision and sensitivity obtained by the 

CLBP algorithm. (More detailed table in the 

following link.). 

CLBP 

Image content precision sensitivity 

Clean gauze 1.0 0.91 

Stained gauze 0.98 0.88 

Soaked gauze 0.90 0.87 

Overall 0.98 0.89 

Table 5 

Precision and sensitivity obtained by the 

ResNet50 CNN. (More detailed table in this 

link). 

CNN ResNet50 

Image content precision sensitivity 

Clean gauze 1.0 0.98 

Stained gauze 1.0 0.93 

Soaked gauze 0.98 0.99 

Overall 1.00 0.97 
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Table 6 

Final precision and sensitivity obtained by the gauze detection algorithm 

after connected components analysis. 

LBP|VAR CLBP 

Image content Precision Sensitivity Precision Sensitivity 

Clean gauze 1.0 0.93 1 0,96 

Stained gauze 0.96 0.94 0,98 0,95 

Soaked gauze 0.90 0.92 0,94 0,94 

Overall 0.96 0.93 0.98 0.94 
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.3. ResNet50 CNN 

LBP methods are computationally efficient and present robust-

ess to rotation of the gauze pattern. They are even resilient to

ariations in scene illumination, as long as these are not exces-

ive. Unfortunately, there are other disturbances in the image ac-

uisition conditions that have to be faced when working with an

ndoscope in a surgical operation such as strong changes in the

oint of view that significantly vary the spatial scale of the pat-

ern, image blurring due to movement of the endoscope and sat-

ration of gauze white areas in the image. All these uncontrolled

maging conditions are difficult to model in the design of a priori

and-crafted descriptors such as the ones we have presented. 

The ResNet50 convolutional neural network has been trained

o classify between gauze or background and its performance has

een tested on 110 images of a different dataset. The results pro-

ided by this off-the-shelf neural network (see Table 5 ) exceed

n precision and sensitivity those obtained by our previous hand

rafted LBP texture algorithms. This confirms the remarkable per-

ormance of the neural approach in this type of problems where

he image acquisition conditions are variable. However, the neu-

al network is also incapable to detect the gauze in situations of

aturation and blurring and produces false positives in highly tex-

ured background tissues ( Fig. 9 ). In this case, the results probably

ould have been better using a data set containing a wide range

f images in order that the neural network learns from a variety of

ifferent patterns. The problem of training on a very large data set
ould be overcome by combining convolutional networks with the

andcrafted LBP descriptors producing a high performing system

hat exceeds CNN trained specifically on a given dataset [24] . 

.4. Connected components analysis 

In this subsection we present a simple and efficient morpholog-

cal post-processing that mitigates some detection deficiencies that

ppears in saturated image areas or in highly textured background

issues. 

Saturated image areas are usually surrounded by other blocks

here gauze has been found. A mathematical morphology closing

peration with a 3 × 3 structuring element can partially correct

he lack of detection. Similarly, false positives originated by tis-

ues with a lot of texture produce usually small connected com-

onents with only a few blocks. In this case, a size filter on the

onnected components can eliminate these erroneous blobs inte-

rated by only a few blocks. 

We have applied this simple post-processing chain to the re-

ults obtained by the LBP|VAR and the CLBP algorithm. The im-

rovement is substantial in both cases (links to the image results

sing this post-processing on LBP|VAR and CLBP classification). The

esults obtained show that this morphological post-processing in-

reases the detection sensitivity in any type of image without de-

rading the precision. The detection for LBP|VAR and CLBP meth-

ds reaches an overall sensitivity of 93% and 94% respectively.

able 6 details the sensitivity and precision obtained in the dif-

erent types of images (more detailed tables in LBP|VAR final table

nd CLBP final table). 

Table 7 presents several hyperlinks to video results. The videos,

ith different contents, have all been processed with the proposed

arameters: 100 × 100 pixel blocks, neighborhood size P = 8, and

adius R = 1. 

.5. Execution time 

Execution time is an important factor in this practical computer

ision application because it is necessary to process the video in

eal time. The LBP algorithms has been coded in C ++ using the
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Table 7 

Results obtained on videos with different con- 

tents. 

Video Results 

Video contents LBP LBP|VAR CLBP 

Clean gauze video video video 

Stained gauze video video video 

Soaked gauze video video video 
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OpenCV library [27] (link to code). The average execution time for

the LBP|VAR variant, including the morphological postprocessing,

in the suite of 720 × 576 test images is 15 milliseconds in a 4-

core Intel Core i7-4720HQ 2.6GHz. This execution speed allows the

video processing at 50 fps without problem. As long as CLBP al-

gorithm is concerned, it needs 13 milliseconds on average on the

same computer. In the case of higher resolution video processing,

speed can be further improved because both algorithms are easily

parallelized on a normal multicore processor [6] . 

However, the average processing time for each image using the

neural network is 4,22 seconds. Although this time cannot be di-

rectly compared with those obtained in LBP methods because it

has been executed in another machine and under different pro-

gramming language, this processing time is much higher (x300)

than for LBP operators. This time can be drastically improved by

running the CNN on a GPU and rewriting some parts in C ++ or

CUDA but accelerating the execution 300 times seems difficult us-

ing a regular computer. 

5. Conclusions 

Several technologies have been developed in recent years to

avoid the inadvertent retention of surgical gauzes, but this med-

ical error is still a major problem. The proposed solution presents

several advantages over other existing equipment as it works au-

tonomously and transparently for the surgeon, making the process

of monitoring these items more direct and convenient. The pre-

sented video processing application is also cost-effective since it

does not require, apart from the endoscope, the acquisition of new

devices or specialized hardware and it can be used in conjunction

with other technologies to make gauze control absolutely reliable. 

We have proposed two LBP algorithms that have proven to be

reliable for the detection and monitoring of the gauze under the

different appearances that it may show in laparoscopic surgery.

The results obtained are promising, with final precision of 96% and

sensitivity of 93% for LBP|VAR and precision of 98% and sensitivity

of 94% for CLBP. Although the latter variant has better performance

percentages, the former has been revealed to be more robust to

image blurring, a situation commonly encountered in laparoscopy

due to the frequent movement of the endoscope and gauze. Both

methods present a simple and efficient computational implemen-

tation, which is mandatory for high-definition video processing in

real time. 

Future lines of improvement will necessarily include CNN net-

works. In this paper we have also explored this approach with a

ResNet50 neural network and the results obtained, with a preci-

sion of 100% and sensitivity of 97%, exceed those provided by our

hand crafted LBP texture algorithms. This confirms the remarkable

performance of the neural approach in this type of problems where

the image acquisition conditions are variable. However, CNN prac-

tical implementation in a normal computer is currently hampered

by its excessive computational cost. 

Declaration of Competing Interest 

The authors declare that they have no conflict of interest. 
cknowledgements 

This work has been funded by the Spanish Ministry of Economy,

ndustry and Competitiveness, through the project DPI2016-80391-

3-3-R . 

upplementary materials 

Supplementary material associated with this article can be

ound, in the online version, at doi:10.1016/j.cmpb.2020.105378 . 

eferences 

[1] R. Bello-Cerezo , F. Bianconi , F. Di Maria , P. Napoletano , F. Smeraldi , Compara-

tive evaluation of hand-crafted image descriptors vs. Off-the-Shelf CNN-Based
features for colour texture classification under ideal and realistic conditions,

Appl. Sci. 9 (4) (2019) 738 (Switzerland)art. no. . 

[2] S. Banerji , A. Verma , C. Liu , LBP and color descriptors for image classification,
Cross Disciplinary Biometric Systems. Intelligent Systems Reference Library, 37,

Springer, 2012 . 
[3] Canziani A., Paszke A., Culurciello E.An analysis of deep neural network mod-

els for practical applications. 24 de mayo de2016(accesed 15 november 2019);
Available in: http://arxiv.org/abs/1605.07678 

[4] R.R. Cima, A. Kollengode, J. Garnatz, A. Storsveen, C. Weisbrod, C. Deschamps,

Incidence and characteristics of potential and actual retained foreign object
events in surgical patients, J Am. Coll Surg 207 (1) (2008) 80–87, doi: 10.1016/

j.jamcollsurg.2007.12.047 . 
[5] L. Chen , W. Tang , N.W. John , T. Wan , J.J. Zhang , SLAM-based dense surface re-

construction in monocular minimally invasive surgery and its application to
augmented reality, in: Computer Methods and Programs in Biomedicine, 158,

Elsevier, 2018, pp. 135–146 . 
[6] E. de la Fuente, F.M. Trespaderne, L. Santos, J.C. Fraile, J.P. Turiel, Parallel com-

puting for real time gauze detection in laparoscopy images, in: 2017 2nd In-

ternational Conference on Bio-engineering for Smart Technologies (BioSMART),
Paris, 2017, pp. 1–5, doi: 10.1109/BIOSMART.2017.8095328 . 

[7] A. García-Martínez , C.G. Juan , N.M. Garcia , J.M. Sabater-Navarro , Automatic de-
tection of surgicalgsing computer vision, 2015 23rd Mediterranean Conference

on Control and Automation (MED), 2015 June 16-19 . 
[8] A .A . Gawande , D.M. Studdert , E.J. Orav , T.A. Brennan , M.J. Zinner , Risk factors

for retained instruments and sponges after surgery, N. Engl. J. Med. 348 (3)

(2003) 229–235 . 
[9] C.C. Greenberg, R. Diaz-Flores, S.R. Lipsitz, S.E. Regenbogen, L. Mulholland,

F. Mearn, S. Rao, T. Toidze, A .A . Gawande, Bar-coding surgical sponges to im-
prove safety: a randomized controlled trial, Ann. Surg. 247 (2008) 612–616

(April (4)), doi: 10.1097/sla.0b013e3181656cd5 . 
[10] Z. Guo, L. Zhang, D. Zhang, Rotation invariant texture classification using LBP

variance (LBPV) with global matching, Pattern Recognit. 43 (2010) 706–719,

doi: 10.1016/j.patcog.2009.08.017 . 
[11] Z. Guo , L. Zhang , D. Zhang , A completed modeling of local binary pattern

operator for texture classification IEEE Trans, Image Process 19 (6) (2010)
1657–1663 . 

[12] D. Hariharan, D.N. Lobo, Retained surgical sponges, needles and in-
struments, Ann. R. Coll. Surg. Engl. 95 (2) (2013) 87–92, doi: 10.1308/

003588413X13511609957218 . 

[13] K. He , X. Zhang , S. Ren , J. Sun , Deep residual learning for image recognition,
in: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),

Las Vegas, NV, IEEE, 2016, pp. 770–778 . 
[14] M. Heikkilä, M. Pietikäinen , C. Schmid , Description of interest regions with

center-symmetric local binary patterns, in: Proceedings of 5th Indian Confer-
ence of Computer Vision, Graphics and Image Processing, 2006, pp. 58–69 . 

[15] A . Lazzaro, A . Corona, L. Iezzi, S. Quaresima, L. Armisi, I. Piccolo, C.M. Medaglia,

S. Sbrenni, P. Sileri, N. Rosato, A.L. Gaspari, N. Di Lorenzo, Radiofrequency-
based identification medical device: an evaluable solution for surgical sponge

retrieval? Surg. Innovat. 24 (3) (February 2017) 155335061769060, doi: 10.1177/
1553350617690608 . 

[16] L. Liu , P. Fieguth , Y. Guo , X. Wang , M. Pietikäinen , Local binary features for
texture classification: taxonomy and experimental study, Pattern Recognit. 62

(2017) 135–160 . 

[17] L. Liu , J. Chen , G. Zhao , P. Fieguth , X. Chen , M. Pietikainen , Texture classifica-
tion in extreme scale variations using GANet, IEEE Trans. Image Process. 28 (8)

(2019) 3910–3922 art. no. 8663448 . 
[18] A .E. Lincourt, A . Harrell, J. Cristiano, C. Sechrist, K. Kercher, B.T. Heniford,

Retained foreign bodies after surgery, J. Surg. Res. 138 (2) (2007) 170–174,
doi: 10.1016/j.jss.20 06.08.0 01 . 

[19] C. López-Casado , E. Bauzano , I. Rivas-Blanco , V.F. Muñoz , J.C. Fraile , Collabora-
tive robotic system for hand-assisted laparoscopic surgery, in: A. Ollero, A. San-

feliu, L. Montano, N. Lau, C. Cardeira (Eds.), ROBOT 2017: Third Iberian Robotics

Conference. ROBOT 2017, 694, Advances in Intelligent Systems and Computing,
2018 . 

[20] T. Mäenpää, T. Ojala , M. Pietikäinen , M. Soriano , “Robust texture classification
by subsets of local binary patterns, in: Proc. 15th International Conference on

Pattern Recognition, 3, 20 0 0, pp. 947–950 . 

https://doi.org/10.1016/j.cmpb.2020.105378
http://refhub.elsevier.com/S0169-2607(19)31291-X/sbref0001
http://refhub.elsevier.com/S0169-2607(19)31291-X/sbref0001
http://refhub.elsevier.com/S0169-2607(19)31291-X/sbref0001
http://refhub.elsevier.com/S0169-2607(19)31291-X/sbref0001
http://refhub.elsevier.com/S0169-2607(19)31291-X/sbref0001
http://refhub.elsevier.com/S0169-2607(19)31291-X/sbref0001
http://refhub.elsevier.com/S0169-2607(19)31291-X/sbref0002
http://refhub.elsevier.com/S0169-2607(19)31291-X/sbref0002
http://refhub.elsevier.com/S0169-2607(19)31291-X/sbref0002
http://refhub.elsevier.com/S0169-2607(19)31291-X/sbref0002
http://arxiv.org/abs/1605.07678
https://doi.org/10.1016/j.jamcollsurg.2007.12.047
http://refhub.elsevier.com/S0169-2607(19)31291-X/sbref0004
http://refhub.elsevier.com/S0169-2607(19)31291-X/sbref0004
http://refhub.elsevier.com/S0169-2607(19)31291-X/sbref0004
http://refhub.elsevier.com/S0169-2607(19)31291-X/sbref0004
http://refhub.elsevier.com/S0169-2607(19)31291-X/sbref0004
http://refhub.elsevier.com/S0169-2607(19)31291-X/sbref0004
https://doi.org/10.1109/BIOSMART.2017.8095328
http://refhub.elsevier.com/S0169-2607(19)31291-X/sbref0006
http://refhub.elsevier.com/S0169-2607(19)31291-X/sbref0006
http://refhub.elsevier.com/S0169-2607(19)31291-X/sbref0006
http://refhub.elsevier.com/S0169-2607(19)31291-X/sbref0006
http://refhub.elsevier.com/S0169-2607(19)31291-X/sbref0006
http://refhub.elsevier.com/S0169-2607(19)31291-X/sbref0007
http://refhub.elsevier.com/S0169-2607(19)31291-X/sbref0007
http://refhub.elsevier.com/S0169-2607(19)31291-X/sbref0007
http://refhub.elsevier.com/S0169-2607(19)31291-X/sbref0007
http://refhub.elsevier.com/S0169-2607(19)31291-X/sbref0007
http://refhub.elsevier.com/S0169-2607(19)31291-X/sbref0007
https://doi.org/10.1097/sla.0b013e3181656cd5
https://doi.org/10.1016/j.patcog.2009.08.017
http://refhub.elsevier.com/S0169-2607(19)31291-X/sbref0010
http://refhub.elsevier.com/S0169-2607(19)31291-X/sbref0010
http://refhub.elsevier.com/S0169-2607(19)31291-X/sbref0010
http://refhub.elsevier.com/S0169-2607(19)31291-X/sbref0010
https://doi.org/10.1308/003588413X13511609957218
http://refhub.elsevier.com/S0169-2607(19)31291-X/sbref0012
http://refhub.elsevier.com/S0169-2607(19)31291-X/sbref0012
http://refhub.elsevier.com/S0169-2607(19)31291-X/sbref0012
http://refhub.elsevier.com/S0169-2607(19)31291-X/sbref0012
http://refhub.elsevier.com/S0169-2607(19)31291-X/sbref0012
http://refhub.elsevier.com/S0169-2607(19)31291-X/sbref0013
http://refhub.elsevier.com/S0169-2607(19)31291-X/sbref0013
http://refhub.elsevier.com/S0169-2607(19)31291-X/sbref0013
http://refhub.elsevier.com/S0169-2607(19)31291-X/sbref0013
https://doi.org/10.1177/1553350617690608
http://refhub.elsevier.com/S0169-2607(19)31291-X/sbref0015
http://refhub.elsevier.com/S0169-2607(19)31291-X/sbref0015
http://refhub.elsevier.com/S0169-2607(19)31291-X/sbref0015
http://refhub.elsevier.com/S0169-2607(19)31291-X/sbref0015
http://refhub.elsevier.com/S0169-2607(19)31291-X/sbref0015
http://refhub.elsevier.com/S0169-2607(19)31291-X/sbref0015
http://refhub.elsevier.com/S0169-2607(19)31291-X/sbref0016
http://refhub.elsevier.com/S0169-2607(19)31291-X/sbref0016
http://refhub.elsevier.com/S0169-2607(19)31291-X/sbref0016
http://refhub.elsevier.com/S0169-2607(19)31291-X/sbref0016
http://refhub.elsevier.com/S0169-2607(19)31291-X/sbref0016
http://refhub.elsevier.com/S0169-2607(19)31291-X/sbref0016
http://refhub.elsevier.com/S0169-2607(19)31291-X/sbref0016
https://doi.org/10.1016/j.jss.2006.08.001
http://refhub.elsevier.com/S0169-2607(19)31291-X/sbref0018
http://refhub.elsevier.com/S0169-2607(19)31291-X/sbref0018
http://refhub.elsevier.com/S0169-2607(19)31291-X/sbref0018
http://refhub.elsevier.com/S0169-2607(19)31291-X/sbref0018
http://refhub.elsevier.com/S0169-2607(19)31291-X/sbref0018
http://refhub.elsevier.com/S0169-2607(19)31291-X/sbref0018
http://refhub.elsevier.com/S0169-2607(19)31291-X/sbref0019
http://refhub.elsevier.com/S0169-2607(19)31291-X/sbref0019
http://refhub.elsevier.com/S0169-2607(19)31291-X/sbref0019
http://refhub.elsevier.com/S0169-2607(19)31291-X/sbref0019
http://refhub.elsevier.com/S0169-2607(19)31291-X/sbref0019


E. de la Fuente López, Á. Muñoz García and L. Santos del Blanco et al. / Computer Methods and Programs in Biomedicine 190 (2020) 105378 11 

 

 

[  

 

 

[  

 

 

 

[  

 

[  

 

[  

 

[  

[  

 

[  

 

 

 

[  

[  

 

[  

 

[  

 

[  

 

 

[  

 

[  
[21] T. Mäenpää, M. Pietikäinen , Texture analysis with local binary patterns, in:
C.H. Chen, P.S.P. Wang (Eds.), Handbook of Pattern Recognition and Computer

Vision, eds.3rd edn., World Scientific, Singapore, 2005, pp. 197–216 . 
22] L. Maier-Hein , P. Mountney , A. Bartoli , H. Elhawary , D. Elson , A . Groch , A . Kolb ,

M. Rodrigues , J. Sorger , S. Speidel , D. Stoyanov , Optical techniques for 3D sur-
face reconstruction in computer-assisted laparoscopic surgery, in: Medical Im-

age Analysis, 17, Elsevier, 2013, pp. 974–996 . 
23] A. Muñoz-García, E. de la Fuente-López, L. Santos del Blanco, J.C. Fraile-

Marinero, J. Pérez-Turiel, Sistema de Visión para Seguimiento Automático

de Gasas Quirúrgicas en Cirugía Laparoscópica, Actas de las XXXIX Jor-
nadas de Automática (2018) 72–79 Badajoz (Spain), 5-7 de Septiembre de

http://dehesa.unex.es/bitstream/handle/10662/8134/978- 84- 09- 04460- 3 _ 072. 
pdf?sequence=1&isAllowed=y . 

24] Nanni, L., Ghidoni, S., Brahnamb, S.Ensemble of convolutional neural networks
for bioimage classification. Appl. Comput. Informat. https://doi.org/10.1016/j.aci.

2018.06.002 

25] T. Ojala , M. Pietikäinen , D. Harwood , “A comparative study of texture mea-
sures with classification based on feature distributions, Pattern Recognit. 29

(1) (1996) 51–59 . 
26] T. Ojala , M. Pietikäinen , T. Mäenpää, Multiresolution gray-scale and rotation

invariant texture classification with local binary patterns, IEEE Trans. Pattern
Anal. Mach. Intell. 24 (7) (2002) 971–987 . 

[27] OpenCV Library. Available from: http://opencv.org/ (acc. June 11, 2019). 

28] M. Pietikäinen , T. Ojala , Z. Xu , Rotation-invariant texture classification using
feature distributions, Pattern Recog. 33 (20 0 0) 43–52 . 

29] M. Pietikäinen , T. Mäenpää, J. Viertola , Color texture classification with color
histograms and local binary patterns, in: Workshop on Texture Analysis in Ma-

chine Vision, 2002, pp. 109–112 . 
30] M. Pietikäinen , G. Zhao , A. Hadid , T. Ahonen , Computer vision using local
binary patterns, Number 40 in Computational Imaging and Vision, Springer,

2011 . 
[31] M.E. Rabie, M.H. Hosni, A. Al Safty, M. Al Jarallah, F.H. Ghaleb, Gossypiboma

revisited: a never ending issue, Int. J. Surg. Case Rep. 19 (2016) 87–91, doi: 10.
1016/j.ijscr.2015.12.032 . 

32] A. Rehman , N. Ul-Ain Baloch , M. Awais , Gossypiboma (Retained Surgical
Sponge): an evidence-based review, Open J. Surg 1 (1) (2017) 008–014 . 

33] G. Schaefer , N. Doshi , LBP vs. LBP variance for texture classification, in: Y. Tan,

H. Takagi, Y. Shi (Eds.), Data Mining and Big Data. DMBD 2017. Lecture Notes
in Computer Science, 10387, Springer, Cham, 2017 . 

34] V.M. Steelman , M.H. Alasagheirin , Assessment of radiofrequency device sensi-
tivity for the detection of retained surgical sponges in patients with morbid

obesity, Arch. Surg. 147 (2012) 955–960 . 
35] V.M. Steelman , J.J. Cullen , Designing a safer process to prevent retained sur-

gical sponges: a healthcare failure mode and effect analysis, AORN J 94 (2)

(2011) 132–141 . 
36] V.M. Steelman, C. Shaw, L. Shine, A.J. Hardy-Fairbanks, Retained surgical

sponges: a descriptive study of 319 occurrences and contributing factors from
2012 to 2017, Patient Saf. Surg. 12 (2018) 20 Published 2018 Jun 29., doi: 10.

1186/s13037-018-0166-0 . 
[37] Storz. Karl Storz Endoskopes. https://www.karlstorz.com/es/es/telepresence. 

htm 

38] X. Tan , B. Triggs , Enhanced local texture feature sets for face recognition
under difficult lighting conditions, IEEE Trans. Image Process. 19 (6) (2010)

1635–1650 . 
39] Y. Zhao , D.S. Huang , W. Jia , Completed local binary count for rotation invariant

texture classification, IEEE Trans. Image Process. 21 (10) (2012) 4 492–4 497 . 

http://refhub.elsevier.com/S0169-2607(19)31291-X/sbref0020
http://refhub.elsevier.com/S0169-2607(19)31291-X/sbref0020
http://refhub.elsevier.com/S0169-2607(19)31291-X/sbref0020
http://refhub.elsevier.com/S0169-2607(19)31291-X/sbref0021
http://refhub.elsevier.com/S0169-2607(19)31291-X/sbref0021
http://refhub.elsevier.com/S0169-2607(19)31291-X/sbref0021
http://refhub.elsevier.com/S0169-2607(19)31291-X/sbref0021
http://refhub.elsevier.com/S0169-2607(19)31291-X/sbref0021
http://refhub.elsevier.com/S0169-2607(19)31291-X/sbref0021
http://refhub.elsevier.com/S0169-2607(19)31291-X/sbref0021
http://refhub.elsevier.com/S0169-2607(19)31291-X/sbref0021
http://refhub.elsevier.com/S0169-2607(19)31291-X/sbref0021
http://refhub.elsevier.com/S0169-2607(19)31291-X/sbref0021
http://refhub.elsevier.com/S0169-2607(19)31291-X/sbref0021
http://refhub.elsevier.com/S0169-2607(19)31291-X/sbref0021
http://dehesa.unex.es/bitstream/handle/10662/8134/978-84-09-04460-3_072.pdf?sequence=1&isAllowed=y
https://doi.org/10.1016/j.aci.2018.06.002
http://refhub.elsevier.com/S0169-2607(19)31291-X/sbref0023
http://refhub.elsevier.com/S0169-2607(19)31291-X/sbref0023
http://refhub.elsevier.com/S0169-2607(19)31291-X/sbref0023
http://refhub.elsevier.com/S0169-2607(19)31291-X/sbref0023
http://refhub.elsevier.com/S0169-2607(19)31291-X/sbref0024
http://refhub.elsevier.com/S0169-2607(19)31291-X/sbref0024
http://refhub.elsevier.com/S0169-2607(19)31291-X/sbref0024
http://refhub.elsevier.com/S0169-2607(19)31291-X/sbref0024
http://opencv.org/
http://refhub.elsevier.com/S0169-2607(19)31291-X/sbref0025
http://refhub.elsevier.com/S0169-2607(19)31291-X/sbref0025
http://refhub.elsevier.com/S0169-2607(19)31291-X/sbref0025
http://refhub.elsevier.com/S0169-2607(19)31291-X/sbref0025
http://refhub.elsevier.com/S0169-2607(19)31291-X/sbref0026
http://refhub.elsevier.com/S0169-2607(19)31291-X/sbref0026
http://refhub.elsevier.com/S0169-2607(19)31291-X/sbref0026
http://refhub.elsevier.com/S0169-2607(19)31291-X/sbref0026
http://refhub.elsevier.com/S0169-2607(19)31291-X/sbref0027
http://refhub.elsevier.com/S0169-2607(19)31291-X/sbref0027
http://refhub.elsevier.com/S0169-2607(19)31291-X/sbref0027
http://refhub.elsevier.com/S0169-2607(19)31291-X/sbref0027
http://refhub.elsevier.com/S0169-2607(19)31291-X/sbref0027
https://doi.org/10.1016/j.ijscr.2015.12.032
http://refhub.elsevier.com/S0169-2607(19)31291-X/sbref0029
http://refhub.elsevier.com/S0169-2607(19)31291-X/sbref0029
http://refhub.elsevier.com/S0169-2607(19)31291-X/sbref0029
http://refhub.elsevier.com/S0169-2607(19)31291-X/sbref0029
http://refhub.elsevier.com/S0169-2607(19)31291-X/sbref0030
http://refhub.elsevier.com/S0169-2607(19)31291-X/sbref0030
http://refhub.elsevier.com/S0169-2607(19)31291-X/sbref0030
http://refhub.elsevier.com/S0169-2607(19)31291-X/sbref0031
http://refhub.elsevier.com/S0169-2607(19)31291-X/sbref0031
http://refhub.elsevier.com/S0169-2607(19)31291-X/sbref0031
http://refhub.elsevier.com/S0169-2607(19)31291-X/sbref0032
http://refhub.elsevier.com/S0169-2607(19)31291-X/sbref0032
http://refhub.elsevier.com/S0169-2607(19)31291-X/sbref0032
https://doi.org/10.1186/s13037-018-0166-0
https://www.karlstorz.com/es/es/telepresence.htm
http://refhub.elsevier.com/S0169-2607(19)31291-X/sbref0034
http://refhub.elsevier.com/S0169-2607(19)31291-X/sbref0034
http://refhub.elsevier.com/S0169-2607(19)31291-X/sbref0034
http://refhub.elsevier.com/S0169-2607(19)31291-X/sbref0035
http://refhub.elsevier.com/S0169-2607(19)31291-X/sbref0035
http://refhub.elsevier.com/S0169-2607(19)31291-X/sbref0035
http://refhub.elsevier.com/S0169-2607(19)31291-X/sbref0035

	Automatic gauze tracking in laparoscopic surgery using image texture analysis
	1 Introduction
	2 Methodology
	2.1 Local binary patterns
	2.2 Contrast and texture patterns
	2.3 Dissimilarity measure

	3 Material and experimentation
	3.1 Color information
	3.2 Size of image blocks
	3.3 Number of neighbors and radius of the neighborhood
	3.4 LBP variants
	3.5 Convolutional neural network approach

	4 Results
	4.1 LBP|VAR operator
	4.2 Completed LBP (CLBP) operator
	4.3 ResNet50 CNN
	4.4 Connected components analysis
	4.5 Execution time

	5 Conclusions
	Declaration of Competing Interest
	Acknowledgements
	Supplementary materials
	References


