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Accurate modelling and simulation of dynamic cellular events require two main ingredients: an ad-
equate description of key chemical reactions and simulation of such chemical events in reasonable
time spans. Quite logically, posing the right model is a crucial step for any endeavour in Computa-
tional Biology. However, more often than not, it is the associated computational costs which actually
limit our capabilities of representing complex cellular behaviour. In this paper, we propose a method-
ology aimed at representing chains of chemical reactions by much simpler, reduced models. The
abridgement is achieved by generation of model-specific delay distribution functions, consecutively
fed to a delay stochastic simulation algorithm. We show how such delay distributions can be analyt-
ically described whenever the system is solely composed of consecutive first-order reactions, with
or without additional “backward” bypass reactions, yielding an exact reduction. For models includ-
ing other types of monomolecular reactions (constitutive synthesis, degradation, or “forward” bypass
reactions), we discuss why one must adopt a numerical approach for its accurate stochastic represen-
tation, and propose two alternatives for this. In these cases, the accuracy depends on the respective
numerical sample size. Our model reduction methodology yields significantly lower computational
costs while retaining accuracy. Quite naturally, computational costs increase alongside network size
and separation of time scales. Thus, we expect our model reduction methodologies to significantly
decrease computational costs in these instances. We anticipate the use of delays in model reduction
will greatly alleviate some of the current restrictions in simulating large sets of chemical reactions,
largely applicable in pharmaceutical and biological research. © 2013 American Institute of Physics.
[http://dx.doi.org/10.1063/1.4793982]

I. INTRODUCTION

One of the fundamental goals of Systems Biology is to
understand complex interactions between components of bi-
ological systems. At the cellular level, such interactions give
rise to specific biological functions such as gene expression,
molecular transport, and cell signal transduction, and are typ-
ically represented by chemical reaction networks.

However, even when biological functions have been stud-
ied in scrutinizing detail and can be reliably represented by
sets of chemical reactions, one may not be able to accurately
simulate such networks, nor explore alternatives to wild-type
scenarios. The reason for this is the associated computational
costs, limiting the time spans in which phenomena can be sim-
ulated. Even when solely considering deterministic scenarios,
the network of interactions can be very large, making the sim-
ulation of a system potentially unfeasible.

In fact, the large number of interactions is not the only
bottleneck limiting computational efficiency. Chemical reac-
tions are discrete stochastic events, and should be treated as
such. They are deemed stochastic as it is impossible to say
– with absolute certainty – the specific type of reaction that
will happen during a prescribed time interval, or when or
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where such event is to occur. Hence, an accurate description
of chemical kinetics can often solely happen in a probabilistic
sense, prescribing rates of change between different states of
the system.

If the state space is enumerated, one can define a linear
ordinary differential equation (ODE) for the time evolution of
the probability associated with each state of the system (as op-
posed to each molecular species in the system), and the set of
all such ODEs compose the so-called chemical master equa-
tion (CME). Obtaining direct analytic solutions of the CME
is possible, but limited to simplified scenarios with reduced
applicability (cf. Sec. IV). In reality, the CME is sometimes
studied through finite state projections (FSP),1 and more gen-
erally by simulating exact trajectories with a stochastic sim-
ulation algorithm (SSA).2, 3 Naturally, either method can be
prohibitively expensive, especially so when there are large
numbers of molecules (and by consequence, distinct states of
the system). Additionally, computational costs of SSAs are
very large whenever the system has widely varying rate con-
stants or increasing molecular populations. In such cases, sim-
ulating biological systems in adequate time spans may even
be unfeasible. Thus, there is a great need to reduce networks
of chemical reactions.

Well-known examples of model reductions are the
Michaelis-Menten model for enzyme-substrate reactions,4 the
chemical lumping of reaction sequences,5 and examples of
one-reaction abridgment.6

0021-9606/2013/138(10)/104114/13/$30.00 © 2013 American Institute of Physics138, 104114-1
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In particular, reduction methods exploiting separation of
time scales have been developed. For instance, Mastny et al.7

applied singular perturbation theory to remove highly reac-
tive intermediates (quasi-steady state approximation (QSSA)
species) in low numbers from the CME. Their method was
successfully applied to reaction networks where all species
occur only in small numbers but QSSA species are zero most
of the time, and to those where non-QSSA species occur in
large numbers while QSSA species populations are small. Re-
cently, Thomas et al.8 proposed a reduced linear Langevin
equation, the so-called slow-scale linear noise approximation
(ssLNA), describing the fluctuations in the slowly varying
species only. The ssLNA follows rigorously from the LNA us-
ing the projection operator technique. It accurately describes
stochastic dynamics of monostable biochemical networks, in-
cluding bimolecular reactions, in conditions characterized by
small intrinsic noise and time-scale separation – namely, those
required for the QSSA as well.

However, there are different issues limiting such reduc-
tions. For instance, new reaction rates need to be derived us-
ing information from the original model. Moreover, the ex-
istence of a reduced model is not guaranteed, depending not
only on the original network “topology” (a general ailment
of reduction methods), but also on the value of the reaction
rates and compliance with time-scale separation conditions
(see Ref. 6 for a discussion on this issue). Furthermore, as
has been previously discussed,9 adopting a QSSA may mask
important discrete stochastic effects (such as those observed
in tight regulation scenarios), while a linear noise approxima-
tion can yield completely erroneous results due to closure of
moments of the CME. Thus, a method that is independent of
time-scale separation conditions would be preferable.

Model reduction can also be achieved through the use of
time delays: chemical events are not instantaneous, and a suc-
cession of them can be explicitly defined as a “time lapse.”
Such description is particularly useful when we know the fi-
nal effect of a complex process and we can estimate the time it
takes to be completed. The key idea here is to replace chains
of processes by equivalent delayed reactions that transform
reactants into products after a predefined time delay. This
has already been implemented in delay stochastic simulation
algorithms.10, 11 However, one may ask: can such descriptions
be accurate with the consideration of a constant delay or, as
one may expect, are time delays actually random variables
obeying specific probability distributions? Moreover, can ar-
bitrary biochemical networks be replaced by delayed reac-
tions, assuming one can find an appropriate rate constant and
delay distribution?

In this work, we answer both questions, by introducing
a new method of model reduction using delays in stochastic
chemical kinetics. We study different systems of reversible
reactions with the additional restriction that the chain of re-
actions must be finished by an irreversible reaction. The se-
quence of reversible reactions would work as a chemical
“block” whereas the last irreversible reaction would be used
as a “connector” between neighbouring blocks.5, 6 Such com-
bination of blocks and connections allows us to study chem-
ical systems with different degrees of complexity, under the
premise that each block can be lumped into a single reaction

with a rate constant and a delay distribution. Abridged sys-
tems can then be part of much larger systems with additional
reactions outside these blocks, reducing computational costs
of large systems simulations.

Our methodology provides an exact reduction in scenar-
ios solely composed of unimolecular and/or backward by-
pass reactions, as the delay distributions can be derived ana-
lytically. For all other monomolecular reactions (constitutive
creation, degradation, or forward bypass reactions), our
methodology’s accuracy can be tailored at will, as the delay
distributions can be derived numerically, either in terms of
first-passage time (SSA) runs or matrix exponentials for sam-
pled time points. In these cases, the accuracy depends on the
number of SSA simulations obtained for the first-passage dis-
tribution, or the number of time points at which the matrix
exponential is calculated, respectively.

To the best of our knowledge, this is the first work on
accurate model reduction through delays, and we show the
salient effects of all presented abridged models are prob-
abilistically equivalent to those of the corresponding com-
plete models. Also, a major advantage of our methodology
over other abridgment methods is that it does not rely on
time-scale separation conditions. Hence, it is more universally
applicable.

In what follows, we will show how to reduce chains of
consecutive chemical reactions and systems including “back-
ward” and “forward” bypass reactions, degradation of in-
volved molecular species, and constitutive creation of inter-
mediate species. We will highlight what types of systems can
be reduced exactly by analytical and/or numerical means, and
will illustrate how to deal with large chemical systems. In
these cases, one may still obtain exact solutions or, alterna-
tively, a good approximation through Arnoldi estimates, at
much lower computational cost. Furthermore, we will ap-
ply our methodologies to a stochastic model of eukaryotic
mRNA turnover12 and discuss under which conditions even
Michaelis-Menten reactions can be lumped with high accu-
racy. Finally, we discuss the current limitations of our ap-
proach with respect to the chemical reaction network topol-
ogy, and possible extensions of our methodology.

II. RESULTS

Let us first assume a chain of n − 1 consecutive reversible
reactions finished by an irreversible reaction,

S1

c1−→←−
c1r

S2

c2−→←−
c2r

S3

c3−→←−
c3r

. . . Sn−1

cn−1−→←−
cn−1r

Sn

cn→ Sn+1 (1)

with non-zero c1, c1r
, c2 . . . .cn−1 reaction rates. The goal is to

replace this system with a single reaction,

S1
τ ∗→ Sn+1, (2)

where τ* is a delay distribution. We want this “lumping” to be
exact in the sense that Sn + 1 in (2) follows the same distribu-
tion as in (1). The abridged model will not include the inter-
mediate species (S2. . . Sn) and, consequently, will not provide
any information on their dynamics. Moreover, the dynamics
of S1 in (2) is not equivalent to that in (1), since there is a
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modified representation of the reactions consuming and pro-
ducing S1 molecules.

An alternative reaction scheme is

S0
c0→ S1

c1−→←−
c1r

S2

c2−→←−
c2r

S3

c3−→←−
c3r

. . . Sn−1

cn−1−→←−
cn−1r

Sn

cn→ Sn+1 (1′)

with an additional non-zero reaction rate c0. If we can replace
system (1) with the abridged model (2), we can obviously re-
place (1′) with the single reaction

S0
c0,τ

∗
→ Sn+1. (2′)

Since reaction scheme (1′) starts with an irreversible reaction,
the dynamics of S0 in (1′) and (2′) are now identical.

A. Consecutive reversible reactions

How long will it take one S1 molecule to become a Sn + 1

molecule? We can formally model it through a random walker
and the first-passage problem.6, 13 Suppose a random walker,
initially at “position” S1, can “jump” from one species to an-
other. The transition probabilities are determined by the coef-
ficients cj , cjr

so that cj is the probability per unit time that,
being at Sj, the walker jumps into Sj + 1, while cjr

is the equiv-
alent from Sj + 1 to Sj.

The first-passage time corresponds to the total time of the
overall transformation or, in other words, to the system delay.
We will follow the approach of the absorbing boundary13 due
to the last irreversible reaction, trapping the walker in Sn + 1

once it has arrived. Let Tn + 1 be the time for a walker that
started in S1 at t = 0, to first reach Sn + 1. The latter state is
absorbing and, therefore, the cumulative distribution function
(CDF) of Tn + 1 can be defined in terms of the more familiar
occupation probability p(Sn + 1, t|S1, 0.) = Prob{Tn + 1 ≤ t},
where p(Sn + 1, t|S1, 0.) is the probability that the walker is at
Sn + 1 at time t, having started in S1 at t = 0.

From the master equation, we know that the probability
density function (PDF) of the first-passage time to the state
Sn + 1 is related to the occupation probability of Sn by

fTn+1 = d

dt
p (Sn+1, t |S1, 0) = cn p (Sn, t |S1, 0) . (3)

In order to obtain p(Sn, t|S1, 0.) (in shorter notation pn(t)), we
have to solve the n-dimensional differential equation

d

dt
p (t) = Ap (t) ,

where p(t) = [p(S1, t|S1, 0) p(S2, t|S1, 0). . . p(Sn, t|S1, 0)]T is
the occupancy probability vector of the n sites, the walker can
be at prior to reaching Sn + 1, and A is the n × n rate (or tran-
sition) matrix of the system (cf. Sec. III A for a description of
A for system (1)). Note that each species is considered to be
an occupancy site for the walker that is known to be initially
at site 1 (at time t = 0), so p(0) = [1 0. . . 0]T. It is well known
that the solution of this differential equation is the matrix ex-
ponential mapping the initial probability to the probability at
time t, p(t) = eAtp(0).

Here, we choose the Laplace transform as a solution
method for the matrix exponential and obtain

eAt = L−1{(sI − A)−1},

where (sI − A)−1 is the so-called resolvent of A. It can be
shown that A is an invertible matrix, and its eigenvalues are
real and negative (cf. Secs. III A and III B). This is a crucial
point for the resolution of the matrix exponential. Moreover,
it can be shown (cf. Secs. III C and III D) that the probability
distribution of the first-passage time for our system (1) is

fTn+1 = e1(t) � e2(t) � . . . � en(t),

where ek(t) = λke
−λkt and λk = −λk , the positive values of

the eigenvalues of A. In other words, fTn+1 is the convolution
of exponential distributions with parameters λk. By sampling
from this distribution, one can obtain characteristic delays that
are subsequently fed into a DSSA implementation10, 11 to sim-
ulate the reduced system. The solution of this reduced system
is exact, i.e., identical to the original one, but one is able to
obtain such solution at a much lower computational cost.

To quickly illustrate this methodology, let us consider the
system (1′) with n = 8, reaction rate constants ci = 1(i = 0,
1, 3, 5, 7, 8), ci = 3(i = 2, 4, 6), cir = 2(i = 1, 3, 5, 7), and
cir = 4(i = 2, 4, 6) and initial condition x0 = 100 and xi = 0
for i = 1. . . 9 (example 1). We now want to replace the full
system with one reaction

S0
c0,τ

∗
→ S9.

In the reduced system, the rate constant c0 is identical
to that of the complete system and the delay distribution is
the convolution of exponential distributions with parameters
equal to the absolute value of the eigenvalues of the associated
rate matrix A. Results are shown in Figure 1. Simulating the
reduced system was about 20× faster than simulating the full
system – without any loss of accuracy.

B. Large chemical systems

Even in cases when the state space is very large, one can
still aim at generating a delay distribution in a similar way to
Sec. II A. In fact, a very close approximation to the exact so-
lution of the CME might be obtained by only considering a
reduced set of eigenvalues. Namely, we would like to obtain
those with smallest absolute values, which in turn yield the
largest contributions to the convolution of exponential distri-
butions. The problem here is to obtain such eigenvalues in a
very efficient manner.

If we consider the inverse of A (a positive-definite matrix
by definition), we can obtain Hessenberg reductions though
Arnoldi iterations and, by using standard methods, one can
further obtain their eigenvalues. These approximate eigenval-
ues, commonly referred to as Arnoldi estimates or Ritz values,
typically converge to those of the full matrix A (Ref. 14). In
our case, due to the sparse and regular structure of the state
reaction matrix A, we do not expect to encounter convergence
issues. Moreover, by applying the Arnoldi iteration, we ob-
tain eigenvalues near the edge of the spectrum of A, ordered
by magnitude. Quite conveniently, the Arnoldi iteration can
be stopped any time, yielding a desired number of eigenval-
ues only.

It is worth noting that, even when the full eigenvalue de-
composition is desired, using the Arnoldi iteration for large
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FIG. 1. Linear sequence of unimolecular reactions (example 1). (Left) Histogram for the number of S9 molecules at time T = 80 obtained from 104 SSA (blue)
and DSSA (red) simulations where delays were drawn from the 8-exponential iCDF with parameters λk, k = 1, . . . , 8 (the eigenvalues of the system’s rate
matrix A for species S1–S8). (Right) Average time evolution of species S9 in steps of �t = 2 until T = 80 for SSA and DSSA.

state reaction matrices will likely result in shorter computa-
tional time. The latter will further reduce computational costs
when one needs to recalculate the delay distributions, due to
specific signaling dynamics (i.e., a system with time-varying
reaction rates). As explained in Ref. 15, the key point to con-
sider is that matrix-vector multiplication is much faster than
matrix-matrix multiplication. In this case, the matrix-vector
multiplication corresponds to the Krylov subspaces spanned
by the orthonormal basis obtained with the Arnoldi iteration.

To illustrate the applicability of the Arnoldi itera-
tion, let us now consider system (1′) with n = 8, reaction
rate constants c0 = c1 = c1r

= c3r
= c4r

= c5 = c6r
= c7

= c7r
= c8 = 1, c2 = c4 = 0.1, c2r

= c5r
= 2, c6 = 0.5,

and c3 = 10, and initial condition x0 = 100 and xi = 0 for
i = 1. . . 9 (example 2). We will now compare an approxima-
tion to the CME using only the smallest absolute eigenvalue,
with the exact solution. As can be observed in Figure 2,
the approximation stemming from the first Arnoldi estimate
already yields a close approximation to the real solution.
Generally, with increasing number of eigenvalues the ap-
proximation will approach the exact solution. However, in
our example, the solution is largely dominated by the first
eigenvalue and adding more eigenvalues does not signifi-
cantly change the solution. Finally, we note that simulating
the reduced system was about 70× faster than simulating the
full system, without any loss of accuracy.

55 60 65 70 75 80 85 90
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Histogram of species S
9
 at time T=1000

Number of molecules

P
ro

ba
bi

lit
y

 

 

0 200 400 600 800 1000
0

10

20

30

40

50

60

70

80

Time evolution of S
9

Time

N
um

be
r 

of
 m

ol
ec

ul
es

 

 

ssa
dssa (λ

1
)

dssa (all EVs)

FIG. 2. Linear sequence of reactions with time-scale separation (example 2). (Left) Histogram for the number of S9 molecules at time T = 1000 for 106

SSA simulations (blue) and 104 DSSA simulations where delays were drawn from the corresponding 8-exponential iCDF (red) or 1-exponential iCDF for the
smallest absolute eigenvalue (green). (Right) Average time evolution of species S9 in steps of �t = 10 for SSA (blue) and DSSA (red/green). The blue and red
trajectories are undistinguishable while the green trajectory is above the other two.
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C. Fast reversible reactions with slow turnover

In order to show the potential speed-ups acquired with
our methodology, we also abridged the following four-species
system:

S0
c0→ S1

c1−→←−
c1r

S2
c2→ S3

with fast reversible reactions between S1 and S2, and a slow
production of the final product S3 (c1, c1r � c2). For this

scenario, the rate matrix A has the form ( −c1 c1r
c1 −(c1r + c2) ).

To simplify this scenario further, we assume c1 = c1r .
Thus, the eigenvalues of A can be explicitly stated as λ1/2

= (−c1 − 1
2 c2) ±

√
c2

1 + ( 1
2 c2)2.

We ran simulations for several parameter sets (c1, c2)
with c1 � c2, i.e., the reversible reactions were anywhere be-
tween 10 and 1 000 000 times faster than the reaction produc-
ing S3. In all scenarios, the full and the abridged model lead
to similar results for species S0 and S3 (data not shown) while
DSSA simulations (over 100 runs) were up to 1.7 × 103 times
faster than SSA simulations (for a simulation time T = 100).
See Table I for a summary of speed-ups.

Evidently, it is the smallest absolute eigenvalue that
mostly determines the delay distribution. In our scenario with
two fast reversible reactions followed by a slower reaction,
such eigenvalue is strongly determined by the rate of the lat-
ter reaction. In other words, since |λ1| < |λ2| and λ1

∼= − 1
2 c2,

for c1 � c2, the value of the smaller rate c2 determines the
delay distribution: the smaller the value of c2, the larger the
average delays drawn during DSSA simulations. Quite nat-
urally, savings increase with decreasing values of the slow
rate (see Table I; last three parameter sets). However, sav-
ings ultimately stem from a reduced number of reactions in
the abridged model, as compared to the full model (minus the
overhead due to delay management). Hence, savings increase
alongside the number of times a random walker moves be-
tween the internal states (here: S1 and S2) prior to arriving at
the absorbing state (here: S3). Obviously, the time until ab-
sorption increases alongside values of c1. Note that the aver-
age computational savings are limited by the maximum num-
ber of reactions that occur (on average) between the internal
(lumped) states in a period of time. This explains why param-

TABLE I. Computational savings in terms of average numbers of SSA reac-
tions per single DSSA reaction and speed-up (runtime of SSA over runtime
of DSSA runs). Simulations ran until T = 100. Mean values are calculated
over 100 simulations.

Avg. no. of
Parameters Eigenvalues DSSA reactions Avg.
(c1, c2) (λ1, λ2) DSSA reaction speed-up

(1,0.1) (−0.049,−2.05) 2.30 × 102 ∼2.5
(100,0.1) (−0.05,−200.05) 1.98 × 104 ∼0.2 × 103

(1000,0.1) (−0.05,−2000.05) 1.99 × 105 ∼1.7 × 103

(100,0.01) (−0.005,−200.005) 7.81 × 104 ∼0.8 × 103

(100,0.001) (−0.0005,−200.0005) 9.66 × 104 ∼1.0 × 103

(100,0.0001) (−0.00005,−200.00005) 9.88 × 104 ∼1.1 × 103

eter set (1000, 0.1) leads to larger savings than parameter set
(100, 0.0001), despite the latter having a larger c1/c2 ratio.

D. Additional forward and backward bypass reactions

Let Sj

b← Si , i − j > 1, be the additional bypass reac-
tion that converts species Si back into Sj. As it can be shown,
the reduction of the full system to a single reaction system
with delays remains exact even when including such back-
ward bypass reactions (cf. Sec. III E). As was true for sys-
tems with purely consecutive reversible reactions, the solution
of the first-passage time problem is the convolution of expo-
nentials with parameters λk = −λk , the positive values of the
eigenvalues of the corresponding rate matrix.

For instance, let us consider example 1 along with addi-
tional reactions

S7
c7b→ S5, S5

c5b→ S3, S8
c8b→ S4

with c8b = c7b = c5b = 1 (example 3). By following the same
procedure as with consecutive reactions, we can reduce the
full system exactly (Figure 3). In this case, simulations of
the reduced system are more than 40× faster than to simu-
late the full system.

However, the situation changes if one wants to consider

reactions Sj

f→ Si i − j > 1 (a “forward” bypass). Such reac-
tions change the structure of A significantly (with off-diagonal
elements in the lower triangular matrix), and the first-passage
solution no longer reduces to the convolution of exponentials
with parameters λk = −λk . In such cases, one can perform se-
ries of stochastic simulations to obtain a sample distribution
of first-passage times that is then fed into the DSSA. Even
though the full system can be reduced in such a way, the com-
putational costs are often not very different from those of the
full system. This is due to the large number of samples needed
to generate a sufficiently smooth first-passage time distribu-
tion. However, one gains flexibility when trying to extend the
model, as the abridged model with its delay distribution is es-
sentially a module that can be “recycled,” reducing the cost
of all subsequent simulations significantly.

Let us illustrate this approach by considering the set of
reactions from example 1 along with additional reactions

S1
c1f→ S5, S2

c2f→ S4, S4
c4f→ S6,

where c1f = c2f = c4f = 1 (example 4). As can be ob-
served, the solutions of the reduced model are indistinguish-
able from the exact solution for sufficiently large sample sizes
(Figure 4). Figure 5 illustrates the dependence on first-passage
time sample sizes for the complete system consisting of all
forward and backward bypass reactions with parameters as
described above (example 5). As is obvious, the larger the
sample, the more accurate the delay distribution and the closer
the reduced system is to the exact solution.

Importantly, an alternative to the first-passage time sam-
pling method is the numerical evaluation of the matrix expo-
nential eÃt for various time points t. Here, Ã is the (n + 1)
× (n + 1) state matrix and includes the transition to Sn + 1.
The last entry of eÃtp (0) corresponds to FTn+1 (t), the value
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FIG. 3. Sequence of unimolecular reactions with backward bypass reactions (example 3). (Left) Histogram for the number of S9 molecules at time T = 120
obtained from SSA simulations (blue) and DSSA (red) where delays were drawn from the corresponding 8-exponential iCDF. (Right) Average time evolution
of species S9 in steps of �t = 10 using SSA and DSSA.

of the CDF at time t (cf. Sec. III F). Now that we have ob-
tained the CDF, we can draw delays via inverse sampling. We
applied this method to example 5 (see Figure 5, black dots)
and obtained very accurate solutions at much lower compu-
tational costs: computing 100 first-passage times (using the
SSA) was roughly 40× slower than computing 100 matrix
exponentials (i.e., 100 values of the CDF). Moreover, such
matrix exponentials provide us with CDF values at given time
points.

E. Systems with additional degradation reactions

Degradation is an essential, ubiquitous process in all bi-
ological systems, and ideally we would like to accurately
account for it in lumped models. This raises the question
whether we can still abridge chemical reaction networks of

types (1) and (1′) that include additional degradation of inter-
mediate species by using an appropriate delay distribution. In
similitude to systems with forward bypass reactions, an ana-
lytic solution of the delay distribution in form of a convolution
of exponential distributions is not possible. However, such a
distribution can be numerically obtained as described above
and in Sec. III F.

We can do so by defining a single additional absorbing
state S∅ for all degradation reactions. While it is not nec-
essary to represent S∅ explicitly in the abridged model, one
must include the common absorbing state and all degradation
reactions in the transition matrix. Since our random walker
may now be degraded and therefore never reach “position”
Sn + 1, its first-passage time is now described by a pseudo-
distribution function with a cumulative limit w < 1 (for t
→ ∞) while 1 − w corresponds to the probability that the
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FIG. 4. Sequence of unimolecular reactions with forward bypass reactions (example 4). (Left) Histogram for the number of S9 molecules at time T = 30 for
106 SSA simulations (blue) and 104 DSSA simulations (red, green) where delays were obtained from first-passage time distributions based on 102 (red) and
103 (green) sample times. (Right) Average time evolution of species S9 in steps of �t = 10 for SSA and DSSA.
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FIG. 5. Sequence of unimolecular reactions with backward and forward bypass reactions (example 5). (Left) Histogram for the number of S9 molecules at time
T = 50 for 106 SSA simulations (blue) and 104 DSSA simulations where delays were either drawn from first-passage time distributions based on 102 (black x)
or 103 (green x) samples or obtained (via inverse sampling) from the numerical solution of the CDF evaluated at 6401 time points in the interval [0, 640] (black
dot). (Right) Average time evolution of species S9 in steps of �t = 10 for SSA and DSSA.

walker is degraded (cf. Sec. III G). Our experimental results
show a correct reduction of networks with degradation using
this method.

For instance, let us consider example 1 along with addi-
tional degradation reactions

S3
c3b→ S∅, S5

c5b→ S∅, S8
c8b→ S∅

with c3b = c5b = c8b = 0.1 (example 6). By following the
procedure described above, we can reduce the full system ex-
actly (Figure 6). In this case, simulations of the reduced sys-
tem are about 20× faster than those of the full system, where
we calculated the matrix exponential for various time points t
numerically (cf. Sec. III F).

F. Systems with additional incoming reactions

Another interesting extension to the core systems (1) and
(1′) are additional incoming reactions whose products can be
any intermediate reactant species Si (i = 1...n). Such abstract
reaction networks are commonly used in biological research
and, thus, it would be ideal to also reduce their simulation
costs. For this purpose, let us consider example 1 with an ad-
ditional incoming reaction

X
ci→ Si.

Here, we define the reaction to have a reactant species X,
but the exact same technique applies to constitutive incoming

reactions with no reactant species (i.e., ∅ ci→ Si). In this case,
we will again calculate a first-passage time through random
walkers, and the abridged scheme will include two delayed
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FIG. 6. Sequence of unimolecular reactions with additional degradation reactions (example 6). (Left) Histogram for the number of S9 molecules at time
T = 80 for 104 SSA (blue) and DSSA (black dots) simulations where delays were drawn from the inverse of the numerical solution of the CDF (using matrix
exponentials). (Right) Average time evolution of species S9 in steps of �t = 10 for SSA and DSSA. For this scenario, we computed w = 0.194.
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FIG. 7. Histogram (normalized) of species S9 at time T = 80 from 10 000
simulations of the full (SSA, blue) and the abridged system (DSSA, red).

reactions, namely,

S0
c0,τ

∗
→ Sn+1, X

ci ,τ
′

→ Sn+1

with two distinct delay distributions (τ*, τ ′). As in the orig-
inal abridged scheme, the second reaction retains the origi-
nal reaction rate ci, and the associated delay distribution (τ ′)
represents the first-passage times from Si to Sn + 1. This new
reaction correctly accounts for random walkers originating at
X, and the delay distribution can be numerically calculated
through matrix exponentiation (cf. Sec. III F).

Splitting the abridged system into two reactions has ad-
ditional benefits, as the original system’s delay distributions
(τ*) can still be calculated analytically and, therefore, a nu-
merical approach is only necessary for obtaining the addi-
tional delay distribution (τ ′).

Figure 7 shows simulation results for the system de-
scribed in example 1 extended by the incoming reaction

X
1→ S3, where only the delay of the latter is derived numeri-

cally.

G. Lumping binary reactions

Our abridgement method works equally well when con-
sidering binary reactions at the beginning of the reaction
scheme (1′). Also, without loss of generality, the end of the
reaction scheme can have two products. For instance, a reac-
tion scheme

SA + SB

c0→ S1

c1−→←−
c1

. . .
cn−1−→←−
cn−1r

Sn

cn→ SC + SD

can be reduced, exactly, to the reaction

SA + SB

c0,τ
∗

→ SC + SD.

It is worth noting not all types of reaction systems con-
taining binary reactions can be reduced exactly with a con-
stant delay distribution. However, there are scenarios where
an approximate, yet highly accurate, reduction can still be ob-
tained, while considering a constant delay distribution. We

will briefly discuss a few scenarios for which a near-exact
abridgment can still be achieved with our methodology.

Let us consider the Michaelis-Menten type reaction
system

S + E
c1−→←−
c1r

SE
c2→ E + P

that we want to replace by a delayed reaction

S + E
k,τ ∗
→ P + E

with rate k and delay distribution τ*, yielding a good approx-
imation of species P dynamics.

To fit into the standard DSSA scheme, where reactions
are chosen according to propensities, we need to introduce
a rate constant k for this reaction. This rate should be much
larger than other reaction rates in the system, and chosen in
such a way that the waiting time of each delayed reaction
is negligibly small compared to the associated random de-
lay. Alternatively, one can use a modified DSSA approach
that draws delays for such reactions whenever reactants are
available.16 If these species are also reactants in other re-
actions, one would have to calculate additional probabilities
for each of the competing reactions to happen, and chose at
random.

As already mentioned above, there is no constant delay
distribution that yields exact dynamics of P, since the tran-
sition rate from “state” S + E to SE depends on the number
of molecules of S and E. Instead, each state (S, E) requires
a different delay distribution. However, if either S0 � E0 or
E0 � S0, the larger initial condition can be used as a factor for
the corresponding transition coefficient in matrix A, yielding
a delay distribution that is constant and a good approxima-
tion. For E0 � S0, the transition matrix has now the following
form:

A =
(−c1S0 c1r

c1S0 − (
c1r + c2

))
.

We illustrate this approach for a set of parameters and ini-
tial conditions taken from Wu et al.17 See Figure 8 for reac-
tion rates, initial conditions, and a comparison of histograms
of species S and P at system end time of SSA and DSSA.

H. Application: Chains of reactions in mRNA decay

We will finally apply our methodology to a model for the
detailed turnover process of MFA2pG mRNAs presented in
Ref. 12, Figure 1, and Table I. Figure 9 shows the original
mRNA degradation model with associated kinetic parameter
values and our abridged model. The latter assumes that we
are only interested in the dynamics of fragment I2. It has the
form of system (1′) plus additional degradation reactions for
the branching points (at species C and D). Figure 10 shows
the time evolution of species I2 for the full and the abridged
model. As expected, both solutions are indistinguishable from
each other.

Note that if we would like to observe the total of all 3′

fragments (L + I1 + I2), 5′ fragments (G + M), or numbers
of full-length mRNA (A + B + BC1 +· · ·+ BC5 + C + D
+ E + F) as in Ref. 12, exact lumping in one reaction would

 06 February 2024 11:01:07



104114-9 Barrio, Leier, and Marquez-Lago J. Chem. Phys. 138, 104114 (2013)

8.94 8.96 8.98 9 9.02 9.04

x 10
4

0

100

200

300

400

500

600

700

800

900
Histogram of species S at time T=10

Bin centers (bin size 20)

B
in

 c
ou

nt
s

 

 

0.95 1 1.05

x 10
4

0

100

200

300

400

500

600

700

800

900
Histogram of species P at time T=10

Bin centers (bin size 20)

B
in

 c
ou

nt
s

 

 

ssa
dssa

FIG. 8. Histograms of species S and P at time T = 10 from 10 000 simulations of the full (SSA, blue) and the abridged system (DSSA, red) for the parameter
set c1 = 1, c2 = 10, c3 = 10 and initial conditions S0 = 105, E0 = 102, ES0 = 0, P = 0. Here, we use k = 1015.

only be applicable to the combined cytosolic translocation
plus poly(A) shortening process (reactions A → B →. . . →C)
due to subsequent branching points in the reaction network.
For this sub-process, the corresponding rate matrix is a lower
triangular matrix with diagonal elements of the form ci − λi

and, hence, the delay distribution is nothing but the convolu-
tion of the exponential distributions with parameters ci (here:
k2, r1, r2, . . . , r6) – saving us the calculation of the eigenval-
ues.

FIG. 9. (a) and (c) Complete model and kinetic parameters used in modelling
MFA2pG-mRNA degradation as stated in Ref. 12. 3′ fragments (L + I1 +
I2) and 5′ fragments (G + M) are highlighted in grey, all other species are
considered full length mRNA. (b) Abridged model. The dotted line in (a)
refers to the process that is represented by a delay distribution in our abridged
model. Moreover, reactions C → E and D → F are lumped into a single
degradation reaction. The probability for such a degradation is 1 − w (cf.
Sec. III G).

III. METHODS

A. Determinant of A

The rate matrix A of system (1) is a tridiagonal n × n ma-
trix with diagonal entries a1, 1 = −c1 and ai,i = −(ci−1r

+ ci)
for i = 2, . . . , n, and subdiagonal and superdiagonal elements
ai + 1, i = ci and ai,i+1 = cir for i = 1, . . . , n − 1, respectively.
The determinant of a tridiagonal matrix is given by the ex-
tended continuant18

|A|n = an,n |A|n−1 − an,n−1an−1,n |A|n−2 ,

where |A|j is the jth principal minor of the first j rows/columns
of A. For our example, we can show inductively that the de-
terminant of A is given by the following expression:

det (A) = |A|n = (−1)n
n∏

i=1

ci (4)

with |A|0 = 1 and |A|1 = −c1. The inductive step

|A|n = −(cn−1r
+ cn)|A|n−1 − cn−1cn−1r

|A|n−2

= −(cn−1r
+ cn)(−1)n−1

n−1∏
i=1

ci

−cn−1cn−1r
(−1)n−2

n−2∏
i=1

ci

= −cn(−1)n−1
n−1∏
i=1

ci = (−1)n
n∏

i=1

ci

shows the validity of (4). Note that A is nonsingular since ci

> 0, i = 1, . . . , n and, hence, det (A) �= 0.

B. Eigenvalues of A

It follows from (4) that A is not singular, and conse-
quently none of its eigenvalues λi is zero. We can further
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FIG. 10. (Left) Histogram for the number of I2 molecules at time T = 10 000 for SSA simulations (blue) and DSSA (black) where delays were drawn from the
inverse of the numerical solution of the CDF (using matrix exponentials). (Right) Average time evolution of species I2 for SSA (blue line) and DSSA (black
dots). For this scenario, we computed w = 0.7745, i.e., a 77.45% probability that the former full length mRNA is degraded via this pathway.

characterize the eigenvalues by applying Gerschgorin’s cir-
cle theorem14 to bound the spectrum of A. Applied to the
columns of A, the theorem states that every eigenvalue must
lie within at least one of the Gerschgorin discs centred at
ai, i and with radius ri = ∑

j �=i |aj,i |, i = 1, . . . , n. Moreover,
it should be noted that ai,i = −∑

j �=i aj,i , and therefore, the
non-zero eigenvalues of A have negative real parts. Addition-
ally, A is a tridiagonal matrix with real off-diagonal values
that satisfy ai, i + 1, ai + 1, i > 0, for i = 1, . . . , n − 1. Any
such matrix is known to be similar to a Hermitian matrix and
therefore has real and simple eigenvalues.19 Putting together
all the previous facts, we can conclude that the rate matrix A
from system (1) is diagonalizable and has non-zero real neg-
ative simple eigenvalues.

C. Resolvent of A

The term P(s) = (sI − A)−1 is called the resolvent of A.
Since we want to find the solution of p(Sn, t|S1, 0), with p(t)
= eAtp(0) and p(0) = [1 0. . . 0]T, we only need the (n, 1) entry
of the resolvent (sI − A)−1. This entry can be expressed using
Cramer’s rule as

Pn (s) = (sI − A)−1
n,1 = (−1)n+1 M1,n

det (sI − A)
,

where Mi, j is the (i, j) minor, defined as the determinant of
the matrix resulting from removing the ith row and jth col-
umn from (sI − A). Note that (sI − A) is also a tridiago-
nal matrix with diagonal entries (sI − A)1, 1 = s + c1 and
(sI − A)i,i = s + (

ci−1r
+ ci

)
for i = 2, . . . , n and subdiag-

onal and superdiagonal elements (sI − A)i + 1, i = −ci and
(sI − A)i,i+1 = −cir for i = 1, . . . , n − 1, respectively. The
outcome of removing the 1st row and nth column of a
n × n tridiagonal matrix is an upper diagonal (n − 1) × (n
− 1) matrix whose diagonal corresponds to the subdiagonal
of the original one. Consequently, M1,n = (−1)n−1 ∏n−1

k=1 ck .
The term det(sI − A) is simply the characteristic polynomial
of A which can be expressed as

∏n
k=1 (s − λk). Each eigen-

value λk has multiplicity 1 as has been proved before (cf. Sec.
III B).

D. First-passage time PDF

Rather than in Pn(s), we are actually interested in an ex-
pression for cnPn(s) such that applying the inverse Laplace
transform yields cnpn(t) (due to linearity of the transform),
which is precisely the time distribution we are looking for
(see Eq. (3)). Using our previous results, we note

Fn (s) = cnPn (s) = cn (−1)n+1 (−1)n−1

∏n−1
k=1 ck∏n

k=1 (s − λk)

= (−1)n
(−1)n

∏n
k=1 ck∏n

k=1 (s − λk)
= (−1)n

det (A)∏n
k=1 (s − λk)

= (−1)n
∏n

k=1 λk∏n
k=1 (s − λk)

=
∏n

k=1

−λk

(s − λk)
.

Let λk = −λk be the positive value of eigenvalue λk (we
had proved λk < 0) and denote Ek(s) = λk/(s + λk) the kth
product term of Fn(s). By applying the inverse Laplace trans-
form to each term individually, we obtain

L−1 {Ek (s)} = ek (t) = λke
−λkt , for k = 1, . . . , n,

that is, the probability density function of an exponential dis-
tribution with parameter λk .

Since L−1 {F (s) G (s)} = f (t) � g (t) for two functions
f(t) and g(t) with their respective Laplace transforms F(s) and
G(s), we obtain for the inverse Laplace transform of Fn(s)

L−1 {Fn (s)} = fTn+1 = e1 (t) � e2 (t) � . . . � en (t) .

In summary, the probability distribution of the first-passage
time for our system (1) is the convolution of exponential dis-
tributions with parameters λk = −λk .

Note that an alternative argument for this conclusion is
that each product term Ek(s) corresponds to the moment-
generating function of an exponential distribution and the

 06 February 2024 11:01:07



104114-11 Barrio, Leier, and Marquez-Lago J. Chem. Phys. 138, 104114 (2013)

product of such moment-generating functions corresponds to
the convolution of the respective probability density func-
tions.

Now that we know the specific form of the first-passage
time distribution, we only need to know how to draw random
numbers from it. Fortunately, an expression for the PDF of
a convolution of n exponential distributions has been analyti-
cally derived (Ref. 20 as cited in Ref. 21) from where we can
derive the CDF

FTn+1 =
n∑

k=1

⎛
⎝ n∏

l=1,l �=k

λl

(λl − λk)

⎞
⎠ (1 − e−λkt ).

During simulations we can then draw time delays by drawing
uniform random numbers and evaluating the corresponding
(pre-calculated) inverse CDF (iCDF) at such values.

E. Backward bypass reactions

Extending the basic system (1), we will now include
backward bypass reactions and show that the new system can
still be lumped by using delays that correspond to the con-
volution of exponentials with λk = −λk . We can reason with
one single backward bypass with the understanding that it can
be generalized to additional ones. Note that backward bypass
reactions add additional entries in the upper triangular part of
the rate matrix A (upper Hessenberg matrix).

Let Sj

b← Si , i − j > 1 be the additional bypass reaction
that converts species Si back into Sj. The new rate matrix A′

can be described in terms of A (the one without the backward
bypass) as

A′ = [A1, A2, . . . , Ai + B, . . . , An] ,

where Ak is the kth column vector of A, and B is the column
vector that accounts for the backward reaction, i.e., bj = +b
and bi = −b. Consequently,

det(A′) = det (A) + det (AB) ,

AB = [A1, A2, . . . , Ai−1, B,Ai+1, . . . , An].

Applying Laplace’s formula to expand det (AB) along the
ith column we obtain its expression in terms of two of its mi-
nors, namely,

det (AB) = (−1)2i (−b) Mi,i + (−1)j+i bMj,i .

It can be shown that these two terms cancel each other out,
and therefore det (AB) = 0 implying det

(
A′) = det (A).

The eigenvalues λk
′ of A′ can be characterized in a sim-

ilar way to what was done previously. It can be shown that
they are non-zero, real, and negative. This allows us to fol-
low an analogous reasoning for the resolvent of A′ and for the
probability distribution of the first-passage time. Note that the
new minor M ′

1,n is not affected by the backward reaction since
its value depends exclusively on the subdiagonal which is not

modified. Therefore,

F ′
n(s) = cnP

′
n(s) = cn(−1)n+1(−1)n−1

∏n−1
k=1 ck∏n

k=1(s − λ′
k)

= (−1)n
det(A)∏n

k=1(s−λ′
k)

= (−1)n
det(A′)∏n
k=1(s−λ′

k)

= (−1)n
∏n

k=1 λ′
k∏n

k=1(s − λ′
k)

=
∏n

k=1

−λ′
k

(s − λ′
k)

.

In conclusion, a system with consecutive reversible reac-
tions plus additional backward bypass reactions and rate ma-
trix A′ can be exactly reduced to a single reaction with associ-
ated delay distribution that is the convolution of exponential
distributions with parameters λ′

k = −λ′
k .

F. Numerical solution of FTn+1

In cases where an analytic solution of fTn+1 is not avail-
able (systems including forward bypass reactions or degra-
dations), we can still obtain the distribution numerically by
solving the (n + 1)-dimensional equation d

dt
p(t) = Ãp(t).

Here, p(t) = [p(S1, t|S1, 0)p(S2, t|S1, 0). . . p(Sn + 1, t|S1,
0)]T and Ã is the transition matrix for the system includ-
ing Sn + 1. The solution has again the form p(t) = eÃtp(0),
p(0) = [1 0. . . 0]T, and its last entry corresponds to the CDF
FTn+1 (t) of our delay distribution. For efficiently calculating
matrix exponentials, we use Roger Sidje’s software Expokit.22

Even though this software is very efficient, calculating matrix
exponentials is still a computationally expensive task. How
many and what sample points to choose is not straightforward.
However, the CDF will be monotonically non-decreasing to-
wards its maximum (normally this is 1, unless the system in-
cludes degradations (cf. Sec. III G)) and one can stop sam-
pling when either the difference to the known maximum or
the difference between two consecutive time points is below
a certain threshold.

G. Degradation

For taking degradation of intermediate species into ac-
count, we have to modify the DSSA. First, we construct the
pseudo-CDF of the delay distribution (first-passage distribu-
tion) by calculating the matrix exponential of the full transi-
tion matrix at various time points t (cf. Sec. III F). For t → ∞,
the CDF will now converge to a value w such that 1 − w is
the degradation probability of any molecule in the abridged
model that undergoes any delayed reaction. To decide if a
molecule is eventually degraded or ends up as species Sn + 1,
we draw a uniform random number r ∈ U(0, 1). If r > w, we
assume that degradation will occur during the delay, other-
wise we use the random number to sample a delay from the
corresponding iCDF of the delay distribution.

H. Simulations

All examples were verified with numerical results from
discrete simulation methods. We followed a standard method:
for each system, we ran multiple simulations and obtained
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the state value at a particular time point, upon which we com-
pared associated histograms. Full/original systems were sim-
ulated with the SSA,3 and reduced systems were simulated
with the direct DSSA.11

For determining the eigenvalues, we use MATLAB’s eig
command, an iterative eigensolver employing an efficient ver-
sion of the QR factorization23 – a standard method for eigen-
value calculations of real matrices. For nonsymmetric tridi-
agonal eigenvalue problems – e.g., matrices stemming from
linear first-order reaction schemes without backward or for-
ward bypass reactions – a tailored algorithm has been pro-
posed by Bini et al.24 This algorithm is robust and computes
eigenvalues of a real n×n nonsymmetric tridiagonal matrix
T in O(n2) operations while the QR method requires O(n3)
operations.23, 24

In general, an eigensolver’s performance does not only
depend on the matrix (e.g., its size, sparseness, or shape), but
also on the computing platform and underlying software li-
braries (cf. Demmel et al.25 for a discussion and performance
comparison of eigensolvers for symmetric tridiagonal matri-
ces). In practice, in the case of constant reaction rates, the
delay distribution has to be calculated only once, prior to run-
ning DSSA simulations. In this sense, the time it takes to cal-
culate eigenvalues even for large matrices is rather negligible.
For instance, using MATLAB’s eig function on a laptop with
i7-2820QM CPU at 2.3 GHz, calculating all eigenvalues of a
random, real valued, dense matrix with n = 1000 takes around
1 s while it takes around 0.75 s for a random tridiagonal ma-
trix of same size.

For Arnoldi estimates, we use MATLAB’s eigs command,
a highly refined implicitly restarted Arnoldi (IRA) method
that is supposed to work particularly well with large sparse
matrices. For small numbers of required eigenvalues eigs
is faster than eig. For the very same random, dense matrix
with n = 1000 for which eig takes around 1 s to calcu-
late all eigenvalues, eigs calculates the four largest magni-
tude eigenvalues in about half the time and only the largest
eigenvalue in roughly 0.03 s (for the random tridiagonal ma-
trix mentioned above, calculating the four largest magnitude
eigenvalues takes about 0.1 s, while calculating only the
largest magnitude eigenvalue takes about 0.06 s). A detailed
complexity analysis of a further accelerated IRA in terms of
matrix order, number of non-zero entries, number of block
Arnoldi steps, degree of the Chebychev polynomials, and
number of required eigenvalues is provided in Nishida et al.26

While Arnoldi iterations are less important in case of con-
stant rate matrices when the delay distribution is calculated
only once, their application can lead to considerable savings
in scenarios where the rate matrices are (slowly) time varying
(work in progress).

Note that pre-calculation of the iCDF of the delay distri-
bution is done for a discrete number of sample points in [0,1].
This introduces some minor but negligible errors when choos-
ing uniform numbers that fall in-between those pre-defined
sample points. However, such error can be minimized by in-
creasing the number of sample points (e.g., here, we used a
distance between two sample points of 0.001).

Calculated speed-ups of our method are based on
MATLAB implementations of the standard SSA and the direct

DSSA (for 1000 simulations each). Note that the time for run-
ning the DSSA includes one-time pre-calculation of the iCDF
of our delay distribution. Even though both implementations
have been performance-optimized, the calculated speed-ups
represent only rough estimates of the expected computational
savings.

IV. DISCUSSION

Biological processes often involve reactions and mecha-
nisms that may not happen instantaneously, and are best de-
scribed in a model by means of time delays. For instance, they
are commonly used to represent eukaryotic transcription and
translation, which imply other spatiotemporal processes of-
ten not explicitly modelled (e.g., diffusion and translocation
into and out of the nucleus, RNA polymerase activation, splic-
ing, protein synthesis, and protein folding). Additionally, dis-
tributed delays can also be incorporated into temporal mod-
els to capture essential spatial information, where molecules
are allowed to translocate between different cellular compart-
ments and undergo chemical reactions, at a small fraction of
the original computational cost.16

In this paper, we present yet another use for time de-
lays, within a discrete stochastic setting. Namely, as a novel
methodology for exact model reduction, depending on the
type of reactions considered. We understand delays as a phe-
nomenological product of many reactions taking time to be
completed. Then, instead of describing complex networks of
reactions, we lump all processes into a delay distribution that
can be calculated, depending on the network structure, either
analytically or numerically. We show what method to use for
different types of reaction schemes and illustrate their applica-
bility in representing chains of chemical reactions accurately,
at much lower computational costs.

So far, our methodology has been shown to work for
linear sequences with a final irreversible reaction, with ad-
ditional forward and backward bypass reactions, constitutive
creation, and degradations of intermediate species. Note that
reactions that do not interfere with our abridgement scheme,
i.e., that do not involve species inside the abridged reaction
block (neither as reactants nor as products), are simply car-
ried over into the new model.

Our method’s applicability to more complex scenarios
such as systems that include general binary reactions is un-
der current investigation. However, we already present accu-
rate abridgement of Michaelis-Menten reactions, as well as
reaction chains initiated by binary reactions. Future work on
generalized higher order reactions abridgement may be aided
by consideration of first-passage time distributions of simple
bimolecular reactions, such as that presented in Ref. 27. The
current scheme could in principle work when solely consider-
ing dynamics at steady state. However, further work would be
required to represent systems away from equilibrium, or gen-
eral chemical reaction networks where reactants or products
can participate in other reactions in a competitive way.

We also showed how schemes such as S1

c1−→←−
c1r

S2
c2→ S3 can

be accurately abridged by S1
k,τ ∗
→ S3 with increasing degrees
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of accuracy, since the initial unidirectional reaction is not
a strict requirement for our abridgment method. The latter
is achieved by using an appropriate delay distribution and a
very high (artificially introduced) rate k, where the scheme
becomes exact as k → ∞. Depending on the reaction rates,
such abridgments may yield incredible computational savings
(1000× and higher) without any loss of accuracy. Alterna-
tively, one can use a modified DSSA approach that draws
delays for such reactions whenever reactants are available.
Also, our latest investigations suggest that an exact abridge-
ment with the standard DSSA approach could be possible for
reaction schemes with initial and/or final reversible reactions.
However, abridgment of fully reversible reaction schemes is
work in progress and beyond the scope of this paper.

Unlike the abridgment method by Gillespie et al.,6 which
is based on using a modified rate constant only, our abridg-
ment is valid for all possible rates and initial conditions.
However, our abridgment underlies computational costs for
calculating the delay distribution and, more importantly, an
additional overhead for handling delayed reactions as part
of the DSSA algorithm. By the same token, in some in-
stances, running SSA simulations may involve significantly
larger amounts of time than DSSA simulations. For instance,
there can be scenarios where the SSA continues calculating
waiting times and selected reactions of long sequences of re-
actions, while the DSSA need only update all pending delays
of queued lumped reactions. Hence, its speed-up depends on
the difference in the number of reactions performed by the
non-abridged and the abridged system.

Now, one may think obtaining direct analytic solutions
of the CME would be simpler but this approach is lim-
ited to monomolecular reaction systems. In order to derive
an analytic solution, one needs to calculate the probability
distribution describing the CME for each time point indi-
vidually, as a convolution of multinomial and product Pois-
son distributions.28 In fact, calculating the parameters of the
multinomial distributions requires solving matrix exponen-
tials for each time point. The latter can only be solved analyt-
ically when considering very small systems, for which lump-
ing would not even be necessary. In all other cases, analytical
approaches would suffer from the same limitations as our own
methodology, and in turn would not offer a solution for reduc-
ing the problem exactly (potentially reducing computational
costs greatly). Moreover, a major benefit of our method is its
modularity, namely, once a delay distribution is calculated, it
can be recycled and used in larger chemical reaction systems,
for which direct solutions of the CME are unfeasible.

However, it should be noted that real chemical reaction
systems do not consist only of first-order reactions. More-
over, reactions that appear to be first-order often follow the
so-called Lindemann mechanism. That is, the unimolecular
reaction A → B is in fact an abridged version of the process
A + M →← A∗ + M , and A* → B. Obviously, our method is
exact (in the mathematical sense) only for truly unimolecu-

lar reactions. However, it can be considered quasi-exact for
systems for which the pseudo-first-order limit of all their bi-
molecular reactions holds.

Finally, a major advantage of our method as compared to
abridgment methods that rely on time-scale separation (such
as the methods by Mastny et al.7 and Thomas et al.8) is that it
does not require any time-scale separation conditions to be ac-
curate. Thus, our methodology largely increases the range of
reducible biochemical models. Such reduction is exact when
dealing with unimolecular and/or backward bypass reactions
and, as discussed above, exact when dealing with constitutive
creation, degradation, or forward bypass reactions, depending
on sample sizes.
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