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In this paper, we introduce the Stochastic Adams-Bashforth (SAB) and Stochastic Adams-Moulton
(SAM) methods as an extension of the τ-leaping framework to past information. Using the Θ-
trapezoidal τ-leap method of weak order two as a starting procedure, we show that the k-step SAB
method with k ≥ 3 is order three in the mean and correlation, while a predictor-corrector imple-
mentation of the SAM method is weak order three in the mean but only order one in the correla-
tion. These convergence results have been derived analytically for linear problems and successfully
tested numerically for both linear and non-linear systems. A series of additional examples have
been implemented in order to demonstrate the efficacy of this approach. C 2015 AIP Publishing
LLC. [http://dx.doi.org/10.1063/1.4907008]

I. INTRODUCTION

Understanding the effects of intrinsic noise in biochemical
systems is a vital component in the burgeoning scientific field
of Computational Cell Biology. Intrinsic noise is associated
with the uncertainty of knowing when a reaction occurs and
what that reaction is, and this effect is accentuated when there
are small numbers of molecules in some component of the
system. In many cases, the biochemical dynamics associated
with intrinsic noise can be very different to the dynamics asso-
ciated with the Law of Mass Action, and therefore, appropriate
methods to deal with the stochastic modelling and simulation
of these systems are needed.

Fundamental work on modelling intrinsic noise was done
by Kurtz17,18 and Gillespie.10 Gillespie introduced the Sto-
chastic Simulation Algorithm (SSA) that describes the time
evolution of the dynamics of a well-stirred chemical reaction
system as a discrete nonlinear Markov process. The key ele-
ments are a timestep that is drawn from an exponential distri-
bution and the update of the state vector by the stoichiometric
vector associated with the most likely reaction in that timestep.
The generated samples are known to be exact with respect to
the probability density function determined by the chemical
master equation.

A drawback of the SSA is that the waiting time can be
very small if there are some large rate constants and/or there
are some species with large numbers of molecules. As a conse-
quence, Gillespie11 introduced the Poisson τ-leap method, in
which all the reactions are allowed to fire in a given step
(no longer a waiting time) with a frequency determined from
a Poisson distribution. It is important to note that this is an
approximate algorithm and therefore amenable to accuracy
analysis as to the rate of convergence of the numerical approx-
imation to the exact solution.

a)mbarrio@infor.uva.es.
b)kevin.burrage@cs.ox.ac.uk.
c)pamela.burrage@qut.edu.au.

Since the publication of the τ-leap algorithm, many exten-
sions have appeared. These include the implicit25 and the slow-
scale5 τ-leap methods which are designed to deal with stiff
systems, the binomial τ-leap31 that avoids negative popula-
tions, a delayed τ-leap method19 that incorporates delayed
reactions, and higher-order τ-leap methods that achieve higher
order accuracy either introducing random corrections,13 Pois-
son increments,15 or extrapolation.29,30

This paper presents a novel method that explores further
the possibilities of highly accurate τ-leap procedures for dis-
crete simulation of chemical kinetics. The method described
here is based on a well-known principle applied in the deter-
ministic setting, namely, the use of information from several
previous simulation steps as an attempt to produce more accu-
rate and efficient results. Our approach follows the rationale
that is used in linear multistep methods (LMM) for Ordinary
Differential Equations (ODEs) where a linear combination of
previous points and derivative values is used to calculate a
next state solution. In our proposal, the previously calculated
information that must be stored comprises the state points and
the corresponding reaction propensities. Note that it is now
the propensity term that plays the role of integrand since it
represents the varying intensity of the Poisson processes that
account for the number of reactions fired in each step.

When mimicking strategies that are taken from the deter-
ministic resolution of ODEs and those strategies are trans-
lated into a corresponding discrete simulation method, there
is always a risk of focusing on numerical results without any
further analysis of the simulated behaviour. In this paper, we
present an accuracy analysis, at least for linear examples, that
justifies the behaviour of the algorithms in terms of their order
of convergence.

Following the different families of multistep methods that
can be found in the literature, we have constructed stochastic
versions of the class of explicit k-step Adams-Bashforth (AB)
methods and the implicit Adams-Moulton (AM) methods
solved with a predictor-corrector scheme. These methods
allow a different number of previous steps to be considered. An
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order method theory is established and numerical results are
shown in terms of both accuracy and efficiency. Furthermore,
all of them are dependent on the starting procedure and care
must be taken in selecting this starting procedure.

This paper is structured as follows: Sec. II gives a survey
of linear multistep methods in the deterministic setting and
points out some important results we may want to know in
deriving new stochastic methods (some topics on the stability
of LMMs are given in Appendix A). The rationale of how
linear multistep methods can be applied to stochastic chem-
ical kinetics is described in Sec. III along with main results
about the order and stability of the methods for linear systems.
Section IV presents numerical results of test problems that
show the order of convergence of the suggested methods, while
Sec. V presents numerical results that show the efficiency of the
stochastic linear multistep methods when applied to different
chemical examples of varying complexity. The numerical effi-
ciency is discussed in terms of the histogram distances to the
exact solution as a function of the computational cost measured
in terms of the associated runtime. The paper concludes with
Sec. VI with conclusions and discussions about the methods
and their applicability. The mathematical derivation of the
order of convergence, for linear problems and for the proposed
methods can be found in Appendix B.

II. LINEAR MULTISTEP METHODS

Consider the initial value problem

y ′= f (y), y(0)= y0 ∈Rn. (1)

Numerical methods that advance the approximation yn
at t = tn to a new approximation yn+1 at t = tn+1, where tn+1
= tn + h can be broadly characterised into two classes: one
step (Runge-Kutta) and linear multistep methods. Runge-Kutta
methods are constructed by forming s internal approximations,
usually within the current step, and then taking a linear combi-
nation of the derivatives of these approximations to form the
approximation at the end of the step. Runge-Kutta methods can
have high order (2s) and in the case of implicit methods, have
excellent stability properties such as A-stability. In addition,
there also exist very efficient high order explicit methods but
in these cases, the number of stages can exceed 8.24 Due to
their one-step nature, Runge-Kutta methods can be very simply
implemented in a variable stepsize and variable order setting.

LMMs are at the opposite end of the spectrum to Runge-
Kutta methods, and a k-step method takes the form

yn+1=

k
j=1

α j yn+1− j+h
k
j=0

β j fn+1− j . (2)

Two very important classes of methods are the Adams-
type methods in which α1 = 1, α j = 0, j = 2, . . ., k and Back-
ward Differentiation Formulae (BDF methods) in which β j

= 0, j = 1, . . ., k. In this paper, we will focus on explicit AB
methods of order k (β0= 0) and implicit AM methods of order
k +1 (β0, 0). Some examples of Adams method coefficients
are given in Table I.

The order of a LMM can easily be established by assuming
perfectly accurate past information and finding the local error

TABLE I. Coefficients of AB and AM methods.

AB AM

k β1 β2 β3 β4 β0 β1 β2 β3

1 1 1/2 1/2
2 3/2 −1/2 5/12 8/12 −1/12
3 23/12 −16/12 5/12 9/24 19/24 −5/24 1/24
4 55/24 −59/24 37/24 −9/24

in the update step by using a Taylor series information. This
leads to the following.

Theorem 2.1. A k-step LMM is of order w ifk
j=1α j = 1, consistency conditionk
j=2α j(1− j)p+ p

k
j=0 β j(1− j)p−1= 1, p= 1, . . ., w.

Corollary 2.1. An Adams method will be of order w if
p
k

j=0 β j(1− j)p−1= 1, p= 1, . . ., w.

In the case of an implicit LMM, yn+1 is described by a
nonlinear system of equations. This can be solved using linear
algebra by a modified Newton approach, but it can also be
solved by fixed point iteration that leads to the concept of
predictor-corrector methods. In the case of Adams methods,
the predictor will be based on the AB method, while the
corrector is based on the AM method. It takes the general form

P: yP
n+1= yn+h

k
j=1 β̂ j fn+1− j,

E: fn+1= f (yP
n+1),

C: yC
n+1= yn+h

k
j=1 β j fn+1− j+hβ0 fn+1.

Here, the β̂ j are the coefficients of the AB method and
the β j are the coefficients of the AM method. Note that one
correction improves the order of the method from k to k +1.
Further corrections do not improve the order of the procedure
but can improve the stability region. A standard approach is to
use in advance a fixed number of corrections in the iteration
process.

A fundamental difference between a one-step method and
a LMM is that the latter needs a starting procedure to generate
the approximations y1, . . ., yk−1 from y0. This starting proce-
dure is often a Runge-Kutta method. This has additional rami-
fications in that the order of a LMM must also be assessed in
terms of the order of the starting procedure. It is easily shown
that if the starting procedure is of order p and a LMM is order
p, then the convergence order of the combined implementation
is also order p.4 However, what is less well known is that if the
LMM has order p and the starting procedure has order p−1
and that all the order p terms in the Taylor expansion for that
starting procedure collapse down into a single term, then the
overall order can still be p—see pages 72–76.4 We will exploit
this fact when constructing stochastic LMMs of order 3, as then
the starting procedure can still be of order 2.

This concludes our summary of important aspects associ-
ated with the use of LMM for deterministic problems. Now, we
turn our attention to discrete stochastic problems arising from
chemical kinetics.
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III. LINEAR MULTISTEP METHODS FOR CHEMICAL
KINETICS

When modelling the dynamics of chemical kinetics when
there are relatively few molecules in the system, a continuous
model based on ordinary differential equations and derived
from the law of mass action may not be appropriate. The sto-
chastic simulation algorithm16 is a nonlinear discrete Markov
process that updates the reactions, a reaction at a time based on
the relative sizes of the propensity functions and an exponential
waiting time distribution to the next reaction. Thus, given a
state vector X(t) consisting of integer values and a set of m
stoichiometric vectors ν1, . . ., νM (the update rules for each of
the M reactions) and the relative probabilities of the reactions
occurring (propensity functions) a1(X(t)), . . ., aM(X(t)), the
SSA evolves as

X(t+τ)= X(t)+ νj, (3)

where τ is exponentially distributed as e−τ
M

j=1a j(X (t)).
As the SSA can be very computationally intensive, a num-

ber of approaches have been suggested to improve perfor-
mance at a cost of loss of accuracy. The initial approach was
due to Gillespie10 and takes the form

X(t+τ)= X(t)+
M
j=1

νjP(τa j(X(t))), (4)

where P is a Poisson random variable. Such a method is
called a Poisson τ-leap method. The original stepsize selection
procedure has since been modified to improve accuracy12,6 and
can be determined deterministically. It has been shown that this
method corresponds to the Euler method for solving ODEs and
to the Euler-Maruyama method for solving stochastic differ-
ential equations driven by jump processes and accordingly has
weak order one.26,20

In order to deal with issues of negative populations, Tian
and Burrage31 and Chatterjee et al.8 developed the binomial
τ-leap method, which samples from the Binomial distribution.
Further extensions are given in Refs. 22 and 23.

One way of improving the efficacy of the τ-leap approach
is to try and construct methods with higher weak order. Accord-
ingly, Gillespie11 introduced the midpoint τ-leap method that
has an additional half step. Under the scaling τ → 0, this
method has weak order one in the mean but under large volume
scaling V → ∞, it has weak order two,1,14 although its covari-
ance is still order one.14 More recently, there has been a search
for methods that are truly weak order two and this has led to the
unbiased τ-leap,33 the random-corrected τ-leap,13 and the Θ-
trapezoidal τ-leap.15 This latter method is truly weak order two
and is based on a method for solving Stochastic Differential
Equations (SDEs) by Anderson and Mattingly.2 In the case
Θ= 1/2, the trapezoidal τ-leap method is given by

XP= Xn+

M
j=1

νjP(1
2
τa j(Xn)),

l j=max{2a j(XP)−a j(Xn),0}, j = 1, . . ., M,

Xn+1= XP+

M
j=1

νjP(1
2
τl j).

This suggests that in order to construct methods of weak
order two, there must be samples of the form P(τa j(P(cτai

(Xn)))). These samples are akin to the double integrals of
Wiener processes that are needed to construct higher order
methods for SDEs.3

Finally, other ideas used in constructing effective numer-
ical methods for ODEs have been applied to developing effi-
cient discrete stochastic numerical methods. These include
constructing methods with large stability regions based on a
class of Poisson Runge-Kutta methods28 and developing an
approach based on Richardson extrapolation of moments,27,29

and the construction of a stochastic Bulirsch-Stoer extrapola-
tion technique that allows an efficient adaptive τ-leap and order
approach.30

In the same light as using ideas from the ODE setting
to develop effective methods for discrete nonlinear stochastic
problems, we now propose using past information as a means of
increasing accuracy and efficiency, and this leads us to develop
a class of methods based on the Adams methods. We note in
passing that although the stochastic simulation algorithm is
exact and a memoryless process, in that its evolution depends
exclusively on its present state, this does not preclude develop-
ing simulation methods that use past information. Rather, this
past information is used to obtain better estimates of certain
integrals—see above comments on the Θ-trapezoidal τ-leap
method. The underlying LMMs that we will use are the Adams
methods and so we will call our methods Stochastic Adams
Methods (SAMs).

We will consider two variants of SAMs: the first is a class
of methods based on the AB method that we will call Stochastic
Adams-Bashforth Methods (SABMs) and the second is a class
of methods based on a predictor-corrector implementation of
the AM methods that we will call Stochastic Adams-Moulton
methods (SAMMs).

An important aspect, as is the case for linear multistep
methods applied to ODEs, is the nature of the starting proce-
dures for our methods. As noted in Sec. II, given a LMM
method of order p, then a starting procedure must be of order
p−1 or p if the combined method is to be of order p. In the case
of stochastic linear multistep methods, if these methods are to
be of weak order three, then the starting procedure must be of
weak order two in both mean and variance. This suggests using
the one-stepΘ-trapezoidal method as the starting procedure as
it is weak order two.

Full details of the order analysis for both SABMs and
SAMMs in conjunction with the starting procedure are given
in the Appendix B.

We now give a brief summary of the results from the
Appendix B. The order analysis is based on the linear decay
problem X

c−→ ∅, with rate constant c. We let z = τc. In this case,
the SABM takes the form

Xn+1= Xn−P(z
k
j=1

β jXn+1− j), (5)

where the β j are the coefficients of the AB method. The
SAMM, with a deterministic predictor, has the predictor-
corrector form
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X̂n+1 = Xn− z
k
j=1

β jXn+1− j, (6)

Xn+1 = Xn−P(z
k
j=1

β̂ jXn+1− j+ z β̂0X̂n+1), (7)

where the β̂ j are the coefficients of the AM method. In both
cases, the starting procedure will be the Θ-trapezoidal τ-leap
method that has weak order two (in the mean and variance).
The following results are proved for linear systems.

If the underlying AM has order p and the order of the
starting procedure in the mean is p or p−1, then the mean order
of the SAM will also be p. Hence, it follows that the mean order
of the SABMs (k ≥ 3) and SAMMs (k ≥ 2) will be three if the
Θ-trapezoidal τ-leap method is used as a starting procedure.

The correlation order of the SABMs (k ≥ 3) is three if
the Θ-trapezoidal τ-leap method is used as a starting proce-
dure. However, the correlation order of the predictor-corrector
SAMM is only one.

We note that while the order analysis is for the linear
test problem, we conjecture that the above results also hold
for the nonlinear problems. The fact that for deterministic
LMMs, order can be analysed by just considering the linear
equation y ′= qy lends support to this conjecture. Furthermore,
in Sec. IV, we present simulation results for a variety of SAMs
based on the linear and nonlinear test equations, X

c−→ ∅ and
X +Y

c−→ ∅, respectively. More general results on performance
and efficiency of the SAMs on more complex systems are given
in Sec. V.

Finally, we note that further study on the form of the pre-
dictor-corrector is needed, as the correlation order collapses to
one for our particular formulation.

IV. SIMULATION RESULTS CONFIRMING ORDER

In this section, we present simulation results that show
numerically the order of convergence of the stochastic simula-
tion algorithm described in Sec. III for the linear and nonlinear
test examples, X

c−→ ∅ and X+Y
c−→ ∅, respectively. The method

we use to show convergence is a standard procedure26,13 based
on the absolute error of the moments, mean and variance, and
their dependence with the stepsize.

In order to calculate the error of the moments, the system
state is simulated from an initial state up to a predefined time,
T , using a specific stepsize, h. The simulation of a large number
of trajectories allows the calculation of a sample mean (respec-
tively, variance) that can be compared with the true mean value
(respectively, variance). There are examples, for instance, the
linear test problem X

c−→ ∅, where this latter value can be
analytically derived and therefore exactly calculated. For those
where this is not possible, we will consider the sample mean
(respectively, variance) of SSA simulations to be an unbiased
estimation of the moment provided the sample size is large
enough.

The absolute error of moments is calculated using different
stepsizes and then represented in a log-log plot of error vs

stepsize, in which the slope of the plot gives the order of the
method for that particular moment. Note that this technique is
subject to a certain degree of variability due to a number of
different issues, including the number of samples generated,
the intrinsic Monte Carlo error that might be noticeable for
small stepsizes, and an order of convergence that might not
be as expected if there are not enough simulation steps when
using large stepsizes. Therefore, the stepsizes used in the test
problems have been selected so that this variability is reduced
as much as possible. Additionally, a fitting function has been
applied to each plot in order to give a better estimate of the
order of convergence.

A. Linear test problem

This is the simplest linear chemical system consisting of
a single species, X , and a single degradation reaction, X

c−→ ∅.
For our particular example, the reaction rate constant is c= 0.1
and the initial condition X0= 10 000.

Figure 1 shows the absolute error of the moments compar-
ing the results obtained using the Θ-trapezoidal method (TT),
the SAB with k = 3 (SAB3), and the SAM with k = 3 (SAM3)
methods applied to the linear test problem. In the case of the
Θ-trapezoidal method, both moments, and mean and variance
show weak order two as described in Ref. 15. The simulation
results for the SAB3 method using the Θ-trapezoidal method
as the starting procedure show the combined weak order of
convergence to be approximately three for both mean and
variance. However, it can be seen that the variance order of
the SAM3 method is approximately one. This confirms the
theoretical analysis of Sec. III and Appendix B.

B. Nonlinear test problem

The nonlinear test problem is similar to the linear one
but with a second order reaction degrading two reactants, X
+Y

c−→ ∅. The nonlinearity of this system is reflected in the
propensity function of the reaction that multiplies the reaction
rate constant and the number of molecules of both reactants.
In our example, the rate constant is 10−5 and the initial state
(1000,1000)⊤.

Figure 2 shows the order results of the stochastic Adams
methods for this example and compares them with those ob-
tained for the Θ-trapezoidal τ-leap method. Here, as in all
examples in this paper, the latter method has been used as
the starting procedure of the proposed multistep methods. It
is shown that, up to a certain degree of variability, the order
results are consistent with those obtained for the linear test
problem and this supports our claim that the order of conver-
gence of the SAB and SAM methods, as stated in Sec. III, also
holds for nonlinear problems. However, we note it is for the
nonlinear test problem that the order results show a noticeable
variability that mainly depends on the stepsize and number of
steps. The use of small stepsizes in the simulation procedure
leads to very small errors and therefore to frequent Monte
Carlo error bias. Conversely, larger stepsizes imply a smaller
number of steps, and this may alter the cumulative effect of the
method on the order terms and therefore affect the resulting
order.
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FIG. 1. Linear test problem: absolute error of mean and variance. Compared results of the TT, SAB with k = 3 (SAB3), and SAM with k = 3 (SAM3) methods
using stepsizes [0.4,0.8,1.6,3.2], T = 12.8, and sample size 108. Both SAB3 and SAM3 use TT as the starting procedure as described in Sec. III. The numbers
accompanying each method in the legend correspond to the fitted slope and therefore to the estimated order.

V. COMPARISON OF METHODS ON SOME TEST
PROBLEMS

The order of convergence is a very important frame-
work to compare stochastic simulation procedures: the higher
the order, the faster the error is reduced with the stepsize.

However, a stepsize reduction will imply an increment of
the total simulation time and this is very often a key issue
when deciding which simulation method and parameter setting
(mainly the stepsize) to use. Consequently, it is very important
to give a measure of efficiency for the methods we have
described.

FIG. 2. Nonlinear test problem: absolute error of mean and variance. Compared results of the TT, SAB with k = 3 (SAB3), and SAM with k = 3 (SAM3)
methods using stepsizes [1.6,3.2,6.4], T = 51.2, and sample size 109. The numbers accompanying each method in the legend correspond to the estimated order.
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A very common measure of efficiency for stochastic simu-
lation schemes is to represent the relationship between histo-
gram distance and execution time.6,7 The histogram distance
is calculated as the L1-distance of two distribution functions
obtained from an ensemble of simulated and exact values,
respectively. The simulated values are the result of executing
the simulation procedure up to t =T . Since the true distribution
of X(t) is not known for many examples, we will use SSA sam-
ples to generate the exact distribution. This is an appropriate
approximation provided the sample size is big enough.

We note that the efficiency comparison should not be
based on the implementation but on the algorithm definition
itself. To do so, all the methods have been implemented in
Matlab using a common scheme with the only differences
being the state update block that is specific for each of them.

Before introducing new test problems, we present in Fig. 3
the efficiency results for the linear and nonlinear test problems
described in Sec. IV. The resulting conclusion is that the SAB3
method is a very efficient procedure that outperforms the other
two in almost any simulation setting. According to the simula-
tion results, if we set a certain time value as available runtime,
the error reduction of the SAB3 over the TT method can be
as high as 180-fold (minimum 6, average 66) for the linear test
problem and 30-fold (minimum 5, average 17) for the nonlinear
one. Should we set the error level instead, the maximum speed-
up of the SAB3 over the TT method is about 4-fold (min. 2,
avg. 3) for both the linear and nonlinear test problems.

A. Michaelis-Menten system

The Michaelis-Menten formulation accounts for the ki-
netics of many enzymes. It includes four molecular species
and three reactions transforming a reactant into a product with
the intervention of an enzyme. The reaction rate constants and
initial state are as in Ref. 15, where the Θ-trapezoidal τ-leap

method is defined to facilitate method comparison,

R1: S+E
k1−→ SE, k1= 10−4,

R2: SE
k−1−−→ S+E, k−1= 0.5,

R3: SE
k2−→ E+P, k2= 0.5,

X0= (1000,200,2000,0)⊤.
Figure 4 shows the histogram distance vs runtime plots

obtained from the simulations of the Michaelis-Menten system
using the TT, SAB with k = 3 (SAB3), and SAM with k = 3
(SAM3) methods. Clearly, the SAM3 method has the worst
performance for almost any simulation setting, and this is
probably related to the lack of higher order of convergence for
the covariance and the extra calculation of the predictor. The
SAB3 method achieves better efficiency results than the TT
method for most levels of error or runtime, with the exception
of small or large runtime values (corresponding to large and
small stepsizes, respectively) where their performance tends to
be similar. The higher error of the SAB3 method when using
large steps is probably related to the issue described Sec. IV,
namely, an insufficient number of steps required to achieve the
expected order. On the other hand, the similar performance of
the SAB3 and TT methods when using a high number of small
steps must be due to the specific contributions of two opposing
effects, the higher order and the more time-consuming step
update of the SAB3 method.

Besides these considerations, the overall efficiency of
the SAB3 over the TT method for this example is 3 (max),
0.5 (min), and 1.6-fold (avg) for the error reduction, and 2
(max), 0.8 (min), and 1.2-fold (avg) for the speed-up. We
conclude that even though the SAB3 performs worse than the
TT method for very specific settings, it is on average 20%
more efficient if we set the runtime and measure the error and
60% if we set the error and measure the runtime.

FIG. 3. Linear and nonlinear test problems: histogram distance vs runtime. Simulation setting as described in Figs. 1 and 2.
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FIG. 4. Michaelis-Menten system: histogram distance
vs runtime. Compared results of the TT, SAB with k = 3
(SAB3), and SAM with k = 3 (SAM3) methods using
stepsizes [0.05,0.1,0.2,0.4], simulation time T = 6.4
and sample size 109. The runtime has been recorded with
standard Matlab stopwatch timer functions.

We have also obtained results on the order of convergence
of the stochastic Adams methods when applied to more
complicated systems such as the Michaelis-Menten example.
Specifically, the estimated order is 2.96 (mean), 2.65
(variance) for the SAB3 method and 2.48 (mean), 1.11
(variance) for the SAM3 method (plots not included).

B. EGFR system

This is a simplified model of transcription factor
formation in the epidermal growth factor receptor (EGFR).
This model has been described in several papers21,15 and used
to compare the efficiency of different stochastic simulation
methods. We include it in this paper as a more complicated
test problem using the same settings as in Ref. 15. The model
is described in terms of 8 species,

(A,B,EA,EB,EAB,EAB2,EBA,EBA2)⊤,
and 12 reactions

EA→ EA+ A, c1= 15,

EB→ EB+B, c2= 15,

EA+B→ EAB, c3= 0.0001,

EAB→ EA+B, c4= 0.6,

EAB+B→ EAB2, c5= 0.0001,

EAB2→ EAB+B, c6= 0.6,

A→ ∅, c7= 0.5,

EB+ A→ EBA, c8= 0.0001,

EBA→ EB+ A, c9= 0.6,

EBA+ A→ EBA2, c10= 0.0001,

EBA2→ EBA+ A, c11= 0.6,

B→ ∅, c12= 0.5.

Figure 5 shows the results of the histogram distance for
this example using the set of methods TT, SAB3, and SAM3
methods. The results are consistent with those obtained for the
Michaelis-Menten system, with the exception of the SAM3
method that performs very similar, if not better, than the SAB3
method. Clearly, this category of stochastic Adams methods
shows an important efficiency gain over the TT method.
Specifically, the error reduction of the SAB3 over the TT
method is 1.8 (max), 1.1 (min), and 1.4-fold (avg) when we
set the runtime and the speed-up is 2.5 (max), 1.5 (min), and
1.7-fold (avg) when we set the error level.

As with the previous example, we have also used this more
complicated one to estimate the order of convergence of the
stochastic Adams methods. Thus, fitted orders show to be 3.65
(mean), 2.96 (variance) and 2.90 (mean), 0.60 (variance) for the
SAB3 and SAM3 methods, respectively (plots not included).

C. Other results

In addition to the examples shown in this paper, we have
implemented a bistable chemical system, namely, the Schlögl
system,32 an autocatalytic scheme consisting of a trimolecular
state that evolves to a steady state that is distributed according
to a bimodal distribution. This is also a very common test
problem since it allows a histogram distance test, even though
the mean and variance are not very meaningful measures of the
steady state probability distribution.

We have not been able to perform a clear characterization
of the order of convergence of the SAB and SAM methods
using this example. This has also been the case with the TT
method, and this is a key issue since it is the starting procedure
of the SAB and SAM methods and hence would directly affect
their order of convergence.

The efficiency results (not included in this paper) of the
SAB3 and SAM3 methods are very similar to those of the TT
method. For this particular example, there is not a noticeable
efficiency gain as seen in the examples described in Sec. V.
Further work would be needed to understand the specific
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FIG. 5. EGFR system: histogram dis-
tance vs runtime. Compared results
of the TT, SAB with k = 3 (SAB3),
and SAM with k = 3 (SAM3) meth-
ods using stepsizes [0.05,0.1,0.2], ini-
tial state (2000,1500,950,950,200,50,
200,50)⊤, simulation time T = 3.2, and
sample size 106.

details of why this happens and whether this is directly related
to the bistability property.

Another result worth noting is that while the stochastic
Adams-Moulton methods developed in this paper use a deter-
ministic predictor as described in Eq. (6), there is a straightfor-
ward implementation of a stochastic predictor by just drawing
from a Poisson distribution with parameter the expected value
that appears in the deterministic version. We had conjectured
that the stochastic predictor might improve the variance order
of convergence of the SAM3 method since it would lead to
a double Poisson distribution (see discussion on this issue in
Sec. III). However, this stochastic predictor has not shown any
improvement on the order of convergence of the stochastic
Adams-Moulton methods. In terms of efficiency, the results
are not any better since the stochastic predictor requires an
extra random number generation per step. Again, further study
would be needed to understand the specific effects of the sto-
chastic predictor on the proposed methods.

There is another source of variability on the examples we
have simulated, namely, the reaction rate constants. In order to
keep our analysis simple, we have focused on the linear and
nonlinear test problems since they include just one reaction
with an associated rate constant. This is a parameter that can
be modified in order to test the robustness of our findings.
The examples are given with a specific rate constant, but we
have also simulated them for different reaction rate constants
multiplying and dividing by 2 successively. In general, we have
found that there is a wide range of values where order is not
affected. However, for very small reactions rates, the order
seems to be noticeably reduced suggesting stability issues here.
For the test problems, this effect starts to become pronounced
at approximately 1/4 of the values given in the description of
the examples.

VI. DISCUSSION AND CONCLUSIONS

This paper brings ideas from the numerical solution of
ordinary differential equations and develops a class of stochas-

tic linear multistep methods for solving problems in discrete
chemical kinetics. The class is based on Adams Bashforth
methods (explicit Adams methods) and Adams Moulton
methods (predictor corrector implementation).

An order theory is developed, and, as in the deterministic
case, the order of the starting procedure is a vital aspect in
establishing the order of a stochastic linear multistep method.
Thus, we use the Θ-trapezoidal τ-leap method that is known
to be of weak order two and based on that we show that the
k-step SAB methods with k ≥ 3 have order three in both the
mean and the correlation. In the case of the k-step predictor
corrector SAM methods with k ≥ 3, the mean order is shown
to be three but the correlation order is only one.

Numerical simulations support this theoretical analysis,
while simulations on some important application problems
show the efficacy of these new methods compared with methods
in the literature.

Further work is needed in modifying the predictor-correc-
tor implementation to try to improve the correlation order
beyond one.
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APPENDIX A: TOPICS ON THE STABILITY OF LMMS

LMMs are ordinary differential equations solvers that take
the form

yn+1=

k
j=1

α j yn+1− j+h
k
j=0

β j fn+1− j . (A1)

An important property of a LMM is zero-stability.

Definition A.1. A LMM is said to be zero-stable if, when
(A1) is applied to y ′= 0, it gives bounded solutions for all n.
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Remark. This is equivalent to the polynomial p(z) = zk

−k
j=1αkzk− j having zeros in the unit disk with simple zeros

on the boundary.

Remark. There exist LMMs of order 2k but these are not
zero-stable. In fact, the maximum order of any practical zero-
stable method is k+1. (In fact, there exist zero-stable methods
of order k+2, but these have stability regions that only contain
a single point, namely, the origin—see later).

The stability of a numerical method can be assessed by
applying the method to the linear test problem

y ′= qy, Re(q) ≤ 0. (A2)

The stability region, S, is defined as S = {z ∈ C−1, z
= hq, Re(z) ≤ 0}. A LMM gives stable results when applied
to (A2).

In the case of LMM, (A1) let

ρ(v)= 1−
k
j=1

α jv
j, σ(v)=

k
j=0

β jv
j

and define the stability polynomial

Π(v,z)= ρ(v)− zσ(v). (A3)

Then, the stability region of any LMM is the set of z
for which Π(v,z) satisfies the root condition. Note that if a
LMM satisfies the consistency condition then z = 0 ∈ S. The
following stability results are important.

Definition A.2. A LMM is said to be A-stable if C−1 ⊆ S.

Theorem A.1. The maximum order of an A-stable LMM
is two.9

Table II4 gives the real stability interval, I, for predictor-
corrector Adams pairs.

APPENDIX B: WEAK ANALYSIS OF THE ADAMS
METHODS

Given a predictor (explicit) formulation, our SABM ap-
plied to the problem X

c−→ ∅with rate constant c takes the form

Xn+1= Xn−P(z
k
j=1

BjXn+1− j), z = τc. (B1)

In the case of a deterministic predictor, then our stochastic
predictor-corrector formulation based on the SAMM can be

TABLE II. Effect of correction on the stability region.

Order Mode I

3 P [−0.55,0]
3 PECE [−1.8,0]
4 P [−0.3,0]
4 PECE [−1.3,0]

written as

X̂n+1= Xn− z
k
j=1

BjXn+1− j

Xn+1= Xn−P(z
k
j=1

B̂jXn+1− j+ zB0X̂n+1).

This simplifies to

Xn+1= Xn−P(z
k
j=1

α jXn+1− j), (B2)

where

α1= B̂0+ B̂1− zB̂0B1,

α j = B̂j− zB̂0Bj, j = 2, . . ., k .

Note that the k = 2 Adams-Bashforth method has B1=
3
2 ,

B2=− 1
2 , while the k = 2 Adams-Moulton has B̂0=

5
12 , B̂1=

8
12 ,

B̂2=− 1
12 , in which case

α1=
13
12
− z

5
8
, α2=−

1
12
+ z

5
24

.

In order to study the order of these stochastic Adams
methods we will find it useful to define the vector Zn

= (Xn+k−1,. . .,Xn)⊤ and let A be a k× k matrix given by

A=

*.........
,

1 0 · ·· 0 0
1 0 · ·· 0 0
0 1 · ·· 0 0
...

...
. . .

...
...

0 0 · ·· 1 0

+/////////
-

then, formulation (B1) and (B2) can be written as

Zn+1= AZn−F(Zn), (B3)

where F(Zn) = (P(b⊤Zn),0,. . .,0)⊤, with b⊤ = (B1,. . .,Bk), or
(α1,. . .,αk) if using formulation (B2).

Furthermore, let S be a starting procedure that generates
X1, . . ., Xk−1 from X0 and let Z0= (Xk−1,. . .,X0)⊤.

In order to analyse the order of our linear multistep method
with respect to the starting procedure, we need the following
results.

Lemma 1. The conditioned mean and variance satisfy

E[X] =E[E[X |Y ]], (B4)
Var(X) =Var(E[X |Y ])+E[Var(X |Y )]. (B5)

Furthermore, given a Poisson process P(λ) then

E[P(λ)]= λ, E[P2(λ)]= λ2+λ.

Lemma 2. For the linear test problem X
c−→ ∅, the follow-

ing results hold for the exact solution X(t):
E[X(t)] = e−ctX0,

Var[X(t)] = (e−ct−e−2ct)X0,

E[X(t+τ)X(t)] = e−cτE[X2(t)]. (B6)
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Proof. The solution of the linear test problem satisfies

X(t+τ)= X(t)−P(
 t+τ

t

cX(s)ds). (B7)

Taking expectations conditioned on X(t) and using Eq. (B4) in
Lemma 1 gives

E[X(t+τ)]=E[X(t)]−c
 t+τ

t

E[X(s)]ds.

Let m(t)=E[X(t)], then m(t) satisfies the ODE m′(t)=−cm(t)
and hence, m(t)= e−ctX0.

The second result comes from using Eqs. (B5) and (B7),
while the third result comes form Eq. (B7) and noting that

X(t+τ)X(t)= X2(t)−X(t)P(
 t+τ

t

cX(s)ds)
so that

E[X(t+τ)X(t)]=E[X2(t)]−c
 t+τ

t

E[X(s)X(t)]ds,

that is,
d

dτ
E[X(t+τ)X(t)]=−c E[X(t+τ)X(t)]

or

E[X(t+τ)X(t)]= e−cτE[X2(t)].
�

Now define

mn =E[Zn], n= 0,1, . . .,

and taking expectation of Eq. (B3) conditioned on Zn gives
since

E[E[P(b⊤Zn)|Zn]]= b⊤EZn, (from Lemma 1),
mn+1=GMn, (B8)

where

G = A− zB, B = e1b⊤, e1= (1,0, . . ., 0)⊤.
Hence,

mN =GNm0. (B9)

Our intention is to use the trapezoidal τ-leap method as
a starting procedure and so the following Lemma will prove
useful.

Lemma 3. For the test problem X
c−→ ∅, the trapezoidal τ-

leap method satisfies the following recurrence relation, with
z = cτ:

E[Xn+1]= (1− z+
1
2

z2)E[Xn]. (B10)

Proof. For the linear test problem, the trapezoidal τ-leap
method has the form

X ∗= Xn−P(Xnz/2), Xn+1= X ∗−P((2X ∗−Xn)z/2)
or equivalently,

Xn+1= Xn−P(θn)−P(θn− zP(θn)), θn = Xnz/2. (B11)

Taking expectations conditioned on Xn and using Lemma
1 immediately gives

E[Xn+1]= (1− z+
1
2

z2)E[Xn],
where we have used the fact that E[P(λ)]= λ. �

Remark. It is immediately clear from Lemma 1, 2, and 3
that the trapezoidal τ-leap method is order 2 in the mean for
the linear test problem and indeed for all linear problems as
well.

We will first investigate the mean order of the stochastic
Adams methods with respect to an arbitrary starting procedure.

We first note the following Lemma, which can be obtained
from Corollary 2.1 by expanding the right-hand side around
j l−1 rather than (1− j)l−1.

Lemma 4. A k-step linear multistep method of Adams-
type of order s satisfies the order conditions

k
j=0

j l−1bj =
1
l
, l = 1, . . ., s. (B12)

This can also be written as

(e⊤1 − zb⊤)d= e−kz+O(zs+1),
d= (e−(k−1)z,. . .,1)⊤.

Hence,

b⊤d =
1
z
(e−(k+1)z−e−kz)+O(zs). (B13)

Proof. This is a consequence of the order conditions (see
Ref. 4, for example). �

Consider now the k-step AB method of order s and sup-
pose that we have a starting procedure that is of order p−1 in
the mean, then the starting procedure satisfies

E[X0]= X0,

E[Xl] = (
k
j=0

(−l z) j
j!
+ l(C− 1

p!
)(−zp)+O(zp+1))X0,

l = 1, . . ., k−1,

where C is the leading error coefficient term.
Thus, we can write the vector m0=E[Z0] as

m0=

*......
,

e−(k−1)z
...

e−z

1

+//////
-

X0+ (C− 1
p!
)
*......
,

k−1
...

1
0

+//////
-

(−z)pX0+O(zp+1).

(B14)

We now have the elements to prove the following result.

Theorem B.1. Given a k-step Adams method of order p
or more and a starting procedure that has order p−1 in the
mean then the global mean order of the combined method is p.
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Proof. First, let e = (1, . . ., 1)⊤ and u = (k − 1, . . ., 1,0)⊤.
Now from Eq. (B9),

mN =GNm0

with

G = A− ze1b⊤

and

m0= dX0+ (C− 1
p!
)u(−z)pX0+O(zp+1).

Now, it is easily seen that with Ae= e, then for N ≥ k−1,

GNu= (k−1)e+O(z).
Furthermore, Eq. (B13) and Lemma 4 with s = p imply

GNd = (e−(N+k−1)z,. . .,e−Nz)⊤+O(zp).
Hence,

mN = (e−(N+k−1)z,. . .,e−Nz)⊤X0

+(C− 1
p!
)(k−1)e(−zp)X0+O(N zp+1)+O(zp)

and the result is proved since O(N zp+1)=O(zp). �

Corollary B.1. The SABM and SAMM based on the under-
lying Adams method of order three or more will be order three
in the mean if the trapezoidal τ-leap starting procedure is used.

We now turn our attention to the covariance order. Given
Eq. (B3), we will define Cn+1 to be the correlation matrix at
time point n+1. Thus,

Cn+1=E[Zn+1Z⊤n+1]− (E[Zn+1])(E[Zn+1])⊤
=E[Zn+1Z⊤n+1]− (mn+1)(mn+1)⊤.

From Eq. (B3),

Zn+1= AZn−F(Zn)= AZn−P(b⊤Zn)e1,

Z⊤n+1= Z⊤n A⊤−e1P(b⊤Zn).
First define Sn+1=E[Zn+1Z⊤n+1]. We will now take means

conditioned on Zn. Thus,

Sn+1= ASnA⊤− zASnB⊤− zBSnA⊤+E[F(Zn)F(Zn)⊤],
where we have used the fact that E[ZnF(Zn)⊤] = zSnB⊤

= zSnbe⊤1 .
Furthermore, from Lemma 1,

E[F(Zn)F(Zn)⊤]=E[P2(zb⊤Zn)]e1e⊤1

= (z2b⊤Snb+ zb⊤mn)e1e⊤1 ,

then

Sn+1= (A− zB)Sn(A− zB)⊤+ zb⊤mnE,

E = e1e⊤1 .
(B15)

Hence, with G = A− zB and Eq. (B9),

Cn+1= Sn+1−mn+1m⊤n+1

= Sn+1−Gmnm⊤nG⊤,

so that Eqs. (B15) and (B8) give

Cn+1+mn+1m⊤n+1=G(Cn+mnm⊤n)G⊤+ zb⊤mnE or

Cn+1=GCnG⊤+ zb⊤mnE. (B16)

The solution to this simple linear recurrence relation is

CN =GNC0(GN)⊤+ z
N−1
j=0

b⊤mN−1− jG jE(G j)⊤ (B17)

which from Eq. (B9) becomes

CN =GNC0(GN)⊤+ z
N−1
j=0

b⊤GN−1− jm0G je1(e1G j)⊤. (B18)

As before, we can assume the starting procedure is of order
p−1 in the mean and covariance. Thus, as before, we can write
m0 as

m0= dX0+ (C− 1
p!
)u(−z)pX0+O(zp+1)

and from Lemma 2, the starting procedure will have

C0=

*...........
,

Vk−1 · ·· ·· · · ·· Rk−1V0

RVk−2 Vk−2 · ·· · · ·
...

R2Vk−3 RVk−3 Vk−3 · ··
...

...
...

...
. . .

...

Rk−1V0 Rk−2V0 Rk−3V0 · ·· V0

+///////////
-

, (B19)

where

R(z)= (
p
j=0

(−z) j
j!
+ (C− 1

p!
)(−z)p)X0= e−zX0+O(zp)

and

Vl(z)= (e−l z−e−2l z)X0+O(zp), l = 1, . . ., k−1,

V0(z)= 0.

Noting what happens when multiplying R(z) by Vl(z), we
can write C0 as

C0=C00−C01+O(zp),
where

C00=

*......
,

e−(k−1)z e−(k−1)z e−(k−1)z · ·· e−(k−1)z

e−(k−1)z e−(k−2)z e−(k−2)z · ·· e−(k−2)z

· ·· ·· · ·· ·
. . .

...

e−(k−1)z e−(k−2)z e−(k−3)z · ·· 1

+//////
-

and

C01=

*......
,

e−(2k−2)z e−(2k−3)z · ·· e−(k−1)z

e−(2k−3)z e−(2k−4)z · ·· e−(k−2)z

· ·· ·· ·
. . .

...

e−(k−1)z e−(k−2)z · ·· 1

+//////
-

.

Defining D =Diag(e−(k−1)z, . . ., 1), d = De, e= (1, . . ., 1)⊤
then clearly

C01=Dee⊤D = dd⊤. (B20)
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An elegant representation of C00 needs more consideration.
Define the vectors f j ∈Rk, j = 1, . . ., k as

f1= (1,1, . . ., 1,1)⊤, f2= (0,1, . . ., 1,1)⊤, . . .,
fk = (0,0, . . ., 0,1)⊤.

Furthermore, let fk+1 = (0,0,. . .,0,0)⊤ then, we can write
C00 as

C00(z)= e−(k−1)z f1 f ⊤1 +
k
j=2

(e−(k− j)z−e−(k+1− j)z) f j f ⊤j , (B21)

which is a sum of rank one updates.
Now, from Eq. (B18), CN consists of two terms. First note

that

GNC0(GN)⊤=GNC00(GN)⊤−GNC01(GN)⊤+O(zp).
But from Lemma 4 and with dN = (e−(k+N−1)z, . . ., e−Nz)⊤,

N = 1,2, . . .,

Gd = d1+O(zp+1)e⊤1 ,
and by induction and Eq. (B20),

GNC01(GN)⊤= (GNd)(GNd)⊤= dNd⊤N +O(z2p+2).
(B22)

Now consider L =GNC00(GN)⊤, which from Eq. (B21) is

L = e−(k−1)z(GN f1)(GN f1)⊤

+

k
j=2

(e−(k− j)z−e(k+1− j)z)(GN f j)(GN f j)⊤.

In order to make further progress with the global error,
we should first understand the local error. Over one step, the
correlation matrix is given by C1=GC0G⊤+zb⊤m0e1e⊤1 , which
from Lemma 4 is

C1=GC0G⊤+ (e−(k−1)z−e−kz)e1e⊤1 +O(zs+1). (B23)

Now write C0=C00−C01+O(zp) and note from Eq. (B22)
that

GC01G⊤= d1d⊤1 +O(z2p+2)
and from Eq. (B21) that

GC00G⊤ = e−(k−1)z(G f1)(G f1)⊤

+

k
j=2

(e−(k− j)z−e−(k+1− j)z)(G f j)(G f j)⊤.

It is easily seen that

G f1= f2+ (1− zγ)e1,

G f j= f j+1− (z
k
i= j

bi)e1, j = 2, . . ., k,

where

γ =

k
j=1

bj .

Hence,

GC00G⊤ = e−(k−1)z f2 f ⊤2 +
k
j=2

(e−(k− j)z−e−(k+1− j)z) f j+1 f ⊤j+1

+ e−(k−1)z(1− zγ)( f2+ f ⊤2 )

− z
k
j=2

(e−(k− j)z−e−(k+1− j)z)(
k
l= j

bl)( f j+1 f ⊤j+1)

+ (e−(k−1)z(1− zγ)2

+ z2
k
j=2

(e−(k− j)z−e−(k+1− j)z)(
k
l= j

bl)2)e1e⊤1 .

Combining this with Eq. (B23), we only have to study the
expansion in z of the element (1,1) of GC00G⊤. It can be shown
that this is

1− z(k−2(1−γ))+ z2( k2

2
−2k(1−γ)+ (1−γ)2)

− z3( k3

6
+ k2(γ−1)+ k(γ−2)2− 1

2
+γ−γ2

−
k
j=2

(
k
l= j

bl)2)+O(z4).

Now, if γ = 1, this becomes

e−kz+ z3(1
2
+

k
j=2

(
k
l= j

bl)2)+O(z4).

Since the z3 term cannot be made zero, the local error
in the correlation matrix is at most O(z3). Furthermore, if γ
= 1+ θz, θ , 0, which is the case with the predictor-corrector
formulation, this gives

e−kz−θz2+O(z3)
and so, the local error in the correlation matrix is at most O(z2)
for the SAM method.

Thus, we have proved the following result.

Theorem B.2. Given a starting procedure of order p ≥ 2
in the mean and correlation, the SAB method of order s ≥ 2 will
have local correlation order O(z3), while the SAM method is
O(z2).

All that remains to be seen is whether the global conver-
gence error is one more than the local order or not. Now
from Eq. (B18), repeated use of Lemma 4 gives that the second
term in Eq. (B18) is

z
N−1
j=0

b⊤GN−1− jm0(G je1)(e1G j)⊤

=

N−1
j=0

(e−(k+N−2− j)z−e−(k+N−1− j)z)(G je1)(e1G j)⊤.

(B24)

Furthermore, if N ≥ k+2, it can be shown that

GN f1=

*......
,

1
1
...

1

+//////
-

−γz

*......
,

N
N −1
...

N − k

+//////
-

− 1
2
γz2

*......
,

l1

l2
...

lk

+//////
-

+O(z3),
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where

li =
k
j=1

bj(N +2− j− i)(N +1− j− i), i = 1, . . ., k

=N2
k
j=1

bj−N
k
j=1

bj(2 j+2i−3)

+

k
j=1

bj( j+ i−2)( j+ i−1).

Furthermore,

GN f l =−ze
k
j=l

( j+1− l)bj+O(z2), l = 2, . . ., k .

Putting these elements together, we see that in the case of
the predictor-corrector SAM method, the (1,1) element of CN

is

1− z(k+N −1+2N(γ−1))+O(z2),
but if γ = 1+θz, this gives

1− z(k+N −1)−2θN z2,

and so the predictor-corrector method only has global correla-
tion order 1. On the other hand for the SAB method of order 3
or more, the global correlation order is still O(z3) and hence,
the correlation order is three.
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